Parallel Algorithms for Series Parallel Graphs

Hans L. Bodlaender
Department of Computer Science, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, the Netherlands
e-mail: hansb@cs.ruu.nl

Babette de Fluiter
Centre for Quantitative Methods
P.O. Box 414, 5600 AK Eindhoven, the Netherlands
e-mail: deFluiter@cgm.nl

Abstract

In this paper, a parallel algorithm is given that, given a gr&ph (V,E), decides
whetherG is a series parallel graph, and if so, builds a decomposition tre@ fdiseries
and parallel composition rules. The algorithm u€¥tog|E|log” |E|) time andO(|E|)
operations on an EREW PRAM, a@log|E|) time andO(|E|) operations on a CRCW
PRAM. With the same time and processor resources, a tree-decomposition of width at
most two can be built of a given series parallel graph, and hence very efficient parallel
algorithms can be found for a large number of graph problems on series parallel graphs.
These include many well-known problems like all problems that can be stated in monadic
second order logic. The results hold for undirected series parallel graphs as well as for
directed series parallel graphs.

1 Introduction

One of the well known classes of graphs is the classeoies parallel graphsSeries parallel
graphs appear in several applications, e.g., the classical way to compute the resistance of an
(electrical) network of resistors assumes that the underlying graph is in fact series parallel.

A well-studied problem is the problem to recognize series parallel graphs. A linear time
algorithm for this problem has been given by Valdes, Tarjan, and Lawler [15]. Also, it is known
that when a ‘decomposition tree’ for a series parallel graph is given, then many problems
can be solved in linear time, including many problems that are NP-hard for arbitrary graphs
[3, 6, 13, 14]; Valdes et al. also show how to obtain such a decomposition tree in linear time.
(In this paper, we assume a specific form of the decomposition tree, and use ttepizea
for this type of decomposition tree.)

*This research was carried out while the second author was working at the Department of Computer Science of
Utrecht University, with support by the Foundation for Computer Science (S.1.0.N) of the Netherlands Organization
for Scientific Research (N.W.0.). This research was partially supported by ESPRIT Long Term Research Project
20244 (project ALCOM ITAlgorithms and Complexity in Information Technolpgy

He and Yesha [12] and He [11] gave parallel algorithms for recognizing directed and undi-
rected series parallel graphs@tlog? n+ logm) time with O(n+ m) processors on an EREW
PRAM, and henc®((n+m)(log®n+logm)) operations. (The number of operations of a par-
allel algorithm is the product of its time and number of processors used. In this paleeotes
the number of vertices of the input graphthe number of edges.) Their algorithm also returns
a decomposition tree of the input graph, if it is series parallel.

Eppstein [10] improved these results for simple graphs: his algorithms @flagn) time
on a CRCW PRAM withO(m- a(m,n)) operations ¢(m,n) is the inverse of Ackermann’s
function, which is at most four for all practical purposes). As any algorithm on a CRCW
PRAM can be simulated on an EREW PRAM with a lossQgfogn) time, this implies an
algorithm withO(log?n) time andO(mlogn- a(m,n)) operations on an EREW PRAM.

We improve upon these results, both for the EREW PRAM model and the CRCW PRAM
model: we give algorithms for recognizing directed and undirected series parallel graphs, and
building a decomposition tree if one exists. These algorithmsQigggmlog™ m) time with
O(m) operations on an EREW PRAM, and@ilogm) time with O(m) operations on a CRCW
PRAM. If the input graph is simple, then our algorithms can be made to r@flognlog” n)
on an EREW PRAM an@®(logn) on a CRCW PRAM, and the number of operation©{s).

It is well-known that series parallel graphs have treewidth at most two. We will use this fact
in one of our proofs. Moreover, several of our results were inspired by techniques, established
for graphs of bounded treewidth, especially those from [4] and [5]. As a side remark we
note that, while the algorithms in [5] are carrying constant factors that make them impractical
in their stated form, the algorithms in this paper do not carry large constant factors and are
probably efficient enough for a practical setting (although a more detailed analysis can probably
bring the constant factor further down.)

A central technique in this paper ggaph reductionintroduced in a setting of graphs of
bounded treewidth in [1]. In [4] and [5], it is shown how the technique can be used to obtain
parallel algorithms for graphs of bounded treewidth.

Another technique that is used in this paper istbended adjacency list seartgchnique,
taken from [5], and adapted here to the setting of series parallel graphs.

This paper is organized further as follows. In Sections 2 and 3 we give some basic defi-
nitions and preliminary results. In Section 4 we give an algorithm for recognizing undirected
series parallel graphs with given source and sink. This algorithm also builds an sp-tree of the
input graph, if it is series parallel. Section 5 gives some results for the case that no source and
sink are given and for the case that the input graph is directed. Furthermore, in this section we
show how to solve many other problems on series parallel graphs.

2 Definitions

Unless stated otherwise, graphs considered are undirected, may have parallel edges but have
no self-loops.

A source-sink labeled grapis a triple(G, s,t), whereG is a graph and andt are distinct
vertices ofG, called thesourceandsink of the graph, respectively.

The series compositionf two or more source-sink labeled graphs is the operation which

takesr > 2 source-sink labeled grapf&i,s;,t1),...,(Gr,S,t;) and returns a new source-sink
labeled graphG,s,t) that is obtained by taking the disjoint union @f,... ,G;, identifying
s.1 witht; foralli, 1 <i <r, and lettings= s andt =t,. See also Figure 1.

- =%
series St t=t,
— o G e G, o
Sy h = t2
o Gy (@) o) Gy)
parallel G, s=s =5
— 5o ol t=t;=t
Gy

Figure 1: A series and a parallel composition of two source-sink labeled graphs.

Theparallel compositiorof two or more source-sink labeled graphs is the operation which
takesr > 2 source-sink labeled grapf&i,s1,t1),...,(Gr,s,tr) and returns a new source-sink
labeled graphiG, s,t) that is obtained by taking the disjoint union®f, ... , G;, identifying all
verticess,, ..., into the new sourcs, and identifying all vertices, .. .t. into the new sinK.

See also Figure 1.

Definition 2.1 (Series Parallel Graphf source-sink labeled grapl, s,t) is aseries parallel
graphif and only if one of the following holds.

e (G,st) is abase series parallel graptonsisting of two vertices s and t with one edge
between s and t.

e (G,st) is obtained by a series or parallel composition of 12 series parallel graphs.

Part | of Figure 2 shows a series parallel graph with soaesel sinkt. An equivalent definition
which is often used only involves series and parallel compositions with two series parallel
graphs. A grapl@ is said to be series parallel if and only if there are vertges V(G) such
that(G,s,t) is a series parallel graph.

= p-node labeleda, b)
= s-node labeleda, b)

ab =leaf node labelega,b)

Figure 2: A series parallel graphs and its minimal sp-tree.

The ‘decomposition’ of a series parallel grafgh s,t) into series and parallel compositions
is expressed in amp-tree E of the graph. An sp-tree is a rooted tree, in which each node
has one of the types-node s-nodeandleaf node and has a label. A label of a node is an
ordered pair(u,v) of vertices ofG. Every node of an sp-tree with lab@, b) corresponds to
a series parallel graptG', a,b), whereG' is a subgraph o6. The root of the tree has label
(s,t), and corresponds to the grafB,s,t). The leaves of the tree are of type leaf node, and
correspond to the base series parallel graphs that represent the e@g#sasé is a one-to-one
correspondence between leavedigfand edge® € E(G). Internal nodes are of type s-node
(series node) or p-node (parallel node). The series parallel graph associated to amdsnode
the graph that is obtained by a series composition of the series parallel graphs associated to the
children ofa, where the order of the children gives the order in which the series composition
is applied. The series parallel graph associated to a p-pdgléhe graph that is obtained by
a parallel composition of the series parallel graphs associated to the childgerPaft Il of
Figure 2 shows an sp-tree of the series parallel graph given in part I.

