
Scheduling tree-structured programs in the LogP model�

Jacques Verriet

Department of Computer Science, Utrecht University,

P.O. Box 80.089, 3508 TB Utrecht, The Netherlands.

E-mail: jacques@cs.ruu.nl

Abstract

The LogP model is a model of parallel computation that characterises a parallel computer
architecture by four parameters: the latency L, the overhead o, the gap g and the number
of processors P . We study the problem of constructing minimum-length schedules for tree-
structured programs in the LogP model. This problem is proved to be NP-hard, even for
outtrees of height two in LogP models with an unlimited number of processors.

For outtrees of height two, a 2-approximation algorithm is presented. For intrees of height
two, two approximation algorithms are presented: a 3-approximation algorithm for LogP
models with an unrestricted number of processors and a 4 � 2

P
-approximation algorithm for

LogP models with a �nite number of processors.
For the problem of constructing minimum-length schedules for d-ary intrees in a LogP

model with a �nite number of processors, three approximation algorithms are presented that
are applicable in many models of parallel computation. The �rst constructs schedules for full
d-ary intrees of length at most 2 + 2

d
times the length of an optimal schedule plus the time

required for (d+ 1)P � 1 communication operations. The second constructs schedules on P

processors of length at most d+1� d
2
+d

d+P
times the length of a minimum-length schedule plus

the time needed for d(P � 1)� 1 communication operations. The third constructs schedules
of length at most 3� 6

P+2
times the length of a minimum-length schedule plus the duration

of d(d� 1)(P � 1)� 1 communication operations.

1 Introduction

The PRAM [10] is the most common model of parallel computation. A PRAM consists of a
collection of processors that execute a parallel program in a synchronous manner; processors
communicate by writing and reading in global memory. The PRAM model does not capture the
complexity of communication in the execution of parallel computer programs: a communication
step takes the same amount of time as a local computation step, whereas, in a real parallel
computer architecture, a communication step is far more time consuming. There are several
PRAM-based models that include aspects of real parallel machines, such as latency [2, 3, 21],
memory contention [14, 13] and asynchrony [6, 12].

The BSP model [22] and the LogP model [7, 9] are models of parallel computation that consist
of a collection of processors that communicate using message passing. These models are more
realistic, because they include several aspects of real parallel computers. Both models characterise
a parallel architecture by a few parameters that capture memory latency and bandwidth. In this
report, we will consider the LogP model that provides more control over the machine resources
than the BSP model.

�This research was partially supported by ESPRIT Long Term Research Project 20244 (project ALCOM IT:
Algorithms and Complexity in Information Technology).

1

The LogP model consists of a number of processors connected by a communication network.
Each processor has an unlimited amount of local memory. The processors process a parallel
computer program in an asynchronous manner. Communication is modelled by message-passing:
messages are sent from one processor to another via the communication network.

The LogP model characterises a parallel computer architecture by four parameters: the latency
L, the overhead o, the gap g and the number of processors P . The latency is an upper bound
on the time required to send a message from one processor to another via the communication
network. The latency depends on the diameter of the network topology. The overhead is the
amount of time a processor is involved in sending or receiving a message consisting of one word.
During this time, a processor cannot perform other operations. The gap is the minimum delay
between two consecutive message transmissions or receptions on the same processor.

Like for many other models of parallel computation, little is known about scheduling parallel
programs in the LogP model. A few algorithms have been presented that construct schedules for
common parallel programs in the LogP model. These programs include Fast Fourier Transform [7],
sorting [1, 8] and broadcast [17].

In addition, L�owe and Zimmermann [20, 23] presented an algorithm that constructs sched-
ules for communication structures G of PRAMs in LogP models with an unrestricted number
of processors. The length of these schedules is at most 1 + 1

g(G) times the length of an optimal

schedule, where g(G) is the grain size of G. Moreover, they presented an algorithm that constructs
schedules of length at most twice as long as optimal plus the duration of the number of sequential
communication operations.

In this paper, we will consider the problem of scheduling arbitrary parallel programs in the
LogP model. We will restrict ourselves to programs that have a tree-like structure. Such programs
include divide-and-conquer algorithms, such as the evaluation of arithmetic expressions.

In Section 3, we consider send graphs (outtrees of height two). It will be shown that, for
all �xed parameters (L; o; g; P), such that maxfo; gg � 1 and P 2 f2; 3; : : : ;1g, constructing
minimum-length schedules for send graphs in the LogP model is an NP-hard problem. In this
section, we also present a 2-approximation algorithm for scheduling send graphs. For the special
case that g � o, the approximation bound of this algorithm equals 2� 1

P
.

Section 4 studies the problem of scheduling receive graphs (intrees of height two). For the case
g does not exceed o, two approximation algorithms are presented. The �rst constructs schedules
of length at most three times the length of an optimal schedule if the number of processors is un-
restricted. The other algorithm is a 4� 2

P
-approximation algorithm for the case that the number

of processors is bounded.

In Section 5, an approximation algorithm for scheduling d-ary intrees is presented. This al-
gorithm uses a decomposition of a d-ary intree to construct a schedule in which the number of
communication operations is small. In addition, three algorithms are presented that construct
decompositions of d-ary intrees. The �rst constructs decompositions of full d-ary intrees with
unit-length tasks. Using these decompositions, the approximation algorithm constructs schedules
of length at most 2 + 2

d
times the length of a minimum-length schedule plus the time required

for at most (d + 1)P � 1 communication operations. For full binary intrees, the schedules are of
length at most twice the length of an optimal schedule plus the duration of 2P �1 communication
operations.

The second and third decomposition algorithm construct decompositions of arbitrary d-ary
intrees with arbitrary task lengths. Using the decompositions constructed by the second decom-
position algorithm, the approximation algorithm constructs schedules whose lengths are at most

d + 1 � d2+d
d+P times the length of a minimum-length schedule plus the time needed for at most

d(P � 1) � 1 communication operations. Using the decompositions of the third decomposition
algorithm, the approximation algorithm constructs schedules whose lengths are at most the sum
of 3 � 6

P+2 times the length of an optimal schedule and the duration of d(d � 1)(P � 1) � 1

2

communication operations.

2 Preliminary de�nitions

In this paper, we study the problem of scheduling parallel programs in the LogP model. Such a
program is represented by a triple (G;�; c), such that G = (V;E) is a directed acyclic graph (or
precedence graphs), � : V ! ZZ

+ and c : V ! IN. An element of V will be called a task (or node)
of G. A task u corresponds to a task of the parallel program. u has a length �(u): the execution
of u on a processor takes �(u) time. The number of messages required to store the result of the
execution of u equals c(u). If the result of the execution of u has to be sent to another processor,
then c(u) messages have to be sent through the communication network to the other processor. An
instance of a LogP scheduling problem is represented by a tuple (G;�; c; L; o; g; P), where (G;�; c)
represents the parallel program and L, o, g and P are the parameters of the LogP model.

Consider an instance (G;�; c; L; o; g; P). Let u1 and u2 be two tasks of G. If there is a directed
path from u1 to u2, then u2 is called a successor of u1 and u1 a predecessor of u2. This is denoted
by u1 � u2. By u1 �0 u2, we denote that u2 is an immediate successor of u1 and u1 an immediate

predecessor of u2. In that case, u2 is a successor of u1 and there is no task v such that u1 � v and
v � u2.

The outdegree of a task u is the number of immediate successors of u. Similarly, the number of
immediate predecessors of u is the indegree of u. A task with indegree zero will be called a source,
a task without successors is a sink.

In this paper, we consider special types of precedence graphs, inforests and outforests. An
inforest is a graph in which every task has outdegree at most one. An outforest is an inforest in
which the arcs have been reversed. Hence in an outforest, every task has at most one immediate
predecessor. An intree is an inforest with exactly one task without successors. Similarly, an outtree

is an outforest with exactly one task without predecessors.
Consider an inforest T . A task of T with outdegree zero is called a root ; a leaf is a task without

predecessors. The immediate predecessors of a task are called its children and its immediate
successor is called its parent. T (u) denotes the subtree of T induced by u and its predecessors.
T is a d-ary intree if every task of T has indegree at most d. Since every task in an intree has
at most one immediate successor, there is a unique path from a task to a successor. If u1 is a
predecessor of u2, then p(u1; u2) is the set containing the tasks on the path from the parent of u1
to u2.

For outforests, the same terms are used but with a di�erent meaning. A leaf is a task without
successors, a root has no predecessors. The parent of a task is its immediate predecessor, its chil-
dren are its immediate successors. Similar to inforests, a d-ary outforest is an outforest in which
every task has at most d children. For outforests, T (u) denotes the subtree consisting of task u

and its successors.

Consider an instance (G;�; c; L; o; g; P). Let u1 and u2 be two tasks of G and suppose u2 is
an immediate successor of u1. Then the result of u1 is needed to execute u2. If u1 and u2 are
executed on di�erent processors, then c(u1) messages must be sent from one processor to another.
A message can be received L time after it has been sent. After all messages have been received,
u2 can be executed. Sending and receiving a message takes o time and the delay between sending
or receiving two messages is of length at least g. Figure 1 shows the execution of u1 and u2 on
di�erent processors in case c(u1) equals three. The tasks si and ri represent the transmission and
reception of the ith message.

For each task u, send and receive tasks have to be scheduled for each processor on which an
immediate successor of u is scheduled. No message has to be sent twice to the same processor.
Hence we will de�ne two sets S and R containing the send and the receive tasks. S contains tasks
s(u; p; i), such that u is a task of G, p is a processor and i � c(u) is the number of the message

3

u1 s1 s2 s3

r1 r2 r3 u2

L

o g

og

Figure 1: Communication between two processors

of u. R contains elements r(u; p; i). The tasks s(u; p; i) and r(u; p; i) represent the transmission
and reception of the ith message of u in case of transmission of the result of the execution of u to
processor p. Let U be the union of the set of tasks of G, the set of send tasks S and the set of
receive tasks R. A task u of S or R has length �(u) = o.

