Parallel Algorithms for Treewidth Two

Babette de Fluiter
Centre for Quantitative Methods
P.O. Box 414, 5600 AK Eindhoven, the Netherlands
e-mail: deFluiter@cgm.nl

Hans L. Bodlaender
Department of Computer Science, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, the Netherlands
e-mail: hansb@cs.ruu.nl

Abstract

In this paper we present a parallel algorithm that decides whether a Gdps
treewidth at most two, and if so, construct a tree decomposition or path decomposition
of minimum width of G. The algorithm use®©(n) operations an&(lognlog* n) time
on an EREW PRAM, o©(logn) time on a CRCW PRAM. The algorithm makes use of
the resemblance between series parallel graphs and partial two-trees. It is a (non-trivial)
extension of the parallel algorithm for series parallel graphs that is presented in [8].

1 Introduction

In this paper we consider the problem of finding a tree decomposition of width at most two of
a graph, if one exists.

Many important graph classes have bounded treewidth. Given a tree decomposition of
bounded width of a graph, many (even NP-hard) problems can be solved sequentially in linear
time, and in parallel inO(logn) time with O(n) operations on an EREW PRAM, where
denotes the number of vertices of the graph (see e.g. [5, 9]) (the number of operations that an
algorithm uses is the product of the number of processors and the time it uses). Therefore, the
problem of finding a tree decomposition of bounded width of a graph is well studied.

Sequentially, there exist linear time algorithms for each fiketat, when given a graph
G, decide whether the treewidth & is at mostk, and if so, build a tree decomposition of
minimum width forG. Practical algorithms exist fde= 1, 2, 3, and 4 [4, 16, 17]; in [6], linear
time algorithms are given for each fix&d

*This research was carried out while the second author was working in the Department of Computer Science
at Utrecht University. It was partially supported by the Foundation for Computer Science (S.l.0.N) of the Nether-
lands Organization for Scientific Research (N.W.0.) and by ESPRIT Long Term Research Project 20244 (project
ALCOM IT: Algorithms and Complexity in Information Technolpgy

The best known parallel algorithm fegcognizinggraphs of treewidth at moktwas found
by Bodlaender and Hagerup [9]. It us€gn) operations, withO(logn) time on a CRCW
PRAM or O(lognlog*n) time on an EREW PRAM. They also gave a parallel algorithm for
building a tree decomposition of width at mdstwhich usesO(n) operations an@®(log?n)
time on a CRCW or EREW PRAM. Related, earlier results can be found e.g. in [14, 15].

For treewidth one there is a more efficient algorithm than the one of [9]. A connected
simple graph has treewidth one if and only if it is a tree, and a tree can be recognized by
using a tree contraction algorithm. This tak&dogn) time with O(n) operations on an EREW
PRAM [1]. One can easily construct a tree decomposition of a tre@(i) time with O(n)
operations on an EREW PRAM. The algorithm can be modified such that it can be used on
input graphs which are not necessarily connected (see also Section 4).

In this paper, we improve on the algorithm of [9] for treewidth two. Our algorithm con-
structs a tree decomposition of width at most two of a graph, if the graph has treewidth at
most two. It useO(n) operations,O(logn) time on a CRCW PRAM and(lognlog™ n)
time on an EREW PRAM. We also obtain an algorithm solving the problem on multigraphs,
which useO(n+ m) operations wittO(log(n+m)log*(n+m)) time on an EREW PRAM and
O(log(n+m)) time on a CRCW PRAM. From these results and a result from [9] we imme-
diately obtain parallel algorithms for the problem of finding a path decomposition of width at
most two of a graph, if it has pathwidth at most two, both for the case of simple graphs and
multigraphs. These algorithms run in the same time and resource bounds as the algorithms for
treewidth two.

A central technique in this paper ggaph reduction introduced in [2]. In [7] and [9] it
is shown how the technique can be used to obtain parallel algorithms for graphs of bounded
treewidth. In [8] this technique is used for checking whether a given graph is series parallel,
and if so, finding a decomposition of the graph in series and parallel compositions. Our al-
gorithm for treewidth two uses the resemblance between series parallel graphs and graphs of
treewidth two: we show that a graph has treewidth at most two if and only if its biconnected
components are series parallel. We modify the reduction algorithm that is presented in [8] for
recognizing series parallel graphs in order to obtain an algorithm for graphs of treewidth at
most two: we add extra reduction rules and show how a tree decomposition of width at most
two is constructed. (Also, the counting arguments needed for showing the time bounds for this
algorithm are different from those of the algorithm in [8].) It is interesting to note that the
sequential algorithm to recognize graphs of treewidth two [4, 16] is also based upon a (much
smaller) set of graph reductions.

This paper is organized as follows. In Section 2 we start with definitions and preliminary
results. In Section 3 we give a reduction algorithm which checks whether a given graph has
treewidth at most two, and if so, finds a tree decomposition of width at most two of the graph.
We give this algorithm for a special type of input graph, nametprnected-labeled multi-
graph Finally in Section 4, we show how this algorithm can be used for general multigraphs
and simple graphs, and we give some additional results.

2 Preliminaries

Unless stated otherwise, graphs considered are undirected, may have parallel edges but have
no self-loops. Graphs without parallel edges are called simple graphs.

A biconnected component of a graph is also callddiogk A block istrivial if it consists
of one edge. All other blocks aren-trivial.

Definition 2.1 (Treewidth). Let G= (V,E) be a graph. Atree decompositio D of G is a
pair (T,X), where T= (1,F) is atree, andX = {X; | i € | } is a family of subsets of VV, one for
each node (vertex) of T, such that

o Ua X =V,
o for every edggv,w} € E, there is an i | with v € X and we X;, and
e foralli,j,kel,if jis onthe path fromitokin T, then;X X, C X;.

Thewidth of a tree decompositio(I,F),{X | i € |}) is max¢ |X| <1. Thetreewidthof a
graph G is the minimum width over all possible tree decompositions of G.

A graphG = (V,E) is said to be aninor of a graphH = (W, F), if a graph isomorphic t&
can be obtained frorAl by a series of vertex deletions, edge deletions, and edge contractions.

Lemma 2.1. If the treewidth of G is at most two, then G does not contajr{tke complete
graph on four vertices) as a minor.

A source-sink labeled grapis a triple(G, s,t), whereG is a graph and andt are distinct
vertices ofG, called thesourceandsink of the graph, respectively.

