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Abstract

In this paper, a parallel algorithm is given that, given a graphG = (V;E), decides
whetherG is a series parallel graph, and if so, builds a decomposition tree forG of series
and parallel composition rules. The algorithm usesO(logjEj log� jEj) time andO(jEj)
operations on an EREW PRAM, andO(logjEj) time andO(jEj) operations on a CRCW
PRAM. With the same time and processor resources, a tree-decomposition of width at
most two can be built of a given series parallel graph, and hence very efficient parallel
algorithms can be found for a large number of graph problems on series parallel graphs.
These include many well-known problems like all problems that can be stated in monadic
second order logic. The results hold for undirected series parallel graphs as well as for
directed series parallel graphs.

1 Introduction

One of the well known classes of graphs is the class ofseries parallel graphs. Series parallel
graphs appear in several applications, e.g., the classical way to compute the resistance of an
(electrical) network of resistors assumes that the underlying graph is in fact series parallel.

A well-studied problem is the problem to recognize series parallel graphs. A linear time
algorithm for this problem has been given by Valdes, Tarjan, and Lawler [15]. Also, it is known
that when a ‘decomposition tree’ for a series parallel graph is given, then many problems
can be solved in linear time, including many problems that are NP-hard for arbitrary graphs
[3, 6, 13, 14]; Valdes et al. also show how to obtain such a decomposition tree in linear time.
(In this paper, we assume a specific form of the decomposition tree, and use the termsp-tree
for this type of decomposition tree.)

�This research was carried out while the second author was working at the Department of Computer Science of
Utrecht University, with support by the Foundation for Computer Science (S.I.O.N) of the Netherlands Organization
for Scientific Research (N.W.O.). This research was partially supported by ESPRIT Long Term Research Project
20244 (project ALCOM IT:Algorithms and Complexity in Information Technology).
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He and Yesha [12] and He [11] gave parallel algorithms for recognizing directed and undi-
rected series parallel graphs inO(log2n+ logm) time with O(n+m) processors on an EREW
PRAM, and henceO((n+m)(log2n+ logm)) operations. (The number of operations of a par-
allel algorithm is the product of its time and number of processors used. In this paper,n denotes
the number of vertices of the input graph;m the number of edges.) Their algorithm also returns
a decomposition tree of the input graph, if it is series parallel.

Eppstein [10] improved these results for simple graphs: his algorithms run inO(logn) time
on a CRCW PRAM withO(m� α(m;n)) operations (α(m;n) is the inverse of Ackermann’s
function, which is at most four for all practical purposes). As any algorithm on a CRCW
PRAM can be simulated on an EREW PRAM with a loss ofO(logn) time, this implies an
algorithm withO(log2n) time andO(mlogn�α(m;n)) operations on an EREW PRAM.

We improve upon these results, both for the EREW PRAM model and the CRCW PRAM
model: we give algorithms for recognizing directed and undirected series parallel graphs, and
building a decomposition tree if one exists. These algorithms useO(logmlog�m) time with
O(m) operations on an EREW PRAM, and inO(logm) time withO(m) operations on a CRCW
PRAM. If the input graph is simple, then our algorithms can be made to run inO(lognlog�n)
on an EREW PRAM andO(logn) on a CRCW PRAM, and the number of operations isO(n).

It is well-known that series parallel graphs have treewidth at most two. We will use this fact
in one of our proofs. Moreover, several of our results were inspired by techniques, established
for graphs of bounded treewidth, especially those from [4] and [5]. As a side remark we
note that, while the algorithms in [5] are carrying constant factors that make them impractical
in their stated form, the algorithms in this paper do not carry large constant factors and are
probably efficient enough for a practical setting (although a more detailed analysis can probably
bring the constant factor further down.)

A central technique in this paper isgraph reduction, introduced in a setting of graphs of
bounded treewidth in [1]. In [4] and [5], it is shown how the technique can be used to obtain
parallel algorithms for graphs of bounded treewidth.

Another technique that is used in this paper is thebounded adjacency list searchtechnique,
taken from [5], and adapted here to the setting of series parallel graphs.

This paper is organized further as follows. In Sections 2 and 3 we give some basic defi-
nitions and preliminary results. In Section 4 we give an algorithm for recognizing undirected
series parallel graphs with given source and sink. This algorithm also builds an sp-tree of the
input graph, if it is series parallel. Section 5 gives some results for the case that no source and
sink are given and for the case that the input graph is directed. Furthermore, in this section we
show how to solve many other problems on series parallel graphs.

2 Definitions

Unless stated otherwise, graphs considered are undirected, may have parallel edges but have
no self-loops.

A source-sink labeled graphis a triple(G;s; t), whereG is a graph ands andt are distinct
vertices ofG, called thesourceandsinkof the graph, respectively.

Theseries compositionof two or more source-sink labeled graphs is the operation which
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takesr � 2 source-sink labeled graphs(G1;s1; t1); : : : ;(Gr ;sr ; tr) and returns a new source-sink
labeled graph(G;s; t) that is obtained by taking the disjoint union ofG1; : : : ;Gr , identifying
si+1 with ti for all i, 1� i < r, and lettings= s1 andt = tr . See also Figure 1.
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Figure 1: A series and a parallel composition of two source-sink labeled graphs.

Theparallel compositionof two or more source-sink labeled graphs is the operation which
takesr � 2 source-sink labeled graphs(G1;s1; t1); : : : ;(Gr ;sr ; tr) and returns a new source-sink
labeled graph(G;s; t) that is obtained by taking the disjoint union ofG1; : : : ;Gr , identifying all
verticess1; : : : ;sr into the new sources, and identifying all verticest1; : : : tr into the new sinkt.
See also Figure 1.

Definition 2.1 (Series Parallel Graph).A source-sink labeled graph(G;s; t) is aseries parallel
graphif and only if one of the following holds.

� (G;s; t) is a base series parallel graph, consisting of two vertices s and t with one edge
between s and t.

� (G;s; t) is obtained by a series or parallel composition of r� 2 series parallel graphs.

Part I of Figure 2 shows a series parallel graph with sourcesand sinkt. An equivalent definition
which is often used only involves series and parallel compositions with two series parallel
graphs. A graphG is said to be series parallel if and only if there are verticess; t 2V(G) such
that(G;s; t) is a series parallel graph.
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Figure 2: A series parallel graphs and its minimal sp-tree.
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The ‘decomposition’ of a series parallel graph(G;s; t) into series and parallel compositions
is expressed in ansp-tree TG of the graph. An sp-tree is a rooted tree, in which each node
has one of the typesp-node, s-nodeand leaf node, and has a label. A label of a node is an
ordered pair(u;v) of vertices ofG. Every node of an sp-tree with label(a;b) corresponds to
a series parallel graph(G0;a;b), whereG0 is a subgraph ofG. The root of the tree has label
(s; t), and corresponds to the graph(G;s; t). The leaves of the tree are of type leaf node, and
correspond to the base series parallel graphs that represent the edges ofG: there is a one-to-one
correspondence between leaves ofTG and edgese2 E(G). Internal nodes are of type s-node
(series node) or p-node (parallel node). The series parallel graph associated to an s-nodeα is
the graph that is obtained by a series composition of the series parallel graphs associated to the
children ofα, where the order of the children gives the order in which the series composition
is applied. The series parallel graph associated to a p-nodeβ is the graph that is obtained by
a parallel composition of the series parallel graphs associated to the children ofβ. Part II of
Figure 2 shows an sp-tree of the series parallel graph given in part I.