Note that a series parallel graph can have different sp-trees. An sp-tree is called a binary
sp-tree if each internal node has two children. It can be seen that any series parallel graph has
a binary sp-tree. Aninimal sp-treeof a series parallel grapl@, s,t) is an sp-tree of the graph
in which p-nodes only have s-nodes and leaf nodes as children, and s-nodes only have p-nodes
and leaf nodes as children. Note that the sp-tree in part Il of Figure 2 is minimal. For each
series parallel graptG, s,t) there is a unique minimal sp-tree which can be obtained from any
sp-tree of(G, s,t) by contracting over edges of which the end points have the same type.

We can also define directed series parallel graphs. These are defined in the same way as
undirected series parallel graphs, with the sole exception that a base series parallel graph is a
directed graph with two verticesandt and a directed edge from the soucto the sinkt.

As a result, directed series parallel graphs are acyclic, and every vertex lies on a directed path
from the source to the sink.

Definition 2.2 (Treewidth). Let G= (V,E) be a graph. Atree decompositio D of G is a
pair (T,X), where T= (I,F) is atree, andX = {X; | i € |} is a family of subsets of VV, one for
each node (vertex) of T, such that

e Ua X =V,
o for every edggdv,w} € E, there is an i | with v € X; and we X;, and
e foralli,j,kel,if jis onthe path fromitokin T, thenX X, C X;.

Thewidth of a tree decompositiot(I,F),{X | i € |}) is maxe |Xi| — 1. Thetreewidthof a
graph G is the minimum width over all possible tree decompositions of G.

To be able to describe the reduction rules of our algorithm, we introduce the notion of
terminal graphs A terminal graphG is a triple (V,E, X) with (V,E) a graph, andK CV a
subset ofl > 0 vertices. Vertices ifiX are calledterminalsor terminal verticesand they are
numbered from 1 tb. Vertices inV — X are callednner vertices

The operations maps two terminal graphs andH with the same numbdrof terminals
to an ordinary grapls © H, by taking the disjoint union o5 andH, and then identifying the
ith terminal ofG with theith terminal ofH fori =1,...,l. See Figure 3 for an example.

4

r =\ - L0

G H GoH

Figure 3: Example of terminal graphs and the operati@applied to two three-terminal graphs.

Two k-terminal graph$; andG; are said to bé&somorphig if there exists an isomorphism
from G1 to G, which maps théth terminal ofG; to theith terminal ofG, for eachi.

Definition 2.3 (Reduction Rule). A reduction ruler is an ordered pair(Hi,Hy), where H
and H are I-terminal graphs for some 0.

A matchto reduction rule r= (Hy,Hz) in graph G is a terminal graph @which is isomor-
phic to Hy, such that there is a terminal graph,®ith G= G; @ G».

Anapplicationof r to G is an operation that replaces G of the formGGs by a graph G
of the form G & Gz, where G is isomorphic to H and G is isomorphic to H. We also say
that, in G, G is replaced by G. An application of a reduction rule is also called-@duction

Figure 4 shows an example of a reduction ruyl@nd an application aof to a graphG. We
usually depict a reduction rulgH1,Hz) by the two graph$1; andH, with an arrow fromH;
to H,. Given a reduction rule = (H1,H>), we callH; the left-hand side of, andH; the
right-hand side of.

H1 Hz

Figure 4: An example of a reduction rule= (H1,H>), and an application af to a graphG,
resulting in graptG'.

The notion of reductions is generalized in the natural manner to source-sink labeled graphs.
In this case, it is assumed that no inner vertex of a left-hand side or right-hand side graph of a
rule is a vertex with a source or sink label.

3 Preliminary Results

Lemma 3.1. Let G be a series parallel graph and let T be an sp-tree of Gx dhd B are
nodes of T g is an ancestor of, and the labels ofi and B both contain a vertex v, then all
nodes on the path betweerandp in T contain v in their label.

Lemma 3.2.Let(G,s,t) is a series parallel graph with sp-treesT

5

1. (G+{st},st) is a series parallel graph, where & {s,t} is the graph obtained by
adding an (extra) edge between s andt to G.

2. If there is a nodex in Tg labeled with(u,v), then(G + {u,v},s,t) is a series parallel
graph.

Proof.
1. This follows from the parallel composition & with a one-edge series parallel graph.

2. Add betweern and its parent a p-nodewhich has two children: node and a leaf node
representing the added edfie v}. The new tree is an sp-tree @+ {u,Vv},st). O

Lemma 3.3. Let G be a series parallel graph, T an sp-tree of G, and@V (G). The nodes
in T which are labeled witfiu, v) induce a (possibly empty) subtree of T.

Lemma 3.4. If a multigraph G is series parallel, then the treewidth of G is at most two.

Proof. LetT = (N,F) be a binary sp-tree d&. We make a tree decompositidiD = (X,T)
of width at most two ofG from T with X = {X, | a € N}. For each p-node with label (v,w),
let X, = {v,w}, and for each s-node with label (v,w) and labels of its two childrefv,x) and
(x,w), let X4 = {v,w,x}. One can verify thatX, T) is a tree decomposition @ of treewidth
at most two.]

From the construction in the proof of Lemma 3.4 it is easy to see that any binary sp-tree of
G can be transformed into a tree decomposition of width at most tw® iafO(1) time with
O(m) operations on an EREW PRAM.

A graphG = (V,E) is said to be aninorof a graphH = (W, F), if a graph, isomorphic t&
can be obtained frorAl by a series of vertex deletions, edge deletions, and edge contractions.

Lemma 3.5. If the treewidth of G is at most two, then G does not contajr{tke complete
graph on four vertices) as a minor.

Lemma 3.6. Let(G,s,t) be a series parallel graph.

1. If there is a nodex with label (x,y) in an sp-tree of G, then there is a path P in G with
P=(s....%...,Y,...,t).

2. If there is a node with labélx,y) in an sp-tree of G that is an ancestor of a node with
label (v,w), then there is a patks,... ,X,... ,V,... ,\W,...,Y,...,t)in G.

3. For every edge e {x,y} € E(G), there is a path(s,...,X,y,...,t), or there is a path
(... X, ... ,t)In G.

Proof.

1. We prove that for any nodewith label (v,w) on the path fronu to the root of the sp-tree
of G, there is a pathv,... ,x,...,y,... ,w) in the graphGg associated with nodg. We use
induction on the length of the path fromto B in the sp-tree. (Using this result wifhthe root
of the sp-tree gives the desired result.)

First, suppose = B. As any series parallel graph is connected, there is a pathvtom
in the series parallel graph associated with node

Next, suppos@ is an ancestor af, and has labelv,w). Lety be the child of3 on the path
from o to B. If B is a p-node, then the label ¢fis also(v,w). By the induction hypothesis,
there is a pathv,...,x,...,Y,...,w) in the graph associated with and the result follows
for B. SupposeB is an s-node with childrei,... &, andg; has label(v;,vi,1) for eachi,
1<i<r. Letj, 1< j<r, be such thad; =y. For anyi, 1 <i <r, there is a pati® from
Vi to vi11 in G (the graph associated with). By the induction hypothesis, there is a path
Pj = (Vj,---,%...,¥...,Vj11) in Gs;. Concatenating?y, P, ... , P gives the required path of
the form(v,... ,x,...,Y,...,w) in Gg.