The series compositioof two or more source-sink labeled graphs is the operation which
takesr > 2 source-sink labeled grapf&i,si,t1),...,(Gr,S,t;) and returns a new source-sink
labeled graphG,s,t) that is obtained by taking the disjoint union @f,... ,G;, identifying
s+1 witht foralli, 1 <i <r, and lettings= s andt =t;.

Theparallel compositiorof two or more source-sink labeled graphs is the operation which
takesr > 2 source-sink labeled grapb&i,s1,t1), ..., (Gr, S, 1) and returns a new source-sink
labeled graphiG, s,t) that is obtained by taking the disjoint union®f, ... , Gy, identifying all
verticessy, ... ,S into the new source, and identifying all vertices, .. .t; into the new sink.

A source-sink labeled graph isseries parallel graphif and only if it is a single edge, or
it is obtained by a series or parallel compositiorr of 2 series parallel graphs. A graghis
series parallel, if there are verticeg, such that the source-sink labeled gré@hs,t) is series
parallel.

Lemma 2.2. A graph G has treewidth at most two if and only if each block of G is series
parallel.

Proof. SupposéG has treewidth at most two. L& be a block ofG (G’ has treewidth at most
two). We show by induction ofy (G')| + |E(G')| thatG' is series parallel.

If [V(G')| <3, then it clearly holds. Suppo$é(G')| > 3, note thalE(G')| > |V(G')|. If
G’ contains parallel edges, then apply a parallel reductio@'oThe graph obtained this way

3

has treewidth two and is biconnected. By the induction hypothesis, it is series parallel. This
implies thatG' is series parallel.

Suppose5’ does not contain any parallel edges. L& = (T,X) be a tree decomposition
of width two of G’ with T = (I,F) andX = {X; | i € | }. Modify T D by repeating the following
as often as possible. For eachl, if i has exactly one neighbgre I, andX; C X;, then remove
Xi. Note thatT D is a tree decomposition of width two &, and it has at least two nodes. Let
i € | such that has exactly one neighbgre | in T. There is av € X; such thav ¢ X;.

Letv e X such thaw ¢ X;. Vertexv must have degree two &, and bothv's neighbors are
contained inX;. Apply the series reduction ornand its neighbors andw. This gives the graph
G" = (V(G)<{v},E(G)+{u,w}). GraphG" has treewidth two, since the tree decomposition
obtained from(T, X) by removing vertex from nodeX; is a tree decomposition of width two
of G". FurthermoreG” is biconnected. By the induction hypothed® is a series parallel
graph, and thu§' is also series parallel.

Now suppose each block Gfis series parallel. By Lemma 3.4 of [8], each blockK®has
treewidth at most two, and hence the treewidtiéGaé at most two. O

We briefly describe the notion @érminal graphsand reduction ruleshere. For a more
detailed description, see Section 2 of [8].

A terminal graphG is a triple (V,E, X) with (V,E) a graph, ancK C V a subset of > 0
vertices. Vertices irX are calledterminals and they are numbered from 1 lto Vertices in
V <X are callednner vertices The operatiors maps two terminal graphs andH with the
same numbelr of terminals to an ordinary graph® H, by taking the disjoint union ot and
H, and then identifying théh terminal ofG with theith terminal ofH fori=1,... ,I.

Two k-terminal graph$; andG, are said to bésomorphig if there exists an isomorphism
from G; to G, which maps théth terminal ofG; to theith terminal ofG, for eachi.

A reduction rule ris an ordered paifH;,H), whereH; andH, arel-terminal graphs for
somel > 0. A matchto reduction rule = (H1,H>) in graphG is a terminal grapl®; which is
isomorphic toH;, such that there is a terminal gra@h with G = G; © G,. An applicationof
r to G is an operation that replac&of the formG; @& G3 by a graphG’ of the formG, @ Gg,
whereG; is isomorphic tdH; andG, is isomorphic tdH,. We also say that, i, G, is replaced
by G,. An application of a reduction rule is also callededuction

A reduction rule(H;, Hy) is safefor a class of graph6, if for all terminal graphdHs with
the same number of terminals lds (andH,): Hi®Hz € G & Hy @ Hz € G.

Let G = (V,E) be a graph. Abridge of G is an edgee € E for which the graphV,E <
{e}) has more connected components ti@&n In order to make the set of reduction rules
conveniently small, we put a labeling on the edges of a graph: each edge in a graph is either
labeled with labeB, or it is not labeled (the labé stands for ‘bridge’). We call such a graph
a B-labeled graph We extend the notion of treewidth at most two for graphs to treewidth at
most two forB-labeled graphs.

Definition 2.2. Let G= (V,E) be a connected-labeled graph. Let Gbe the underlying
unlabeled graph. The graph G hagewidth at most twi and only if G has treewidth at most
two and for each edge@E, if e has labeB, then e is a bridge of G.

A tree decomposition of width at most tvad G is a tree decomposition TS (T,X) of
width at most two of Gwith T = (1,F) andX = {X; | i € |}, such that for each edge e with

4

label B and end points u and v, there is a node | with X; = {u,v} such that there is no
component in TI <{i}] which contains both u and v.

We can easily prove by induction thaBdabeled graple has treewidth at most two if and
only if there is a tree decomposition of width at most twdzof

Note that an edge in a graph is a bridge if and only if the edge is a (trivial) block. Hence
we can derive the following from Lemma 2.2.

Corollary 2.1. Let G be a connecteB-labeled graph. G has treewidth at most two if and only
if each non-trivial block of G has no labeled edges and is series parallel.

We useB-labeled terminal graphs instead of unlabeled onésiabeled terminal graph is
a terminal graph of which edges may have lakhelTwo B-labeled terminal graphG; andG,
are isomorphic if there is an isomorphism from the underlying unlabeled terminal gra&h of
to the underlying unlabeled terminal graph@f, such that labeled edges®@ are mapped to
labeled edges i, and unlabeled edges & are mapped to unlabeled edges&n

Reduction rules consist of pairs Bflabeled terminal graphs instead of ordinary terminal
graphs.

The following result on trees is used in Section 3.2.

Lemma 2.3.Let H be atree. Let(H) denote the number of leaves of H, and IgtHhy denote
the sum of the degrees of all vertices of degree at least three. Thidn ar3|(H).

Proof. We prove this by induction on the numbeiof vertices ofH. If n < 2, then clearly
nr(H) <3I(H).