A schedule for (G;�; c; L; o; g; P) is a pair of functions (�; �), such that � : U ! IN [f?g and
� : U ! f1; : : : ; P;?g. � assigns a starting time to every task of U and � a processor. The value
? denotes the starting time and processor of (communication) tasks that are not scheduled. A
schedule (�; �) is feasible if

1. for all tasks u of G, �(u) 6= ? and �(u) 6= ?;
2. for all elements u1 and u2 of U , if �(u1) = �(u2) 6= ?, then �(u1) + �(u1) � �(u2) or

�(u2) + �(u2) � �(u1);

3. for all tasks u1 and u2 of G, if u1 �0 u2, then �(u1) + �(u1) � �(u2);

4. for all tasks u1 and u2 of G, if u1 �0 u2 and �(u1) 6= �(u2), then, for all i � c(u1),
�(s(u1; �(u2); i)) = �(u1), �(r(u1; �(u2); i)) = �(u2), �(s(u1; �(u2); i)) � �(u1) + �(u1),
�(r(u1; �(u2); i)) = �(s(u1; �(u2); i)) + o+ L and �(u2) � �(r(u1; �(u2); i)) + o;

5. for all elements u1 and u2 of S or R, if �(u1) = �(u2) 6= ?, then �(u1) + g � �(u2) or
�(u2) + g � �(u1); and

6. for all tasks u of G and all processors p, if no immediate successors of u are scheduled on
processor p or p = �(u), then �(s(u; p; i)) = ? and �(r(u; p; i)) = ?.

The completion time of a task u in a schedule (�; �) equals �(u) + �(u). The length of a schedule
(�; �) is the maximum completion time of a task. A schedule is called optimal if its length equals
that of a minimum-length schedule.

In Figures 2 and 3, an example of a feasible schedule is presented. Figure 2 shows a precedence
graph G. Assume �(x) = 1 and c(x) = 3. Let �(y1) = 1, �(y2) = 1, �(y3) = 2, �(y4) = 3 and
�(y5) = 7. In addition, let L = 1, o = 1, g = 2 and P = 2. Then the schedule shown in Figure 3 is
a feasible schedule for (G;�; c; L; o; g; P) of length 14. Task si corresponds to send task s(x; 2; i)
and task ri to receive task r(x; 2; i). This is an optimal schedule for (G;�; c; L; o; g; P).

Note that tasks y1 and y2 are scheduled between the send tasks. No task can be executed
between the receive tasks, because all three messages are needed to send the result of the execution
of x to another processor. Although two successors of x are executed on processor 2, only three
send and receive tasks are executed. This is due to the fact that we consider communication
between processors, not between processes (or tasks): the result of the execution of x is sent to
processor 2, not to tasks y3 and y4.

3 Send graphs

In this section, we study the problem of scheduling send graphs in the LogP model. A send graph
is an outtree of height two. Hence a send graph consists of a source x and its children y1; : : : ; yn.

4

x

y1 y2 y3 y5y4

Figure 2: A precedence graph G

x y1 y2

y3 y4

y5s1 s2 s3

r1 r2 r3

Figure 3: A feasible schedule for (G;�; c; L; o; g; P)

These children are the sinks of the graph. Figure 4 shows a send graph.

x

y1 y2 y3 yn: : :

Figure 4: A send graph

We will show that constructing minimum-length schedules for instances (G;�; c; L; o; g; P), such
that G is a send graph is NP-hard for all �xed choices of L, o, g and P , such that maxfo; gg � 1.
Thereafter, a 2-approximation algorithm is presented. The approximation bound of this algorithm
improves to 2� 1

P
if g � o.

3.1 NP-completeness

In this section, we will show that constructing minimum-length schedules for send graphs is NP-
hard. This is obvious if the number of processors is �nite. Using a polynomial reduction from
Partition, we will show that is is also true for all �xed choices of L, o, g and P , such that
maxfo; gg � 1 and P =1. Partition [11] is de�ned as follows.

Problem. Partition

Instance. A set A = fa1; : : : ; ang of positive integers.
Question. Is there a subset A0 of A, such that

P
a2A0 a = 1

2

P
a2A a?

Let L, o and g be non-negative integers and P 2 f2; 3; : : : ;1g. (L; o; g; P)-LogP Send graph

scheduling is the following problem.

Problem. (L; o; g; P)-LogP Send graph scheduling

Instance. A parallel program (G;�; c), such that G is a send graph and an integer B.
Question. Is there a feasible schedule for (G;�; c; L; o; g; P) of length at most B?

The following lemma presents a polynomial reduction from Partition to (L; o; g; P)-LogP
Send graph scheduling.

5

Lemma 3.1. For all non-negative integers L, o and g and all P 2 f2; 3; : : : ;1g, such that

maxfo; gg � 1, there is a polynomial reduction from Partition to (L; o; g; P)-LogP Send graph

scheduling.

Proof. Let L, o and g be non-negative integers and P 2 f2; 3; : : : ;1g, such that maxfo; gg �
1. Consider an instance A = fa1; : : : ; ang of Partition. Let N =

Pn

i=1 ai. De�ne M =
2(L + o + 1)maxfo; ggN and c = (L + o + 1)(N � 2) + 1. Construct an instance (G;�; c) of
(L; o; g; P)-LogP Send graph scheduling as follows. G is a send graph with source x and
sinks y1; : : : ; yn, such that �(x) = 1, �(yi) = 2(L+ o+ 1)maxfo; ggai and c(x) = c. In addition,
let B = 1 + (c� 1)maxfo; gg+ 2o+ L+ 1

2M .

()) Assume A1 is a subset of A, such that
P

a2A1
a = 1

2N . De�ne Y1 = fyi j ai 2 A1g and
Y2 = fyi j ai 62 A1g. Construct a schedule (�; �) for (G;�; c; L; o; g; P) as follows. x is
scheduled at time 0 on processor 1. For i � c(x), send task s(x; 2; i) is executed at time
1+(i�1)maxfo; gg on processor 1 and receive task r(x; 2; i) at time 1+(i�1)maxfo; gg+o+L
on processor 2. The tasks of Y1 are scheduled without interruption on processor 1 from time
1+(c�1)maxfo; gg+o until time 1+(c�1)maxfo; gg+o+ 1

2M and the tasks of Y2 on processor
2 from time 1+(c�1)maxfo; gg+2o+L until time 1+(c�1)maxfo; gg+2o+L+ 1

2M = B.
Then no processor executes two tasks at the same time and the tasks on processor 2 are
scheduled after the receive tasks. So (�; �) is a feasible schedule for (G;�; c; L; o; g; P) of
length B.

(() Assume (�; �) is a schedule for (G;�; c; L; o; g; P) of length ` � B. Suppose all tasks are
scheduled on one processor. Then the length of (�; �) is at least M + 1. However,

` � 1 + (c� 1)maxfo; gg+ 2o+ L+
1

2
M

= 1 + (L+ o+ 1)maxfo; gg(N � 2) +maxfo; gg+ 2o+ L+
1

2
M

= 1 +
1

2
M � 2(L+ o+ 1)maxfo; gg+maxfo; gg+ 2o+ L+

1

2
M

� M + 1� 2L� 2o� 2maxfo; gg+maxfo; gg+ 2o+ L

< M + 1:

Hence the sinks of G are executed on at least two processors. If the tasks yi are executed on
at least three processors, then the �rst task on the third processor is executed after at least
2c receive tasks. Hence it does not start before time 1 + (2c� 1)maxfo; gg+ 2o+ L. Since
every sink has length at least 2(L+ o+ 1)maxfo; gg,

` � 1 + (2c� 1)maxfo; gg+ 2o+ L+ 2(L+ o+ 1)maxfo; gg
= 1 + (c� 1)maxfo; gg+ 2o+ L+ cmaxfo; gg+ 2(L+ o+ 1)maxfo; gg
= 1 + (c� 1)maxfo; gg+ 2o+ L+

(L+ o+ 1)(N � 2)maxfo; gg+maxfo; gg+ 2(L+ o+ 1)maxfo; gg
= 1 + (c� 1)maxfo; gg+ 2o+ L+ (L+ o+ 1)maxfo; ggN +maxfo; gg
= 1 + (c� 1)maxfo; gg+ 2o+ L+

1

2
M +maxfo; gg

= B +maxfo; gg:

So the sinks of G are executed on exactly two processors. Let these be processors 1 and
2. We may assume that x is executed on processor 1. De�ne A1 = fai j �(yi) = 1g and
A2 = fai j �(yi) = 2g. Let N1 =

P
a2A1

a and N2 =
P

a2A2
a. Since the length of (�; �) is at

most B and the �rst task on processor 2 cannot start before time 1+(c�1)maxfo; gg+2o+L,
the sum of the elements of A2 does not exceed

1
2N . It is not di�cult to see that no sink yi

is scheduled before a send task on processor 1. If N1 >
1
2N , then the last task on processor

1 is not completed before time 1+ (c� 1)maxfo; gg+ o+ 1
2M +2(L+ o+1)maxfo; gg > B.

Contradiction. So N1 =
1
2N .

6

From Lemma 3.1, we can conclude that (L; o; g; P)-LogP Send graph scheduling is NP-
complete for all �xed L, o, g and P , such that maxfo; gg � 1. Moreover, it is not di�cult to prove
that (L; o; g; P)-LogP Send graph scheduling is NP-complete for all L, o, g and P , such that
P 6=1. Hence we obtain the following result.

Theorem 3.2. For all �xed parameters (L; o; g; P), such that maxfo; gg � 1 or P 6= 1, con-

structing minimum-length schedules for instances (G;�; c; L; o; g; P), such that G is a send graph

is NP-hard.

If g and o equal zero, then scheduling in the LogP model is a special case of scheduling
with arc-dependent communication delays (latencies). In that case, minimum-length schedules
for send graphs on an unlimited number of processors can be constructed in polynomial time [5]
and constructing minimum-length schedules for outtrees of height three is NP-hard, even if the
number of children of the root equals the number of sinks [4].

3.2 A 2-approximation algorithm

In this section, we will present a simple 2-approximation algorithm for scheduling send graphs in
the LogP model. It is obvious that the number of processors used in an optimal schedule for a
send graph instance does not exceed the number of sinks or the number of processors P . For each
possible number of processorsm, the algorithm constructs a schedule that is at most twice as long
as a schedule that uses m processors of minimum length. By choosing the shortest schedule, a
schedule is constructed whose length is at most twice the length of an optimal schedule.