Note that a series parallel graph can have different sp-trees. An sp-tree is called a binary
sp-tree if each internal node has two children. It can be seen that any series parallel graph has
a binary sp-tree. Aminimal sp-treeof a series parallel graph(G;s; t) is an sp-tree of the graph
in which p-nodes only have s-nodes and leaf nodes as children, and s-nodes only have p-nodes
and leaf nodes as children. Note that the sp-tree in part II of Figure 2 is minimal. For each
series parallel graph(G;s; t) there is a unique minimal sp-tree which can be obtained from any
sp-tree of(G;s; t) by contracting over edges of which the end points have the same type.

We can also define directed series parallel graphs. These are defined in the same way as
undirected series parallel graphs, with the sole exception that a base series parallel graph is a
directed graph with two verticess and t and a directed edge from the sources to the sinkt.
As a result, directed series parallel graphs are acyclic, and every vertex lies on a directed path
from the source to the sink.

Definition 2.2 (Treewidth). Let G= (V;E) be a graph. Atree decompositionTD of G is a
pair (T;X ), where T= (I ;F) is a tree, andX = fXi j i 2 Ig is a family of subsets of V , one for
each node (vertex) of T , such that

�
S

i2I Xi =V,

� for every edgefv;wg 2 E, there is an i2 I with v2 Xi and w2 Xi, and

� for all i ; j;k2 I, if j is on the path from i to k in T , then Xi \Xk � Xj.

Thewidth of a tree decomposition((I ;F);fXi j i 2 Ig) is maxi2I jXij �1. Thetreewidthof a
graph G is the minimum width over all possible tree decompositions of G.

To be able to describe the reduction rules of our algorithm, we introduce the notion of
terminal graphs. A terminal graphG is a triple (V;E;X) with (V;E) a graph, andX � V a
subset ofl � 0 vertices. Vertices inX are calledterminalsor terminal vertices, and they are
numbered from 1 tol . Vertices inV�X are calledinner vertices.

The operation� maps two terminal graphsG andH with the same numberl of terminals
to an ordinary graphG�H, by taking the disjoint union ofG andH, and then identifying the
ith terminal ofG with the ith terminal ofH for i = 1; : : : ; l . See Figure 3 for an example.
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Figure 3: Example of terminal graphs and the operation� applied to two three-terminal graphs.

Two k-terminal graphsG1 andG2 are said to beisomorphic, if there exists an isomorphism
from G1 to G2 which maps theith terminal ofG1 to theith terminal ofG2 for eachi.

Definition 2.3 (Reduction Rule). A reduction ruler is an ordered pair(H1;H2), where H1

and H2 are l-terminal graphs for some l� 0.
A matchto reduction rule r= (H1;H2) in graph G is a terminal graph G1 which is isomor-

phic to H1, such that there is a terminal graph G2 with G= G1�G2.
Anapplicationof r to G is an operation that replaces G of the form G1�G3 by a graph G0

of the form G2�G3, where G1 is isomorphic to H1 and G2 is isomorphic to H2. We also say
that, in G, G1 is replaced by G2. An application of a reduction rule is also called areduction.

Figure 4 shows an example of a reduction ruler, and an application ofr to a graphG. We
usually depict a reduction rule(H1;H2) by the two graphsH1 andH2 with an arrow fromH1

to H2. Given a reduction ruler = (H1;H2), we call H1 the left-hand side ofr, andH2 the
right-hand side ofr.

!r
G

G0

1

2

3

1

2

3

!
r

H1 H2

Figure 4: An example of a reduction ruler = (H1;H2), and an application ofr to a graphG,
resulting in graphG0.

The notion of reductions is generalized in the natural manner to source-sink labeled graphs.
In this case, it is assumed that no inner vertex of a left-hand side or right-hand side graph of a
rule is a vertex with a source or sink label.

3 Preliminary Results

Lemma 3.1. Let G be a series parallel graph and let T be an sp-tree of G. Ifα and β are
nodes of T ,α is an ancestor ofβ, and the labels ofα and β both contain a vertex v, then all
nodes on the path betweenα andβ in T contain v in their label.

Lemma 3.2.Let (G;s; t) is a series parallel graph with sp-tree TG.
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1. (G+ fs; tg;s; t) is a series parallel graph, where G+ fs; tg is the graph obtained by
adding an (extra) edge between s and t to G.

2. If there is a nodeα in TG labeled with(u;v), then(G+ fu;vg;s; t) is a series parallel
graph.

Proof.
1. This follows from the parallel composition ofG with a one-edge series parallel graph.

2. Add betweenα and its parent a p-nodeβ which has two children: nodeα and a leaf node
representing the added edgefu;vg. The new tree is an sp-tree of(G+fu;vg;s; t). 2

Lemma 3.3. Let G be a series parallel graph, T an sp-tree of G, and u;v2V(G). The nodes
in T which are labeled with(u;v) induce a (possibly empty) subtree of T .

Lemma 3.4. If a multigraph G is series parallel, then the treewidth of G is at most two.

Proof. Let T = (N;F) be a binary sp-tree ofG. We make a tree decompositionTD= (X ;T)
of width at most two ofG from T with X = fXα j α 2Ng. For each p-nodeα with label(v;w),
let Xα = fv;wg, and for each s-nodeα with label(v;w) and labels of its two children(v;x) and
(x;w), let Xα = fv;w;xg. One can verify that(X ;T) is a tree decomposition ofG of treewidth
at most two. 2

From the construction in the proof of Lemma 3.4 it is easy to see that any binary sp-tree of
G can be transformed into a tree decomposition of width at most two ofG in O(1) time with
O(m) operations on an EREW PRAM.

A graphG= (V;E) is said to be aminorof a graphH = (W;F), if a graph, isomorphic toG
can be obtained fromH by a series of vertex deletions, edge deletions, and edge contractions.

Lemma 3.5. If the treewidth of G is at most two, then G does not contain K4 (the complete
graph on four vertices) as a minor.

Lemma 3.6. Let (G;s; t) be a series parallel graph.

1. If there is a nodeα with label (x;y) in an sp-tree of G, then there is a path P in G with
P= (s; : : : ;x; : : : ;y; : : : ; t).

2. If there is a node with label(x;y) in an sp-tree of G that is an ancestor of a node with
label (v;w), then there is a path(s; : : : ;x; : : : ;v; : : : ;w; : : : ;y; : : : ; t) in G.

3. For every edge e= fx;yg 2 E(G), there is a path(s; : : : ;x;y; : : : ; t), or there is a path
(s; : : : ;y;x; : : : ; t) in G.

Proof.
1. We prove that for any nodeβ with label(v;w) on the path fromα to the root of the sp-tree
of G, there is a path(v; : : : ;x; : : : ;y; : : : ;w) in the graphGβ associated with nodeβ. We use
induction on the length of the path fromα to β in the sp-tree. (Using this result withβ the root
of the sp-tree gives the desired result.)
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First, supposeα = β. As any series parallel graph is connected, there is a path fromv to w
in the series parallel graph associated with nodeα.