Supposen > 2. Letv be a leaf ofH, and letw be the only neighbor of. Letd denote
the degree ofvin H and note thatl > 2. Furthermore, letl’ = H[V <{v}]. By the induction
hypothesisnr(H’) < 3I(H’). If d =2, thenl(H) =1(H’) andnr(H) = nr(H’), sonr(H) <
3I(H). If d=3, thenl(H) =I(H’)+ 1 andnr(H) = nr(H’) + 3, and thusr(H) < 3I(H). If
d >4, thenl(H) =I(H')+1andnr(H) =nr(H')+ 1, and hence alsar(H) < 3I(H). O

3 A Constructive Reduction Algorithm

In this section we give an algorithm for finding a tree decomposition of width at most two of
a connected-labeled graph, if one exists. In Section 4 it is shown how this algorithm can be
used for graphs which may be unconnected or for simple graphs.

The structure of the algorithm for connectedabeled graphs is the same as the algorithm
for series parallel graphs as presented in Section 4 of [8]: it@natructive reduction algo-
rithm. The algorithm consists of two phases: the first phase is the reduction phase, in which the
input graph is reduced to a graph consisting of one vertex, if it has treewidth at most two. The
second phase is the construction phase, in which the reductions are undone in reverse order,
and a tree decomposition of the graph is constructed during the undoing of the reductions. The
algorithm uses a s&y,, of reduction rules, which we define later. We briefly describe the basic
idea of the two phases (for more details, see Section 4 of [8]). Sup@dabeled graplG is
given.

Phase 1. The first phase consists of a number of reduction rounds. In each reduction round,
a number of applications of rules froRy, is carried out simultaneously. In this phase, the
input graphG is reduced to a single vertex if and onlyGf has treewidth at most two. &

has treewidth more than two, then the algorithms stops. Otherwise, it proceeds with the second
phase.

The setR w must besafe for eachr € Ry, if a B-labeled graptG’' can be obtained from
a B-labeled graphG by applyingr, thenG has treewidth at most two if and only @ has
treewidth at most two. In Section 3.1, we give theRg} of reduction rules, and we show that
it is safe.

In each reduction round2(|E(G)|) reductions are applied, if the graph has treewidth at
most two. These reductions must be non-interfering: no inner vertex of a subgraph that is
rewritten may occur in another subgraph that is rewritten (see also Section 4 of [8]).

Finding theQ(|E(G)|) non-interfering matches is done as follows. First, a S€(QE(G)|)
matches is found. Next a subset(®f|E(G)|) non-interfering reductions is selected from this
set. This is done similar as in [8] with a technique from [9]. Finally, these non-interfering
reductions are carried out simultaneously.

The second and third step are done in the same way as for series parallel graphs (see
also [9]): each reduction in the third round is carried out by a single proces§lijrtime.

To be able to find2(|E(G)|) matches sufficiently fast, we need the following two properties of
Rtw-

e There isc > 0 such that each connectBdabeled grapl@ with at least one edge contains
at leastc|E(G)| matches to rules iR . This is shown in Section 3.2.

¢ In each connecteB-labeled graplG with at least one edge, sufficiently marg|E(G)|
for somec’ > 0) of these matches can be founddfil) time with O(|E(G)|) processors.
This is shown in Section 3.3.

Phase one can be carried ouiflogmlog* m) time on an EREW PRAM and i@(logm)
time on a CRCW PRAM, both wit(m) operations (see [8] and [9] for more details).

Phase 2. Inthe second phase, all reductions are undone in reversed order in the construction
rounds. During the undoing of the reductions, a tree decomposition of width at most two of the
current graph is maintained. Each time a reduction is undone, the tree decomposition is ‘lo-
cally’ modified. When the last construction round is finished, we obtain a tree decomposition
of the input graph.

The undoing of a reduction is carried out by the same processor which carried out the
reduction in phase one. This processor also locally modifies the tree decomposition for this
reduction. Each undo action of a reduction, including the reconstruction of the tree decom-
position, is done irD(1) time by one processor. This implies the phase two can be done in
O(logm) time with O(m) operations on an EREW or CRCW PRAM. In Section 3.4 we de-
scribe in more detail how the construction of the tree decomposition is done.

Phase two can be carried outQilogm) time with O(m) operations on a CRCW or EREW
PRAM.

Together with the results of Sections 3.1 — 3.4 and the results described in Section 4 of [8],
we obtain the following theorem.

Theorem 3.1. The following problem can be solved i{1®) operations, and Gogmlog* m)

time on a EREW PRAM, and(ldgm) time on a CRCW PRAM: given a connectthbeled

graph G, determine whether it is has treewidth at most two, and if so, find a tree decomposition
of width at most two of G.

3.1 A Safe Set of Reduction Rules

The sefR, of reduction rules for treewidth at most two is depicted in Figure 1. It is an exten-
sion of the set of reduction rules for series parallel graphs that is presented in [8] (Section 4.1):
rules 1a and 2 — 18 form the set of rules for series parallel graphs. Rule 1 consists of two parts,
which distinguish between the case in which none of the edges that are involved in the reduc-
tion have labeB (rule 1a), and the case in which at least one of the edges that are involved in
the reduction has labél (rule 1b).

Rules 21 — 23 are necessary to reduce long sequences of ‘small’ biconnected components
as shown in Figure 2 quickly enough: in such a sequence, only two concurrent reductions are
possible without rules 21 — 23.

Rule 20 is necessary for reducing dangling edges, i.e. edges of which one end vertex has
degree one: these edges may not appear in series parallel graphs, unless if they can be reduced
with rule 1 or the graph consists of one edge. However, in graphs of treewidth at most two,
these edges can exist.

In rule 20, we pose a degree constraint of eight on the terminal vertex. This means that if
we rewrite a terminal subgrapB; in G which is isomorphic to the left-hand side of rule 20,
then the terminal vertex @b, has degree at most eight@ This degree constraint is added to
avoid problems with writing conflicts in the parallel algorithm. It also makes the presence of
rule 19 necessary: without rule 19, a large star-like graph can not be reduced.

Note that, in rules 3 — 18, we pose degree constraints on the edges between terminals (see
Section 4.1 of [8]).

The following lemma was first proved by Duffin [12], although not precisely in this form.

Lemma 3.1. A graph is series parallel if and only if it can be reduced to a single edge by
applying any sequence of reductions by rule 1la and 2. A source-sink labeled graph is series
parallel if and only if it can be reduced to a single edge by applying any sequence of reductions
by rule 1a and 2, such that neither s or t is the inner vertex in rule 1a in any of the reductions.

This shows safeness of rules 1a and 2 for series parallel graphs. In [8], it was shown that
rules 3 — 18 are safe for series parallel graphs.