Consider a LogP instance (G;�; c; L; o; g; P), such that G is a send graph with source x and
sinks y1; : : : ; yn. There is a minimum-length schedule for (G;�; c; L; o; g; P) that uses at most
minfn; Pg processors. Let m � minfn; Pg. De�ne `�m as the length of a minimum-length
m-processor schedule, where an m-processor schedule for (G;�; c; L; o; g; P) is a schedule for
(G;�; c; L; o; g; P), in which the sinks of G are executed on exactly m processors. A minimum-
length m-processor schedule will be called m-processor optimal. Let `� be the length of an optimal
schedule for (G;�; c; L; o; g; P). Then `� = minm�minfn;Pg `

�
m.

In an m-processor schedule for (G;�; c; L; o; g; P), c(x) receive tasks have to be executed on
m� 1 processors. The �rst step of the algorithm constructs a communication pro�le in which the
send and receive tasks are scheduled as early as possible. x starts at time 0 on processor 1. The
send tasks s(x; p; i) are scheduled on processor 1 at times �(x)+((p�2)c(x)+i�1)maxfo; gg. The
corresponding receive tasks r(x; p; i) on processor p at times �(x)+((p�2)c(x)+i�1)maxfo; gg+
o+L. Then the last send task is completed at time idle(1) = �(x)+((m�1)c(x)�1)maxfo; gg+o

and the last receive task on processor p at time idle(p) = �(x)+((p�1)c(x)�1)maxfo; gg+2o+L.
The sinks yi with i � m are scheduled immediately after the last receive task on processor i and
idle(i) is increased by �(yi).

The remaining sinks ym+1; : : : ; yn are scheduled after the communication tasks and sinks
y1; : : : ; ym on one of the processors. This is done by a straightforward modi�cation of Graham's
List scheduling algorithm [15]. For each task yi, choose a processor p, such that idle(p) is minimal.
Schedule yi at time idle(p) on processor p and increase idle(p) by �(yi).

Let (�m; �m) be the schedule constructed by these two steps. Let `m be the length of (�m; �m).
Assume yi is a task that �nishes at time `m. If yi is the �rst sink scheduled on processor �m(yi),
then it is scheduled immediately after receive task r(x; �m(yi); c(x)). Every m-processor schedule
has length at least �(x) + ((m� 1)c(x)� 1)maxfo; gg+2o+L, because (m� 1)c(x) receive tasks
have to be executed. So the completion time of the last receive task on processor �m(yi) is a lower
bound of `�m. So is the execution length of yi. So `m = �m(yi) +�(yi) � 2`�m. Therefore (�m; �m)
is at most twice as long as an m-processor optimal schedule.

7

Otherwise, suppose that another sink is scheduled before yi. If a processor become idle before
time �m(yi), then yi would have been scheduled at an earlier time. So all processors are busy until
time �m(yi). Every m-processor schedule has length at least �(x)+ ((m� 1)c(x)� 1)maxfo; gg+
2o + L, because c(x) receive tasks are executed on m � 1 processors. On processors that do not
execute x, no task can be executed before a receive task. Hence the idle periods in (�m; �m) on
processors 2; : : : ;m before the last receive task cannot be avoided. Hence the only idle time in
(�m; �m) that can be avoided is the idle time between the send tasks on processor 1. As a result,

`�m � 1

m
(m�m(yi) + �(yi)� ((m� 1)c(x) � 1)(maxfo; gg � o))

= �m(yi) +
1

m
�(yi)� 1

m
((m� 1)c(x)� 1)(maxfo; gg � o):

In addition, `�m � �(yi) and `�m � �(x) + ((m � 1)c(x) � 1)maxfo; gg + 2o + L, since the last
receive task on the mth processor cannot be completed before this time. Consequently,

`m = �m(yi) + �(yi)

� `�m + (1� 1

m
)�(yi) +

1

m
(((m� 1)c(x)� 1)(maxfo; gg � o))

� `�m + (1� 1

m
)`�m +

1

m
`�m

= 2`�m:

Note that, if g � o, then `m � (2� 1
m
)`�m.

For each m � minfn; Pg, construct an m-processor schedule (�m; �m) of length `m. As-
sume (�k ; �k) is the shortest of these schedules and there is an optimal schedule in which sinks
are executed on k� processors. Then `k � `k� � 2`�k� = 2`�. If g � o and P 6= 1, then
`k � `k� � (2� 1

k�
)`�k� � (2� 1

P
)`�k� = (2� 1

P
)`�.

Hence we have proved the following theorem.

Theorem 3.3. Let (G;�; c; L; o; g; P) be a LogP instance, such that G is a send graph. Then, in

polynomial time, a schedule for (G;�; c; L; o; g; P) can be constructed whose length is at most twice

the length of an optimal schedule for (G;�; c; L; o; g; P). If g � o, then this schedule has length at

most 2� 1
P

times that of an optimal schedule for (G;�; c; L; o; g; P).

4 Receive graphs

In this section, we will consider the problem of scheduling receive graphs in the LogP model. A
receive graph is a send graph in which the arcs have been reversed. Hence a receive graph consists
of a sink x with children y1; : : : ; yn, that are the sources of the graph. A receive graph is shown
in Figure 5.

y1 y2 y3 yn: : :

x

Figure 5: A receive graph

We will consider the case in which g � o. For this special case, two approximation algorithms
are presented. The �rst approximation constructs schedules for receive graph instances in LogP

8

models with an unrestricted number of processors. The length of these schedules is at most three
times the length of an optimal schedule. The other algorithm is a 4� 2

P
-approximation algorithm

for scheduling in LogP models with a �nite number of processors.

4.1 A 3-approximation algorithm for the unrestricted case

In this section, an approximation algorithm for scheduling receive graphs in LogP models with an
unrestricted number of processors is presented. For this algorithm, we will assume that g does not
exceed o. It is a 3-approximation algorithm for scheduling receive graphs in LogP models with
an unrestricted number of processors. It corresponds to the 3-approximation algorithm of Hsu
and Lopez [16] for scheduling send and receive graphs in a model of parallel computation that
resembles the LogP model.

Consider an instance (G;�; c; L; o; g; P), such that G is a receive graph, g � o and P = 1.
Assume G has sink x and sources y1; : : : ; yn, such that �(y1) � : : : � �(yn). The following lemmas
prove some properties of optimal schedules for (G;�; c; L; o; g; P).

Lemma 4.1. There is an optimal schedule (�; �) for (G;�; c; L; o; g; P), such that, for all sources

yi1 and yi2 , if �(yi1) = �(x) and �(yi2) 6= �(x), then �(yi1) < �(r(yi2 ; 1; j)) for all j � c(yi2).

Proof. Let (�; �) be an optimal schedule for (G;�; c; L; o; g; P). Consider two sources yi1 and yi2 ,
such that �(yi1) = �(x) and �(yi2) 6= �(x). Suppose �(yi1) > �(r(yi2 ; 1; j)) for some j � c(yi2).
We may assume �(yi1) = �(r(yi2 ; 1; j)) + o. Then yi1 can be scheduled at time �(r(yi2 ; 1; j)),
r(yi2 ; 1; j) at time �(r(yi2 ; 1; j)) + �(yi1) and s(yi2 ; 1; j) at time �(r(yi2 ; 1; j)) + �(yi1) � o � L

without violating the feasibility of (�; �) or increasing its length. By repeating this step, an
optimal schedule is constructed in which no source is scheduled after a receive task on the same
processor.

Lemma 4.2. There is an optimal schedule (�; �) for (G;�; c; L; o; g; P), such that, for all proces-

sors p 6= �(x), at most one source is executed on processor p.

Proof. Let (�; �) be an optimal schedule for (G;�; c; L; o; g; P). We may assume �(x) = 1. Suppose
two sources yi1 and yi2 are scheduled on processor p 6= 1. Let processor p0 be a processor on which
no task is executed. Then yi2 can be scheduled on processor p0 at time �(yi2) and the send tasks
s(yi2 ; 1; j) on the same processor at times �(s(yi2 ; 1; j)). This does not violate the feasibility of
(�; �) or increase the schedule length. Hence there is an optimal schedule for (G;�; c; L; o; g; P),
such that at most one source is executed on processor p for all p 6= 1.

Lemma 4.3. There is an optimal schedule (�; �) for (G;�; c; L; o; g; P), such that, for all sources

yi1 and yi2 , if i1 < i2 and �(yi); �(yi2) 6= �(x), then �(r(yi1 ; 1; j1)) < �(r(yi2 ; 1; j2)) for all

j1 � c(yi1) and j2 � c(yi2).

Proof. Let (�; �) be an optimal schedule for (G;�; c; L; o; g; P). From Lemma 4.2, we may assume
that �(x) = 1 and all processors p 6= 1 execute at most one task. Let yi1 and yi2 be two sources
that are not scheduled on processor 1. Assume i1 < i2 and �(yi1) = �(yi2) = 0. Receive tasks
r(yi1 ; 1; j) can start at time t1 = �(yi1)+o+L, receive tasks r(yi2 ; 1; j) at time t2 = �(yi2)+o+L.
Then t1 � t2. Suppose �(r(yi2 ; 1; j2)) < �(r(yi1 ; 1; j1)) for some j1 � c(yi1) and j2 � c(yi2). Then
r(yi2 ; 1; j2) can be scheduled at time �(r(yi1 ; 1; j1)) and r(yi1 ; 1; j1) at time �(r(yi2 ; 1; j2)). In
addition, send task s(yi1 ; 1; j1) and s(yi2 ; 1; j2) can be scheduled o+L time units before r(yi1 ; 1; j1)
and r(yi2 ; 1; j2), respectively. This does not violate the feasibility of (�; �) or increase its length,
because all receive tasks have length o. So there is an optimal schedule in which, for all i1 < i2,
receive tasks r(yi1 ; 1; j1) are scheduled before receive tasks r(yi2 ; 1; j2).

Lemma 4.4. There is an optimal schedule (�; �) for (G;�; c; L; o; g; P), such that for all sources

yi, if �(yi) � c(yi)o, then �(yi) = �(x).

9

Proof. Let (�; �) be an optimal schedule for (G;�; c; L; o; g; P), such that �(x) = 1. From Lem-
mas 4.1 and 4.3, we may assume the sources on processor 1 are scheduled before the receive tasks
of the sources scheduled on another processor and that the receive tasks of one source are sched-
uled on processor 1 without interruption. Suppose yi is a source of G, such that �(yi) � c(yi)o
and �(yi) 6= 1. Assume the �rst receive task r(yi; 1; j) is scheduled at time t. Then the last is
completed at time t + c(yi)o � t + �(yi). Then yi can be rescheduled at time t on processor 1
without increasing the length of (�; �) or violating its feasibility. Hence there is a schedule in
which sources yi with �(yi) � c(yi)o are scheduled on the processor that executes x.

