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Abstract

The concept of informational independence plays a key role in most knowledge-based
systems. J. Pearl and his co-researchers have analysed the basic properties of the concept
and have formulated an axiomatic system for informational independence. This axiomatic
system focuses on independences among mutually disjoint sets of variables. We show
that in the context of probabilistic independence a focus on disjoint sets of variables
can hide various interesting properties. To capture these properties, we enhance Pearl's
axiomatic system with two additional axioms. We investigate the set of models of the
thus enhanced system and show that it provides a better characterisation of the concept
of probabilistic independence than Pearl's system does. In addition, we observe that both
Pearl's axiomatic system and our enhanced system o�er inference rules for deriving new
independences from an initial set of independence statements and as such allow for a
normal form for representing independence. We address the normal forms ensuing from
the two axiomatic systems for informational independence.

1 Introduction

The concept of informational independence pervades most knowledge-based systems. The
concept is used for example for demarcating a system's scope. But more importantly, the
concept of informational independence is essential for reasoning purposes: it is making e�ec-
tive use of knowledge about independences that renders knowledge-based systems capable of
dealing with the computational complexity of their problem-solving tasks. Although infor-
mational independence plays a key role in knowledge-based systems, it generally is de�ned in
di�erent terms in di�erent contexts. For example, in systems built on probability theory, infor-
mational independence is identi�ed with statistical independence among sets of variables; in
constraint-satisfaction systems, informational independence is de�ned in terms of constraints
| two variables are said to be independent if restricting the domain of one variable leaves the
other one's domain unaltered. Despite these de�nitional di�erences, the various perspectives
on informational independence share the same basic properties.

The basic properties of informational independence have been identi�ed and taken to con-
stitute an axiomatic system for informational independence by J. Pearl and his co-researchers
[Pearl, 1988, Pearl et al., 1990]. There are many advantages to an axiomatic system for infor-
mational independence. Such a system for example o�ers inference rules for computing new
independence statements from an initial set of statements. As such, it allows for a normal

form for independence and, hence, provides for a concise representation of a set of indepen-
dences. An axiomatic system may further be used for verifying whether a new statement
logically follows from a set of independence statements and for studying inconsistency among
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independences. These advantages fall in with the advantages of axiomatisation in gener-
al. The impact of Pearl's axiomatic system for informational independence is most clearly
demonstrated in the context of probability theory, as it underlies the formalism of Bayesian
belief networks for reasoning with uncertainty in knowledge-based systems [Pearl, 1988].

Pearl's axiomatic system for informational independence focuses on independences among
mutually disjoint sets of variables. In the context of probability theory, however, the concept
of informational independence is not restricted to mutually disjoint sets of variables. In this
paper, we examine the consequences of Pearl's restricted focus and show that focusing on
disjoint sets of variables can hide various interesting properties pertaining to the functional
dependences holding in a joint probability distribution. To capture these properties, we
identify two new axioms to be included in Pearl's axiomatic system. A comparison of the sets
of models of Pearl's system and our thus enhanced axiomatic system shows that the enhanced
system provides the better characterisation of the concept of probabilistic independence in
the sense that it has fewer models that are not embedded in any joint probability distribution.

Since the introduction of Pearl's axiomatic system for informational independence, several
new axioms have been identi�ed. In fact, it has been shown that a �nite axiomatisation of
the concept of probabilistic independence does not exist [Studen�y, 1992]. The importance
of our enhanced axiomatic system in view of this result arises from its allowing for a new
normal form for informational independence. This normal form elucidates the necessity of
explicitly representing the functional dependences holding in a joint probability distribution,
for example in addition to its representation in a Bayesian belief network.

The paper is structured as follows. We review Pearl's axiomatic system for informational
independence in Section 2 and discuss the extension Pearl has proposed for his system in
Section 3. The two additional axioms that we have identi�ed from an analysis of the restricted
focus on disjoint sets of variables, are described in Section 4. In Section 5 we address the
normal forms ensuing from Pearl's axiomatic system for informational independence and our
enhanced system, respectively. The paper is rounded o� with some conclusions in Section 6.

2 Independence Revisited

The concept of informational independence has been studied in various contexts. Especially
in the context of probability theory has independence been a subject of extensive studies,
see for example [Dawid, 1979, Lauritzen, 1982]. The main objective of the early statistical
studies was to identify and express in algebraic form independence relations embedded in
joint probability distributions to allow for comparison and classi�cation. J. Pearl and his
co-researchers were among the �rst to formalise properties of independence relations in an
axiomatic system and to develop a logic for informational independence [Pearl & Paz, 1985,
Pearl & Verma, 1987, Geiger & Pearl, 1988]. In this section, we review Pearl's axiomatic
system.

2.1 Pearl's Axiomatic System for Informational Independence

In the context of probability theory, the concept of independence is generally introduced in
terms of numerical quantities: the independence relation of a joint probability distribution is
taken to be implicitly embedded in the probabilities involved. A de�nition of independence
in terms of numbers suggests that, in order to determine whether two sets of variables are
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(conditionally) independent, several conditional probabilities have to be computed and sev-
eral equalities have to be tested; moreover, such a de�nition suggests that for determining
independence a joint probability distribution on the variables discerned has to be explicitly
available. In contrast, humans tend to be able to state directly, often with conviction and
consistency, whether or not two sets of variables are independent. Such statements of inde-
pendence typically are issued qualitatively, without any reference to numerical manipulation
of exact probabilities. Based on these observations, Pearl argues that the concept of indepen-
dence is far more basic to human reasoning than its numerical de�nition suggests and that in
fact the de�nition of independence in terms of probabilities may be looked upon as a quanti-
tative way of capturing the basic concept which is qualitative in nature [Pearl, 1988]. Pearl's
aim in designing an axiomatic system now is to provide an explicit qualitative de�nition of
independence.

We begin our review of Pearl's axiomatic system for informational independence by in-
troducing some notational convention.

De�nition 2.1 Let V be a �nite set of (discrete) variables and let Pr be a joint probability

distribution on V . Then, the independence relation I Pr � 2V � 2V � 2V of Pr is de�ned by

(X;Z; Y ) 2 I Pr if and only if Pr(X = x j Y = y ^ Z = z) = Pr(X = x j Z = z) for all value
assignments x; y; z to the sets of variables X;Y;Z � V , respectively.

Note that in the previous de�nition we have expressed the concept of (conditional) indepen-
dence from probability theory in the Bayesian formalism, thereby closely following Pearl
[Pearl, 1988]. From now on, we will write I Pr(X;Z; Y ) to denote (X;Z; Y ) 2 I Pr and
:I Pr(X;Z; Y ) to denote (X;Z; Y ) 62 I Pr, for short. A statement I Pr(X;Z; Y ) of a joint
probability distribution Pr's independence relation I Pr is termed an independence statement.
In qualitative terms, an independence statement I Pr(X;Z; Y ) expresses that in the context
of information about Z information about Y is irrelevant with respect to X. In the following,
we will use P to denote the set of all independence relations that are embedded in a joint
probability distribution on a set of variables V . We will want to single out independence re-
lations that are embedded in a strictly positive probability distribution, since these relations
exhibit some interesting properties that do not hold for independence relations in general.
The set of all such independence relations will be denoted as P+. Note that P+ � P.