2. Similar.

3. Note that there is a node with lakigly) or a node with labefy,x). Now use part 1 of the
lemma. O

Lemma 3.7. Let(G,s,t) be series parallel and suppose there is a pah. . ,x,y,...,t) in G.
The following holds.

1. There is no path from s to y that avoids x or there is no path from x to t that avoids y.
2. No node in any sp-tree of G is labeled with the g&ix).

Proof.
1. Suppose not. Thes + {s,t},s,t) containsK, as a minor, which is a contradiction.

2. This follows from part 1 of this lemma and Lemma 3.6. O

Lemma 3.8. Suppos€G,s;t) is a series parallel graph with G- (V,E), and let{x,y} € E.
Suppose there is a pafB, ... ,x,y,...,t) in G. Let W be the set

W ={veV —{xy}|thereis apaths,...,X, ... V... ,Y,...,t) in G}.
Then the following holds.

1. Forall {v,w} € E, ve W implies that we WU {x,y}.

2. For every sp-tree of G, if a node is labeled withw) or (w,v), and ve W, then we
WU {x,y}.

3. Let T be an sp-tree of G, laetbe the highest node with labet,y). The series parallel
graph G, associated with is exactly the graph GV U {x,y}]. Furthermore, ifW| > 1,
thena is a p-node.

Proof.
1. Supposdv,w} € E,veW,w¢ {x,y}. By Lemma 3.6, there is a pafl,... ,v,w,... ,t) or
there is a patffs,... ,w,v,... ,t).

Suppose there is a path, ... ,v,w,...,t). If the subpath froms to v avoidsx andy, then
G+ {s,t} containsK, as a minor, contradiction. Hence eitheor y belongs to the path from

7

Figure 5: The sp-tree and possible graphs for the proof of Lemma 3.8

tov. Similarly, x or y belongs to the part of the path fromto t. If y appears on the first part,
andx appears on the last part, then we have a contradiction with Lemma 3.7. Hence, we have
a path of the fornts,... ,x,...,v,w,...,Y,...,t). This implies thatv € W.

The case in which there is a pa)... ,w,v,... ,t) is similar.

2. Note that if a node in the sp-tree @fis labeled with(v,w), thenG + {v,w} is also a series
parallel graph (Lemma 3.2). Hence, the result follows from part 1 of the lemma.

3. We first show thats, is a subgraph of5\W U {x,y}]. Letv e V(Gy). There is a
descendang of a which containsv in its label. According to Lemma 3.6, there is a path
(S yXyeeay VY. t), SOV E W,

Next we show thaG|W U {x,y}] is a subgraph o6,. Lete= {v,w} € E(GW U {x,y}]),
let B be the leaf node of, and suppose w.l.0.g. th@thas label(v,w). We show thag is a
descendant af. If e= {x,y}, this clearly holds.

Supposee # {x,y} andp is not a descendant of. Then we have a nodg with label
(z1,22) # (X,y), with childrend ande, such thatx is equal to or a descendant &fandp is
equal to or a descendantofsee Figure 5, part I).

If zz € W, thenG contains a path frorsto x that avoidsz;, andG contains a path fror
to y that avoidsx. Also, G contains a patifs,...,z,...,Xxy), henceG+ {st} contains &,
minor, contradiction. So, we may assume thaf W, and similarly, thatz, ¢ W.

First suppose thatis a p-node. Figure 5, part Il shows the structure of the series par-
allel graph G, associated with nodg. The graphG, associated withe contains a path
(z,...,X.Y,... ,22), because of Lemma 3.6, part 2. Similarly, the gr&hassociated with
noded contains a pathz,...,v,w,...,2). Since the only common vertices & and G
arez andz, there is a pathx,...,z,... ,V,... ,2,...,y) in G. Since(x,y) # (z1,2) and
71,2, ¢ W, this means that this path contains an edge between a vert¥xaind a vertex in
V —W — {x,y}, which is in contradiction with part 1 of this lemma.

Supposey is an s-node, and suppose that naéde on the left side of node. Part Ill of

Figure 5 shows the structure of the series parallel g@phThere is no patfz,...,v,...,y)
in Gy, which means that any path @& which goes fromx to y and contains must be of the
form (x,...,z,...,2,...,V,...,Y). This again means that there is an edge between a vertex in
W and a vertex itV —W — {x,y}, contradiction. I is on the right side of, then in the same
way, we have a patfx,...,Vv,...,z,...,2,....Y). This is again a contradiction. Henpés a
descendant af. This proves thaGy, = GIW U {x,w}].

If o is an s-node, then it is the only node with labely). This is impossible, because there
is a leaf node with labelx,y). If a is a leaf node, thei®, consists only of the edggx,y}.
Hence if|W| > 1, thena is a p-node. This completes the proof of part 3. a

4 A Constructive Reduction Algorithm

In this section we give an algorithm for finding an sp-tree of a source-sink labeled graph, if it

is series parallel. The algorithm iscanstructive reduction algorithnwhich consists of two

phases: the first phase is the reduction phase, the second phase is the construction phase. The
algorithm is based on results presented in [4, 5]. It uses R s#ftreduction rules which we

define later. The two phases work as follows, given a source-sink labeled (@aph).

Phase 1.The first phase consists of a number of reduction rounds which are executed sub-
sequently. In each reduction round, a number of applications of rules Rrdmcarried out
simultaneously: if the graph is series parallel, this numb&(i&(G)|). In this phase, the in-

put graph(G, s,t) is reduced to a series parallel graph consisting of one edge between vertices
sandt if and only if (G,s,t) is series parallel. IfG,s,t) is not series parallel, i.e., we do not

have a single edge after the first phase, then the algorithms stops. Otherwise, we proceed with
the second phase.

Phase 2.In the second phase, all reductions are undone in reversed order, in a nurober of
struction rounds The number of construction rounds equals the number of reduction rounds.
In the first construction round, the reductions of the last reduction round of phase one are un-
done, in the second construction round, the reductions of the one-but-last reduction round are
undone, etc., until all reductions are undone and the input graph is obtained. During the undo-
ing of the reductions, an sp-tree of the current graph is maintained. Each time a reduction is
undone, the sp-tree is ‘locally’ modified in such a way that it becomes an sp-tree for the new
current graph. When the last construction round is finished, we obtain an sp-tree of the input
graph.

In more detail, the two phases of the algorithm work as follows.

Phase 1. In phase one, the input graph is reduced to the base source-sink labeled graph if and
only if the input graph is series parallel. This means that th&sef reduction rules must be
safe i.e. for eachr € R if a graph(G',s,t) can be obtained from a grapts, s,t) by applying
r, then(G,s,t) is series parallel if and only {fG',s,t) is series parallel. The sBt is given in
Section 4.1, and it is shown that this set is safe.

In each reduction round in the first pha€¥|E(G)|) reductions are applied, if the graph is
series parallel. These reductions musnbe-interfering no inner vertex of a subgraph that is

9

rewritten may occur in another subgraph that is rewritten (so the subgraphs that are rewritten
may share terminals). This is to assure that the graph that results after applying all reductions
of one round simultaneously is the same graph as the graph that would result if the reductions
were applied subsequently in any order. Moreover, it assures that there is no concurrent reading
or writing.