Lemma 4.5. A schedule for (G;�; c; L; o; g; P) of length �(x)+
Pn

i=1 �(yi) is optimal if and only

if, for all sources yi, if �(yi) > c(yi)o, then
Pn

j=1 �(yj) � (c(yi) + 1)o+ L+ �(yi).

Proof. ()) Suppose a schedule for (G;�; c; L; o; g; P) of length �(x)+
Pn

i=1 �(yi) is optimal. Sup-
pose there is a source yi with �(yi) > c(yi)o and

Pn

j=1 �(yj) > (c(yi)+1)o+L+�(yi). Then
construct a schedule (�; �) for (G;�; c; L; o; g; P) as follows. Tasks y1; : : : ; yi�1; yi+1; : : : ; yn
are scheduled on processor 1 from time 0 onward. yi is scheduled on processor 2 at time 0. For
j � c(yi), receive task r(yi; 1; j) is scheduled on processor 1 at time maxf

P
j 6=i �(yj); �(yi)+

jo+Lg. For j � c(yi), send task s(yi; 1; j) is scheduled on processor 2 at time �(r(yi; 1; j))�
L� o. Then (�; �) has length

�(x) + maxf�(yi) + (c(yi) + 1)o+ L;
X
j 6=i

�(yj) + c(yi)og < �(x) +

nX
j=1

�(yj):

Contradiction.

(() Suppose
Pn

j=1 �(yj) � (c(yi) + 1)o + L + �(yi) for all sources yi with �(yi) > c(yi)o. Let
(�; �) be an optimal schedule for (G;�; c; L; o; g; P). Suppose the length of (�; �) is less than
�(x) +

Pn

i=1 �(yi). From Lemma 4.4, we may assume that all tasks yi with �(yi) � c(yi)o
are scheduled on processor �(x). At least one source yi is scheduled on another processor.
Then �(yi) > c(yi)o. So (�; �) has length at least

�(yi) + (c(yi) + 1)o+ L+ �(x) � �(x) +
nX
i=1

�(yi):

Contradiction.

These lemmas can be used to prove lower bounds on the length of an optimal schedule for
(G;�; c; L; o; g; P). Let `� be the length of an optimal schedule for (G;�; c; L; o; g; P). Obviously,
if `� < �(x) +

Pn

i=1 �(yi), then `� � �(x) + 2o+L. In addition, for each source yi, either yi itself
or c(yi) receive tasks are scheduled on the same processor as x. Hence

`� � �(x) +

nX
i=1

minf�(yi); c(yi)og:

A schedule (�; �) for (G;�; c; L; o; g; P) will be constructed as follows. Sink x is scheduled on
processor 1 and all sources yi with �(yi) > c(yi)o on a separate processor. The receive tasks are
scheduled after the sources on processor 1, such that, if i1 < i2 and yi1 and yi2 are not scheduled on
processor 1, then receive tasks r(yi1 ; 1; ji1) are executed before receive tasks r(yi2 ; 1; ji2). Assume
sources yi1 ; : : : ; yik are the sources yi with �(yi) > c(yi)o and i1 < : : : < ik and let yik+1 ; : : : ; yin
be the remaining sources. If all tasks start as early as possible, then (�; �) has length

` � �(x) + maxf
kX

j=1

c(yij)o+
nX

j=k+1

�(yij); max
1�j�k

�(yij) +
kX
t=j

c(yit)o+ 2o+ Lg:

Assume `� is less than �(x) +
Pn

i=1 �(yi). In that case,

10

` � �(x) + maxf
kX

j=1

c(yij)o+

nX
j=k+1

�(yij); max
1�j�k

�(yij) +

kX
t=j

c(yit)o+ 2o+ Lg

� maxf`�; `� + `� + `�g
= 3`�:

If the length of an optimal schedule for (G;�; c; L; o; g; P) equals �(x) +
Pn

i=1 �(yi), then this
can be checked in polynomial time using Lemma 4.5. In that case, we can construct an optimal
schedule by scheduling all tasks on the same processor. Hence we have proved the following
theorem.

Theorem 4.6. Let (G;�; c; L; o; g; P) be a LogP instance, such that G is a receive graph, g � o

and P =1. Then, in polynomial time, a schedule for (G;�; c; L; o; g; P) can be constructed whose

length is at most three times the length of an optimal schedule for (G;�; c; L; o; g; P).

4.2 A 4� 2
P
-approximation algorithm for the restricted case

The second approximation algorithm considers the case that the number of processors does not
exceed the number of sources. Consider an instance (G;�; c; L; o; g; P), such that G is a receive
graph with sink x and sources y1; : : : ; yn, g � o and P < n.

Like for the unrestricted case, the sources yi with �(yi) � c(yi)o will be scheduled on the
same processor as x. Let Y2 be the set of these sources and Y1 the set of the remaining sources.
Moreover, let Y = Y1 [Y2.

The sources of Y1 are scheduled on processors 1; : : : ; P using Graham's List scheduling algo-
rithm [15]. First set idle(p) = 0 for all processors p. For all tasks y in Y1, y is scheduled as early
as possible on a processor that becomes idle as early as possible. If y is scheduled on processor p,
then idle(p) is increased by �(y).

Determine a processor p for which
P

y2Y1:�(y)=p
c(y) is maximum. We can rearrange the

processor assignment for the tasks of Y1, such that p = 1. In addition, we may assume that
idle(2) � : : : � idle(P). Then

P
y2Y1:�(y)=1

c(y) � 1
P

P
y2Y1

c(y). Schedule the tasks of Y2 on

processor 1 from time idle(1) onward. Then idle(1) is increased by
P

y2Y2
�(y2).

The communication tasks starting with those of the sources scheduled on processor 2 are sched-
uled as early as possible. kp =

P
y2Y1:�(y)=p

c(y) messages have to be sent from processor p to pro-

cessor 1. Then the receive tasks are scheduled on processor 1 from time maxfidle(1); idle(p)+o+Lg
onward. The send tasks are scheduled on processor p from maxfidle(1); idle(p) + o+ Lg � o� L

onward. After that idle(1) equals maxfidle(1); idle(p) + o+ Lg+ kpo.

Let (�; �) be the resulting schedule. Assume the length of (�; �) is `. Let `� be the length of
an optimal schedule for (G;�; c; L; o; g; P). Then, similar to the unrestricted case,

`� � �(x) +

nX
i=1

minf�(yi); c(yi)og = �(x) +
X
y2Y2

�(y) +
X
y2Y1

c(y)o:

In addition, `� � �(x) + 1
P

Pn

i=1 �(yi). We will assume the schedule in which all tasks are sched-
uled on one processor is not optimal. In that case, `� � �(x) + L+ 2o.

Let y� be a source of Y1 with a maximum completion time. It is possible that every task in Y2
is scheduled after y�. Hence

` � �(y�) + �(y�) +
X
y2Y2

�(y) +
X

y2Y1:�(y)6=1

c(y)o+ o+ L+ �(x):

All processors are completely �lled until time �(y�), otherwise, y� would have been scheduled
at an earlier time. Hence

�(y�) � 1

P

X
y2Y1nfy�g

�(y):

11

So y� is completed at time

�(y�) + �(y�) � 1

P

X
y2Y1nfy�g

�(y) + �(y�)

=
1

P

X
y2Y1

�(y) + (1� 1

P
)�(y�):

Therefore x is completed at time

` � �(y�) + �(y�) +
X
y2Y2

�(y) +
X

y2Y1:�(y)6=1

c(y)o+ o+ L+ �(x)

� 1

P

X
y2Y1

�(y) + (1� 1

P
)�(y�) +

1

P

X
y2Y2

�(y)+

(1� 1

P
)
X
y2Y2

�(y) + (1� 1

P
)
X
y2Y1

c(y)o+ o+ L+ �(x)

� `� + (1� 1

P
)`� + (1� 1

P
)`� + `�

= (4� 2

P
)`�:

If the schedule in which all tasks are executed on one processor is optimal, then its length is
at most `. If (�; �) is longer than �(x) +

Pn

i=1 �(yi), then replace (�; �) by the schedule in which
all tasks are executed by the same processor. Then this schedule is at most 4� 2

P
times as long

as an optimal schedule. Hence we have proved the following theorem.

Theorem 4.7. Let (G;�; c; L; o; g; P) be a LogP instance, such that G is a receive graph and g � o.

Then, in polynomial time, a schedule for (G;�; c; L; o; g; P) can be constructed whose length is at

most 4� 2
P

times the length of an optimal schedule for (G;�; c; L; o; g; P).

5 d-ary intrees

In this section, we consider the problem of scheduling d-ary intrees in the LogP model. An ap-
proximation algorithm is presented that schedules d-ary intrees. The basis of the algorithm is an
algorithm that constructs decompositions of d-ary intrees into subforests whose sizes do not di�er
much. Such a decomposition is used to construct a schedule in which the communication require-
ments are ignored. The necessary communication tasks are introduced in this communication-free
schedule.

This algorithm is presented with three types of decompositions; one for full d-ary intrees with
unit-length tasks, and two for arbitrary d-ary intrees with arbitrary task lengths.

Consider a LogP instance (T; �; c; L; o; g; P), such that T is an intree. A decomposition of
(T; �; c; L; o; g; P) is a collection of subforests T1; : : : ; Tk of T , such that the roots of Ti all have
the same parent, a task in Ti has no predecessors in Ti+1; : : : ; Tk and every task of T is an element
of exactly one subforest Ti.

Using a decomposition T1; : : : ; Tk of (T; �; c; L; o; g; P), we can construct a schedule. This
is done in two steps. First, a communication-free schedule is constructed. A communication-
free schedule is a schedule in which no precedence constraint is violated and no processor exe-
cutes two tasks at the same time. No send and receive tasks are scheduled in such a schedule.
Second, the communication operations are introduced in the communication-free schedule for
(T; �; c; L; o; g; P).