In designing his axiomatic system for informational independence, Pearl builds on a set
of properties that are satis�ed by any joint probability distribution's independence relation;
Theorem 2.2 reviews these properties.

Theorem 2.2 Let V be a �nite set of variables. Let Pr be a joint probability distribution on

V and let I Pr be its independence relation as de�ned in De�nition 2.1. Then, I Pr satis�es

the properties

� I Pr(X;Z; Y )! I Pr(Y;Z;X);

� I Pr(X;Z; Y [W )! I Pr(X;Z; Y ) ^ I Pr(X;Z;W );

� I Pr(X;Z; Y [W )! I Pr(X;Z [W;Y );

� I Pr(X;Z; Y ) ^ I Pr(X;Z [ Y;W )! I Pr(X;Z; Y [W );

for all mutually disjoint sets of variables X;Y;Z;W � V . If the distribution Pr is strictly

positive, then I Pr satis�es the additional property
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� I Pr(X;Z [W;Y ) ^ I Pr(X;Z [ Y;W )! I Pr(X;Z; Y [W );

for all mutually disjoint sets of variables X;Y;Z;W � V .

The properties stated in Theorem 2.2 are easily veri�ed from the basic axioms of probability
theory. We would like to note that we have stated the properties in the theorem to hold for
mutually disjoint sets of variables only [Pearl, 1988]. These properties, however, also hold for
overlapping sets of variables; we will return to this observation in the following section.

Pearl now takes the properties stated in Theorem 2.2 as axioms for the qualitative concept
of informational independence [Pearl, 1988].

De�nition 2.3 The axiomatic system for informational independence A is composed of the

four axioms

� I(X;Z; Y )! I(Y;Z;X);

� I(X;Z; Y [W )! I(X;Z; Y ) ^ I(X;Z;W );

� I(X;Z; Y [W )! I(X;Z [W;Y );

� I(X;Z; Y ) ^ I(X;Z [ Y;W )! I(X;Z; Y [W );

for any ternary relation I � 2V � 2V � 2V on a �nite set of variables V , for all mutually

disjoint sets of variables X;Y;Z;W � V ; the set of all models of the system A will be denoted

as [A]. The axiomatic system A+ comprises the four axioms from the system A and the
additional axiom

� I(X;Z [W;Y ) ^ I(X;Z [ Y;W )! I(X;Z; Y [W );

for any ternary relation I � 2V � 2V � 2V on V , for all mutually disjoint sets of variables

X;Y;Z;W � V ; the set of all models of A+ will be denoted as [A+].

The axioms described in De�nition 2.3 have been proven logically independent [Pearl, 1988].
The axioms of the axiomatic system for informational independence A with each other

convey the idea that learning irrelevant information does not alter the independences among
the variables discerned. We consider the qualitative meanings of the various axioms separately.
The axiom

I(X;Z; Y )! I(Y;Z;X)

states that if information about Y is deemed irrelevant with respect to X in the context of
information about Z, then information about X must be irrelevant with respect to Y in this
context; this axiom is called the symmetry axiom. The axiom

I(X;Z; Y [W )! I(X;Z; Y ) ^ I(X;Z;W )

asserts that if information about both Y and W is judged irrelevant with respect to X, then
both information about Y and information about W must be irrelevant with respect to X

separately; this axiom is known as the decomposition axiom. We would like to note that the
decomposition axiom may be reformulated as I(X;Z; Y [W )! I(X;Z; Y ); we have chosen
to use Pearl's original formulation because it conveys the idea of decomposition more clearly.
The axiom

I(X;Z; Y [W )! I(X;Z [W;Y )
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states that learning information about W that is known to be irrelevant with respect to X

cannot help irrelevant information about Y to become relevant with respect to X; this axiom
is known as the weak union axiom. The axiom

I(X;Z; Y ) ^ I(X;Z [ Y;W )! I(X;Z; Y [W )

states that if we judge information aboutW to be irrelevant with respect to X after learning
some irrelevant information about Y , then the information about W must have been irrele-
vant with respect to X before we learned Y ; this axiom is known as the contraction axiom.
Note that the contraction axiom can be reformulated as I(X;Z; Y ) ! (I(X;Z [ Y;W ) !
I(X;Z; Y [W )). From this reformulation, it is seen that the axiom can be looked upon as a
conditional reverse of the weak union axiom. To conclude, we consider the axiom

I(X;Z [W;Y ) ^ I(X;Z [ Y;W )! I(X;Z; Y [W )

This axiom states that if, in the context of information about Z, learning information about
W renders information about Y irrelevant with respect to X and learning Y renders W

irrelevant with respect to X, then the information about both Y and W must be irrelevant
with respect to X given Z; this axiom is known as the intersection axiom.

The axiomatic system A introduced in De�nition 2.3 will be referred to as Pearl's restrict-
ed axiomatic system for informational independence. Any model in the set of models [A] of
the system A is termed a semi-graphoid independence relation; any model in [A+] is termed
a graphoid independence relation. The terms graphoid and semi-graphoid refer to the repre-
sentation of independence relations in graphical structures [Pearl & Paz, 1985, Pearl, 1988].

Pearl's restricted axiomatic system for informational independence A serves to capture
(at least) all independence relations that are embedded in a joint probability distribution;
this property is stated more formally in the following lemma.

Lemma 2.4 Let P be the set of all independence relations that are embedded in a joint

probability distribution and let P+ be the set of independence relations that are embedded in a

strictly positive distribution. Furthermore, let [A] be the set of models of the axiomatic system

A and let [A+] be the set of models of the system A+ as de�ned in De�nition 2.3. Then,

� P � [A];

� P+ � [A+].

Proof. We will only prove the �rst property stated in the lemma; the proof of the second
property is analogous. Let I 2 P be an independence relation. By de�nition of P, we have
that there exists a joint probability distribution Pr such that I is the independence relation
of Pr. From Theorem 2.2 and De�nition 2.3 we have that I satis�es all four axioms from the
axiomatic system A. So, I 2 [A]. We conclude that P � [A]. 2

Although any probability distribution's independence relation is a model of the axiomatic
system A, the reverse property does not hold, that is, there exist models in the set of models
of A for which there do not exist joint probability distributions embedding them. This
observation is due to M. Studen�y who has been the �rst to identify an additional, logically
independent axiom for semi-graphoid independence relations [Studen�y, 1989]. From Studen�y's
observation we have the following lemma.
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Lemma 2.5 Let P and P+ be as before. Furthermore, let [A] and [A+] be the sets of models
of the axiomatic systems A and A+, respectively. Then,

� [A] 6� P;

� [A+] 6� P+.

We would like to note that it has been shown that a �nite axiomatisation of the concept of
probabilistic independence does not exist, that is, there does not exist a �nite set of axioms
X such that [X ] = P [Studen�y, 1992].

2.2 Properties of Independence Relations

Using Pearl's axiomatic system for informational independence, we derive some convenient
properties of (semi-graphoid and graphoid) independence relations. The following lemma
shows that the symmetry and contraction axioms from the axiomatic system A are easily
generalised to bi-implications.