Finding theQ(|E(G)|) non-interfering matches is basically done as follows. First, every
edge of the current graph ‘looks around’ to see whether it can take part in a reduction. The set of
reductions is not necessarily non-interfering, and hence a subset of non-interfering reductions
is selected next. Finally, the reductions of this subset are carried out simultaneously— some
bookkeeping is done such that later the reductions can be undone.

The setR of reduction rules must have the following properties to make the first step to
work out correctly and fast enough.

e There isc > 0 such that each series parallel grd@hs,t) with at least two edges, con-
tains at least|E(G)| matches to rules iR . This is shown in Section 4.2.

¢ In each series parallel grapB, s,t) with at least two edges, sufficiently many|E(G)|
for somec’ > 0) of these matches can be founddfil) time with O(|E(G)|) processors.
This is shown in Section 4.3.

In the second step, a subset of non-interfering reductions of all found reductions must be
found. This set must be large, i.e. it must have size at K&3G)| for somek > 0. This is
solved in the same way as in [5]: a ‘conflict graph’ is built; one can note that this conflict graph
has bounded degree, and a large independent set in the conflict graph is then found (see [5] for
more details).

Finally, the set of selected reductions is carried out. Each reduction can be carried out in
O(1) time by a single processor.

As each reduction round reduces the number of edges with a constant fraction when the
input graph is series parallel, afte&(logm) reduction rounds we can conclude whether the
input graph is series parallel or not, depending on whether we end up with a single edge. By
using the same approach as in [5], we can carry out all reductio@glogm-log*m) time
with O(m) operations an@®(m) space on an EREW PRAM, and wi(logm) time andO(m)
operations an@®(m) space on a CRCW PRAM.

Phase 2. The second phase builds the sp-tree, in ¢&e,t) was series parallel. This phase
starts with building an sp-tree for the current graph, which is the base series parallel graph.
Hence the simple sp-tree, with a single node, labé&ddd is build. This sp-tree is constructed

in O(1) time with one processor (see Section 4.4 for more details).

After that, the reduction rounds of phase one are undone in reverse order in construction
rounds. During each construction round, the sp-tree is reconstructed in such a way that it
becomes an sp-tree of the currect graph again. The processor that carried out the reduction in
the first round will be the same processor that carries out the undoing of the reduction, and it
also adapts the sp-tree locally for this undoing. How this is done is described in more detail in
Section 4.4: we show that each adaptation of the sp-tree for one undoing of a reduction can be
done inO(1) time without interfering with other adaptations that are applied at the same time.

10

In this way, both a minimal and a binary sp-tree of the input graph can be obtained. Con-
sidering the fact that each undo action and local adaptation can be d@té&)itime on one
processor, it can be seen that phase two can be carried Ggibgm) time with O(m) opera-
tions on an EREW or CRCW PRAM. This completes the description of the second phase.

With the results of Sections 4.1 — 4.4, we obtain the following result.

Theorem 4.1. The following problem can be solved i{1®) operations, and Qogmlog* m)
time on a EREW PRAM, and(logm) time on a CRCW PRAM: given a grap@, s,t), deter-
mine whether it is series parallel, and if so, find a minimal or binary sp-tree.

4.1 A Safe Set of Reduction Rules

Duffin [9] has shown that a graptG,s,t) is series parallel if and only if any sequence of
applications of theseriesand theparallel reduction ruleeventually lead to the base series
parallel graph (rules 1 and 2 in Figure 6). Valdes et al. [15] have given a sequential constructive
reduction algorithm for series parallel graphs, based on this reduction system, théX omges
time.

For an efficient parallel algorithm, the series and the parallel rule are not sufficient: there
are series parallel graphs which contain at most two matches to rules 1 and 2. Therefore, we
introduce a larger set of reduction rules. Retbe the set of 18 reduction rules depicted in
Figure 6. Note that each of the rules 3 — 18 can be applied by contracting one or two edges.
These edges are marked gray in Figure 6.

In rules 3 — 18, we posdegree constrainten the edges between terminals: if we apply
one of the rules 3 — 18 to a grajih then in the matchH that is involved in the reduction,
for each edge between two terminéls at least one of the end points of this edge has degree
at most seven il . (Note that all inner vertices of left-hand sides of rules 3 — 18 also have
degree at most seven). In Figure 6, the fat edges denote the edges with a degree constraint of
seven. The degree constraints are useful for proving that sufficiently many applications of the
reduction rules can be found.

Hence, given a source-sink labeled grafihs,t), a match to a reduction rule =
(H1,H2) € R in (G,st) is a terminal graplt; that is isomorphic tdd;, such that

e there is a terminal grapB, with G = G; & Gy,
e sandt are not inner vertices @4, and

e if r is one of the rules 3 — 18, then for each edge {u,v} € E(G;) for which u andv
are terminals o541, u or v has degree at most sevenGn

Safeness of rules 1 and 2, expressed in the following lemma, follows similarly as in [9].
Figures 7 and 8 illustrate how a minimal sp-tree @;s,t) can be transformed into one for
(G, s,t) and vice versa, ifG's,t) is obtained fron{G, s,t) by applying rule 1 or rule 2, respec-
tively (there are two cases for both rules).

Lemma 4.1. If (G,st) is obtained from(G,s,t) by applying rule 1 or 2, theiG,s,t) is a
series parallel graph if and only {fG',st) is a series parallel graph.

11

(L= [

J/m

O

terminal ® inner vertex

\L«:

edge over which contraction takes
place

15

— edge with degree constraint of 7

11| W7 T
5> 1 | iV IN
gr | VIV 2 IN

N

W Ny | WA

Wy s Ny | 0

W7 NT | S

RSSO SSS I ee

VERN

VIV 7

VY 3 I

—— ordinary edge

Figure 6: Reduction rules for series parallel graphs

<—> a;b »m

ac cb acch ab

Q

Figure 7: Transformation of sp-tree for rule 1.

12

ooy B

ab ab abab ab
a

Figure 8: Transformation of sp-tree for rule 2.
b d e ¢ b d c
H W < W H’
a a
Figure 9: Matches to left-hand and right-hand sides of rule 3.

Lemma 4.2. Suppos€G',s,t) is obtained fromG,s,t) by one application of rule 3. Then
(G,st) is a series parallel graph if and only {iG',s,t) is a series parallel graph.

Proof. Suppos€G,s,t) is a series parallel graph, and Tebe the minimal sp-tree dfG, st).
Let H be the match to rule 3, as depicted in the left-hand side of Figure 9. Suppise
replaced byH’, which is depicted in the right-hand side of Figure 9. Consider a pdithm s
tot that uses the edgia, b}. We distinguish between two cases, namely the casePthaits
a beforeb, and the case th&t visits b beforea.

Case 1. The pathP visits a beforeb. We distinguish between two further cases, namely the
case thaP avoidse and the case th& visits e.

Case 1.1. The pathP avoids vertee. Let

W ={veV |thereis apatlis,...,a,...,Vv...,b,... 1), and
v belongs to the same componentas G|V — {a,b}|}.

Note thatc,d,e € W, and hence (by part 1 of Lemma 3.8), all vertices in the component of
G|V — {a,b}] which containe are inW. There must be a parallel noden T with label (a,b),
with the subgraph containing the nodesVih‘below it' (see part 3 of Lemma 3.8). L&d,
be the graph associated with Each vertex # a,b of G, can occur in at most one graph
associated with one of the children eof

Let B be the s-node that is a child efsuch that the series parallel graphassociated with
B containse. We claim thaiGg is the graph obtained froiG[W U {a, b}] by deleting all edges
betweena andb. If a vertexw € W is not inGg, then all paths fromv to e usea or b, which
means thatv is not in the component dB[V — {a,b}] which containse. Hencew € V(Gg).
Hence each vertex & occurs only inGg, which means that all edges between verticed/in
and inW U {a, b} are inGg.