Hence, given a connect&ilabeled graphlt, a match to a reduction rute= (Hy,H>) €
Rw in (G,s,t) is a terminal graplG; that is isomorphic td1;, such that

e there is a terminal grapB, with G = G; & Gy,

e if r is one of the rules 3 — 18, then for each edge {u,v} € E(G;) for which u andv
are terminals o541, u or v has degree at most sevenGnand

e if ris rule 20, then the terminal vertexin G; has degree at most eight@

Lemma 3.2. The setRy, of reduction rules is safe for treewidth at most two on connected
B-labeled graphs.

Iz

o—e—0
i3
o—o0
I
o —e—0
@

SR
THHHHN

I
I

e
I

\I/m
15

e
s
B s

IR

le

I

G
2%

15

O terminal ® inner vertex
® terminal with degree constraint of 8

edge over which contraction
takes place

——— edge with degree constraint
of 7

unlabeled edge

VSN

labeled edge

5

SSISEEER G R
GHHH R

labeled or unlabeled edge

Figure 1: Reduction rules for treewidth at most two on conne@ddbeled graphs

<P

Figure 2: A chain of ‘small’ biconnected components

Proof. LetG be a connecteB-labeled graph, let € Ry, and suppos& contains a matchi

tor. Let G’ be the graph obtained fro@ by applying the reduction corresponding to match
H. We show thaG has treewidth at most two if and only@ has treewidth at most two. Note
that aB-labeled graph has treewidth at most two if and only if all its blocks have treewidth at
most two.

First suppose is one of the rules 2 — 18. Thét is contained in one of the blocks &f.

Let B denote this block (note th& is a non-trivial block andH is also a match i), and let

B’ be the graph obtained fro by applying the rule. TheB' is a block ofG'. Therefore, it
suffices to show thaB has treewidth at most two if and only® has treewidth at most two.
This follows from Lemma 2.2 and the fact that rules 2 — 18 are safe for series parallel graphs.

Suppose is rule 1. If all vertices oH are contained in one blodg, then this is a non-
trivial block. It easily follows thatG has treewidth at most two if and only@ has treewidth
at most two: rule 1a is safe for series parallel graphs, and if an edgehas aB-label then
neitherG nor G’ have treewidth at most two.

Suppose the vertices &f are not in one block. Then the two edgestbfare separate
blocks, and they are both bridges (hence they both have treewidth at most two). This implies
that the new edge is a block &, and it is also a bridge i’ (hence it also has treewidth at
most two). This shows th& has treewidth at most two if and only@ has treewidth at most
two.

It is easy to see that rules 19 and 20 are safe for TWRisifule 19 or 20, then the blocks
of G have treewidth at most two if and only if the blocks@fhave treewidth at most two.

Suppose is one of the rules 21, 22 and 23. beandy be the terminals dfl. Supposes
has treewidth at most two. & contains a path between the terminaldHofvhich avoids the
inner vertices oH, thenG contains a4 minor, hence this is not the case. This means that
x andy are cut vertices o6, and henceH is a block of G. This implies that inG', the edge
betweenx andy is a bridge ofG’, and hence it is a block d&& which has treewidth at most
two. HenceG' has treewidth at most two.

If G’ has treewidth at most two, then the edge betweandy is a bridge, and hence is a
block with treewidth at most two. This implies thitis a block inG. As H has treewidth at
most two, we have tha& has treewidth at most two. O

3.2 A Lower Bound on the Number of Matches

In this section, we show that each connected gfapiitreewidth at most two with at least one
edge has at leaSl(|E(G)|) matches.
We first prove the following lemma.

Lemma 3.3.Let G be a connected-labeled graph and let & V(G) such that v has degree at

9

most eight. Then the number of matches to rules 1 — 23 in G which contain v is at most some
integer constant k.

Proof. We give a very rude bound which is probably far too large, but easy to prove. Note that

all inner vertices of left-hand sides of rules 1 — 23 have degree at most eigl@; beta match

in G which containsy. It can be seen that all vertices and edge&irare reachable by a path

P from v to this vertex or edge, such that all vertices on the path except possibly the first and
the last one are inner vertices @f, or are terminals of5; with degree at most eight. Hence

each vertex on such a path, except the last one, has degree at most eight. Furthermore, the path
has length at most seven, as each left-hand side of a reduction rule has at most eight vertices.
Therefore, the number of vertices and edgeG inhich are reachable fromby such a path is

at most 8. This implies that there is at most a constant number of matches containing?

Let G = (V,E) be a connecteB-labeled graph, suppose the treewidthiGo at most two,
and let|E| > 1.

A dangling edgen G is an edgee = {u,Vv} for which eitheru or v has degree one. ifhas
degree one, theais called a dangling edge of A staris a graph consisting of one vertex
with dangling edges. Aseudo blocks a graph which is a star, or consists of one block with
dangling edges, i.€5 consists of a block of which some vertices have dangling edges.

We divide G into pseudo blocks as follows. @ is a star, thert itself is the only pseudo
block. Otherwise, leB denote the set of all blocks &, and letB’ C B be the set of all blocks
which are non-trivial or have two or more cut vertices. Note thatontains exactly all blocks
which are not dangling edges, and each dangling edge has an end point in one of the blocks in
B’. Assign each dangling edge to a blockBhwhich contains one of its end points. A pseudo
block of G consists of a block i’ with the dangling edges assigned to it. Bl be the set
of all the pseudo blocks. For each pseudo blB&e P B, we call the block oPBwhich is in
B’ theunderlyingblock of PB.

The vertices that are contained in two or more pseudo blocks are callesirdimg cut
verticesof G, and we denote the set of all strong cut verticeSbyf v is a strong cut vertex,
thenvis a cut vertex of5 andv is contained in the underlying block of each pseudo block it is
contained in.

Let M denote the set of all matches@

Lemma 3.4.If G consists of one pseudo block, théh < kg|M| for some integer constang.k

Proof. Letm= |E|. If m= 1, thenG contains a match to rule 20. Suppaese> 2. If Gis a star,
thenG hasm(m«-1)/2 matches to rule 19, and hente< 2|M|. If G consists of an edge with
one or more dangling edges at each end point, then eithei3 andG has a match to rule 1
or 19, orm > 3 andG has at leastm«<-1)(m<3)/8 matches to rule 19 (at leagh<1)/2
edges are dangling edges of the same end point). Harc8|M|.

SupposeG consists of a non-trivial blocB with dangling edge®. Note thatB has no
edges labeled. Let D; denote the dangling edges which are dangling edges of some vertex of
B that has one dangling edge, andiet, denote the other dangling edges. Note tBdtas at
least|D>»|/2 matches to rule 19, and hen@.,| < 2|M|.