Lemma 2.6 Let [A] be the set of models of the axiomatic system for informational indepen-

dence A. Let I 2 [A] be an independence relation on a �nite set of variables V . Then,

� I(X;Z; Y )$ I(Y;Z;X);

� I(X;Z; Y ) ^ I(X;Z [ Y;W )$ I(X;Z; Y [W );

for all mutually disjoint sets of variables X;Y;Z;W � V .

Proof. We begin our proof by observing that since I 2 [A], it obeys the four axioms from the
axiomatic system A. The �rst property stated in the lemma now follows directly from the
symmetry axiom. For the second property, we observe that I(X;Z; Y ) ^ I(X;Z [ Y;W ) !
I(X;Z; Y [W ) coincides with the contraction axiom and therefore trivially holds for the inde-
pendence relation I. We will now prove that I(X;Z; Y [W )! I(X;Z; Y )^ I(X;Z [ Y ;W ).
We have

I(X;Z; Y [W ) ) I(X;Z; Y ) ^ I(X;Z;W ) )
) I(X;Z; Y )

by the decomposition axiom. In addition, we have

I(X;Z; Y [W ) ) I(X;Z [ Y;W )

by weak union. The property stated in the lemma now follows directly. 2

For graphoid independence relations we further have that the intersection axiom from the
axiomatic system A+ can be generalised to a bi-implication.

Lemma 2.7 Let [A+] be the set of models of the axiomatic system for informational in-

dependence A+. Let I 2 [A+] be an independence relation on a �nite set of variables V .

Then,

I(X;Z [W;Y ) ^ I(X;Z [ Y;W )$ I(X;Z; Y [W )

for all mutually disjoint sets of variables X;Y;Z;W � V .
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Proof. We will only prove that I(X;Z; Y [W ) ! I(X;Z [W;Y ) ^ I(X;Z [ Y;W ); the
reverse property coincides with the intersection axiom from the axiomatic system A+ and
therefore trivially holds for the independence relation I. We have

I(X;Z; Y [W )) I(X;Z [W;Y )

and

I(X;Z; Y [W )) I(X;Z [ Y;W )

by the weak union axiom. The property stated in the lemma now follows directly. 2

3 Pearl's Extended Axiomatic System

Pearl's restricted axiomatic system for informational independence involves axioms that are
stated to apply to mutually disjoint sets of variables only. The probabilistic concept of inde-
pendence, however, is not restricted to mutually disjoint sets of variables: a joint probabili-
ty distribution's independence relation typically includes independence statements involving
overlapping sets of variables. To fully capture the basic concept of independence, an axiomatic
system should therefore provide axioms, not just for mutually disjoint sets, but for overlap-
ping sets of variables as well. In this section, we review the extension Pearl has proposed for
this purpose to his axiomatic system.

In Section 2 we have already mentioned that the properties from Theorem 2.2, although
stated to hold for mutually disjoint sets of variables only, hold for overlapping sets as well.
The axioms from Pearl's restricted axiomatic system for informational independence there-
fore are generalised straightforwardly to apply to overlapping sets of variables. In addition
to generalising the symmetry, decomposition, weak union, contraction, and intersection ax-
ioms, Pearl proposes including an extra axiom in his system. This additional axiom has its
motivational foundation in the property

I Pr(X;Z; Y )$ I Pr(X � Z;Z; Y � Z)

for all sets of variables X;Y;Z � V , �rst identi�ed by A.P. Dawid to hold for any joint
probability distribution Pr's independence relation I Pr [Dawid, 1979]. To capture Dawid's
property for overlapping sets, Pearl introduces the axiom I(X;Z;Z) for all sets of variables
X;Z � V [Pearl, 1988 (pp. 84 { 85)]. This axiom asserts that, once information about Z is
known, learning information about Z becomes irrelevant with respect to any set of variables
X. The validity of the axiom in the context of probabilistic independence is easily veri�ed;
moreover, it is readily seen that the new axiom is logically independent from the generalised
symmetry, decomposition, weak union, contraction, and intersection axioms. The axiom will
be termed the overlap axiom.

Pearl's extended axiomatic system for informational independence E is summarised in the
following de�nition.

De�nition 3.1 The axiomatic system for informational independence E is composed of the

�ve axioms

� I(X;Z; Y )! I(Y;Z;X);

� I(X;Z; Y [W )! I(X;Z; Y ) ^ I(X;Z;W );
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� I(X;Z; Y [W )! I(X;Z [W;Y );

� I(X;Z; Y ) ^ I(X;Z [ Y;W )! I(X;Z; Y [W );

� I(X;Z;Z);

for any ternary relation I � 2V �2V �2V on a �nite set of variables V , for all sets of variables
X;Y;Z;W � V ; the set of all models of the system E will be denoted as [E ]. The axiomatic

system E+ comprises the �ve axioms from the system E and the additional axiom

� I(X;Z [W;Y ) ^ I(X;Z [ Y;W )! I(X;Z; Y [W );

for any ternary relation I � 2V � 2V � 2V on V , for all sets of variables X;Y;Z;W � V ; the

set of all models of E+ will be denoted as [E+].

Any model in the set of models [E ] of the axiomatic system E will be termed an extended

semi-graphoid independence relation; a model in [E+] will be called an extended graphoid

independence relation.
The set of all models of Pearl's extended axiomatic system for informational independence

E is a proper subset of the set of models of the restricted axiomatic system A, yet includes all
independence relations that are embedded in a joint probability distribution. This property
is stated more formally in the following lemma.

Lemma 3.2 Let P and P+ be as before. Furthermore, let [A] and [A+] be the sets of models

of the axiomatic systems A and A+, respectively. Let [E ] be the set of models of the axiomatic

system for informational independence E and let [E+] be the set of models of the system E+

as de�ned in De�nition 3.1. Then,

� P � [E ] � [A];

� P+ � [E+] � [A+].

To conclude our review of Pearl's extension to the restricted system, the following lemma
con�rms that Dawid's property for overlapping sets of variables can indeed be derived from
the extended axiomatic system for informational independence E .

Lemma 3.3 Let [E ] be the set of models of the axiomatic system E. Let I 2 [E ] be an

independence relation on a �nite set of variables V . Then,

I(X;Z; Y )$ I(X � Z;Z; Y � Z)

for all sets of variables X;Y;Z � V .