Next, supposeβ is an ancestor ofα, and has label(v;w). Let γ be the child ofβ on the path
from α to β. If β is a p-node, then the label ofγ is also(v;w). By the induction hypothesis,
there is a path(v; : : : ;x; : : : ;y; : : : ;w) in the graph associated withγ, and the result follows
for β. Supposeβ is an s-node with childrenδ1; : : : ;δr , andδi has label(vi ;vi+1) for eachi,
1� i � r. Let j, 1� j � r, be such thatδ j = γ. For anyi, 1� i � r, there is a pathPi from
vi to vi+1 in Gδi (the graph associated withδi). By the induction hypothesis, there is a path
Pj = (vj ; : : : ;x; : : : ;y; : : : ;vj+1) in Gδ j . ConcatenatingP1;P2; : : : ;Pr gives the required path of
the form(v; : : : ;x; : : : ;y; : : : ;w) in Gβ.

2. Similar.

3. Note that there is a node with label(x;y) or a node with label(y;x). Now use part 1 of the
lemma. 2

Lemma 3.7. Let (G;s; t) be series parallel and suppose there is a path(s; : : : ;x;y; : : : ; t) in G.
The following holds.

1. There is no path from s to y that avoids x or there is no path from x to t that avoids y.

2. No node in any sp-tree of G is labeled with the pair(y;x).

Proof.
1. Suppose not. Then(G+fs; tg;s; t) containsK4 as a minor, which is a contradiction.

2. This follows from part 1 of this lemma and Lemma 3.6. 2

Lemma 3.8. Suppose(G;s; t) is a series parallel graph with G= (V;E), and letfx;yg 2 E.
Suppose there is a path(s; : : : ;x;y; : : : ; t) in G. Let W be the set

W = fv2V�fx;yg j there is a path(s; : : : ;x; : : : ;v; : : : ;y; : : : ; t) in Gg:

Then the following holds.

1. For all fv;wg 2 E, v2W implies that w2W[fx;yg.

2. For every sp-tree of G, if a node is labeled with(v;w) or (w;v), and v2W, then w2
W[fx;yg.

3. Let T be an sp-tree of G, letα be the highest node with label(x;y). The series parallel
graph Gα associated withα is exactly the graph G[W[fx;yg]. Furthermore, ifjWj � 1,
thenα is a p-node.

Proof.
1. Supposefv;wg 2 E, v2W, w 62 fx;yg. By Lemma 3.6, there is a path(s; : : : ;v;w; : : : ; t) or
there is a path(s; : : : ;w;v; : : : ; t).

Suppose there is a path(s; : : : ;v;w; : : : ; t). If the subpath froms to v avoidsx andy, then
G+fs; tg containsK4 as a minor, contradiction. Hence eitherx or y belongs to the path froms
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Figure 5: The sp-tree and possible graphs for the proof of Lemma 3.8

to v. Similarly, x or y belongs to the part of the path fromw to t. If y appears on the first part,
andx appears on the last part, then we have a contradiction with Lemma 3.7. Hence, we have
a path of the form(s; : : : ;x; : : : ;v;w; : : : ;y; : : : ; t). This implies thatw2W.

The case in which there is a path(s; : : : ;w;v; : : : ; t) is similar.

2. Note that if a node in the sp-tree ofG is labeled with(v;w), thenG+fv;wg is also a series
parallel graph (Lemma 3.2). Hence, the result follows from part 1 of the lemma.

3. We first show thatGα is a subgraph ofG[W [ fx;yg]. Let v 2 V(Gα). There is a
descendantβ of α which containsv in its label. According to Lemma 3.6, there is a path
(s; : : : ;x; : : : ;v; : : : ;y; : : : ; t), sov2W.

Next we show thatG[W[fx;yg] is a subgraph ofGα. Let e= fv;wg 2 E(G[W[fx;yg]),
let β be the leaf node ofe, and suppose w.l.o.g. thatβ has label(v;w). We show thatβ is a
descendant ofα. If e= fx;yg, this clearly holds.

Supposee 6= fx;yg and β is not a descendant ofα. Then we have a nodeγ, with label
(z1;z2) 6= (x;y), with childrenδ andε, such thatα is equal to or a descendant ofδ, andβ is
equal to or a descendant ofε (see Figure 5, part I).

If z1 2W, thenG contains a path froms to x that avoidsz1, andG contains a path fromz1

to y that avoidsx. Also, G contains a path(s; : : : ;z1; : : : ;x;y), henceG+ fs; tg contains aK4

minor, contradiction. So, we may assume thatz1 62W, and similarly, thatz2 62W.
First suppose thatγ is a p-node. Figure 5, part II shows the structure of the series par-

allel graph Gγ associated with nodeγ. The graphGε associated withε contains a path
(z1; : : : ;x;y; : : : ;z2), because of Lemma 3.6, part 2. Similarly, the graphGδ associated with
nodeδ contains a path(z1; : : : ;v;w; : : : ;z2). Since the only common vertices ofGε and Gδ

arez1 andz2, there is a path(x; : : : ;z1; : : : ;v; : : : ;z2; : : : ;y) in G. Since(x;y) 6= (z1;z2) and
z1;z2 =2W, this means that this path contains an edge between a vertex inW and a vertex in
V�W�fx;yg, which is in contradiction with part 1 of this lemma.

Supposeγ is an s-node, and suppose that nodeδ is on the left side of nodeε. Part III of
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Figure 5 shows the structure of the series parallel graphGγ. There is no path(z1; : : : ;v; : : : ;y)
in Gγ, which means that any path inG which goes fromx to y and containsv must be of the
form (x; : : : ;z1; : : : ;z2; : : : ;v; : : : ;y). This again means that there is an edge between a vertex in
W and a vertex inV�W�fx;yg, contradiction. Ifδ is on the right side ofε, then in the same
way, we have a path(x; : : : ;v; : : : ;z1; : : : ;z2; : : : ;y). This is again a contradiction. Henceβ is a
descendant ofα. This proves thatGα = G[W[fx;wg].

If α is an s-node, then it is the only node with label(x;y). This is impossible, because there
is a leaf node with label(x;y). If α is a leaf node, thenGα consists only of the edgefx;yg.
Hence ifjWj � 1, thenα is a p-node. This completes the proof of part 3. 2

4 A Constructive Reduction Algorithm

In this section we give an algorithm for finding an sp-tree of a source-sink labeled graph, if it
is series parallel. The algorithm is aconstructive reduction algorithm, which consists of two
phases: the first phase is the reduction phase, the second phase is the construction phase. The
algorithm is based on results presented in [4, 5]. It uses a setR of reduction rules which we
define later. The two phases work as follows, given a source-sink labeled graph(G;s; t).

Phase 1.The first phase consists of a number of reduction rounds which are executed sub-
sequently. In each reduction round, a number of applications of rules fromR is carried out
simultaneously: if the graph is series parallel, this number isΩ(jE(G)j). In this phase, the in-
put graph(G;s; t) is reduced to a series parallel graph consisting of one edge between vertices
s andt if and only if (G;s; t) is series parallel. If(G;s; t) is not series parallel, i.e., we do not
have a single edge after the first phase, then the algorithms stops. Otherwise, we proceed with
the second phase.