10

Consider blockB. As B is series parallel and has at least two edges, it contains at least
|E(B)|/139 matches to rules 1 — 18 (Lemma 4.4 in [8]). Consider theVkgtof all these
matches. LeH € Mg, EitherH is a match inG or not. IfH is not a match irG, we callH a
disturbed match.

If H is disturbed, then either an inner vertexf H has one or more dangling edges, or a
terminal vertexv of H which has degree at most severBias one or more dangling edges.
In both casesy has degree at most severBnFurthermore, ifs has one dangling edge, then it
has degree at most eight@and hence is a match to rule 20. ¥ has two or more dangling
edges, then two of these edges form a match to rule 18 iBy Lemma 3.3, the number of
matches irG which containss is at mosk. Hence the number of disturbed matches is at most
k times the number of matches to rules 19 and 2GinThis means that we can derive the
following upper bound fofMgp)|.

IMsp| = [{non-disturbed matchés+- |{disturbed matchg$
< |{matches to rules 1 — 38+ k- |{matches to rules 19 and R0
<KkM|

Furthermore|D-7| < 2|M| and|D;| < [V(B)| < |E(B)|. Hencem = |E(B)|+ |D1| + |Dx2| <
2|E(B)|+2/M| < 278Mgp| +2|M| < 278 k+1)|M|, so the lemma holds witky = 278 k+ 1).
0

In the following discussion, we denote for each pseudo bRBkhe set of matches iRB
by Mpg. A match inMpg is either a match ir, in which case it is called aon-disturbed
match, or it is not a match i, in which case it is called disturbedmatch. The set of
non-disturbed matches Mpg is denoted bWIB%, and the set of disturbed matcheshipg
is denoted byMd,. Note thatM34 C M. The union over all pseudo blocks bf34 (Mdp) is
denoted byM2 (M3).

The only matches ifs which involve two or more pseudo blocks may be matches to rules 1
or 19: both can involve only two pseudo blocks. Mt denote the set of matches@which
involve two pseudo blocks. Note thist = MU Mp.

Lemma 3.4 implies the following result.

Corollary 3.1. For each pseudo block PEE (PB)| < ko|Mpg|.

This implies thatE| < ko|M| = ko|M29| + ko|MZ|. If we prove thaiMd| < k|M| for somek,
then the proof of the main result of this section is finished. We prove this by accounting each
disturbed match to either a non-disturbed match or a matéfyjrsuch that each match m
has at most a constant number of disturbed matches accounted to it.
Consider a disturbed matet in Md;. Then there is a strong cut vertexn PB for which
either

e Vis an inner vertex o,

e H is a match to rule 20 andis a terminal ofH, v has degree at most eight BB andv
has degree more than eight@ or

11

¢ H is a match to one of the rules 3 — A8is a terminal ofH, v has degree at most seven
in PB, andv has degree more than sever@n

If one of these cases holds for a strong cut vextend a disturbed matcH, we say thaw
disturbs H

Lemma 3.5. Each strong cut vertex disturbs at most k matches in each pseudo block it is
contained in.

Proof. Let PBbe a pseudo block and lebe a strong cut vertex iBB. LetH be a match that
is disturbed by. Note thatv has degree at most eightB. Hence, by Lemma 3.3, there are
at mostk matches irPB which containv. This means that disturbs at most matches. O

We divide the pseudo blocks & into different classes, which correspond to the type of
pseudo block that they are contained in. After that, we give for each class an upper bound on
the number of edges in this class with respect to the number of matci&sTiherefore, we
first construct gseudo block tree E (N, F) as follows.

N=PBUS
F={{vPB}|veSAPBePB AveV(PB)}

HenceT contains as its vertices the pseudo blocks and strong cut verti€esaofd there is an
edge between two vertices Thif and only if one of them is a cut vertex the other one is a
pseudo blockPB, andv is contained inPB. Note that the degree of a strong cut vertexiin
equals the number of pseudo blocks it is contained in, and the degree of a pseudo Hlock in
equals the number of strong cut vertices it contains. We call a pseudo bttezikee d pseudo
block if its corresponding node itN has degreal in T. A degree one pseudo block is also
called a leaf pseudo block. Note that each leaf pseudo block has at least two edges (if it had
only one edge, then it would be a dangling edge of one of the blocks it shares a vertex with).
We partition the seP B of pseudo blocks into four set®:By, PB4, PB, andPB-3. For
i =0,1,2, PB; is the set of degreepseudo blocks. The s€tB 3 is the set of all degred
pseudo blocks witld > 3.

Degree zero pseudo blocks. A degree zero pseudo block has no disturbed matches, as it has
no strong cut vertices.

Degree one pseudo blocks. As a degree one pseudo block contains only one strong cut
vertex, it has at modt disturbed matches. It suffices to show that each such block contains

at least one non-disturbed match: each disturbed match can be accounted to a non-disturbed
match such that at moktdisturbed matches are accounted to each non-disturbed match in a
degree one pseudo block.

Lemma 3.6.Each degree one pseudo block contains at least one non-disturbed match.

12

Proof. Let PBbe a leaf pseudo block, l&tdenote the strong cut vertex RB. We show that
IMB4| > 1. If the underlying block oPBis an edges, then the end point afwhich is notx has
at least one dangling edge, and hence there is at least one match to rule 19 or 20. This match is
not disturbed by, so|Mpg| > 1.
Suppose the underlying blod& of PB is non-trivial. Note thatx € V(B). Lety be a
neighbor ofx in B. By Lemma 9 from [13](B, x,y) is series parallel and hence it has at least
one match to rules 1 or 2 which does not hawa y as inner vertex. This means tHaB has
at least one match to rule 1, 2, 19 or 20 which does not kasan inner vertex, and hence is
not disturbed irG. Hence|MB3| > 1. m

Degree two pseudo blocks. Consider the sd® B,. Note that each degree two pseudo block
contains at mostkdisturbed matches.

We splitPB, in two partsPBJt andPBJ. The first set contains all degree two pseudo
blocks of which the underlying block is non-trivial, and the second set contains all other degree
two pseudo blocks (i.e. the degree two pseudo blocks of which the underlying block is trivial).

First consider the degree two pseudo block® Qt. It suffices to show that each such
pseudo block contains at least one non-disturbed match: then we can account each disturbed
match to such a non-disturbed match.

Lemma 3.7. Each degree two pseudo block BB’ Bgt contains at least one non-disturbed
match.