Proof. We begin our proof by observing that since I 2 [E ], it obeys the �ve axioms from the
axiomatic system E . We �rst prove the property I(X;Z; Y )! I(X � Z;Z; Y �Z). We have
that

I(X;Z; Y ) ) I(X;Z; Y � Z))
) I(Y � Z;Z;X) )
) I(Y � Z;Z;X � Z))
) I(X � Z;Z; Y � Z)
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by the (generalised) decomposition and symmetry axioms.
We now prove the property I(X � Z;Z; Y � Z) ! I(X;Z; Y ). For this purpose, we

assume that I(X �Z;Z; Y �Z) for some subsets of variables X;Y;Z � V . From the overlap
axiom, we furthermore have that I(X � Z;Z;Z). From this independence statement we
�nd I(X � Z;Z;Z \ Y ) by the decomposition axiom. In conjunction with our assumption
I(X � Z;Z; Y � Z), we now �nd

I(X � Z;Z;Z \ Y ) ^ I(X � Z;Z; Y � Z) ) I(X � Z;Z; Y ))
) I(Y;Z;X � Z)

by the contraction and symmetry axioms. Now observe that the relation I includes the
independence statement I(Y;Z; Z). From this statement, we have I(Y;Z; Z \ X) by the
decomposition axiom. In conjunction with the independence statement I(Y;Z;X � Z), we
�nd

I(Y;Z; Z \X) ^ I(Y;Z;X � Z) ) I(Y;Z;X) )
) I(X;Z; Y )

by the contraction and symmetry axioms. We conclude that I(X�Z;Z; Y �Z)! I(X;Z; Y ).
2

4 Enhancing Pearl's Axiomatic System

Pearl's extended axiomatic system for informational independence includes axioms that ad-
dress independences among overlapping sets of variables. As such, it is a better characterisa-
tion of the concept of probabilistic independence than the restricted axiomatic system in the
sense that it allows fewer independence relations that are not embedded in any joint probabil-
ity distribution. Independences among overlapping sets of variables, however, induce various
interesting properties that are not yet captured by Pearl's extended axiomatic system. In this
section, we identify several properties pertaining to functional dependences among variables.
To capture these properties, we include two additional axioms in Pearl's extended axiomatic
system for informational independence.

4.1 Strictly Positive Probability Distributions

In designing his axiomatic system for informational independence, Pearl has singled out strict-
ly positive joint probability distributions [Pearl, 1988]. This special attention for strictly pos-
itive distributions has resulted in the concept of a graphoid independence relation as a special
type of semi-graphoid independence relation. In this section, we reconsider the independence
relation of a strictly positive joint probability distribution and examine its independence
statements that involve overlapping sets of variables.

Strictly positive joint probability distributions are well-known for the property that they
do not embed any functional dependences among their variables: in a strictly positive distri-
bution there are no variables whose value is completely determined by some other variables'
values. This lack of functional dependences is re
ected in the independence relations of strictly
positive distributions.

9



Proposition 4.1 Let V be a �nite set of variables. Let Pr be a strictly positive joint proba-
bility distribution on V and let I Pr be its independence relation. Then,

:I Pr(fVig; Z; fVig)

for each variable Vi 2 V and all sets of variables Z � V � fVig.

Proof. From the conditions of the proposition, we have that the probability distribution Pr
is strictly positive, that is, we have that Pr(X = x) > 0 for all (non-empty) sets of variables
X � V and all value assignments x toX. We now prove the property stated in the proposition
by contradiction. Suppose that I Pr(fVig; Z; fVig) for some variable Vi 2 V and some set of
variables Z � V with Vi 62 Z. Then, by de�nition we have that

Pr(Vi = vi j Vi = vi ^ Z = z) = Pr(Vi = vi j Z = z)

for all value assignments vi; z to Vi; Z, respectively. From the property that Pr is strictly
positive, we have that Pr(Vi = vi ^ Z = z) > 0 and, therefore, that

Pr(Vi = vi j Vi = vi ^ Z = z) =
Pr(Vi = vi ^ Z = z)

Pr(Vi = vi ^ Z = z)
= 1

for all value assignments vi; z to Vi; Z, respectively. Consequently, we have that Pr(Vi = vi j
Z = z) = 1 for all assignments vi; z. But then, we have by marginalisation that

Pr(Vi = v0

i j Z = z) + Pr(Vi = v00

i j Z = z) = 2 � 1

for any value assignment z to Z and any two di�erent value assignments v0

i and v00

i to Vi.
From the contradiction, we conclude that :I Pr(fVig; Z; fVig). 2

The property

:I Pr(fVig; Z; fVig)

for each variable Vi 2 V and all sets of variables Z � V �fVig, stated in the previous propo-
sition for the independence relation I Pr of a strictly positive joint probability distribution Pr,
expresses that in this distribution Pr information about a variable Vi cannot be irrelevant
with respect to Vi itself as long as no information about Vi is available as yet. This property
conveys that indeed there do not exist any functional dependences among the variables of the
distribution. Note that, if information about Vi is available, that is, if Vi 2 Z, we have that
I Pr(fVig; Z; fVig).

Pearl's extended axiomatic system for informational independence E+ has been designed to
capture independence relations of strictly positive joint probability distributions [Pearl, 1988].
Unfortunately, the axiomatic system E+ does not re
ect the property stated in Proposi-
tion 4.1. An independence relation I in the set of models of E+ may very well include
statements of the form I(fVig; Z; fVig) for some Vi 2 V and some Z � V � fVig; we will
return to this observation shortly. To exclude such statements from models of informational
independence, we add to Pearl's extended axiomatic system E+ the axiom :I(fVig; Z; fVig)
for each variable Vi 2 V and all sets of variables Z � V � fVig. The axiom will be termed
the no-functions axiom. Note that, in contrast with all other axioms in Pearl's extended ax-
iomatic system, the no-functions axiom is negative in the sense that it explicitly states which
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independence statements do not hold. In fact, the axiom expresses a dependence and may be
looked upon as providing for a dependence closure.

The following de�nition summarises the enhanced axiomatic system for informational
independence F+.

De�nition 4.2 Let E+ be the axiomatic system for informational independence as de�ned in

De�nition 3.1. The axiomatic system for informational independence F+ is composed of the

six axioms from E+ and the additional axiom

:I(fVig; Z; fVig)

for any ternary relation I � 2V � 2V � 2V on a �nite set of variables V , for each variable

Vi 2 V and all sets of variables Z � V � fVig; the set of all models of the system F+ will be

denoted as [F+].

The enhanced axiomatic system for informational independence F+ allows fewer models of
independence than the axiomatic system E+, yet still serves to capture all independence
relations that are embedded in a strictly positive joint probability distribution. This property
is stated more formally in the following lemma.

Lemma 4.3 Let P+ be as before. Furthermore, let [E+] be the set of models of the axiomatic

system E+. Let [F+] be the set of all models of the axiomatic system for informational

independence F+ as de�ned in De�nition 4.2. Then,

P+ � [F+] � [E+]

Proof. The property P+ � [F+] follows from Proposition 4.1 and our observations in Section
2. We now prove that [F+] � [E+]. From De�nition 4.2, we have that [F+] � [E+]. To show
that [E+] 6� [F+], it su�ces to give an example independence relation that is included in the
set of models [E+] and not in [F+]. For this purpose, we consider the independence relation
I = 2V � 2V � 2V on some set of variables V . It will be evident that for this independence
relation I we have that I 2 [E+]. We further observe that the relation I includes for example
the statement I(fVig;?; fVig), for any variable Vi 2 V . From this observation, we have that
I 62 [F+]. We conclude that [F+] � [E+]. 2

From the no-functions axiom that we have included in the axiomatic system F+, we have
that an independence relation I in the set of models of F+ does not comprise any statement
of the form I(fVig; Z; fVig) with Vi 62 Z. In fact, the independence relation does not even
include statements of the form I(X;Z; Y ) with X \ Y 6� Z. This property is stated more
formally in the following lemma.