Phase 2. In the second phase, all reductions are undone in reversed order, in a number ofcon-
struction rounds. The number of construction rounds equals the number of reduction rounds.
In the first construction round, the reductions of the last reduction round of phase one are un-
done, in the second construction round, the reductions of the one-but-last reduction round are
undone, etc., until all reductions are undone and the input graph is obtained. During the undo-
ing of the reductions, an sp-tree of the current graph is maintained. Each time a reduction is
undone, the sp-tree is ‘locally’ modified in such a way that it becomes an sp-tree for the new
current graph. When the last construction round is finished, we obtain an sp-tree of the input
graph.

In more detail, the two phases of the algorithm work as follows.

Phase 1. In phase one, the input graph is reduced to the base source-sink labeled graph if and
only if the input graph is series parallel. This means that the setR of reduction rules must be
safe, i.e. for eachr 2 R if a graph(G0;s; t) can be obtained from a graph(G;s; t) by applying
r, then(G;s; t) is series parallel if and only if(G0;s; t) is series parallel. The setR is given in
Section 4.1, and it is shown that this set is safe.

In each reduction round in the first phase,Ω(jE(G)j) reductions are applied, if the graph is
series parallel. These reductions must benon-interfering: no inner vertex of a subgraph that is
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rewritten may occur in another subgraph that is rewritten (so the subgraphs that are rewritten
may share terminals). This is to assure that the graph that results after applying all reductions
of one round simultaneously is the same graph as the graph that would result if the reductions
were applied subsequently in any order. Moreover, it assures that there is no concurrent reading
or writing.

Finding theΩ(jE(G)j) non-interfering matches is basically done as follows. First, every
edge of the current graph ‘looks around’ to see whether it can take part in a reduction. The set of
reductions is not necessarily non-interfering, and hence a subset of non-interfering reductions
is selected next. Finally, the reductions of this subset are carried out simultaneously— some
bookkeeping is done such that later the reductions can be undone.

The setR of reduction rules must have the following properties to make the first step to
work out correctly and fast enough.

� There isc> 0 such that each series parallel graph(G;s; t) with at least two edges, con-
tains at leastcjE(G)j matches to rules inR . This is shown in Section 4.2.

� In each series parallel graph(G;s; t) with at least two edges, sufficiently many (c0jE(G)j
for somec0 > 0) of these matches can be found inO(1) time withO(jE(G)j) processors.
This is shown in Section 4.3.

In the second step, a subset of non-interfering reductions of all found reductions must be
found. This set must be large, i.e. it must have size at leastkjE(G)j for somek > 0. This is
solved in the same way as in [5]: a ‘conflict graph’ is built; one can note that this conflict graph
has bounded degree, and a large independent set in the conflict graph is then found (see [5] for
more details).

Finally, the set of selected reductions is carried out. Each reduction can be carried out in
O(1) time by a single processor.

As each reduction round reduces the number of edges with a constant fraction when the
input graph is series parallel, afterO(logm) reduction rounds we can conclude whether the
input graph is series parallel or not, depending on whether we end up with a single edge. By
using the same approach as in [5], we can carry out all reductions inO(logm� log�m) time
with O(m) operations andO(m) space on an EREW PRAM, and withO(logm) time andO(m)
operations andO(m) space on a CRCW PRAM.

Phase 2. The second phase builds the sp-tree, in case(G;s; t) was series parallel. This phase
starts with building an sp-tree for the current graph, which is the base series parallel graph.
Hence the simple sp-tree, with a single node, labeled(s; t) is build. This sp-tree is constructed
in O(1) time with one processor (see Section 4.4 for more details).

After that, the reduction rounds of phase one are undone in reverse order in construction
rounds. During each construction round, the sp-tree is reconstructed in such a way that it
becomes an sp-tree of the currect graph again. The processor that carried out the reduction in
the first round will be the same processor that carries out the undoing of the reduction, and it
also adapts the sp-tree locally for this undoing. How this is done is described in more detail in
Section 4.4: we show that each adaptation of the sp-tree for one undoing of a reduction can be
done inO(1) time without interfering with other adaptations that are applied at the same time.
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In this way, both a minimal and a binary sp-tree of the input graph can be obtained. Con-
sidering the fact that each undo action and local adaptation can be done inO(1) time on one
processor, it can be seen that phase two can be carried out inO(logm) time with O(m) opera-
tions on an EREW or CRCW PRAM. This completes the description of the second phase.

With the results of Sections 4.1 – 4.4, we obtain the following result.

Theorem 4.1. The following problem can be solved in O(m) operations, and O(logmlog�m)
time on a EREW PRAM, and O(logm) time on a CRCW PRAM: given a graph(G;s; t), deter-
mine whether it is series parallel, and if so, find a minimal or binary sp-tree.

4.1 A Safe Set of Reduction Rules

Duffin [9] has shown that a graph(G;s; t) is series parallel if and only if any sequence of
applications of theseriesand theparallel reduction ruleeventually lead to the base series
parallel graph (rules 1 and 2 in Figure 6). Valdes et al. [15] have given a sequential constructive
reduction algorithm for series parallel graphs, based on this reduction system, that usesO(m)
time.

For an efficient parallel algorithm, the series and the parallel rule are not sufficient: there
are series parallel graphs which contain at most two matches to rules 1 and 2. Therefore, we
introduce a larger set of reduction rules. LetR be the set of 18 reduction rules depicted in
Figure 6. Note that each of the rules 3 – 18 can be applied by contracting one or two edges.
These edges are marked gray in Figure 6.

In rules 3 – 18, we posedegree constraintson the edges between terminals: if we apply
one of the rules 3 – 18 to a graphG, then in the matchH that is involved in the reduction,
for each edge between two terminalsH, at least one of the end points of this edge has degree
at most seven inG . (Note that all inner vertices of left-hand sides of rules 3 – 18 also have
degree at most seven). In Figure 6, the fat edges denote the edges with a degree constraint of
seven. The degree constraints are useful for proving that sufficiently many applications of the
reduction rules can be found.

Hence, given a source-sink labeled graph(G;s; t), a match to a reduction ruler =
(H1;H2) 2 R in (G;s; t) is a terminal graphG1 that is isomorphic toH1, such that

� there is a terminal graphG2 with G= G1�G2,

� sandt are not inner vertices ofG1, and

� if r is one of the rules 3 – 18, then for each edgee= fu;vg 2 E(G1) for which u andv
are terminals ofG1, u or v has degree at most seven inG.

Safeness of rules 1 and 2, expressed in the following lemma, follows similarly as in [9].
Figures 7 and 8 illustrate how a minimal sp-tree for(G;s; t) can be transformed into one for
(G0;s; t) and vice versa, if(G0s; t) is obtained from(G;s; t) by applying rule 1 or rule 2, respec-
tively (there are two cases for both rules).

Lemma 4.1. If (G0;s; t) is obtained from(G;s; t) by applying rule 1 or 2, then(G;s; t) is a
series parallel graph if and only if(G0;s; t) is a series parallel graph.
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Figure 9: Matches to left-hand and right-hand sides of rule 3.

Lemma 4.2. Suppose(G0;s; t) is obtained from(G;s; t) by one application of rule 3. Then
(G;s; t) is a series parallel graph if and only if(G0;s; t) is a series parallel graph.