Proof. The idea of the proof is the following: if a degree two pseudo block contains no non-
disturbed matches to one of the rules 1 — 20, then it must contain a match to one of the rules
21 — 23. The complete proof consists of a long and tedious case analysis, which we omit here
(see [11] for the complete proof). O

Next consider the pseudo blocksRB}. Let PBe PB.. If PB contains a non-disturbed
match, then the disturbed matches can be accounted to this match and we are done.

SupposePB contains no non-disturbed match. TheB consists of one edge= {u,v}
which is the underlying block, with at most one dangling edge at ba@thdv. Note that both
u andv are strong cut vertices with degree at least two.

If uorvis a strong cut vertex with degree three or more, then we can use Lemmas 2.3
and 3.6 and account all disturbed matche®Bito a non-disturbed match in a leaf pseudo
block in such a way that each such non-disturbed match has at fnd&térbed matches of
pseudo blocks likéB accounted to it.

Supposeal andv are strong cut vertices with degree two. Suppo#&econtained in another
pseudo blockPB. If PB is a degree two pseudo block of the same typ®Bgi.e. PB is
a degree two pseudo block of which both strong cut vertices have degree twolR Breerd
PB' together contain a match to one of the rules 1, 19 or 20, and we can account the disturbed
matches inPB (and PB') to this match. This match has at most @f disturbed matches of
pseudo blocks likéB accounted to it.

If PB'is not of the same type, then a detailed case analysis, based on the type of pseudo
block PB' is, shows that the disturbed matchesRB can be accounted to a non-disturbed

13

match in another pseudo block, such that each such non-disturbed match has at most a constant
number of disturbed matches accounted to it. We do not give the full details here; they can be
found in [11].

Degree > 3 pseudo blocks. Letd > 3 and letPB be a degrea@ pseudo block. Note that

the underlying blockB of PB is non-trivial. By Lemma 3.5, there are at maistk disturbed
matches irPB. Lemma 2.3 shows that the sum over all degrees of the pseudo bloes.ig

is at most three times the number of leaf pseudo blocks. By Lemma 3.6, each leaf pseudo block
contains at least one matchlih Hence we can account each disturbed match in a degfee
pseudo block to a non-disturbed match in a leaf pseudo block such that each such non-disturbed
match has at mostk3listurbed matches in degree3 pseudo blocks accounted to it.

We have now shown that each disturbed matcMf can be accounted to either a non-
disturbed match iMp3 or a match inM,, such that each match M = M3 UM, has at most
a constant number of disturbed matches accounted to it. This proves the following result.

Lemma 3.8. There is a constant & 0, such that each connect&dlabeled graph G= (V,E)
with treewidth at most two anldE| > 1 contains at least|&| matches.

3.3 A Lower Bound on the Number of Enabled Matches

In this section we show that, in each conne@®ddbeled graplt of treewidth at most two with

at least one edge, a number of at lea&t(G)| matches to rules iRy, can be found irO(1)

time with O(|E(G)|) processors. This is done in the same way as for series parallel graphs in
Section 4.3 of [8]; only rule 19 gives extra complications.

The finding of the rules is done as follows. Given an edgecan easily be checked
whethere can occur in an application of one of the rules 1, 3 — 18 or 20 — 23: follow all paths
of length at most eight frore which visit only vertices of degree at most eight (except for the
last vertex of a path). For rules 2 and 19, not all matches are found. Instead, for rule 2, every
edgee = {u,v} searches in the adjacency listswéndv for all edges that have distance at
most ten teein this list. Edgee proposes an application of rule 2 if one of the edges it found
also has end pointsandv (see also [8]). For rule 19, every edge- {u,v} of which end point
u has degree one searches in the adjacency ligfaf all edges which have distance at most
ten toein this list. The edge proposes an application of rule 19 if it finds an edge {v,w}
for whichw has degree one. (Adjacency lists are assumed to be cyclic.)

Each reduction found in this way is said to éeabled We now show thaf)(|E|) re-
ductions are enabled. The proof is similar to, but more complicated than the proof for series
parallel graphs.

Let G be aB-labeled graplG = (V, E) given by some adjacency list representation. Recall
from [8] that an edgeis bad if it has a parallel edge, but all its parallel edges have distance at
least 21 in the adjacency lists of the end points.of

A dangling edgeeis called abad dangling edgé it is incident with a vertexv that has two
or more dangling edges, but in the adjacency list,adhese dangling edges have distance at
least 21 toe. Note that an edge is bad if and only if it occurs in a match to rule 2, but not in an

14

enabled match to rule 2. A dangling edge is bad if and only if it occurs in a match to rule 19,
but not in a enabled match to rule 19.

Lemma 3.9. Let G= (V,E) be aB-labeled graph of treewidth at most two, given by some
adjacency list representation. The graph G has at njigst5 bad edges and at mo#E|/10
bad dangling edges.

Proof. For the bound on the bad edges, see [8], Lemma 4.6. Consider the bad dangling edges.
Letv e V(G). If the adjacency list off has length at most 20, thendoes not have any bad
dangling edges. If the adjacency listwhas length more than 20, then each 20 successive
entries in the (cyclic) adjacency list contain at most one bad dangling edge. Hence there are at
most degv) /20 bad dangling edges in the adjacency lisv.off we sum over all vertices, we

get that the number of bad dangling edges is at rtfgtlL0. O

Lemma 3.10. There is a constant’c> 0 for which each connecteB-labeled graph G of
treewidth at most two with at least one edge has at |€4B(&)| enabled matches.

Proof. We use the same idea as in the proof of Lemma 4.7 of [8].G.et (V,E) be aB-
labeled graph with at least one edge. het |V| and letm = |E|. Letdedenote the number of
dangling edges d& of which one end point has at least two dangling edges, i.e. the dangling
edges which occur in a match to rule 19. We distinguish between three cases:

1. m>4n,
2. de>m/5, and
3. m<4nandde< m/5.

Case 1. Supposen > 4n. As G has treewidth at most two, the underlying simple graph has
at most 2 edges. This means that at least2n edges are parallel to another edge. At most
m/5 of these are bad edges, hence at leasn<m/5 > 4m/5<m/2 = 3m/10 edges occur

in an enabled match to rule 2. This means that there are at legl@03znabled matches to
rule 2inG.

Case 2. Suppose thade > m/5. Of thededangling edges which occur in a match to rule 19,
at mostm/10 are bad. Hence at lead#<m/10 > m/10 of these dangling edges occur in a
enabled match to rule 19. This means that there are atri®@€ enabled matches to rule 19
in G.

Case 3. Suppose that < 4n andde < m/5. If G is a star, therG contains at leastn/20
enabled matches to rule 19.