Lemma 4.4 Let [F+] be the set of models of the axiomatic system F+. Let I 2 [F+] be an

independence relation on a �nite set of variables V . Then,

:I(X;Z; Y )

for all sets of variables X;Y;Z � V with X \ Y 6� Z.

11



Proof. From I 2 [F+], we have that :I(fVig; Z; fVig) for every variable Vi 2 V and all sets
of variables Z � V � fVig; furthermore, we have that the independence relation I obeys the
axioms from Pearl's extended axiomatic system E+. We now prove the property stated in
the lemma by contradiction. Suppose that I(X;Z; Y ) for some sets of variables X;Y;Z � V

with X \ Y 6� Z. From X \ Y 6� Z we have that there exists a variable Vj 2 V such that
Vj 2 X \ Y and Vj 62 Z. For this variable Vj, we �nd that

I(X;Z; Y ) ) I(X;Z; fVjg))
) I(fVjg; Z;X))
) I(fVjg; Z; fVjg)

by the decomposition and symmetry axioms. For the variable Vj, we therefore have both
I(fVjg; Z; fVjg) and :I(fVjg; Z; fVjg). From the contradiction, we conclude the property
stated in the lemma. 2

From Lemma 4.4 we have the following corollary.

Corollary 4.5 Let [F+] be the set of models of the axiomatic system F+. Let I 2 [F+] be
an independence relation on a �nite set of variables V . If I(X;Z; Y ), then X \ Y � Z, for

all sets of variables X;Y;Z � V .

4.2 General Probability Distributions

While strictly positive joint probability distributions do not embed any functional depen-
dences among their variables, probability distributions in general may very well do so: a
joint probability distribution may involve one or more deterministic variables whose value
is completely determined by some other variables' values. A well-known example of a joint
probability distribution embedding a functional dependence from the literature on Bayesian
belief networks is the probability distribution of the Visit-to-Asia example �rst introduced
by S.L. Lauritzen and D.J. Spiegelhalter [Lauritzen & Spiegelhalter, 1988]. In this section,
we reconsider independence relations of joint probability distributions that may embed func-
tional dependences; in doing so, we once more examine their independence statements that
involve overlapping sets of variables.

In the foregoing, we have seen that lack of functional dependences in a joint probability
distribution gives rise to the property :I(fVig; Z; fVig) for each variable Vi 2 V and all sets
of variables Z � V � fVig. In the presence of functional dependences, this property no
longer holds. The functional dependences are re
ected in the independence relation of the
distribution at hand; the independence relation of a joint probability distribution that embeds
one or more functional dependences typically includes statements of the form I(fVig; Z; fVig)
with Vi 62 Z. Note that an independence statement I(fVig; Z; fVig) with Vi 62 Z expresses
that in the context of information about Z, information about Vi is irrelevant with respect
to Vi itself, even if no information about Vi is available as yet. From a qualitative point
of view, independence statements of this form may seem counterintuitive: intuitively, no
variable can be independent from itself. Recall, however, that we build on the probabilistic
concept of independence which is de�ned in terms of numerical quantities. The statement
I(fVig; Z; fVig) with Vi 62 Z re
ects that the variable Vi's value is completely determined by
the available information about Z: once the value of Vi is determined by the information
about Z, then the marginal, updated probability distribution on Vi is a degenerate 0 { 1
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distribution and learning the true value of Vi cannot alter this distribution, that is, Pr(Vi =
vi j Vi = vi^Z = z) = Pr(Vi = vi j Z = z) for all value assignments vi; z to Vi; Z, respectively.

The presence of independence statements of the form I(fVig; Z; fVig) with Vi 62 Z, or more
in general, statements of the form I(X;Z;X) with X 6� Z, in a joint probability distribution's
independence relation gives rise to the property stated in the following proposition.

Proposition 4.6 Let V be a �nite set of variables. Let Pr be a joint probability distribution

on V and let I Pr be its independence relation. Then,

I Pr(X;Z;X) ! I Pr(X;Z; Y )

for all sets of variables X;Y;Z � V .

Proof. To prove the property stated in the proposition, we assume that I Pr(X;Z;X) for
some sets of variables X;Z � V . Using this independence statement, we now �rst show that
I Pr(X [ Y;Z;X) for all sets of variables Y � V . To this end, we consider the probabilities
Pr(X = x ^ Y = y j X = x ^ Z = z) for all value assignments x; y; z to the sets of variables
X;Y;Z, respectively. By the chain rule, we �nd

Pr(X = x ^ Y = y j X = x ^ Z = z) =
= Pr(Y = y j X = x ^X = x ^ Z = z) � Pr(X = x j X = x ^ Z = z)
= Pr(Y = y j X = x ^ Z = z) � Pr(X = x j X = x ^ Z = z)

for all value assignments x; y; z to X;Y;Z, respectively. From our assumption I Pr(X;Z;X),
we have by de�nition that Pr(X = x j X = x ^ Z = z) = Pr(X = x j Z = z) for all value
assignments x; z to X;Z. Using this property, we �nd

Pr(X = x ^ Y = y j X = x ^ Z = z) =
= Pr(Y = y j X = x ^ Z = z) � Pr(X = x j Z = z) =
= Pr(X = x ^ Y = y j Z = z)

for all value assignments x; y; z to X;Y;Z, by once more using the chain rule. We conclude
that I Pr(X[Y;Z;X). Now observe that the independence relation I Pr of the probability dis-
tribution Pr is a model of Pearl's extended axiomatic system for informational independence
E and therefore obeys the �ve axioms from E . From I Pr(X [ Y;Z;X), we now �nd

I Pr(X [ Y;Z;X) ) I Pr(X;Z;X [ Y ))
) I Pr(X;Z; Y )

by the symmetry and decomposition axioms. We conclude that I Pr(X;Z;X) ! I Pr(X;Z; Y )
for all sets of variables X;Y;Z � V . 2

The property

I Pr(X;Z;X) ! I Pr(X;Z; Y )

for all sets of variables X;Y;Z � V , stated in the previous proposition, expresses that, if
information about X is irrelevant with respect to X itself in the context of information about
Z, then information about any set of variables is irrelevant with respect to X in this context.

Pearl's extended axiomatic system for informational independence E has been designed
to characterise independence relations that may be embedded in a joint probability distri-
bution [Pearl, 1988]. Unfortunately, the axiomatic system E does not re
ect the property
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stated in Proposition 4.6. An independence relation I in the set of models of the system E
may very well include a statement I(X;Z;X) for some sets of variables X;Z � V and yet
lack the statement I(X;Z; Y ) for some set Y � V ; we will return to this observation short-
ly. To enforce independence statements of the form I(X;Z; Y ) to be included in models of
informational independence in which I(X;Z;X) holds, we add to Pearl's extended axiomatic
system E the axiom I(X;Z;X) ! I(X;Z; Y ) for all sets of variables X;Y;Z � V . The newly
included axiom will be termed the determination axiom.

The following de�nition summarises the thus enhanced axiomatic system for informational
independence I.