Proof. Suppose(G;s; t) is a series parallel graph, and letT be the minimal sp-tree of(G;s; t).
Let H be the match to rule 3, as depicted in the left-hand side of Figure 9. SupposeH is
replaced byH 0, which is depicted in the right-hand side of Figure 9. Consider a pathP from s
to t that uses the edgefa;bg. We distinguish between two cases, namely the case thatP visits
a beforeb, and the case thatP visits b beforea.

Case 1. The pathP visits a beforeb. We distinguish between two further cases, namely the
case thatP avoidseand the case thatP visits e.

Case 1.1. The pathP avoids vertexe. Let

W = fv2V j there is a path(s; : : : ;a; : : : ;v; : : : ;b; : : : ; t), and

v belongs to the same component ase in G[V�fa;bg]g:

Note thatc;d;e2W, and hence (by part 1 of Lemma 3.8), all vertices in the component of
G[V�fa;bg] which containseare inW. There must be a parallel nodeα in T with label(a;b),
with the subgraph containing the nodes inW ‘below it’ (see part 3 of Lemma 3.8). LetGα

be the graph associated withα. Each vertexv 6= a;b of Gα can occur in at most one graph
associated with one of the children ofα.

Let β be the s-node that is a child ofα such that the series parallel graphGβ associated with
β containse. We claim thatGβ is the graph obtained fromG[W[fa;bg] by deleting all edges
betweena andb. If a vertexw2W is not inGβ, then all paths fromw to e usea or b, which
means thatw is not in the component ofG[V �fa;bg] which containse. Hencew2V(Gβ).
Hence each vertex ofW occurs only inGβ, which means that all edges between vertices inW
and inW[fa;bg are inGβ.

13



On the other hand, if there is a vertexx 2 V(Gβ), x =2 fa;bg, then there is a pathP =
(a; : : : ;x; : : : ;b) in Gβ (Lemma 3.6). IfP contains no vertex fromW, thenβ is not an s-node.
HenceP contains a vertex fromW. Together with part 1 of Lemma 3.8, this means that all
vertices onP are inW[fa;bg, sox2W. The graphGβ can not contain an edge betweena and
b, since thenβ is not an s-node. This proves the claim.

Supposeβ has children with labels(a;x1),(x1;x2); : : : ;(xt ;b), respectively. We show that
t = 1 andx1 = xt = c. Suppose not. First suppose thatxt 6= c. Add an edge betweenxt andb;
this again gives a series parallel graph. Now, by contracting all nodes inW exceptc to d, we
get aK4 minor, contradiction. Hencext = c. Now suppose thatt > 1. There is a leaf node with
label (a;c) or label(c;a) which is a descendant ofβ, since there is an edgefa;cg. But vertex
a occurs only in the labels of the subtree of the child ofβ with label (a;x1). Furthermore,
vertexc occurs only in the labels of the subtrees of the children ofβ with labels(c;b) and
(xt�1;c). Sincex1 6= c andxt�1 6= a, this means that there can be no leaf node with label(a;c)
or (c;a), which gives a contradiction. Sot = 1, the children ofβ have labels(a;c) and(c;b),
respectively. It can be seen that the child with label(c;b) is a leaf node, corresponding to edge
fb;cg. By straightforward deduction, it follows that the sp-tree ofG has the tree from the left-
hand side of Figure 10, case i as a subtree. We can replace the light-gray part of this subtree by
the light-gray part of the subtree shown in the right-hand side of this case and get an sp-tree of
G0.

Case 1.2. The pathP from s to t that uses the edgefa;bg also uses nodee. There are a two
different cases, namely the case thatP visits e beforea, and the case thatP visits e after b.
In the first case,G+ fs; tg is series parallel, but containsK4 as a minor, contradiction. In the
second case, we have a path(s; : : : ;a;e; : : : ; t), that does not useb. This case can be analyzed
in exactly the same way as the cases above, leading to a subtree transformation as shown in
Figure 10, case iii.

Case 2. The pathP visits b beforea. This case can be dealt with in the same way as Case 1,
only with directions reversed. See Figure 10, cases ii and iv.

This ends the ‘only if’ part of the proof. The ‘if’ part is very similar. In this case, the same
transformations as above are done, but in opposite direction. 2

Lemma 4.3. Suppose(G0;s; t) is obtained from(G;s; t) by one application of one of the rules
4 – 18. Then(G;s; t) is a series parallel graph if and only if(G0;s; t) is a series parallel graph.

Proof. The proof is similar to the proof of Lemma 4.2. Suppose(G;s; t) is a series parallel
graph, and letT be a minimal sp-tree of(G;s; t). Let H be the match to one of the rules 4 – 18
and let the terminals ofH be nameda, b, c andd, as shown in Figure 11 for the case thatH is
a match to rule 4.

Consider a pathP from s to t in G that uses the edgefa;bg. First supposeP visits a before
b. We distinguish four cases.

Case 1. P does not use verticesc and d. We can show that(G0;s; t) is series parallel in
the same way as in Case 1.1 in the proof of Lemma 4.2 (defineW to be the vertices of the
component ofG[V�fa;bg] which containsc andd).
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Case 2. P usesc but notd. Then eitherc is on the subpath(s; : : : ;a) of P or c is on the subpath
(b; : : : ; t) of P. In both cases,G+fs; tg contains aK4 minor, which gives a contradiction.

Case 3. P usesd but notc. This case is similar to Case 2, and hence gives a contradiction.

Case 4. P uses bothc andd. If c andd both occur on the subpath(s; : : : ;a) of P, or on the
subpath(b; : : : ; t) of P, thenG+fs; tg contains aK4 minor.

If P= (s; : : : ;d; : : : ;a;b; : : : ;c; : : : ; t), thenG+fs; tg also contains aK4 minor.
If P = (s; : : : ;c; : : : ;a;b; : : : ;d; : : : ; t) then there is a path froms to t that uses the edge

fc;dg, and does not usea andb. This case is similar to Case 1.

The case thatP visits vertexb beforea can be solved in the same way. This ends the ‘only
if’ part of the proof. The ‘if’ part can be handled in the same way. 2

We conclude with the following result.

Corollary 4.1. The setR of reduction rules is safe for series parallel graphs

An important consequence of the proofs of Lemmas 4.1 – 4.3 is that they are constructive:
especially, when we have a minimal sp-tree of the reduced graph, we can build, inO(1) time,
a minimal sp-tree of the original graph (see Section 4.4 for more details).

4.2 A Lower Bound on the Number of Matches

In this section we show that each series parallel graph(G;s; t) with at least two edges contains
at leastΩ(jE(G)j) matches to rules inR .

Lemma 4.4. Let (G;s; t) be a series parallel graph withjE(G)j � 2. (G;s; t) contains at least
jE(G)j=139matches to rules 1 – 18.

Proof. Consider the minimal sp-treeT of G. The number of leaves ofT equalsjE(G)j. We
argue that the number of leaves ofT is at most 139 times the number of matches. To obtain
this, we distinguish the following ‘classes’ of leaves.

A leaf nodeα in T is goodif it is a child of a p-node and has at least one sibling which is a
leaf (i.e.α is child of a p-node which has at least two leaf children), or it is a child of an s-node
and one ofα’s neighboring siblings also is a leaf node (i.e.α is child of an s-node which has
at least two successive leaf children of whichα is one). Note that the edges that correspond to
good leaf nodes occur in matches to rule 1 or 2.