13

On the other hand, if there is a vertexe V(Gg), x ¢ {a,b}, then there is a patR =
(a,...,%...,b) in Gg (Lemma 3.6). IfP contains no vertex froraV, thenp is not an s-node.
HenceP contains a vertex frorilV. Together with part 1 of Lemma 3.8, this means that all
vertices orP are inW U {a, b}, sox € W. The graphGg can not contain an edge betweseand
b, since ther is not an s-node. This proves the claim.

Suppose has children with labelga, x1),(X1,X2), ... , (%, b), respectively. We show that
t =1 andx; = % = ¢. Suppose not. First suppose tla# c. Add an edge betweer andb;
this again gives a series parallel graph. Now, by contracting all nodéserceptc to d, we
get aK4 minor, contradiction. Hence = ¢. Now suppose thdt> 1. There is a leaf node with
label (a,c) or label(c,a) which is a descendant @f since there is an edde, c}. But vertex
a occurs only in the labels of the subtree of the childBofvith label (a,x1). Furthermore,
vertex c occurs only in the labels of the subtrees of the childreig @fith labels(c,b) and
(%—1,C). Sincex; # c andx_1 # a, this means that there can be no leaf node with léhe)
or (c,a), which gives a contradiction. So= 1, the children of3 have labelga,c) and(c,b),
respectively. It can be seen that the child with lafeeb) is a leaf node, corresponding to edge
{b,c}. By straightforward deduction, it follows that the sp-treezofias the tree from the left-
hand side of Figure 10, case i as a subtree. We can replace the light-gray part of this subtree by
the light-gray part of the subtree shown in the right-hand side of this case and get an sp-tree of
G.

Case 1.2. The pathP from stot that uses the edge, b} also uses node There are a two
different cases, namely the case tRatisits e beforea, and the case tha& visits e afterb.

In the first caseG + {s,t} is series parallel, but contail& as a minor, contradiction. In the
second case, we have a péth .. ,a e,...,t), that does not usk. This case can be analyzed

in exactly the same way as the cases above, leading to a subtree transformation as shown in
Figure 10, case iii.

Case 2. The pathP visits b beforea. This case can be dealt with in the same way as Case 1,
only with directions reversed. See Figure 10, cases ii and iv.

This ends the ‘only if’ part of the proof. The ‘if’ part is very similar. In this case, the same
transformations as above are done, but in opposite direction. O

Lemma 4.3. SupposdéG, s t) is obtained fromG, s,t) by one application of one of the rules
4 —18. Then(G,s,t) is a series parallel graph if and only {fG',s,t) is a series parallel graph.

Proof. The proof is similar to the proof of Lemma 4.2. Suppd@&es,t) is a series parallel
graph, and leT be a minimal sp-tree fG,s,t). LetH be the match to one of the rules 4 — 18
and let the terminals dfi be named, b, c andd, as shown in Figure 11 for the case thhis
a match to rule 4.

Consider a patP from stot in G that uses the eddey, b}. First suppos® visits a before
b. We distinguish four cases.

Case 1. P does not use verticessandd. We can show thatG',st) is series parallel in
the same way as in Case 1.1 in the proof of Lemma 4.2 (d¥firie be the vertices of the
component of5)V — {a, b}] which containg andd).

14

Figure 10: Transformations of subtrees for rule 3.

b d
YA

Figure 11: MatcH to rule 4.

15

Case 2. Puses but notd. Then eithecis on the subpatts, ... ,a) of P or cis on the subpath
(b,...,t) of P. In both casesi + {s,t} contains &, minor, which gives a contradiction.

Case 3. P usedd but notc. This case is similar to Case 2, and hence gives a contradiction.

Case 4. P uses bottt andd. If c andd both occur on the subpatls,... ,a) of P, or on the
subpath(b,... ,t) of P, thenG + {s,t} contains &, minor.
IfP=(s,...,d,...,ab,...,c...,t), thenG+ {st} also contains &4 minor.
If P=(s,...,c,...,ab,....d,... t) then there is a path fromto t that uses the edge
{c,d}, and does not useandb. This case is similar to Case 1.

The case thaP visits vertexb beforea can be solved in the same way. This ends the ‘only
if’ part of the proof. The ‘if’ part can be handled in the same way. O

We conclude with the following result.
Corollary 4.1. The seR of reduction rules is safe for series parallel graphs

An important consequence of the proofs of Lemmas 4.1 — 4.3 is that they are constructive:
especially, when we have a minimal sp-tree of the reduced graph, we can buiifl)itime,
a minimal sp-tree of the original graph (see Section 4.4 for more details).

4.2 A Lower Bound on the Number of Matches

In this section we show that each series parallel gi&ls, t) with at least two edges contains
at leastQ(|E(G)|) matches to rules iR .

Lemma 4.4. Let(G,s,t) be a series parallel graph witfE(G)| > 2. (G, s,t) contains at least
|E(G)|/139matches to rules 1 — 18.

Proof. Consider the minimal sp-trek of G. The number of leaves df equals|E(G)|. We
argue that the number of leavesDfis at most 139 times the number of matches. To obtain
this, we distinguish the following ‘classes’ of leaves.

A leaf nodea in T is goodif it is a child of a p-node and has at least one sibling which is a
leaf (i.e.a is child of a p-node which has at least two leaf children), or it is a child of an s-node
and one ofu’s neighboring siblings also is a leaf node (iceis child of an s-node which has
at least two successive leaf children of whicks one). Note that the edges that correspond to
good leaf nodes occur in matches to rule 1 or 2.

An internal node i is greenif it has at least one good leaf child.

A node inT is branchingif it is an internal node, and has at least two internal nodes as its
children.

A leaf is bad if it is not good, and its parent is branching or green. Most edges that
correspond to bad leaves can not occur in any match.

Note that the leaf children of a branching node which is not green are all bad, the leaf
children of a green p-node are all good, and the leaf children of a green s-node are either bad
or good.

16

Now consider the other nodesTn An internal node iblueif it is not branching or green,
but it has a descendant that is branching or green at distance at most 33.

An internal node igellowif it is not branching, green or blue.

The total number of leaves i equals the number of good leaves plus the number of
bad leaves plus the number of leaf children of blue nodes plus the number of leaf children of
yellow nodes. We now derive an upper bound for the number of leaves in each of these classes,
in terms of the number of matches.

Good leaves If a green s- or p-node has good leaves, then the edges corresponding to its
good leaves correspond to at least2 matches to rule 1 or 2. Hence the number of good
leaves is at most twice the number of applications of reduction rules 1 and 2.

Bad leaves

Claim 4.1. The number of bad leaves is at most three times the number of branching nodes
plus twice the number of green nodes.

Proof. Leta be a bad leaf. l&’'s parent is a p-node, then accouro its parent (which has at
most one bad leaf). 's parent is an s-node, then accouartb its neighboring sibling on the
right if it has one, or to its parent otherwise.