De�nition 4.7 Let E be as before. The axiomatic system for informational independence I
is composed of the �ve axioms from E and the additional axiom

I(X;Z;X) ! I(X;Z; Y )

for any ternary relation I � 2V �2V �2V on a �nite set of variables V , for all sets of variables

X;Y;Z � V ; the set of all models of the system I will be denoted as [I].

The enhanced axiomatic system for informational independence I provides a better charac-
terisation of the concept of probabilistic independence than the axiomatic system E : it allows
fewer models of independence that are not embedded in any joint probability distribution
and, yet, serves to capture all probabilistic independence relations. This property is stated
more formally in the following lemma.

Lemma 4.8 Let P be as before. Furthermore, let [E ] be the set of models of the axiomatic sys-

tem E. Let [I] be the set of all models of the axiomatic system for informational independence

I as de�ned in De�nition 4.7. Then,

P � [I] � [E ]

Proof. The property P � [I] follows from Proposition 4.6 and our observations in Section
2. We now prove that [I] � [E ]. From De�nition 4.7, we have that [I] � [E ]. To show that
[E ] 6� [I], it su�ces to give an example independence relation I that is included in the set
of models [E ] and not in [I]. For this purpose, we consider the independence relation I �
2V �2V �2V on the set of variables V = fV0; V1; V2g that is de�ned by the (single) statement
I(fV0g; fV1g; fV0g), that is, the relation I includes I(fV0g; fV1g; fV0g) and all independence
statements that can be derived from this statement by the �ve axioms of the system E . It
will be evident that for this independence relation I we have that I 2 [E ]. We will now show
that :I(fV0g; fV1g; fV2g), from which we will conclude that I 62 [I].

We begin by showing that for any independence statement I(fV0g; Z; Y ) with V2 2 Y

that is derived from the statement I(fV0g; fV1g; fV0g) by the decomposition, weak union,
contraction, and overlap axioms, we have that V2 2 Z. We will prove this property by
induction on the length of the derivation.

Induction Basis

The property stated above trivially holds for every independence statement that is derived in
zero derivation steps.
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Induction Hypothesis
For some n � 0, we assume that for all independence statements I(fV0g; Z; Y ) with V2 2 Y

that are derived from the statement I(fV0g; fV1g; fV0g) by application of the four axioms
mentioned above in k � n derivation steps, we have that V2 2 Z.

Induction Step

Now, consider an independence statement I(fV0g; Z; Y ) with V2 2 Y that is derived from
I(fV0g; fV1g; fV0g) in n+ 1 derivation steps. We distinguish between all possible derivations
of I(fV0g; Z; Y ).

� by the decomposition axiom, we have that

I(fV0g; Z; Y
0)) I(fV0g; Z; Y )

for some set of variables Y 0 � V with Y � Y 0. Note that from V2 2 Y and Y � Y 0, we
have that V2 2 Y 0. From the independence statement I(fV0g; Z; Y

0) having been derived
from the statement I(fV0g; fV1g; fV0g) in at most n derivation steps and V2 2 Y 0, we
conclude by the induction hypothesis that V2 2 Z.

� by the weak union axiom, we have that

I(fV0g; Z
0; Y 0)) I(fV0g; Z; Y )

for some sets of variables Y 0; Z 0 � V with Y � Y 0, Z 0 � Z, and Y 0 [ Z 0 = Y [ Z. Note
that from V2 2 Y and Y � Y 0, we have that V2 2 Y 0. From the independence statement
I(fV0g; Z

0; Y 0) having been derived from the statement I(fV0g; fV1g; fV0g) in at most
n derivation steps and V2 2 Y 0, we conclude by the induction hypothesis that V2 2 Z 0.
From Z 0 � Z, it follows that V2 2 Z.

� by the contraction axiom, we have that

I(fV0g; Z; Y
0) ^ I(fV0g; Z

0; Y 00)) I(fV0g; Z; Y )

for some sets of variables Y 0; Y 00; Z 0 � V with Y 0 [ Y 00 = Y and Z 0 = Z [ Y 0. From
V2 2 Y and Y 0 [ Y 00 = Y , we have that V2 2 Y 0 or V2 2 Y 00.

{ we suppose that V2 2 Y 0. From the independence statement I(fV0g; Z; Y
0) having

been derived from I(fV0g; fV1g; fV0g) in at most n derivation steps and V2 2 Y 0,
we conclude by the induction hypothesis that V2 2 Z.

{ we now suppose that V2 2 Y 00 and V2 62 Y 0. From the independence statement
I(fV0g; Z

0; Y 00) having been derived from I(fV0g; fV1g; fV0g) in at most n deriva-
tion steps and V2 2 Y 00, we conclude by the induction hypothesis that V2 2 Z 0.
From Z 0 = Z [ Y 0 and V2 62 Y 0, we �nd that V2 2 Z.

� by the overlap axiom, we have that

I(fV0g; Z; Y )

with Z = Y . From V2 2 Y and Z = Y , we have that V2 2 Z.
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We conclude that for any independence statement I(fV0g; Z; Y ) with V2 2 Y that is derived
from the statement I(fV0g; fV1g; fV0g) by application of the decomposition, weak union,
contractions, and overlap axioms, we have that V2 2 Z. From this property, it now follows
that :I(fV0g; fV1g; fV2g). We would like to note that, so far, the symmetry axiom has not
been taken into consideration; analogous observations, however, hold when the symmetry
axiom is applied. 2

From the determination axiom that we have included in the axiomatic system I, we have
that, if in the context of information about Z information about X is irrelevant with respect
to X itself, then it can never become relevant with respect to X no matter which further
information may be learned. This property is stated more formally in the following lemma.

Lemma 4.9 Let [I] be the set of models of the axiomatic system I. Let I 2 [I] be an

independence relation on a �nite set of variables V . Then,

I(X;Z;X) ! I(X;Z [ Y;X)

for all sets of variables X;Y;Z � V .

Proof. From I 2 [I], we have that the independence relation I obeys the six axioms from
the axiomatic system I. We now �nd that

I(X;Z;X) ) I(X;Z;X [ Y ))
) I(X;Z [ Y;X)

by the determination axiom and the weak union axiom. 2

The determination axiom pertains to the independences holding for the set of functionally
dependent variables in the context of their determinants. The following lemma now shows
that the presence of functional dependences does not interfere with the independences among
all other variables discerned.

Lemma 4.10 Let [I] be the set of models of the axiomatic system I. Let I 2 [I] be an
independence relation on a �nite set of variables V . Then,

I(X;Z;X) ^ I(Y;Z;W )! I(X [ Y;Z;X [W )

for all sets of variables X;Y;Z;W � V .