Consider a communication-free schedule (�; �) for (T; �; c; L; o; g; P). The communication re-

quirement of (�; �) equals the number of pairs of tasks (v1; v2), such that v1 �0 v2 and �(v1) 6=
�(v2). Such a pair of tasks will be called a communicating pair. It is not di�cult to transform a

12

communication-free schedule (�; �) into a feasible schedule for (T; �; c; L; o; g; P): this is accom-
plished by adding communication operations between every communicating pair (v1; v2). Then
the length of the resulting schedule exceeds that of the communication-free schedule by the total
duration of the communication operations.

Constructing communication-free schedules corresponds to scheduling without communication
delays and overheads. Kunde [19] proved that, for inforests, critical path scheduling constructs
(communication-free) schedules of length at most 2� 2

P+1 times the length of an optimal schedule.

Unfortunately, the communication requirement of such a schedule may be as high as (1� 1
d
)n+ 1

d

for d-ary intrees with n tasks. As a result, introducing communication operations in such a sched-
ule may greatly increase the length of the schedule. The decomposition algorithms that will be
presented in this section allow us to construct communication-free schedules that are longer than
those constructed by critical path scheduling, but their communication requirement depends only
on the maximum indegree and the number of processors.

The decompositions are used by the approximation algorithm to construct a schedule. First
some notations are introduced. Let (T; �; c; L; o; g; P) be a LogP instance, such that T is a d-ary
intree. Let T1; : : : ; Tk be a decomposition of (T; �; c; L; o; g; P). Since all roots of a subforest Ti
have the same parent and no task in T1; : : : ; Tk�1 has a predecessor in Tk, Tk is a subtree of T
that contains the root r of T . Assume Ti = Ti;1 [: : : [Ti;ni , such that Ti;j is one of the trees of

Ti. Let ri;j be the root of Ti;j . Note that Tk = Tk;1 and rk;1 is the root of T . Let n =
Pk

i=1 ni.

De�ne PT =
Sk

i=1 p(ri;1; rk;1) as the intree containing the tasks of the paths from the parents
of the roots of Ti;j to the root of T . Let u be a task of Ti1 with a predecessor in Ti2 with i2 6= i1.
Then u 2 p(ri2;1; rk;1). So PT contains the tasks in the trees Ti;j with predecessors in T n Ti;j .
PT is a subtree of T and the root of PT is the root of T .

Let u be a task of PT that has children outside PT . Then at least one child of u is the root of
a decomposition tree Ti;j . The root of T is one of these roots, so the number of tasks in PT with
predecessors outside PT is at most n� 1. As a result, the total number of tasks outside PT that
are children of tasks of PT is at most d(n� 1).

Consider the tree PT � consisting of the tasks of PT and their children. Let u be a task of
PT �. De�ne d�(u) as the number of children of u in PT �. Note that if d�(u) � 1, then u is a task
of PT . Assume PT � contains m tasks, m1 of which are elements of PT and m0 = m �m1 are
sources of PT �. Then X

u2PT

(indegree(u)� 1) = �m1 +
X

u2PT�

d�(u)

= �m1 +m� 1
= m0 � 1
� d(n� 1)� 1:

Note that if the only tasks outside PT that are children of tasks are roots of decomposition
trees, then

P
u2PT (indegree(u)� 1) � n� 1.

From a decomposition T1; : : : ; Tk, we can construct a decomposition tree DT . DT contains
n tasks: tasks ri;j , such that 1 � i � k and 1 � j � ni. There is an arc from ri1;j2 to ri2;j2 if,
in T , the parent of ri1;j1 is a task of Ti2;j2 . If ri1;j1 is a predecessor of ri2;j2 in DT , then this is
denoted by ri1;j1 �D ri2;j2 . Similarly, if ri1;j1 is a child of ri2;j2 in DT , then we denote this by
ri1;j1 �D;0 ri2;j2 . To make a di�erence between precedence constraints in T and DT , the terms
DT -child, DT -parent, DT -successor and DT -predecessor will be used.

Using a decomposition T1; : : : ; Tk of an instance (T; �; c; L; o; g; P), such that T is an intree and
k � P , Algorithm Decomposition tree scheduling constructs a communication-free schedule
for (T; �; c; L; o; g; P). idle(i) denotes the earliest time after which processor i remains empty.

Let (�; �) be the communication-free schedule for (T; �; c; L; o; g; P) constructed by Algo-
rithm Decomposition tree scheduling using decomposition T1; : : : ; Tk. Let C(ri;j) = �(ri;j)+

13

Algorithm Decomposition tree scheduling

Input: A LogP instance (T; �; c; L; o; g; P), such that T is an intree and a decomposition of
(T; �; c; L; o; g; P) consisting of k � P subforests T1; : : : ; Tk.

Output: A communication-free schedule (�; �) for (T; �; c; L; o; g; P).
1. for i := 1 to k

2. do let v1; : : : ; vr be a topological ordering of Ti n PT
3. idle(i) := 0
4. for j := 1 to r

5. do �(vj) := idle(i)
6. �(vj) := i

7. idle(i) := idle(i) + �(vj)
8. let w1; : : : ; ws be a topological order of Ti \ PT
9. for j := 1 to s

10. do assume the last child of wj outside Ti n PT is scheduled on processor p
11. �(wj) := maxfidle(p); idle(i)g
12. �(wj) := p

13. idle(p) := �(wj) + �(wj)

Figure 6: The algorithm constructing communication-free schedules

�(ri;j) be the completion time of ri;j and Ci the maximum completion time of a task of Ti. If a
task of Ti;j \ PT has a child outside of Ti;j , then this child is a root of a decomposition tree Ti0;j0

with i0 < i.
Assume ri1;j1 and ri2 ;j2 are DT -children of ri;j and i2 > i1. If ri2;j2 is scheduled on the same

processor as ri1;j1 , then ri2;j2 is a successor of ri1;j1 . In that case, ri2;j2 is not a DT -child of ri;j .
So all DT -children ri1 ;j1 and ri2;j2 with i1 6= i2 of ri;j are scheduled on di�erent processors. Hence,
for all DT -children ri0;j0 of ri;j , idle(�(ri0;j0)) equals Cj before the tasks of Ti \PT are scheduled.

Let v be a task of Ti;j \PT that has a predecessor that is not an element of Ti;j nPT . Then v

is scheduled on the �rst idle time slot (not before time idle(i)) on the processor that executes the
last predecessor of v that is not an element of Ti;j n PT . Hence, for all 1 � i � k and 1 � j � ni,

C(ri;j) � maxf�(Ti n PT) + max
ri0;j0�D;0ri;j

�(p(ri0;j0 ; ri;j)); max
ri0;j0�D;0ri;j

Ci0 + �(p(ri0 ;j0 ; ri;j))g
� maxf�(Ti); max

ri0;j0�D;0ri;j
Ci0 + �(p(ri0;j0 ; ri;j))g:

Consequently,
Ci � maxf�(Ti); max

ri0;j0�D;0ri;j
Ci0 + �(p(ri0;j0 ; ri;j))g:

Using induction, we can prove that, for all i � k,

Ci � maxf�(Ti); max
ri0;j0�Dri;j

�(Ti0) + �(p(ri0;j0 ; ri;j))g:

Since rk;1 is the root of T and nk = 1 and all roots of a decomposition forest Tj have the same
parent, the length of (�; �) is at most

maxf�(Tk);max
i<k

�(Ti) + �(p(ri;1; rk;1))g:

So we have proved the following lemma.

Lemma 5.1. Let (T; �; c; L; o; g; P) be a LogP instance, such that T is an intree. Let T1; : : : ; Tk
be a decomposition of (T; �; c; L; o; g; P), such that k � P . Then, using T1; : : : ; Tk, Algorithm De-

composition tree scheduling constructs a communication-free schedule for (T; �; c; L; o; g; P)
of length at most

maxf�(Tk);max
i<k

�(Ti) + �(p(ri;1; rk;1))g:

14

Consider the communication-free schedule (�; �) for (T; �; c; L; o; g; P) constructed by Algo-
rithm Decomposition tree scheduling. Let v be a task of T . Let d(v) be the indegree of v.
If a predecessor of v is scheduled on a di�erent processor, then v is an element of PT and at most
d(v) � 1 children of v are executed on di�erent processors. Hence there are at most d(n� 1)� 1
communication operations in the feasible schedule (�c; �c) constructed from (�; �) by introducing
the communication tasks. Let cmax = maxu c(u). Then the length of (�c; �c) is at most the length
of (�; �) plus (d(n�1)�1)(L+o+ cmaxmaxfo; gg). Hence we have proved the following theorem.
Theorem 5.2. Let (T; �; c; L; o; g; P) be a LogP instance, such that T is a d-ary intree. Let

T1; : : : ; Tk be a decomposition of (T; �; c; L; o; g; P), such that k � P . Then, in polynomial time, a

schedule for (T; �; c; L; o; g; P) of length at most

maxf�(Tk);max
i<k

�(Ti) + �(p(ri;1; rk;1))g+ (d(n� 1)� 1)(L+ o+ cmaxmaxfo; gg)

can be constructed, where n is the number of roots of T1; : : : ; Tk.

Note that if the roots of the decomposition trees are the only tasks outside PT that are children
of tasks of PT , then at most n� 1 communication operations are necessary.

5.1 An approximation algorithm for full d-ary intrees

In this section, we will consider full d-ary intrees with unit-length tasks. We will construct de-
compositions of such intrees. The decompositions are used by Algorithm Decomposition tree

scheduling to construct a schedule.
An instance of a corresponding scheduling problem with unit-length tasks is denoted by

(T;1T ; c; L; o; g; P). Assume T is a full d-ary intree of height h. Then the longest path in T

contains h tasks. Let r be the root of T . A task u of T is said to be of level k if the path from
u to r contains k tasks. Note that there are dk tasks of level k in T . Hence the total number of
tasks in T equals

Ph�1
i=0 d

i = dh�1
d�1 .

Determine k, such that dk � P < dk+1. Let m = b P
dk
cdk. Then m is the smallest multiple

of dk that does not exceed P . Since m � dk , P < 2m. We will construct a decomposition of
(T;1T ; c; L; o; g; P) consisting of m subtrees of T .