Each yellow or blue node which has a yellow or blue parent does not have any bad leaves
accounted to it. Each yellow or blue node which has a branching or green parent has at most
one bad leaf accounted to it, namely its neighboring sibling on the leftp beta yellow or
blue node which has a bad leaf accounted to it. It must be the casg ltlhhata branching or
green parent. Latbe the highest descendantpoivhich is green or branching. Note that there
exists such a nodg All nodes on the path fror to y, excepty, are yellow or blue. Hence no
node on this path, exceptandy, has a bad leaf accounted to it, as none of these nodes has a
branching or green parent. Account the bad leaf that is accounfedde instead.

Now, each branching node has at most three bad leaves accounted to it: possibly one of
its children, its neighboring sibling on the left, and one leaf first accounted to a yellow or blue
node. Each green node has at most two bad leaves accounted to it: again possibly one from a
yellow or blue node, and as green s-nodes have no bad leaf children and green p-nodes have
no bad siblings, at most one other bad leaf. O

Claim 4.2. The number of branching nodes is at most the number of green nodes.

Proof. Construct a tre@’ from T by removing all nodes that are not green and not branching,
while preserving successor-relationships. Note thaf ,ievery internal node that has only
leaves as child is green, hence every branching node still has at least two child@feiiore-

over, every leaf of’ is green. Since in any tree, the number of internal nodes with two or more
children is at most the number of leaves, the number of branching nodes is at most the number
of green nodes iit’, and hence ifT. O

Claims 4.1 and 4.2 show that the number of bad leaves is at me& 3 5 times the
number of green nodes. In each green node, there is a match to rule 1 or 2 in two of the edges
corresponding to its good leaves. Hence, the number of bad leaves is at most five times the
number of matches to rules 1 and 2.

17

a3 a4 a a g aijp an

NZTAN

by by bz by bs be by bg by big

Figure 12: Subgraph @& corresponding to a path of 33 yellow or blue nodes in the sp-tree, of
which the highest one is a p-node with labaj, b;), and the lowest one is a p-node with label
(a11,b10). Only as, by, a1 andb;g may be incident with edges outside the subgraph.

Leaves of blue nodes The number of blue nodes is at most 33 times the number of branching
and green nodes: account each blue node to the closest descendant which is branching or green.
Since the number of branching nodes is at most the number of green nodes, this means that the
number of blue nodes is at most33 = 66 times the number of green nodes. Each blue node

has at most two leaf children, which means that the number of leaves of blue nodes is at most
2-66 = 132 times the number of matches to rules 1 and 2.

Leaves of yellow nodes Consider a path iff which consists of 33 successive yellow and

blue nodes, such that the highest node in this path is a p-node. Each node in this path either is a
p-node with as its children one leaf node and one s-node, or it is an s-node with as its children
one p-node and one or two non-neighboring leaf nodes.

The edges associated to the leaves that are a child of the nodes in this path form a subgraph
of G of a special form: they form a sequence of 16 cycles of length three or four, each sharing
one edge with the previous cycle, and one edge with the next (except of course for the first and
last cycle in the sequence); three successive cycles do not share a common edge. As no s-node
on the path has two successive leaf nodes, we have that the shared edges of a cycle of length
four do not have a vertex in common. We call such a subgrapjtie-sequenceSee Figure
12 for an example.

Claim 4.3. In a cycle-sequence @ that consists of 16 cycles, there is a match to one of the
rules 3 —18.

Proof. We omit the full proof here: a long and tedious case analysis shows this fact. Full
details are given in [8]. O

In a sequence of 34 successive yellow and blue nodds ime can find one path of 33
successive yellow and blue nodes, such that the highest node in this path is a p-node. We
can find a number of disjoint paths of 34 successive yellow and blue nodes, such that each
yellow node is in exactly one such path. This means that the largest number of disjoint paths
of successive yellow and blue nodes of length 34 that we can fifidisnat least 134 times
the number of yellow nodes. Hence the number of matches to rules 3 — 18 is at/ldéést 1
times the number of yellow nodes. Since each yellow node has at most two leaf children, we
have that the number of leaf children of yellow nodes is at me842= 68 times the number
of matches to rules 3 — 18.

18

The total number of leaves if is now at most 25+ 132 = 139 times the number of
matches to rules 1 and 2 plus 68 times the number of matches to rules 3 — 18. Hence the
number of leaves i is at most 139 times the number of matche®fin This completes the
proof. O

4.3 A Lower Bound on the Number of Enabled Matches

In this section we show that, in a series parallel gré®ls,t) with at least two edges, we can
find c|E(G)| matches to rules iR in O(1) time with O(|E(G)|) processors.

The finding of the matches is done as follows. Every edge of the current graph ‘looks
around’ to see whether it can take part in a reduction. Given aneitigan easily be checked
whethere can occur in an application of one of the rules 1 or 3 — 18: follow all paths of
length at most eight frore which visit only vertices of degree at most eight (except for the last
vertex of a path). This can be done@{1) time per node per edge. In this way, all possible
choices for applications of these rules are found. However, for rule 2, probably not all possible
applications can be found in this way. Instead, for rule 2, every edgdu,v} searches in
the adjacency lists af andv for all edges that have distance at most ter ito this list. Edge
e proposes an application of rule 2 if one of the edges it found also has end pantsv.

Thus, these rule applications can also be foun@(ih) time. (Adjacency lists are assumed to
be cyclic.)

Each reduction found in this way is said to &eabled We now show thaf(|E|) reduc-
tions are enabled.

Lemma 4.5. If G = (V,E) is a simple series parallel graph, théB| < 2|V|.

Proof. Follows from the fact that each series parallel graph has treewidth at most two, and a
simple graphG of treewidth at mosk has at mosk|V (G)| edges for ank > 1. O

Let G be a graph given by some adjacency list representation. An edgésicalledbad
if it has a parallel edge, but no parallel edge is found in the procedure above.

Lemma 4.6.Let G be a graph of treewidth at most two given by some adjacency list represen-
tation. There are at mosE(G)|/5 bad edges in G.

Proof. Consider a tree decompositidii, X) of G of width at most two withT = (I,F) and
X ={X |i€l}, and choose an arbitrary node | as root ofT. For av eV, letry be the
highest node iT with v e X;,. Lete € E with end pointsy andw. There is a node containing
v andw, hence either, =r,,, orry is an ancestor af,, orry, is an ancestor af,.

For every bad edge betweenandw, associate the edge withif ry, =ry, orry is an
ancestor ofry; otherwise, associate the edge with Suppose bad edgebetweenv andw
is associated witlv. ThenX; must contain botlv andw. It follows that there are at most
|X,| — 1 < 2 different verticesu for which bad edges betweerandu can be associated with
(namely, the vertices iX;, — {v}). For each such, each 20 successive positions in the (cyclic)
adjacency list of/ can contain at most one bad edge betweandv, hence there are at most
degv)/20 bad edges betweenandu that are associated with and hence in total, at most

19

degv)/10 bad edges are associated witff he stated bound is derived by taking the sum over
all vertices. O

As each series parallel graph has treewidth at most two, it follows that each series parallel
graph(G,s,t) has at moste(G)|/5 bad edges.

Lemma 4.7. There is a constant & 0 for which each series parallel graptG, s,t) with at
least two edges contains at leafECG)| enabled matches.

Proof. Letn= |V(G)| andm= |E(G)|. We distinguish two cases, namely that case that
m > 4n and the case thah < 4n. If m > 4n, then there are at least— 2n edges that are
parallel to another edge, of which at most5 are bad. Hence, there are at leg&im— 2n >
4/5m— 1/2m = 3m/10 edge< for which there is a parallel edge which has distance at most
10 toein the adjacency list of one of the end pointseofThis implies that there are at least
3m/20 enabled matches to rule 2(i@, s,t).