An internal node inT is greenif it has at least one good leaf child.
A node inT is branchingif it is an internal node, and has at least two internal nodes as its

children.
A leaf is bad if it is not good, and its parent is branching or green. Most edges that

correspond to bad leaves can not occur in any match.
Note that the leaf children of a branching node which is not green are all bad, the leaf

children of a green p-node are all good, and the leaf children of a green s-node are either bad
or good.
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Now consider the other nodes inT. An internal node isblue if it is not branching or green,
but it has a descendant that is branching or green at distance at most 33.

An internal node isyellow if it is not branching, green or blue.
The total number of leaves inT equals the number of good leaves plus the number of

bad leaves plus the number of leaf children of blue nodes plus the number of leaf children of
yellow nodes. We now derive an upper bound for the number of leaves in each of these classes,
in terms of the number of matches.

Good leaves If a green s- or p-node hasm good leaves, then the edges corresponding to its
good leaves correspond to at leastm=2 matches to rule 1 or 2. Hence the number of good
leaves is at most twice the number of applications of reduction rules 1 and 2.

Bad leaves

Claim 4.1. The number of bad leaves is at most three times the number of branching nodes
plus twice the number of green nodes.

Proof. Let α be a bad leaf. Ifα’s parent is a p-node, then accountα to its parent (which has at
most one bad leaf). Ifα’s parent is an s-node, then accountα to its neighboring sibling on the
right if it has one, or to its parent otherwise.

Each yellow or blue node which has a yellow or blue parent does not have any bad leaves
accounted to it. Each yellow or blue node which has a branching or green parent has at most
one bad leaf accounted to it, namely its neighboring sibling on the left. Letβ be a yellow or
blue node which has a bad leaf accounted to it. It must be the case thatβ has a branching or
green parent. Letγ be the highest descendant ofβ which is green or branching. Note that there
exists such a nodeγ. All nodes on the path fromβ to γ, exceptγ, are yellow or blue. Hence no
node on this path, exceptβ andγ, has a bad leaf accounted to it, as none of these nodes has a
branching or green parent. Account the bad leaf that is accounted toβ, to γ instead.

Now, each branching node has at most three bad leaves accounted to it: possibly one of
its children, its neighboring sibling on the left, and one leaf first accounted to a yellow or blue
node. Each green node has at most two bad leaves accounted to it: again possibly one from a
yellow or blue node, and as green s-nodes have no bad leaf children and green p-nodes have
no bad siblings, at most one other bad leaf. 2

Claim 4.2. The number of branching nodes is at most the number of green nodes.

Proof. Construct a treeT 0 from T by removing all nodes that are not green and not branching,
while preserving successor-relationships. Note that, inT, every internal node that has only
leaves as child is green, hence every branching node still has at least two children inT 0. More-
over, every leaf ofT 0 is green. Since in any tree, the number of internal nodes with two or more
children is at most the number of leaves, the number of branching nodes is at most the number
of green nodes inT 0, and hence inT. 2

Claims 4.1 and 4.2 show that the number of bad leaves is at most 3+ 2 = 5 times the
number of green nodes. In each green node, there is a match to rule 1 or 2 in two of the edges
corresponding to its good leaves. Hence, the number of bad leaves is at most five times the
number of matches to rules 1 and 2.
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b3 b4 b5 b6 b7 b8 b9

Figure 12: Subgraph ofG corresponding to a path of 33 yellow or blue nodes in the sp-tree, of
which the highest one is a p-node with label(a1;b1), and the lowest one is a p-node with label
(a11;b10). Only a1, b1, a11 andb10 may be incident with edges outside the subgraph.

Leaves of blue nodes The number of blue nodes is at most 33 times the number of branching
and green nodes: account each blue node to the closest descendant which is branching or green.
Since the number of branching nodes is at most the number of green nodes, this means that the
number of blue nodes is at most 2�33= 66 times the number of green nodes. Each blue node
has at most two leaf children, which means that the number of leaves of blue nodes is at most
2�66= 132 times the number of matches to rules 1 and 2.

Leaves of yellow nodes Consider a path inT which consists of 33 successive yellow and
blue nodes, such that the highest node in this path is a p-node. Each node in this path either is a
p-node with as its children one leaf node and one s-node, or it is an s-node with as its children
one p-node and one or two non-neighboring leaf nodes.

The edges associated to the leaves that are a child of the nodes in this path form a subgraph
of G of a special form: they form a sequence of 16 cycles of length three or four, each sharing
one edge with the previous cycle, and one edge with the next (except of course for the first and
last cycle in the sequence); three successive cycles do not share a common edge. As no s-node
on the path has two successive leaf nodes, we have that the shared edges of a cycle of length
four do not have a vertex in common. We call such a subgraph acycle-sequence. See Figure
12 for an example.

Claim 4.3. In a cycle-sequence ofG that consists of 16 cycles, there is a match to one of the
rules 3 – 18.

Proof. We omit the full proof here: a long and tedious case analysis shows this fact. Full
details are given in [8]. 2

In a sequence of 34 successive yellow and blue nodes inT, we can find one path of 33
successive yellow and blue nodes, such that the highest node in this path is a p-node. We
can find a number of disjoint paths of 34 successive yellow and blue nodes, such that each
yellow node is in exactly one such path. This means that the largest number of disjoint paths
of successive yellow and blue nodes of length 34 that we can find inT is at least 1=34 times
the number of yellow nodes. Hence the number of matches to rules 3 – 18 is at least 1=34
times the number of yellow nodes. Since each yellow node has at most two leaf children, we
have that the number of leaf children of yellow nodes is at most 2�34= 68 times the number
of matches to rules 3 – 18.
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The total number of leaves inT is now at most 2+5+132= 139 times the number of
matches to rules 1 and 2 plus 68 times the number of matches to rules 3 – 18. Hence the
number of leaves inT is at most 139 times the number of matches inR . This completes the
proof. 2

4.3 A Lower Bound on the Number of Enabled Matches

In this section we show that, in a series parallel graph(G;s; t) with at least two edges, we can
find cjE(G)j matches to rules inR in O(1) time withO(jE(G)j) processors.

The finding of the matches is done as follows. Every edge of the current graph ‘looks
around’ to see whether it can take part in a reduction. Given an edgee it can easily be checked
whethere can occur in an application of one of the rules 1 or 3 – 18: follow all paths of
length at most eight fromewhich visit only vertices of degree at most eight (except for the last
vertex of a path). This can be done inO(1) time per node per edge. In this way, all possible
choices for applications of these rules are found. However, for rule 2, probably not all possible
applications can be found in this way. Instead, for rule 2, every edgee= fu;vg searches in
the adjacency lists ofu andv for all edges that have distance at most ten toe in this list. Edge
e proposes an application of rule 2 if one of the edges it found also has end pointsu andv.
Thus, these rule applications can also be found inO(1) time. (Adjacency lists are assumed to
be cyclic.)

Each reduction found in this way is said to beenabled. We now show thatΩ(jEj) reduc-
tions are enabled.

Lemma 4.5. If G = (V;E) is a simple series parallel graph, thenjEj � 2jVj.

Proof. Follows from the fact that each series parallel graph has treewidth at most two, and a
simple graphG of treewidth at mostk has at mostkjV(G)j edges for anyk� 1. 2

Let G be a graph given by some adjacency list representation. An edge inG is calledbad
if it has a parallel edge, but no parallel edge is found in the procedure above.