Proof. We begin our proof by observing that since I 2 [I], it obeys all six axioms from the
axiomatic system I. To prove the property stated in the lemma, we assume that I(X;Z;X)
and I(Y;Z;W ) for some sets of variables X;Y;Z;W � V . The basic idea of the proof now is
to apply the contraction axiom twice, once to construct the argumentX[Y for the statement
I(X[Y;Z;X[W ) and a second time to construct the argumentX[W . From our assumption
I(X;Z;X), we �nd

I(X;Z;X) ) I(X;Z [ Y;X))
) I(X;Z [ Y;W ))
) I(W;Z [ Y;X)
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by Lemma 4.9, the determination axiom, and the symmetry axiom. From our assumption
I(Y;Z;W ), we �nd

I(Y;Z;W ) ) I(W;Z; Y )

by the symmetry axiom. From the independence statements I(W;Z [ Y;X) and I(W;Z; Y ),
we now �nd

I(W;Z; Y ) ^ I(W;Z [ Y;X) ) I(W;Z;X [ Y ))
) I(X [ Y;Z;W )

by the contraction and symmetry axioms.
From our assumption I(X;Z;X), we further �nd

I(X;Z;X) ) I(X;Z [W;X))
) I(X;Z [W;X [ Y ))
) I(X [ Y;Z [W;X)

by Lemma 4.9, the determination axiom, and the symmetry axiom. From the independence
statements I(X [ Y;Z;W ) and I(X [ Y;Z [W;X), we �nd

I(X [ Y;Z;W ) ^ I(X [ Y;Z [W;X) ) I(X [ Y;Z;X [W )

by the contraction axiom. 2

The property stated in the previous lemma is easily generalised to a bi-implication.

4.3 Summary

In the foregoing, we have reviewed Pearl's extended axiomatic system for informational in-
dependence E and have included two additional axioms: the no-functions axiom and the
determination axiom. We summarise the resulting axiomatic system I.

De�nition 4.11 The axiomatic system for informational independence I is composed of the
six axioms

� I(X;Z; Y )! I(Y;Z;X);

� I(X;Z; Y [W )! I(X;Z; Y ) ^ I(X;Z;W );

� I(X;Z; Y [W )! I(X;Z [W;Y );

� I(X;Z; Y ) ^ I(X;Z [ Y;W )! I(X;Z; Y [W );

� I(X;Z;X) ! I(X;Z; Y );

� I(X;Z;Z);

for any ternary relation I � 2V �2V �2V on a �nite set of variables V , for all sets of variables

X;Y;Z;W � V ; the set of all models of the system I will be denoted as [I]. The axiomatic

system I+ comprises the six axioms from the system I and the two additional axioms
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� I(X;Z [W;Y ) ^ I(X;Z [ Y;W )! I(X;Z; Y [W );

� :I(fVig; Z
0; fVig);

for any ternary relation I � 2V � 2V � 2V on V , for all sets of variables X;Y;Z;W � V , and

for each variable Vi 2 V and all sets of variables Z 0 � V � fVig; the set of all models of the

system I+ will be denoted as [I+].

Any model in the set of models [I] of the axiomatic system I will be termed an enhanced
semi-graphoid independence relation; a model in [I+] will be called an enhanced graphoid

independence relation.
The axiomatic system for informational independence I reviewed in the previous de�nition

coincides with the system I introduced in De�nition 4.7. The axiomatic system I+, however,
di�ers from the system F+ introduced in De�nition 4.2 in its including the determination
axiom. The following lemma shows, however, that the sets of models of the two axiomatic
systems do not di�er.

Lemma 4.12 Let [F+] be the set of models of the axiomatic system F+. Let [I+] be the set

of models of the axiomatic system for informational independence I+ as de�ned in De�nition

4.11. Then,

[F+] = [I+]

Proof. From the De�nitions 4.2 and 4.11, we have that [I+] � [F+]. We now prove that
[F+] � [I+]. Let I 2 [F+] be an independence relation on a �nite set of variables V . From
I 2 [F+], we have that I obeys all axioms from the axiomatic system F+; more in speci�c,
we have that I satis�es the no-functions axiom. We now assume that I(X;Z;X) for some
sets of variables X;Z � V . Note that from Corollary 4.5 we have that X � Z. From the
overlap axiom, we further have that I(Y;Z; Z). From the latter independence statement, we
�nd

I(Y;Z; Z) ) I(Y;Z;X) )
) I(X;Z; Y )

by the decomposition and symmetry axioms, using X � Z. So,

I(X;Z;X) ) I(X;Z; Y )

for the sets of variablesX;Y;Z � V . We conclude that I 2 [I+] and, hence, that [F+] � [I+].
2

Figure 1 summarises the inclusion relationships among the various sets of models of informa-
tional independence that we have introduced.

5 On Normal Forms

In his work on graphical representations of independence relations, J. Pearl builds on the
restricted axiomatic system for informational independence A, that is, on the system that
involves axioms for mutually disjoint sets of variables only [Pearl, 1988]. In this section, we
address Pearl's restricted focus on disjoint sets of variables in view of such representations. To
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P+ [I+] [F+] [E+] [A+]� = � �

P [I] [E ] [A]� � �

� � � �

Figure 1: Inclusion Relationships among Sets of Models of Independence.

this end, we examine from an independence relation the statements that involve overlapping
sets of variables. We would like to note that building on the restricted axiomatic system A
presupposes that any such statement can be derived from the relation's set of statements that
involve mutually disjoint sets of variables only, by the axioms of the extended system E . In
fact, the extended axiomatic system is then looked upon as allowing for a normal form for
informational independence that warrants building on the restricted system; this normal form
will be termed Pearl normal form.

De�nition 5.1 Let [E ] be the set of models of the axiomatic system E. Let I 2 [E ] be an

independence relation on a �nite set of variables V . A statement I(X;Z; Y ) with X;Y;Z � V

is said to be in Pearl normal form if the sets of variables X;Y , and Z are mutually disjoint.

In the following sections, we show that, unfortunately, Pearl normal form does not su�ce for
faithfully representing extended independence relations. In doing so, we separately address
graphoid and semi-graphoid independence relations.

5.1 A Normal Form for Graphoid Independence Relations

We begin by examining the set of models of the extended axiomatic system for informational
independence E+. The following lemma states that in this set of models there exists an
extended graphoid independence relation I that includes independence statements that cannot
be derived from I's statements in Pearl normal form by the axioms of the system E+.

Lemma 5.2 Let [E+] be the set of models of the axiomatic system E+. For each independence
relation I 2 [E+], let IPNF � I be the set of statements from I that are in Pearl normal

form. Then, there exists an independence relation I 2 [E+] such that I includes a statement

s 2 I � IPNF for which there do not exist statements s0

i 2 IPNF , i = 1; : : : ; k, k � 1, such that
Vk

i=1 s
0

i , s.

Proof. We consider the independence relation I = 2V � 2V � 2V on some set of variables
V . For this independence relation I we have that I 2 [E+]. We observe that the relation I

includes the independence statement I(fVig;?; fVig), for any variable Vi 2 V . This statement
is not in Pearl normal form, that is, I(fVig;?; fVig) 2 I � IPNF . The statement, however,
cannot be derived from the relation's independence statements in Pearl normal form by the
axioms from E+. 2

From the previous lemma we have that Pearl normal form does not su�ce for faithfully
representing any extended graphoid independence relation. Pearl normal form, however, does
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allow for capturing enhanced graphoid independence relations, as is stated in the following
lemma.