There are dk tasks of level k. Assume u1; : : : ; udk are the tasks of level k. Let s =
m
dk
. Consider

a task ui of level k. Subtree T (ui) of T will be decomposed into s subforests Ti;1; : : : ; Ti;s of T (ui).
Let v1; : : : ; vd be the children of ui. Let p = bd

s
c and q = d � bd

s
cs. Then q(p + 1) + (s � q)p

equals d. We will construct q subforests consisting of p+1 trees T (vj) and s� q that consist of p
subtrees T (vj). For 1 � j � q, let

Ti;j =

j(p+1)[
t=(j�1)(p+1)+1

T (vt)

and, for q + 1 � j � s� 1, let

Ti;j =

jp+q[
t=(j�1)p+q+1

T (vt) and Ti;s =

d[
t=(s�1)p+q+1

T (vt) [fuig:

Now all tasks of level at least k are an element of some tree Ti;j . The remaining tasks are added

to the trees as follows. For 1 � j � dk, add the tasks of p(uj ; r) n
Sdk

t=j+1 p(ut; r) to subforest Tj;s.
Then no task of Ti2;s is a predecessor of a task of Ti1;s if i1 < i2. Moreover, a task of Ti;j2 is not
a predecessor of a task in Ti;j1 if j1 < j2. In addition, the roots of a forest Ti;j have the same
parent.

Consider the resulting decomposition T1;1; : : : ; T1;s; : : : ; Tdk;1; : : : ; Tdk;s. If d is divisible by s,

then q equals 0, p = dd
s
e and each forest has at most k+1+p

Ph�1
i=k+1 d

i�k�1 elements. Otherwise,

15

dd
s
e = p + 1 and each decomposition forest consists of at most k + 1 + (p + 1)

Ph�1
i=k+1 d

i�k�1

tasks. In either case, a decomposition forest contains at most k + 1 + dd
s
ePh�1

i=k+1 d
i�k�1 tasks.

From Lemma 5.1, Algorithm Decomposition tree scheduling constructs a communication-
free schedule (�; �) for (T;1T ; c; L; o; g; P) of length at most

k + 1 +

�
d

s

� h�1X
i=k+1

di�k�1:

Let ` be the length of (�; �).

Let `� be the length of an optimal schedule for (T;1T ; c; L; o; g; P). For each k
� � h� 1, there

are dk
�

tasks of level k�. Let u be a task of level k�. Then T (u) contains
Ph�1

i=k� d
i�k� tasks. The

path from u to the root of T has length k�. As a result, for all k� � h� 1,

`� � k� +
dk

�

P

h�1X
i=k�

di�k
�

:

As a result,

` � k + 1 +

�
d

s

� h�1X
i=k+1

di�k�1

= k + 1 +

�
d
m
dk

� h�1X
i=k+1

di�k�1

= k + 1 +

�
dk+1

m

� h�1X
i=k+1

di�k�1

� k + 1 +
P

m

dk+1

P

h�1X
i=k+1

di�k�1 +

h�1X
i=k+1

di�k�1

� P

m
(k + 1 +

dk+1

P

h�1X
i=k+1

di�k�1) +
P

dk+1
dk+1

P

h�1X
i=k+1

di�k�1

� P

m
`� +

P

dk+1
`�

= (
P

m
+

P

dk+1
)`�:

Let x = b P
dk
c. Then m = dkx, P < dk(x+ 1) and 1 � x � d� 1. Therefore,

` � (
P

m
+

P

dk+1
)`�

� (
dk(x+ 1)

dkx
+
dk(x + 1)

dk+1
)`�

= (
x+ 1

x
+
x+ 1

d
)`�:

Now consider the function

fd : x! x+ 1

x
+
x+ 1

d

for 1 � x � d� 1. Let f 0d be the derivative of fd. Then

f 0d(x) =
1

x2
� 1

d
:

f 0d(x) is negative for 1 � x <
p
d, zero for x =

p
d and positive for

p
d < x � d � 1. Hence

fd(x) � maxffd(1); fd(d� 1)g for all x. Hence

` � maxf2 + 2

d
; 2 +

1

d� 1
g`� = (2 +

2

d
)`�:

16

Note that if d equals two, then 2k � P < 2k+1. Hence m = b P
2k
c2k = 2k. In that case, 2k+1 is

divisible by m and hence ` � P
m
`� < 2`�.

The resulting communication-free schedule can be transformed into a feasible schedule for
(T;1T ; c; L; o; g; P) by introducing the communication operations. The number of communication
operations equals the total number of roots of the decomposition trees Ti;j , because PT consists
of all tasks of level at most k� 1. Consider the forests Ti;1; : : : ; Ti;s. Each of these forests consists

of at most dd
s
e = ddk+1

m
e trees. Hence the total number of roots is at most

dks

�
dk+1

m

�
� dk

m

dk
dk+1

m
+ dk

m

dk

= dk+1 +m

� (d+ 1)P:

Note that if d equals two, then the number of roots is at most 2P . So we have proved the following
theorem.

Theorem 5.3. Let (T;1T ; c; L; o; g; P) be a LogP instance, such that T is a full d-ary intree. Let

`� be the length of an optimal schedule for (T;1T ; c; L; o; g; P). In polynomial time, a schedule for

(T;1T ; c; L; o; g; P) of length at most

(2 +
2

d
)`� + ((d + 1)P � 1)(L+ o+ cmaxmaxfo; gg)

can be constructed. If T is a full binary intree, then a schedule of length at most

2`� + (2P � 1)(L+ o+ cmaxmaxfo; gg)
can be constructed in polynomial time.

5.2 An approximation algorithm for arbitrary d-ary intrees

In this section, we will construct decompositions for instances (T; �; c; L; o; g; P), such that T is
an arbitrary d-ary intree. These will be used by Algorithm Decomposition tree scheduling

to construct a schedule for (T; �; c; L; o; g; P). Consider an instance (T; �; c; L; o; g; P), where T
is a d-ary intree. Let N be the sum of the task lengths of the tasks of T . Let 1 � � � N .
(T; �; c; L; o; g; P) is called �-restricted if every task of T has length at most � and every task with
at least two children has unit length.

If (T; �; c; L; o; g; P) is not �-restricted, then a �-restricted instance (T�; �� ; c�; L; o; g; P) can
be constructed as follows. Let u be a task of T . Assume �(u) = k1� + k2 + 1, such that
0 � k2 � � � 1. Then u is replaced by a chain of k1 + 2 tasks u0 � u1 � : : : � uk � uk+1, such
that ��(u0) = 1, ��(u1) = : : : = ��(uk1) = � and ��(uk1+1) = k2. In addition, c�(uk1+1) = c(u)
and c�(u0) = : : : = c�(uk1) = 0. Note that if k2 = 0, then uk1+1 does not exist. In that case,
c�(uk1) = c(u). Then (T�; �� ; c� ; L; o; g; P) is a �-restricted instance. The number of tasks of T�
is at most N

�
+ 2 times the number of tasks of T .

Let (T; �; c; L; o; g; P) be a �-restricted instance, such that T is a d-ary intree. The next lemma
allows the decomposition of (T; �; c; L; o; g; P), such that the total task length of these intrees does
not di�er much. By �(T), we denote the sum of the task length of the task of T . The following
lemma is similar to a lemma of Kosaraju [18] that considers the number of leafs of binary trees.

Lemma 5.4. Let (T; �; c; L; o; g; P) be a �-restricted LogP instance, such that T is a d-ary intree

and �(T) � �. Then T contains a task u, such that � � �(T (u)) � d(� � 1) + 1.

Proof. This is obvious if T contains only one task. Suppose the lemma holds for all d-ary intrees
with at most n� 1 tasks and n � 2. Let (T; �; c; L; o; g; P) be a �-restricted instance, such that T
is a d-ary intree with n tasks and � � �(T). Assume u is the root of T .

17

Case 1. u has indegree one.
Let v be the child of u. If �(T (v)) � � � 1, then � � �(T (u)) � �(u) + �(T (v)) �
2� � 1 � d(� � 1) + 1. Otherwise, with induction, T (v) contains a task w, such that
� � �(T (w)) � d(� � 1) + 1.

Case 2. u has indegree at least two.
Then u is a task of length one. If �(T (v)) � ��1 for all children v of u, then � � �(T (u)) �
d(� � 1) + 1. Otherwise, u has a child v, such that �(T (v)) � �. With induction, T (v)
contains a task w, such that � � �(T (w)) � d(� � 1) + 1.

Using this result, Algorithm d-ary tree decomposition constructs decompositions of �-
restricted instances (T; �; c; L; o; g; P), such that T is a d-ary tree in at most k trees by repeatedly
removing a task and its predecessors.

Algorithm d-ary tree decomposition

Input: A �-restricted instance (T; �; c; L; o; g; P), such that T is a d-ary intree with n nodes and
an integer k with 1 � k � n.

Output: A decomposition T1; : : : ; Tk0 of (T; �; c; L; o; g; P), such that k0 � k and, for all i �
minfk � 1; k0g, � � �(Ti) � d(� � 1) + 1.

1. i := 1
2. while �(T) > d(� � 1) + 1 and i < k

3. do let ui be a task of T , such that � � �(T (ui)) � d(� � 1) + 1
4. Ti := T (ui)
5. T := T n Ti
6. i := i+ 1
7. Ti := T

Figure 7: The decomposition algorithm for arbitrary d-ary intrees

The decompositions constructed by Algorithm d-ary tree decomposition are used by the
approximation algorithm. Note that every forest Ti of a decomposition constructed by Algo-
rithm d-ary tree decomposition is a tree. Hence the number of roots of such a decomposition
equals the number of forests. Assume ri is the root of Ti.

First we will prove some properties of decompositions of �-restricted instances. Consider a
�-restricted instance (T; �; c; L; o; g; P) constructed from original instance (T �; ��; c�; L; o; g; P).
Let T1; : : : ; Tk be a decomposition of (T; �; c; L; o; g; P) constructed by Algorithm d-ary tree

decomposition.

Lemma 5.5. Let u be a task of T � that is replaced by u1; : : : ; ur in T . If u1; : : : ; ur 2 Ti and

uj 2 Ti \ PT , then u1; : : : ; ur 2 Ti \ PT .
Proof. Suppose u1; : : : ; ur 2 Ti and uj 2 Ti \ PT . uj has a predecessor outside Ti. Since
uj+1; : : : ; ur are successors of uj , they have a predecessor outside Ti as well. Let v be a predecessor
of uj outside Ti. Then u1; : : : ; uj�1 are tasks on the path from v to uj , because u2; : : : ; uj all
have indegree one. So all tasks u1; : : : ; ur are a successor of v. Hence these are all elements of
Ti \ PT .
Lemma 5.6. Let u be a task of T � that is replaced by u1; : : : ; ur in T . If uj+1 2 Ti and uj 62 Ti,

then uj is the root of a decomposition tree.