Lemma 4.6.Let G be a graph of treewidth at most two given by some adjacency list represen-
tation. There are at mostjE(G)j=5 bad edges in G.

Proof. Consider a tree decomposition(T;X ) of G of width at most two withT = (I ;F) and
X = fXi j i 2 Ig, and choose an arbitrary nodei 2 I as root ofT. For av 2 V, let rv be the
highest node inT with v2 Xrv. Let e2 E with end pointsv andw. There is a node containing
v andw, hence eitherrv = rw, or rv is an ancestor ofrw, or rw is an ancestor ofrv.

For every bad edge betweenv and w, associate the edge withv if rv = rw, or rw is an
ancestor ofrv; otherwise, associate the edge withw. Suppose bad edgee betweenv andw
is associated withv. ThenXrv must contain bothv andw. It follows that there are at most
jXrvj�1� 2 different verticesu for which bad edges betweenv andu can be associated withv
(namely, the vertices inXrv�fvg). For each suchu, each 20 successive positions in the (cyclic)
adjacency list ofv can contain at most one bad edge betweenu andv, hence there are at most
deg(v)=20 bad edges betweenv andu that are associated withv, and hence in total, at most
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deg(v)=10 bad edges are associated withv. The stated bound is derived by taking the sum over
all vertices. 2

As each series parallel graph has treewidth at most two, it follows that each series parallel
graph(G;s; t) has at mostjE(G)j=5 bad edges.

Lemma 4.7. There is a constant c> 0 for which each series parallel graph(G;s; t) with at
least two edges contains at least cjE(G)j enabled matches.

Proof. Let n = jV(G)j and m= jE(G)j. We distinguish two cases, namely that case that
m� 4n and the case thatm< 4n. If m� 4n, then there are at leastm� 2n edges that are
parallel to another edge, of which at mostm=5 are bad. Hence, there are at least 4=5m�2n�
4=5m�1=2m= 3m=10 edgese for which there is a parallel edge which has distance at most
10 toe in the adjacency list of one of the end points ofe. This implies that there are at least
3m=20 enabled matches to rule 2 in(G;s; t).

Supposem< 4n. Let G0 be the simple graph underlyingG, i.e., G0 is obtained fromG
by all second and further occurrences of parallel edges. Note that(G0;s; t) is a series parallel
graph, andG0 has at leastn�1 edges. IfG0 has one edge, thenG consists of two vertices with
m� 8 parallel edges, and henceG contains at least one enabled match to rule 2, so at leastm=8
enabled matches.

SupposeG0 has at least two edges. By Lemma 4.4 there are at least(n�1)=139� n=278
matches to rules 1 and 3 – 18 in(G0;s; t). As each of the matches to rules 1 and 3 – 18 is enabled
in G0, this implies that(G0;s; t) has at leastn=278 enabled matches. For each match in this set,
there are two possibilities: either it is also an enabled match inG, or it is disturbed by the
addition of one or more parallel edges. We will call a match of the first type anon-disturbed
match, and a match of the last type adisturbedmatch. We now show that the number of
disturbed matches is at mostk times the number of matches to rule 2 inG, for some positive
integerk.

Consider a disturbed matchH. There are two cases: either an inner vertexv of H is
incident with parallel edges, or a terminal vertexv which has degree at most seven inG0 has
degree more than seven inG (and hence is incident with parallel edges). In both cases, the
vertexv has degree at most seven inG0, and hence inG, there is an enabled match to rule 2
which contains vertexv: any sublist of length 20 of the adjacency list contains at least two
edges with the same end points, as there at most seven different sets of end points possible.

Account each disturbed match inG0 to an enabled match to rule 2 inG which contains a
vertex of degree at most seven of the disturbed match. It can be seen that each vertex of degree
at most seven inG is contained in at mostk matches for some constantk. Hence each enabled
match to rule 2 inG has at most 2k disturbed matches accounted to it.

Consider the number of enabled matches inG. This number is at least the number of non-
disturbed matches plus the number of enabled matches to rule 2 inG, which is at least the
number of non-disturbed matches plus 1=(2k) times the number of disturbed matches. Hence
the number of enabled matches inG is at least 1=(2k) times the number of enabled matches in
G0. This latter number is at leastn=278, and hence there are at leastn=(556k) enabled matches.
As m< 4n, this means that there are at leastm=(2224k) enabled matches inG. 2
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Note that the constantc in Lemma 4.7 is quite bad. However, the bound we have derived can
probably be tightened by using more detailed estimates.

4.4 The Construction Phase

In this section, we show in more detail how a minimal sp-tree of the input graph(G;s; t) is
build.

The sp-tree is represented as follows. We make a list of all nodes in the sp-tree. Each node
is marked with its label and its type (s-node, p-node or leaf node), each node has a pointer to its
left-most and its right-most child, to its parent, and to its neighboring siblings on the left-hand
and the right-hand side (if one of these nodes does not exist, the pointer isnil). Furthermore,
each leaf node is marked with the type of its parent, and we keep a pointer from each edge in
the graph to the corresponding leaf node in the sp-tree.

We start with the simple sp-tree, with a single node, labeled(s; t). It is easy to see that
this sp-tree can be constructed inO(1) time with one processor, and that it is an sp-tree of the
current graph.

In each construction round, the sp-tree is reconstructed: each processor that carried out a
reduction in the first phase, undoes this reduction in this phase, and adapts the sp-tree locally
for this undoing. For these adaptations we use the constructions from the proofs of Lemmas
4.1 – 4.3 (see also Figures 7 – 10). We show that each adaptation of the sp-tree for one undoing
of a reduction can be done inO(1) time without interfering with other adaptations that are
applied at the same time.

Suppose a reduction ruler = (H1;H2)2R has to be undone, and letG1 andG2 be terminal
graphs such thatG1 andH1 are isomorphic andG2 andH2 are isomorphic, andG2 is the match
in the current graph that has to be replaced byG1. The adaptation of the sp-tree for this undoing
is done as follows. First the local structure of the sp-tree is found, i.e. the structure of the part
of the sp-tree that contains edges inG2 is found. For rules 1 and 2, the different forms are the
right-hand sides of cases i and ii in Figures 7 and 8, respectively. For rule 3, the different forms
are the right-hand sides of cases i, ii, iii and iv in Figure 10. The parts of the sp-tree that are
marked light-gray are the parts that must be modified.