Lemma 5.3 Let [I+] be the set of models of the axiomatic system I+. Let I 2 [I+] be an

independence relation and let IPNF � I be the set of statements from I that are in Pearl
normal form. Then, for each independence statement s 2 I � IPNF , there exists a statement

s0 2 IPNF such that s, s0.

Proof. We assume that the independence relation I is de�ned on the set of variables V . We
now consider an independence statement I(X;Z; Y ), for some sets of variables X;Y;Z � V ,
that is not in Pearl normal form, that is, the sets X;Y , and Z are not mutually disjoint.
From I 2 [I+] and from Lemma 4.12 and Corollary 4.5, we have that X \ Y � Z. We now
�nd that

I(X;Z; Y ) , I(X � Z;Z; Y � Z)

by Lemma 3.3. From X \ Y � Z, we conclude that the statement I(X � Z;Z; Y � Z) is in
Pearl normal form. 2

The property stated in Lemma 5.3 is depicted schematically in Figure 2. In the �gure, I
represents the set of all statements from the independence relation at hand; IPNF represents
the relation's subset of statements that are in Pearl normal form.

I

IPNF

s

s
0

Figure 2: The Derivability of Statements in I � IPNF for Enhanced Graphoid Independence
Relations.

From Lemma 5.3, we conclude that in view of enhanced graphoid independence relations,
Pearl's focus on mutually disjoint sets of variables is not essential: any statement from such
an independence relation that is not in Pearl normal form can be derived by our enhanced
axiomatic system I+ from the relation's set of statements that are in Pearl normal form.

5.2 A Normal Form for Semi-graphoid Independence Relations

We now address Pearl normal form in view of representing semi-graphoid independence rela-
tions more in general. To this end, we begin by examining the set of models of the extended
axiomatic system for informational independence E . From Lemma 5.2 we have that in this set
of models there exists a semi-graphoid independence relation I that includes independence
statements that cannot be derived from I's statements in Pearl normal form by the axioms
of the system E . Unfortunately, similar observations also apply to enhanced semi-graphoid
independence relations, that is, there exists an enhanced graphoid independence relation I

that includes independence statements that cannot be derived from I's statements in Pearl
normal form by the axioms of the system I. This property is stated more formally in the
following lemma.
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Lemma 5.4 Let [I] be the set of models of the axiomatic system I. For each independence
relation I 2 [I], let IPNF � I be the set of statements from I that are in Pearl normal

form. Then, there exists an independence relation I 2 [I] such that I includes a statement

s 2 I � IPNF for which there do not exist statements s0

i 2 IPNF , i = 1; : : : ; k, k � 1, such that
Vk

i=1 s
0

i , s.

Proof. The proof of the property stated in the lemma is analogous to the proof of Lemma
5.2. 2

To allow for faithfully representing enhanced semi-graphoid independence relations, we sup-
plement Pearl normal form by an additional normal form called functional form.

De�nition 5.5 Let [I] be the set of models of the axiomatic system I. Let I 2 [I] be an

independence relation on a �nite set of variables V . A statement I(X;Z; Y ) with X;Y;Z � V

is said to be in functional form if X = Y .

The following lemma now states that Pearl normal form and functional form with each other
allow for capturing enhanced semi-graphoid independence relations.

Lemma 5.6 Let [I] be the set of models of the axiomatic system I. Let I 2 [I] be an

independence relation; let IPNF � I be the set of statements from I that are in Pearl normal

form and let IFF � I be the set of statements from I that are in functional form. Then, for

each independence statement s 2 I � (IPNF [ IFF ), there exists a statement s0 2 IPNF and a

statement s00 2 IFF such that s0 ^ s00 , s.

Proof. We assume that the independence relation I is de�ned on the set of variables V . We
now consider an independence statement I(X;Z; Y ) for some sets of variables X;Y;Z � V

that are not mutually disjoint. Note that for this statement we have either X \ Y � Z or
X \ Y 6� Z. To an independence statement I(X;Z; Y ) with X \ Y � Z similar observations
apply as to the independences in a model of I+: this statement can be derived from indepen-
dence statements that are in Pearl normal form. We now consider the case where X \Y 6� Z.
Without loss of generality we assume that X\Z = ? and Y \Z = ?. From the independence
statement I(X;Z; Y ), we �nd that

I(X;Z; Y ) ) I(X;Z; Y �X))
) I(Y �X;Z;X) )
) I(Y �X;Z;X � Y ))
) I(X � Y;Z; Y �X)

by the decomposition and symmetry axioms; similarly, we �nd that

I(X;Z; Y ) ) I(X;Z;X \ Y ))
) I(X \ Y;Z;X) )
) I(X \ Y;Z;X \ Y )

So,

I(X;Z; Y )) I(X � Y;Z; Y �X) ^ I(X \ Y;Z;X \ Y )

Note that from X \ Z = ? and Y \ Z = ?, we have that the statement I(X � Y;Z; Y �X)
is in Pearl normal form; the statement I(X \ Y;Z;X \ Y ) is in functional form. Conversely,
we have that

I(X � Y;Z; Y �X) ^ I(X \ Y;Z;X \ Y )) I(X;Z; Y )
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by Lemma 4.10. We conclude that, for any independence statement s in I that is not in
Pearl's normal form nor in functional form, there exist in I a statement s0 that is in Pearl's
normal form and a statement s00 that is in functional form such that s0 ^ s00 , s. 2

The property stated in Lemma 5.6 is depicted schematically in Figure 3. In the �gure, I
represents the set of all statements from the independence relation at hand; IFF represents
the relation's subset of statements that are in functional form; IPNF represents the statements
from I that are in Pearl normal form.

I

IPNF

s

s
0

s
00 IFF

Figure 3: The Derivability of Statements in I � (IPNF [ IFF ) for Enhanced Semi-graphoid
Independence Relations.

From the above observations we conclude that in view of independence relations em-
bedding functional dependences, Pearl's focus on mutually disjoint sets of variables hides
an interesting and important set of independence statements, namely the statements arising
from functional dependences, as these cannot be derived by the extended axiomatic system
E from an independence relation's set of statements in Pearl normal form. By supplementing
Pearl normal form by functional form, however, the independence statements arising from
functional dependences are faithfully represented. We would like to note that in relation
with graphical representations of independence Pearl and his co-researchers have, informally,
pointed out the necessity of explicitly modelling functional dependences [Pearl et al., 1990];
our new normal form falls in with and extends on their observations.

6 Conclusions

The concept of informational independence has been axiomatised by J. Pearl and his co-
researchers. Pearl's axiomatic system for informational independence is restricted in the
sense that it applies to independences among mutually disjoint sets of variables only. We have
shown that this focus on disjointness can hide a set of interesting properties of informational
independence, namely properties arising from functional dependences among the variables
discerned. To capture these properties we have enhanced Pearl's axiomatic system with
several new axioms. We have shown that the thus enhanced axiomatic system provides
a better characterisation of the concept of probabilistic independence than Pearl's system
does. We have also shown that the enhanced axiomatic system provides for a normal form
for informational independence that elucidates the necessity of explicitly representing the
functional dependences among the variables of an independence relation.

Remark

This paper is a revised and extended version of [Van der Gaag & Meyer, 1996].
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