Supposean < 4n. Let G' be the simple graph underlying, i.e., G’ is obtained fromG
by all second and further occurrences of parallel edges. Noté¢@att) is a series parallel
graph, andz’ has at leash — 1 edges. G’ has one edge, theh consists of two vertices with
m < 8 parallel edges, and henGecontains at least one enabled match to rule 2, so atre&st
enabled matches.

SupposeS’ has at least two edges. By Lemma 4.4 there are at (aasf)/139 > n/278
matches torules 1 and 3 - 18(i@,s,t). As each of the matches to rules 1 and 3 — 18 is enabled
in G, this implies that{ G', s,t) has at least/278 enabled matches. For each match in this set,
there are two possibilities: either it is also an enabled matadB,ior it is disturbed by the
addition of one or more parallel edges. We will call a match of the first typeradisturbed
match, and a match of the last typedsturbed match. We now show that the number of
disturbed matches is at mdstimes the number of matches to rule 2Gn for some positive
integerk.

Consider a disturbed matdd. There are two cases: either an inner veneaf H is
incident with parallel edges, or a terminal vertewhich has degree at most sevenGhhas
degree more than seven @ (and hence is incident with parallel edges). In both cases, the
vertexv has degree at most seven@, and hence irG, there is an enabled match to rule 2
which contains vertex: any sublist of length 20 of the adjacency list contains at least two
edges with the same end points, as there at most seven different sets of end points possible.

Account each disturbed match @ to an enabled match to rule 2 @ which contains a
vertex of degree at most seven of the disturbed match. It can be seen that each vertex of degree
at most seven i is contained in at mo$t matches for some constantHence each enabled
match to rule 2 irG has at mostRdisturbed matches accounted to it.

Consider the number of enabled matche&inThis number is at least the number of non-
disturbed matches plus the number of enabled matches to rul€s2which is at least the
number of non-disturbed matches plyg k) times the number of disturbed matches. Hence
the number of enabled matched3ns at least 1(2k) times the number of enabled matches in
G'. This latter number is at leasf 278, and hence there are at le@&t556k) enabled matches.
As m < 4n, this means that there are at leagt2224) enabled matches iB. O

20

Note that the constamtin Lemma 4.7 is quite bad. However, the bound we have derived can
probably be tightened by using more detailed estimates.

4.4 The Construction Phase

In this section, we show in more detail how a minimal sp-tree of the input gi@pit) is
build.

The sp-tree is represented as follows. We make a list of all nodes in the sp-tree. Each node
is marked with its label and its type (s-node, p-node or leaf node), each node has a pointer to its
left-most and its right-most child, to its parent, and to its neighboring siblings on the left-hand
and the right-hand side (if one of these nodes does not exist, the pointgr Burthermore,
each leaf node is marked with the type of its parent, and we keep a pointer from each edge in
the graph to the corresponding leaf node in the sp-tree.

We start with the simple sp-tree, with a single node, labéted. It is easy to see that
this sp-tree can be constructed®l) time with one processor, and that it is an sp-tree of the
current graph.

In each construction round, the sp-tree is reconstructed: each processor that carried out a
reduction in the first phase, undoes this reduction in this phase, and adapts the sp-tree locally
for this undoing. For these adaptations we use the constructions from the proofs of Lemmas
4.1 - 4.3 (see also Figures 7 — 10). We show that each adaptation of the sp-tree for one undoing
of a reduction can be done @(1) time without interfering with other adaptations that are
applied at the same time.

Suppose a reduction rute= (H;,Hz) € R has to be undone, and I8§ andG, be terminal
graphs such thab, andH; are isomorphic an®, andH, are isomorphic, an@; is the match
in the current graph that has to be replace@®hyThe adaptation of the sp-tree for this undoing
is done as follows. First the local structure of the sp-tree is found, i.e. the structure of the part
of the sp-tree that contains edgesGsnis found. For rules 1 and 2, the different forms are the
right-hand sides of cases i and ii in Figures 7 and 8, respectively. For rule 3, the different forms
are the right-hand sides of cases i, ii, iii and iv in Figure 10. The parts of the sp-tree that are
marked light-gray are the parts that must be modified.

The local structure is found as follows. An edgef G, is taken which is not an edge
between two terminals in the case of rules 3 — 18 (for rules 1 and 2, the only possibility is
the edge{a, b}, for rule 3, edge{c,e} is the best edge to take, as this edge will be removed).
Look at the corresponding leaf nodeTin For rules 1 and 2, check the type of its parent node,
and for rule 3 — 18, search the ‘neighborhood’ of this leaf nod€ wmhich is involved in the
modification (for rule 3, this is the light-gray part in the right-hand side of cases i, ii, iii and iv
in Figure 10). The leaf node can be found in constant time without interfering with any other
constructions. For rules 1 and 2, it is clear that we can check the type of its parent in constant
time without interfering with other constructions performed at the same time, as each leaf node
is marked with the type of its parent. For rule 3, we can see from Figure 10 that the structure of
the neighborhood can be determinedifll) time without interfering with other constructions,
as no other construction involves any of the nodes of the light-gray part of the sp-tree. For rules
4 — 18, the cases are similar to the cases of rule 3, and the structure can also be {id in
time without interference.

21

After the local structure of the sp-tree is found, this part of the sp-tree is replaced by a new
part. The structure of this new part depends on the structure of the old part. For rules 1, 2
and 3, these new parts are the parts in left-hand sides of the cases in Figures 7, 8 and 10 that
are marked light-gray. For rules 4 — 18, a similar approach as for rule 3 can be taken. For rules
3-18, itis easy to see that the modification can be do@ In time without interference. For
rules 1 and 2, case i is also easy (see Figures 7 and 8:ongels a different type, and gets two
leaf children). In case ii, the modification needs more care, as the neighboring siblings of node
a may be leaf nodes that are involved in another rule 1 or 2 reduction at the same time. Hence
we have to ensure that the corresponding executions do not read from or write to the same
memory location at the same time. This is done by inserting the new leaf node as a right-hand
sibling of the leaf node fofa, b}, which can be done i®(1) time without interference.

This completes the description of the construction phase of the algorithm in the case a
minimal sp-tree is build. In the same way, we can build a binary sp-tree of the graph.

5 Additional Results for Series Parallel Graphs

In this section we show that the algorithm presented in Section 4 can also be used to solve
the problem for directed series parallel graphs, and for series parallel graphs without specified
source and sink. Also, it can be used as a first step to solve many other problems on series
parallel graphs.

First, suppose we are given a graphand want to determine wheth@ris series parallel
with a proper choice of the source and sink. We solve this problem by first computing a source
and a sink and then solving the problem with this source and sink. He [11] and Eppstein [10]
have shown (using results from Duffin [9]) that this problem reduces in a direct way to the
problem with specified vertices, as the following result holds.

Lemma 5.1[11, 10]. Let G= (V,E) be a graph. If G is series parallel then the following
holds.

1. If G is not biconnected, then the blocks of G form a path: each cut vertex of G is in
exactly two blocks, all blocks have at most two cut vertices, and there are exactly two
blocks which contain one cut vertex.

2. The graph(G,sit) is series parallel if s and t are vertices of G chosen as follows.

(a) If Gis biconnected, then s and t are adjacent.