Supposes is not a star. For eache V (G), remove all dangling edges adjacent/texcept
one (if there is at least one). Furthermore, for each pairof vertices inG which have two
or more parallel edges between them, do the followingu #ndv both have two or more
neighbors, then remove all edges except one betweenlv. If u orv has only one neighbor,
then remove all but two edges betwegmndv. Let G’ denote the resulting graph, and let
n = V(G| m = E(G)).

15

Note that ifG' contains a match to rule 2, then one of the terminals of this match has degree
two, and hence this match is enabled. Furthern@®réas no matches to rule 19. Hence all
matches are enabled.

We express’ andnt in terms ofm: n > n<de> m/4<m/5=m/20. AsG is not a star,
it follows thatn' > 2. Furthermore@' is connected, and hencé > n' <1 > ' /2 > m/40.

Note thatm' > 1 (sinceG is not a star). By Lemma 3.&' contains at least-m' > c¢/40-m
matches. LeM denote the set of all matches@i. Each of these matches is either an enabled
match inG, or it is not a enabled match 8. We call the first set the set of non-disturbed
matches, denoted bMg4, and the second the set of disturbed matches, denotédiby et
Mnew denote the set of enabled matche&iwhich are not inG'. Note that the set of enabled
matches irG is Mpg+ Mnpew.

We account each match My to a match irMnq+ Mnew, Such that each match has at most a
constant number of disturbed matches accounted to it. By the fa¢gMhdt- [Mg| > c/40-m,
this proves the lemma.

Consider a matchl € My. If H is a match to rule 2, then the terminabf H which has
degree two irG’' has degree more than two@ If H is a match to one of the other rules, then
eitherH contains an inner vertexwhich has dangling edges & or which is incident with
parallel edges i%, or v is a terminal which has degree< 8 in G/, but has degree more than
din G. In all cases, there is a vertexc V(H) which has degred < 8 in G’ and has degree
more thard in G.

Sincev has larger degree i@ than inG/, it must be the case that &, v has two or more
dangling edges, aris incident with parallel edges. If the adjacency lisvdfas length at most
20, then there are two edges incident wittvhich form a enabled match to rule 2 or rule 19.
Let Hy denote this match, note thidy € MnewUMpg. If the adjacency list of has length more
than 20, then consider a sublist of length 20 of this list. If this sublist contains two or more
dangling edges, then two of these form a enabled match to rule @9dand hence this match
is in Mpew. LetHy, denote this match. If the sublist contains at most one dangling edge, then 20
or 21 of the places in this sublist contain an eddetweenv and a neighbor of. Asv has at
most eight distinct neighbors, there must be at least two edges with the same end points in the
sublist. Two of these edges correspond to a enabled match to rulé.2diet H, again denote
this match, and note thét, € MpewU Mpg.

Note that, as/ has degree at most eight @, it is contained in at most matches inM
and hence My (Lemma 3.3). For each mat¢h in My, accountH to a matchH, of a vertex
v € V(H) which has degred < 8 in G’ and degree more thahin G. In this way, each match
to rule 19 inMnewU Mpg has at mosk matches accounted to it, and each match to rule 2
in MnhewU Mpg has at most R matches accounted to it (at mdsfor each end point). This
completes the proof. O

3.4 Constructing a Tree Decomposition

In this section we show how, in the second phase of the algorithm, a tree decomposition of
the current graph is maintained in each construction round. The tree decomposition that is
maintained is of a special form, in order to make the constructions easier.

16

Definition 3.1 (Special Tree Decomposition)et G= (V, E) be a connecte@-labeled graph
with treewidth at most two. Let TB (T,X) be a tree decomposition of width two of G with
T=(I,F)andX ={X |i€l}. Then TD is aspecial tree decompositiaf G if it satisfies the
following conditions.

1. For each vertex & V there is a unique node i with; % {u}, called the node associated
with u.

2. Each edge € E with end points u and v has a node i with=X{u, v} associated with it.
Distinct edges have distinct associated nodes.

3. Letu be a cut vertex of G, let i denote the node associated with u. Then each component
of T[I «{i}] contains vertices of at most one component pf &{u}|.

4. Let e be a bridge of G with end points u and v and let i be the node associated with
e. Then each component ofl =={i}] contains vertices of exactly one component of
(V,E <{e}).

5. Letuv e V. If there is an edge between u and v, dudv} is a minimal xy-separator
for some vertices x and y, then there is a node i associated with some edge between u
and v such that x and y occur in different components[b&=Ki}]. ({u,v} is a minimal
X,y-separator if x and y are in different components ¢¥ &>{u,v}|, but in the same
component of ¢/ <{u}| and of GV <{v}].)

6. For each two adjacent nodesjic I, | |Xi| <|X|| = 1, unless if X= X; = {u,v} and i
and j are nodes associated with different edges between u and v.

7. For each yv € V, the nodes associated with edges between u and v induce a subtree of
T.

We use the following data structure for storing a special tree decomposition during the
second phase of the algorithm. We store a list containing all nodes of the tree decomposition.
Each node has an adjacency list which contains an entry for each neighkiorAaf entry for
neighborj in the adjacency list of contains a pointer tg, the contents; of node j, and a
pointer to the entry of in the adjacency list of. Furthermore, for each vertex and edge in the
graph, we keep a pointer to the node associated with it.

Phase two of the algorithm starts with a graphwith one vertexv. It simply constructs a
tree decomposition of one node which containdNote that this tree decomposition satisfies
conditions 1 — 7, and hence is a special tree decomposition.

Suppose at some construction round in the algorithm, we are gigelalaeled graplG
and a special tree decompositdl = (T,X) of G. Suppose some processor has to undo rule
r = (Hy,Hz) € Ry, and has a matcks, = (V», E,, X) to H, which is replaced by a match
Gy = (V1,E1,X) toH;. LetT =(I,F) andX = {X | i € I}. The construction algorithm that
is executed to locally modify the tree decomposition consists of 23 steps which are executed
consecutively. Each round corresponds to a rul®p: if the processor has to undo rule
numberr, then it is only active in step. We describe the algorithm per step.

Step 1. If r is not rule 1, then the algorithm is idle in this step. Supposerule 1, and
supposé/,; = {a,b}, E; = {e} andV;, = {a,b,c}. See part | of Figure 3 (labelings of edges

17

are not shown). Letand j be the nodes of D associated witla andb, and letk be the node
associated witle.

I G, ao—&% ob — ao—e—ob G

OGO BGOG

" @ —

Figure 3: The construction for rule 1.