Proof. Suppose uj+1 2 Ti and uj 62 Ti. Then uj+1 is a task of Ti with a child outside Ti.
The children outside Ti of such a task are roots of decomposition trees. So uj is the root of a
decomposition tree.

18

Assume (T; �; c; L; o; g; P) is constructed by replacing tasks of length at least two from the
instance (T �; ��; c�; L; o; g; P). A topological order v1; : : : ; vk of a subtree T 0 of T is called T �-

consistent if, for all tasks u of T � and all subtasks ui of u, if ui and ui+1 are elements of T 0,
then ui = vj and ui+1 = vj+1 for some j. Clearly, for every subtree T 0 of T , there is a T �-
consistent topological order. We will assume Algorithm Decomposition tree scheduling uses
such topological orders.

Let (�; �) be the communication-free schedule for �-restricted instance (T; �; c; L; o; g; P) con-
structed by Algorithm Decomposition tree scheduling using decomposition T1; : : : ; Tk. From
Lemma 5.1, the length of (�; �) equals maxf�(Tk);maxj<k �(Tj) + �(p(rj ; rk))g.

(�; �) need not be a communication-free schedule for (T; �; c; L; o; g; P). It is, however, possible
to built a communication-free schedule for (T; �; c; L; o; g; P) with the same length as (�; �). The
following lemmas are used to prove this.

Lemma 5.7. Let u be a task of T � that is replaced by u1; : : : ; ur in T . Then �(u1) = : : : = �(ur).

Proof. Suppose �(u1) = : : : = �(uj�1). Consider uj . If uj is an element of Ti n PT for some i,
then uj�1 is an element of Ti n PT as well. In that case, uj�1 and uj are scheduled on the same
processor. If uj is an element of Ti \PT for some i, then uj�1 is the last predecessor of uj . So uj
is scheduled on the same processor as uj�1.

Lemma 5.8. Let u be a task of T � that is replaced by u1; : : : ; ur in T . Then processor �(u1) does
not execute any tasks between uj and uj+1.

Proof. Consider two tasks uj and uj+1, such that �(uj+1) > �(uj) + �(uj). Since Algorithm De-

composition tree scheduling uses T �-consistent topological orders, uj is an element of Ti\PT
for some i. All tasks scheduled on processor i after uj�1 are successors of uj�1. Since uj is the only
immediate successor of uj�1, no task is scheduled on processor �(uj) between uj�1 and uj .

Using Lemmas 5.7 and 5.8, it is easy to transform a communication-free schedule (�; �) for
(T; �; c; L; o; g; P) into a communication-free schedule for (T �; ��; c�; L; o; g; P). Consider a task
u of T � that is replaced by u1; : : : ; ur. Assume �(uj+1) = �(uj) + �(uj) for all j � i. Then set
�(ui�1) = �(ui) � �(ui�1). Then there is no idle time between ui�1 and ui. By repeating this,
we get a schedule (��; ��) that coincides with a schedule (��; ��) for (T �; ��; c�; L; o; g; P): task
u is scheduled on processor ��(u1) at time �

�(u1). The length of (��; ��) equals that of (�; �).
Hence we can construct a communication-free schedule for (T �; ��; c�; L; o; g; P) of length at most
maxf�(Tk);maxj<k �(Tj) + �(p(rj ; rk))g. Moreover, since no task is moved to another processor,
the communication requirement of the schedule for (T; �; c; L; o; g; P) equals that of the schedule
for (T; �; c; L; o; g; P).

Consider the decomposition T1; : : : ; Tk of �-restricted instance (T; �; c; L; o; g; P) constructed
by Algorithm d-ary tree decomposition using parameter P . Then � � �(Ti) � d(� � 1) + 1
for all i � k � 1. If k � P � 1, then � � �(Tk) � d(� � 1) + 1. Otherwise,

N � (P � 1)(d(� � 1) + 1) � �(Tk) � N � (P � 1)�:

Let (�; �) be the communication-free schedule for (T; �; c; L; o; g; P) constructed by Algo-
rithm Decomposition tree scheduling using this decomposition. Let ` be the length of (�; �)
and `� the length of a minimum-length (communication-free) schedule for (T; �; c; L; o; g; P). Then,
for all i � k,

`� � 1

P
�(Ti) + �(p(ri; rk)) and `� � N

P
:

We know that ` = C(rk) � maxf�(Tk);maxj<k �(Tj) + �(p(rj ; rk))g. We will consider two
cases. First, we will assume that either k < P , or k = P and �(Tk) � maxj<k �(Tj)+�(p(rj ; rk)).
In that case,

19

` � max
j<k

(�(Tj) + �(p(rj ; rk)))

� max
j<k

(`� + (1� 1

P
)�(Tj))

� `� + (1� 1

P
)d�

� `� + (1� 1

P
)d�

P

N
`�

= (1 + d(P � 1)
�

N
)`�:

Second, we will assume that k = P and �(Tk) > maxj<k �(Tj) + �(p(rj ; rk)). Then

` � �(Tk)
� N � (P � 1)�

� P

N
(N � (P � 1)�)`�

= (P � P (P � 1)
�

N
)`�:

Hence the length of (�; �) is at most maxf1 + d(P � 1) �
N
; P � P (P � 1) �

N
g`�. This bound is

as small as possible if 1 + (dP � 1) �
N

equals P � P (P � 1) �
N
. In that case, � = 1

d+PN . Then ` is
at most

(P � P 2 � P

d+ P
)`� = (1 +

d(P � 1)

d+ P
)`� = (d+ 1� d2 + d

d+ P
)`�:

Note that for � = 1
d+PN , the number of elements of the �-restricted instance is at most d+P +2

times the number of elements of the original instance. So the number of tasks of the �-restricted
instance is polynomial.

Earlier in this section, it was described how a communication-free schedule can be transformed
into a feasible schedule. The length of the resulting schedule exceeds that of the communication-
free schedule by the total length of the communication operations. Hence we have proved the
following theorem.

Theorem 5.9. Let (T; �; c; L; o; g; P) be a LogP instance, such that T is a d-ary intree. Let `�

be the length of an optimal schedule for (T; �; c; L; o; g; P). In polynomial time, a schedule for

(T; �; c; L; o; g; P) of length at most

(d+ 1� d2 + d

d+ P
)`� + (d(P � 1)� 1)(L+ o+ cmaxmaxfo; gg)

can be constructed.

5.3 Another approximation algorithm for arbitrary d-ary intrees

In this section, we will construct di�erent decompositions of arbitrary d-ary intrees with arbitrary
task lengths. These decompositions consist of forests that are smaller than those constructed by
Algorithm d-ary tree decomposition and consist of more than one tree. The decomposition
algorithm can also be used for inforests by assuming that all roots have the same (dummy) parent.
The indegree of this dummy root need not be taken into account. The basis of the decomposition
algorithm is the following lemma.

Lemma 5.10. Let (T; �; c; L; o; g; P) be a �-restricted LogP instance, such that T is an intree

and �(T) � �. Then T contains a collection of tasks u1; : : : ; uk, such that � � �(T (u1)) + : : :+
�(T (uk)) � 2�, u1; : : : ; uk have the same parent v and if k � 2, then v has at least k+1 children.

Proof. This is obvious if T contains only one task. Suppose the lemma holds for all intrees with
at most n � 1 tasks and n � 2. Let (T; �; c; L; o; g; P) be a �-restricted instance, such that T is
an intree with n tasks and � � �(T). Assume u is the root of T .

20

Case 1. u has indegree one.
Let v be the child of u. If �(T (v)) � � � 1, then � � �(T (u)) � �(u) + �(T (v)) � 2� � 1.
Otherwise, jT (v)j � � and, with induction, T (v) contains a collection of tasks w1; : : : ; wk
with the same parent x, such that � � �(T (w1)) + : : : + �(T (wk)) � 2� and if k � 2, then
x has at least k + 1 children.

Case 2. u has indegree at least two.
We may assume �(T (u)) � 2�+1. Let v1; : : : ; vm be the children of u, such that �(T (v1)) �
: : : � �(T (vm)). If �(T (v1)) � �, then, with induction, T (v1) contains a collection of tasks
w1; : : : ; wk such that � � �(T (w1))+ : : :+�(T (wk)) � 2�, w1; : : : ; wk have the same parent
x, and if k � 2, then x has at least k +1 children. So we will assume �(T (v1)) � � � 1. We
know that �(T (v1)) + : : : + �(T (vm)) = �(T (u)) � 1 � 2�. Let k be the smallest integer,
such that �(T (v1)) + : : :+ �(T (vk)) � �. Then k � m� 1 and �(T (v1)) + : : :+ �(T (vk)) �
� � 1 + �(T (vk)) � 2� � 2.

Like Algorithm d-ary tree decomposition, Algorithm Tree decomposition shown in
Figure 8 constructs decompositions of arbitrary intrees by repeatedly removing a subforest.

Algorithm Tree decomposition

Input: A �-restricted instance (T; �; c; L; o; g; P), such that T is an intree with n nodes and an
integer k with 1 � k � n.

Output: A decomposition T1; : : : ; Tk0 of (T; �; c; L; o; g; P), such that k0 � k and � � �(Ti) � 2�
for all i � minfk � 1; k0g.

1. i := 1
2. while �(T) � 2� and i < k

3. do let ui;1; : : : ; ui;ni be tasks of T with one parent, such that � �Pni
j=1 �(T (ui;j)) � 2�

4. Ti := T (ui;1) [: : : [T (ui;ni)
5. T := T n Ti
6. i := i+ 1
7. Ti := T

Figure 8: The decomposition algorithm for arbitrary intrees

Let (T; �; c; L; o; g; P) be a �-restricted instance, such that T is an intree. Let T1; : : : ; Tk be the
decomposition of (T; �; c; L; o; g; P) constructed by Algorithm Tree decomposition using pa-
rameter P . Using this decomposition, Algorithm Decomposition tree scheduling constructs
a communication-free schedule (�; �) for (T; �; c; L; o; g; P). If (T �; ��; c�; L; o; g; P) is the instance
from which (T; �; c; L; o; g; P) is constructed, then we assume that the topological orders used by
Algorithm Decomposition tree scheduling are T �-consistent.