(b) If Gis not biconnected, then let Bnd B, be the blocks of G which contain one cut
vertex, and let cand ¢ denote these cut vertices. Source s is a vertex oflibch
is adjacent to ¢, and sink t is a vertex of Bwvhich is adjacent to£

We briefly describe how andt can be found such that they satisfy conditions 2a and 2b
of Lemma 5.1. Therefore, we apply a result of [4], which says that any graph problem
which can be defined imonadic second order logior graphs, can be solved on graphs of
bounded treewidth in tim®(lognlog* n) with O(n) operations on an EREW PRAM, and in
O(logn) time with O(n) operations on a CRCW PRAM. However, this result does not apply

22

to multigraphs, and our input graph is a multigraph. Therefore, we make a new, simple graph
G' = (V',E’) from the multigraphG as follows.

V' =V(G)+E(G)
E'={{v.e} |veV(G)Aee E(G) Avis incident withe}

We make a labeling of the vertices @i: each vertex originating frond (G) is labeledvertex,
and each vertex originating froBG) is labelededge. It is easy to see that the resulting graph
is a simple graph and hast mvertices and &h edges, and furthermore, @ is series parallel,
thenG' is series parallel. The transformation can be performe@(it) time with O(n+ m)
operations.

It can be seen that the characterizatiors ahdt as given in Lemma 5.1 can be translated
to a characterization of andt in the modified, simple grapts’, and this characterization
can be formulated in monadic second order logic for graphs (using techniques from e.g., [6]).
Hence, it is possible (using techniques of [5, 4]) to femhdt in O(logmlog® m) time, with
O(m) operations and space on an EREW PRAM, an@®(lbgm) time, andO(m) operations
and space on a CRCW PRAM. While the resulting algorithm will probably not be efficient,
this result does not rely on non-constructive arguing. (We expect that a more straightforward
approach, based on reduction, will also work here.)

If the input graph is a source-sink labeled directed grépls,t), then one can use the
modification, described in [10]: solve the problem on the underlying undirected graph, then
orient the edges with help of the minimal sp-tree (there is at most one possible orientation for
which the directed graph is series parallel), and check if this orientation corresponds to the
original graph.

If the input graph is directed, and no source and sink are specified, then there must be
exactly one vertex with indegree zero and one with outdegree zero, otherwise, the graph is
not series parallel. Let the source be this first vertex, and the sink the latter vertex, and solve
the problem for the graph with this source and sink. Note that these vertices can be found in
O(logm) time with O(m) operations on an EREW PRAM.

Theorem 5.1. Each of the following problems can be solved wittn operations, in
O(logmlog® m) time on an EREW PRAM, andldgm) time on a CRCW PRAM.

1. Given a graph G, determine if there arg s V(G) for which (G, s;t) is series parallel,
and if so, find an sp-tree of G.

2. Given a directed source-sink labeled grd@)s,t), determine whethgiG, s,t) is series
parallel, and if so, find an sp-tree ¢6,s,t).

3. Given a directed graph G, determine if there ajesV (G) for which (G, s,t) is series
parallel, and if so, find an sp-tree of G.

If the input graph is simple, then we can make the algorithms to r@{limgnlog* n) time
on an EREW PRAM an®(logn) time on a CRCW PRAM, both witl®(n) operations and
space. This can be done by making use of the fact that a simple series parallel graph has at most
2n edges, and the fact that 2dges can be counted@{logn) time with O(n) operations: in a
preprocessing step, start counting the number of edges of the graph, but we do@tlows}

23

steps of this counting witld(n) operations. If, after these steps, the edges are counted and
m < 2n, then go on with the rest of the algorithm. Otherwise, conclude that the graph is not
series parallel and retufalse.

Many problems can be solved @(log p) time, andO(p) operations and space, when the
input graph is given together with a tree decomposition of bounded treewidth consisting of
p nodes. These include all problems that can be formulated in monadic second order logic
and its extensions, all problems that are ‘finite state’, etc. A large number of interesting and
important graph problems can be dealt in this way, includiRGMATIC NUMBER, MAX -

IMUM CLIQUE, MAXIMUM INDEPENDENT SET, HAMILTONIAN CIRCUIT, STEINER TREE,
LONGESTPATH, etc. See [2, 7, 5].

Since series parallel graphs have treewidth at most two, we can solve these problems ef-
ficiently on series parallel graphs, if a tree decomposition of small width is given. A binary
sp-tree of a series parallel graph can be transformed into a tree decomposition of width at most
two in constant time, by using the construction of Lemma 3.4. Hence we have the following
result.

Corollary 5.1. The following problem can be solved ifil@ymlog* m) time, Q'm) operations,

and Q'm) space on an EREW PRAM, and ifl@ym) time, Q' m) operations and @m) space

on a CRCW PRAM: given a series parallel graph G, find a tree decomposition of width at most
two of G.

The resulting tree decomposition h@sm) nodes. Hence we can solve the problems de-
scribed above i®©(logm) time with O(m) operations given this tree decomposition.

Acknowledgement

We like to thank Torben Hagerup for help and useful discussions.

References

[1] S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese. An algebraic theory of graph
reduction.J. ACM 40:1134-1164, 1993.

[2] S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable §raphs.
Algorithms 12:308-340, 1991.

[3] M.W. Bern, E. L. Lawler, and A. L. Wong. Linear time computation of optimal subgraphs
of decomposable graphg. Algorithms 8:216—-235, 1987.

[4] H. L. Bodlaender and B. de Fluiter. Reduction algorithms for constructing solutions
in graphs with small treewidth. In J.-Y. Cai and C. K. Wong, editéh®ceedings 2nd
Annual International Conference on Computing and Combinatorics, COCOQpgs
199-208. Springer Verlag, Lecture Notes in Computer Science, vol. 1090, 1996.

24

[5]

[6]

[7]

[8]

[9]
[10]

[11]

[12]

[13]

[14]

H. L. Bodlaender and T. Hagerup. Parallel algorithms with optimal speedup for bounded
treewidth. In Z. Rildp and F. @Ctseq, editorsProceedings 22nd International Col-
loquium on Automata, Languages and Programmipgges 268-279, Berlin, 1995.
Springer-Verlag, Lecture Notes in Computer Science 944.

R. B. Borie, R. G. Parker, and C. A. Tovey. Automatic generation of linear-time algo-
rithms from predicate calculus descriptions of problems on recursively constructed graph
families. Algorithmica 7:555-581, 1992.

B. Courcelle. The monadic second-order logic of graphs |: Recognizable sets of finite
graphs.Information and Computatiqrg5:12—-75, 1990.

B. de Fluiter. Algorithms for Graphs of Small TreewidtRhD thesis, Utrecht University,
1997.

R. J. Duffin. Topology of series-parallel graplis.Math. Anal. Appl.10:303—-318, 1965.

D. Eppstein. Parallel recognition of series parallel graftfermation and Computatign
98:41-55, 1992.

X. He. An improved algorithm for the planar 3-cut problem. Algorithms 12:23-37,
1991.

X.Heand Y. Yesha. Parallel recognition and decomposition of two terminal series parallel
graphs.Information and Computatiqry5:15-38, 1987.

T. Kikuno, N. Yoshida, and Y. Kakuda. A linear algorithm for the domination number of
a series-parallel grapiisc. Appl. Math, 5:299-311, 1983.

K. Takamizawa, T. Nishizeki, and N. Saito. Linear-time computability of combinatorial
problems on series-parallel graplds ACM 29:623—-641, 1982.

[15] J. Valdes, R. E. Tarjan, and E. L. Lawler. The recognition of series parallel digraphs.

SIAM J. Comput.11:298-313, 1982.

25