The local structure is found as follows. An edgee of G2 is taken which is not an edge
between two terminals in the case of rules 3 – 18 (for rules 1 and 2, the only possibility is
the edgefa;bg, for rule 3, edgefc;eg is the best edge to take, as this edge will be removed).
Look at the corresponding leaf node inT. For rules 1 and 2, check the type of its parent node,
and for rule 3 – 18, search the ‘neighborhood’ of this leaf node inT which is involved in the
modification (for rule 3, this is the light-gray part in the right-hand side of cases i, ii, iii and iv
in Figure 10). The leaf node can be found in constant time without interfering with any other
constructions. For rules 1 and 2, it is clear that we can check the type of its parent in constant
time without interfering with other constructions performed at the same time, as each leaf node
is marked with the type of its parent. For rule 3, we can see from Figure 10 that the structure of
the neighborhood can be determined inO(1) time without interfering with other constructions,
as no other construction involves any of the nodes of the light-gray part of the sp-tree. For rules
4 – 18, the cases are similar to the cases of rule 3, and the structure can also be found inO(1)
time without interference.
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After the local structure of the sp-tree is found, this part of the sp-tree is replaced by a new
part. The structure of this new part depends on the structure of the old part. For rules 1, 2
and 3, these new parts are the parts in left-hand sides of the cases in Figures 7, 8 and 10 that
are marked light-gray. For rules 4 – 18, a similar approach as for rule 3 can be taken. For rules
3 – 18, it is easy to see that the modification can be done inO(1) time without interference. For
rules 1 and 2, case i is also easy (see Figures 7 and 8: nodeα gets a different type, and gets two
leaf children). In case ii, the modification needs more care, as the neighboring siblings of node
α may be leaf nodes that are involved in another rule 1 or 2 reduction at the same time. Hence
we have to ensure that the corresponding executions do not read from or write to the same
memory location at the same time. This is done by inserting the new leaf node as a right-hand
sibling of the leaf node forfa;bg, which can be done inO(1) time without interference.

This completes the description of the construction phase of the algorithm in the case a
minimal sp-tree is build. In the same way, we can build a binary sp-tree of the graph.

5 Additional Results for Series Parallel Graphs

In this section we show that the algorithm presented in Section 4 can also be used to solve
the problem for directed series parallel graphs, and for series parallel graphs without specified
source and sink. Also, it can be used as a first step to solve many other problems on series
parallel graphs.

First, suppose we are given a graphG, and want to determine whetherG is series parallel
with a proper choice of the source and sink. We solve this problem by first computing a source
and a sink and then solving the problem with this source and sink. He [11] and Eppstein [10]
have shown (using results from Duffin [9]) that this problem reduces in a direct way to the
problem with specified vertices, as the following result holds.

Lemma 5.1 [11, 10]. Let G= (V;E) be a graph. If G is series parallel then the following
holds.

1. If G is not biconnected, then the blocks of G form a path: each cut vertex of G is in
exactly two blocks, all blocks have at most two cut vertices, and there are exactly two
blocks which contain one cut vertex.

2. The graph(G;s; t) is series parallel if s and t are vertices of G chosen as follows.

(a) If G is biconnected, then s and t are adjacent.
(b) If G is not biconnected, then let B1 and B2 be the blocks of G which contain one cut

vertex, and let c1 and c2 denote these cut vertices. Source s is a vertex of B1 which
is adjacent to c1, and sink t is a vertex of B2 which is adjacent to c2.

We briefly describe hows andt can be found such that they satisfy conditions 2a and 2b
of Lemma 5.1. Therefore, we apply a result of [4], which says that any graph problem
which can be defined inmonadic second order logicfor graphs, can be solved on graphs of
bounded treewidth in timeO(lognlog�n) with O(n) operations on an EREW PRAM, and in
O(logn) time with O(n) operations on a CRCW PRAM. However, this result does not apply
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to multigraphs, and our input graph is a multigraph. Therefore, we make a new, simple graph
G0 = (V 0;E0) from the multigraphG as follows.

V 0 =V(G)+E(G)

E0 = ffv;eg j v2V(G)^e2 E(G)^v is incident witheg

We make a labeling of the vertices inG0: each vertex originating fromV(G) is labeledvertex,
and each vertex originating fromE(G) is labelededge. It is easy to see that the resulting graph
is a simple graph and hasn+mvertices and 2m edges, and furthermore, ifG is series parallel,
thenG0 is series parallel. The transformation can be performed inO(1) time with O(n+m)
operations.

It can be seen that the characterization ofs andt as given in Lemma 5.1 can be translated
to a characterization ofs and t in the modified, simple graphG0, and this characterization
can be formulated in monadic second order logic for graphs (using techniques from e.g., [6]).
Hence, it is possible (using techniques of [5, 4]) to finds andt in O(logmlog�m) time, with
O(m) operations and space on an EREW PRAM, and inO(logm) time, andO(m) operations
and space on a CRCW PRAM. While the resulting algorithm will probably not be efficient,
this result does not rely on non-constructive arguing. (We expect that a more straightforward
approach, based on reduction, will also work here.)

If the input graph is a source-sink labeled directed graph(G;s; t), then one can use the
modification, described in [10]: solve the problem on the underlying undirected graph, then
orient the edges with help of the minimal sp-tree (there is at most one possible orientation for
which the directed graph is series parallel), and check if this orientation corresponds to the
original graph.

If the input graph is directed, and no source and sink are specified, then there must be
exactly one vertex with indegree zero and one with outdegree zero, otherwise, the graph is
not series parallel. Let the source be this first vertex, and the sink the latter vertex, and solve
the problem for the graph with this source and sink. Note that these vertices can be found in
O(logm) time with O(m) operations on an EREW PRAM.

Theorem 5.1. Each of the following problems can be solved with O(m) operations, in
O(logmlog�m) time on an EREW PRAM, and O(logm) time on a CRCW PRAM.

1. Given a graph G, determine if there are s; t 2V(G) for which(G;s; t) is series parallel,
and if so, find an sp-tree of G.

2. Given a directed source-sink labeled graph(G;s; t), determine whether(G;s; t) is series
parallel, and if so, find an sp-tree of(G;s; t).

3. Given a directed graph G, determine if there are s; t 2V(G) for which(G;s; t) is series
parallel, and if so, find an sp-tree of G.

If the input graph is simple, then we can make the algorithms to run inO(lognlog�n) time
on an EREW PRAM andO(logn) time on a CRCW PRAM, both withO(n) operations and
space. This can be done by making use of the fact that a simple series parallel graph has at most
2n edges, and the fact that 2n edges can be counted inO(logn) time withO(n) operations: in a
preprocessing step, start counting the number of edges of the graph, but we do at mostO(logn)
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steps of this counting withO(n) operations. If, after these steps, the edges are counted and
m� 2n, then go on with the rest of the algorithm. Otherwise, conclude that the graph is not
series parallel and returnfalse.

Many problems can be solved inO(log p) time, andO(p) operations and space, when the
input graph is given together with a tree decomposition of bounded treewidth consisting of
p nodes. These include all problems that can be formulated in monadic second order logic
and its extensions, all problems that are ‘finite state’, etc. A large number of interesting and
important graph problems can be dealt in this way, including CHROMATIC NUMBER, MAX -
IMUM CLIQUE, MAXIMUM INDEPENDENT SET, HAMILTONIAN CIRCUIT, STEINER TREE,
LONGESTPATH, etc. See [2, 7, 5].

Since series parallel graphs have treewidth at most two, we can solve these problems ef-
ficiently on series parallel graphs, if a tree decomposition of small width is given. A binary
sp-tree of a series parallel graph can be transformed into a tree decomposition of width at most
two in constant time, by using the construction of Lemma 3.4. Hence we have the following
result.

Corollary 5.1. The following problem can be solved in O(logmlog�m) time, O(m) operations,
and O(m) space on an EREW PRAM, and in O(logm) time, O(m) operations and O(m) space
on a CRCW PRAM: given a series parallel graph G, find a tree decomposition of width at most
two of G.

The resulting tree decomposition hasO(m) nodes. Hence we can solve the problems de-
scribed above inO(logm) time withO(m) operations given this tree decomposition.
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