From Lemma 5.1, the length of (�; �) is at most

maxf�(Tk);max
i<k

�(Ti) + �(ri;1; rk;1)g;

where ri;j is the the root of the j
th subtree of Ti.

If k � P � 1, then �(Tk) � 2�. Otherwise, k = P and

�(Tk) = �(T)� (�(T1) + : : :+ �(TP�1)) � �(T)� (P � 1)�:

De�ne N = �(T). Let ` be the length of (�; �) and let `� be the length of an optimal schedule for
(T; �; c; L; o; g; P). Obviously,

`� � 1

P
�(Ti) + �(p(ri;1; rk;1)) and `� � N

P
:

21

The length of (�; �) equals C(rk;1), since rk;1 is the root of T . Two cases need to be taken into
account. First, suppose that either k < P , or k = P and �(Tk) � maxj<k �(Tj) + �(p(rj;1; rk;1).
Then

` � max
j<k

(�(Tj) + �(p(rj;1; rk;1)))

� max
j<k

(`� + (1� 1

P
)�(Tj))

� `� + 2(1� 1

P
)�

� `� + 2(1� 1

P
)�

P

N
`�

= (1 + 2(P � 1)
�

N
)`�:

Second, suppose that k = P and �(Tk) > maxj<k �(Tj) + �(p(rj;1; rk;1)). In that case,

` � �(Tk)
� N � (P � 1)�

� P

N
(N � (P � 1)�)`�

= (P � P (P � 1)
�

N
)`�:

Hence the length of (�; �) is at most maxf1 + 2(P � 1) �
N
; P � P (P � 1) �

N
g`�. This bound is

as small as possible if 1+ (2P � 1) �
N

and P �P (P � 1) �
N

are equal. In that case, � = 1
P+2N and

` is at most

(1 + 2
P � 1

P + 2
)`� = (3� 6

P + 2
)`�:

Suppose (T; �; c; L; o; g; P) is constructed from original instance (T �; ��; c�; L; o; g; P). Similar
to Lemma 5.7, we can prove that the subtasks in T of a task u of T � are scheduled on the same pro-
cessor. There may be other tasks that are scheduled between these subtasks, but it is not di�cult
to transform (�; �) into a communication-free schedule (��; ��) for (T �; ��; c�; L; o; g; P) with the
same length. The number of communicating pairs does not increase, because no task needs to be
scheduled on a di�erent processor. So the communication requirements of both communication-
free schedules are equal.

Each decomposition forest Ti consists of a collection of trees whose roots have the same parent.
Using Lemma 5.10, if a decomposition forest consists of more than one tree, then the parent of the
roots of these trees has another child. In addition, decomposition forest Tk consists of one tree.
Hence the number of roots of the decomposition forests is bounded by maxfd� 1; 1g(P � 1)+1 =
(d� 1)(P � 1) + 1, where d is the maximum indegree in T .

Since the indegree of a possible dummy root need not be considered, we have proved the
following theorem.

Theorem 5.11. Let (T; �; c; L; o; g; P) be a LogP instance, such that T is a d-ary inforest. Let

`� be the length of an optimal schedule for (T; �; c; L; o; g; P). In polynomial time, a schedule for

(T; �; c; L; o; g; P) of length at most

(3� 6

P + 2
)`� + (d(d � 1)(P � 1)� 1)(L+ o+ cmaxmaxfo; gg)

can be constructed.

In Sections 5.2 and 5.3, two algorithms are presented that construct decomposition of arbi-
trary d-ary intrees with arbitrary task lengths. The �rst constructs decompositions consisting of
subforests that consist of one intree. The sizes of these subforests di�er by at most a factor of d.
The second constructs decompositions into a collection of subforests that consist of at most d� 1
intrees. The sizes of these subforests di�er at most a factor of two.

22

The length of the schedules constructed by Algorithm Decomposition tree scheduling

using the decompositions constructed by Algorithms d-ary tree decomposition and Tree

decomposition consist of two parts; the �rst depends on the task lengths and the precedence
constraints and is independent of the communication requirements, the second only depends only
on the communication requirements.

The decompositions of Algorithms d-ary tree decomposition and Tree decomposition

give a trade-o� between computation and communication: the lengths of the schedules constructed
using decompositions constructed by Algorithm d-ary tree decomposition have a rather large
computation part and a small communication part, whereas the lengths the schedules constructed
using decompositions of Algorithm Tree decomposition have a small computation part and a
larger communication part.

Concluding remarks

The algorithm presented in Section 5 can be used in a very general setting. The decomposi-
tions are used by Algorithm Decomposition tree scheduling to construct communication-
free schedules. These schedules can be transformed into feasible schedule for any model of parallel
computation by introducing communication tasks between every communicating pair.

Hence, for any model of parallel computation, we can construct schedules on P processors for
full d-ary intrees with unit-length tasks whose lengths are at most 2 + 2

d
times that of an optimal

schedule plus the duration of (d+ 1)P � 1 communication operations.

In addition, for arbitrary d-ary intrees, schedules of length at most d + 1 � d2+d
d+P times the

length of a minimum-length schedule plus the duration of d(P � 1)� 1 communication operations
can be constructed in polynomial time. The same holds for schedules of length at most 3� 6

P+2
times the length of an optimal schedule plus the duration of d(d � 1)(P � 1)� 1 communication
operations.

References

[1] M. Adler, J.W. Byers and R.M. Karp. Parallel sorting with limited bandwidth. In Proceedings

of the 7th Annual ACM Symposium on Parallel Algorithms and Architectures, pages 129{136,
1995.

[2] A. Aggarwal, A.K. Chandra and M. Snir. On communication latency in PRAM computations.
In Proceedings of the 1989 ACM Symposium on Parallel Algorithms and Architectures, pages
11{21, 1989.

[3] A. Aggarwal, A.K. Chandra and M. Snir. Communication complexity in PRAMs. Theoretical
Computer Science, 71:3{28, 1990.

[4] P. Chr�etienne. Tree scheduling with communication delays. Discrete Applied Mathematics,
49:129{141, 1994.

[5] P. Chr�etienne and C. Picouleau. Scheduling with communication delays: a survey. In
P. Chr�etienne, E.G. Co�man, Jr., J.K. Lenstra and Z. Liu, editors, Scheduling Theory and

its Applications, pages 65{90. John Wiley & Sons, 1995.

[6] R. Cole and O. Zajicek. The APRAM: Incorporating asynchrony into the PRAM model.
In Proceedings of the 1989 ACM Symposium on Parallel Algorithms and Architectures, pages
169{178, 1989.

[7] D. Culler, R. Karp, D. Patterson, A. Sahay, K.E. Schauser, E. Santos, R. Subramonian and
T. von Eicken. LogP: Towards a realistic model of parallel computation. In Proceedings of the

Fourth ACM-SIGPLAN Symposium on Principles and Practice of Parallel Processing, pages
1{12, 1993.

23

[8] D.E. Culler, A.C. Dusseau, R.P. Martin and K.E. Schauser. Fast parallel sorting under LogP:
from theory to practice. In T. Hey and J. Ferrante, editors, Portability and Performance for

Parallel Processing, chapter 4, pages 71{98. John Wiley & Sons, New York, 1994.

[9] D.E. Culler, R.M. Karp, D. Patterson, A. Sahay, E.E. Santos, K.E. Schauser, R. Subramonian
and T. von Eicken. LogP. A practical model of parallel computation. Communications of the

ACM, 39(11):78{85, November 1996.

[10] S. Fortune and J. Wyllie. Parallelism in Random Access Machines. In Proceedings of the

Tenth Annual ACM Symposium on Theory of Computing, pages 114{118, 1978.

[11] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. Freeman, New York, 1979.

[12] P.B. Gibbons. A more practical PRAM model. In Proceedings of the 1989 ACM Symposium

on Parallel Algorithms and Architectures, pages 158{168, 1989.

[13] P.B. Gibbons, Y. Matias and V. Ramachandran. E�cient low-contention parallel algorithms.
In Proceedings of the 6th Annual ACM Symposium on Parallel Algorithms and Architectures,
pages 236{247, 1994.

[14] P.B. Gibbons, Y. Matias and V. Ramachandran. The QRQW PRAM: Accounting for con-
tention in parallel algorithms. In Proceedings of the Fifth Annual ACM-SIAM Symposium on

Discrete Algorithms, pages 638{648, 1994.

[15] R.L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on Applied

Mathematics, 17(2):416{429, March 1969.

[16] T.-S. Hsu and D.R. Lopez. Bounds and algorithms for a practical task allocation model. In
T. Asano, Y. Igarashi, H. Nagamochi, S. Miyano and S. Suri, editors, Proceedings of the 7th

International Symposium on Algorithms and Computation, volume 1178 of Lecture Notes in

Computer Science, pages 397{406, Berlin, 1996. Springer-Verlag.

[17] R.M. Karp, A. Sahay, E.E. Santos and K.E. Schauser. Optimal broadcast and summation in
the LogP model. In Proceedings of the 5th Annual ACM Symposium on Parallel Algorithms

and Architectures, pages 142{153, 1993.

[18] S.R. Kosaraju. Parallel evaluation of division-free arithmetic expressions. In Proceedings of

the Eighteenth Annual ACM Symposium on Theory of Computing, pages 231{239, 1986.

[19] M. Kunde. Nonpreemptive LP-scheduling on homogeneous multiprocessor systems. SIAM

Journal on Computing, 10(1):151{173, February 1981.

[20] W. L�owe and W. Zimmermann. Upper time bounds for executing PRAM-programs on the
LogP-machine. In Proceedings of the 9th ACM International Conference on Supercomputing,
pages 41{50, 1995.

[21] C. Martel and A. Raghunathan. Asynchronous PRAMs with memory latency. Journal of

Parallel and Distributed Computing, 23:10{26, 1994.

[22] L.G. Valiant. A bridging model for parallel computation. Communications of the ACM,
33(8):103{111, August 1990.

[23] W. Zimmermann and W. L�owe. An approach to machine-independent parallel programming.
In B. Buchberger and J. Volkert, editors, Proceedings of the Third Joint Conference on Vector

and Parallel Processing, volume 854 of Lecture Notes in Computer Science, pages 277{288,
Berlin, 1994. Springer-Verlag.

24