If eis a bridge inG, thena andb are cut vertices. The nodeassociated witle separates
TD in different components corresponding to the componen@' ef (V,E <{e}). Note that
G’ has exactly two components, one containéngnd one containing. ¢ From the conditions
of Defiition 4 we can derive that D contains a subtree as shown in the left-hand side of part I
of Figure 3. We replace this by the subtree shown in the right-hand side of part Il (the light-
gray parts of the tree decompositions are the parts that are involved in the modification). Note
that the new edges are bridges ani@ a cut vertex. Hence the new tree decomposition is a
special tree decomposition.

Consider the case thatis not a bridge. Then nodedoes not necessarily havand j as
its only neighbors. If this is indeed not the case, we add an extra Inaseew neighbor of
k, with X; = {a,b,c}, and we add some other nodes to fulfil conditions 1 — 7. See part Il of
Figure 3. Note that the new tree decomposition is indeed a special tree decompasision (
not a cut vertex, the new edges are not bridges, and thdaetfsand{c,b} are not minimal
X, y-separators).

Hence the following is done. If nodehas as its only neighbors nodandk, the construci-
ton of part Il of Figure 3 is applied. The new nodes are added, the conteKisisothanged,
and in the adjacency lists o&ind |, the entries for nodk are modified. Furthermore, the nodes
with contents{a,c}, {b,c} and{b} are the nodes associated with the edge betveemmdc,
the edge betwedmandc, and vertexc, respectively.

If k does not have onlyand j as its neighbors, the algorithm applies the construction of
part Il of Figure 3. This can be done by adding the new nodes with their adjacency lists, and
adding an entry for the new node adjacenktat the end of the adjacency list kf The new
nodes are the nodes associated with the new edges and vertices.

It can be seen that this construction is correct, and that it t@k&stime on one processor.
Furthermore, the construction does not interfere with other constructions for rule 1 which take
place simultaneously: edgds not involved in any other reduction at the same time, and hence
nodek is not involved in any other reductions that are performed in step 1. Noded |
may be involved in other applications of rule 1, however, only the contents of entries in the
adjacency list of and j are modified, and this can be done in different places of the adjacency
list at the same time without concurrent reading or writing.

18

Step 2. If r is not rule 2, then the algorithm is idle in this step. Supposerule 2. The
construction is very simple. Part | of Figure 4 sha&sandG;. Leti be the node associated
with e. Then we can apply the construction of part Il of Figure 4. The newly added node is the
node associated with edge Note that condition 7 is satisfied, and hefid®@ is a special tree
decomposition. Itis easy to see that this construction can be d@@ jriime and that it does

not interfere with other constructions in step 2.

| Gz ao—%—ob — ao%}obGl

I —

Figure 4: The construction for rule 2.

Step 3. Suppose is rule 3 (otherwise, the algorithm is idle in this step). GatandG, be

as depicted in part | of Figure 5. Lgtj andk be the nodes associated to edggee, andes,
respectively. By a detailed analysis, using the properties described in Definition 3.1, it can be
shown thafl contains a subtree as depicted in the left-hand side of part Il of Figure 5. The
possible adjacencies of the nodes associatedaylthc, andd are denoted by dashed lines.

Figure 5: The construction for rule 3. Dashed lines denote possible adjacencies.

We replace a part of this subtree by a new subtree, as is depicted in the right-hand side
of part Il of Figure 5. The dashed lines again denote possible adjacencies, which are the
same as in the left-hand side. Note that the new tree decomposition satisfies conditions 1 —
7 of Definition 3.1, and hence it is a special tree decomposition. It is easy to see that this
construction can be done @(1) time, and that the construction does not interfere with other
constructions for rule 3. (Note that there are no write conflicts, as each edge that is involved in
this reduction is not involved in another simultaneous reduction.)

Steps 4 — 18. The constructions for rules 4 — 18 are similar to the construction for rule 3, so
we do not describe them. The rules of which the right-hand side contains a chordless four-cycle

19

are a bit different, as there are two possibilities for the structure of the tree decomposition. As
an example, we depict the two possible constructions for rule 6 in Figure 6.

f f g

b d b d
e N o N -
a c a o

Figure 6: The construction for rule 6. Dashed lines denote possible adjacencies.

Step 19. Suppose is rule 19. LetG; andG; be as depicted in part | of Figure 7 (labelings of
edges are not shown). Note that eégea bridge, and hence the tree decomposition contains a
subtree as depicted in the left-hand side of part Il of Figure 7 (see also step 1). We replace this
subtree by the subtree depicted in the right-hand side of part Il of Figure 7. Note the resulting
tree decomposition is special.

c
I G2 ap—Ct eb —> ao<: Gy
b

@9~2)

I OaCaONEAN O
@)—(o)

Figure 7: The construction for rule 19.

In order to make the construction non-interfering, it is done as follows. We make two new
nodes with content§a, c} and{c}, respectively, which are adjacent to each other. Furthermore,
we make a new entry in the adjacency list of the node associatecawithe new entry is for
the node associated with edfge c}. It is added between the entry for the node associated with
edgee and its right neighbor in the list. In this way, no two constructions for rule 19 try to
modify the same entry of the adjacency list of node

20

Step 20. Suppose is rule 20. LeiG; andG; be as depicted in part | of Figure 8. Liedenote
the node associated with We apply the construction depicted in part Il of Figure 8. Note that
the resulting tree decomposition is special.

| G ao — ao——eb &

I @—) (a)—(ab—(b)

! J

Figure 8: The construction for rule 20.

In order to make the algorithm non-interfering in step 20, the construction is as follows.
Let H be aB-labeled terminal graph such that= G, & H. Note that, inG; & H, vertexa has
degree at most eight. We divide step 20 into eight substeps, which are executed subsequently.
First, edgee computes its rank in the adjacency list of in G; & H. Then, in substef, the
construction is applied by adding new nodeand! with X; = {a,b} andX, = {a} which are
adjacent to each other, and makipgdjacent ta: an extra entry for nod¢is added at the end
of the adjacency list of nodie In each substep, at most one such construction that involves
vertexa is applied, and hence the algorithm is non-interfering and ruX i time.

Steps 21 — 23. Rules 21, 22 and 23 are very similar to each other. We depict the construction
only for rule 21 in Figure 9. It is easy to see that the new tree decomposition is special, and
that the construction can be donelx1) time and is non-interfering.

Figure 9: The construction for rule 21.

4 Additional Results

We can use the algorithm of Section 3 for the same problem, but without requiring that the input
graph is connected. To this end, we use a technique of [9]: from each connected component
of the graph we select one vertex. Then we add a new dummy vertex to the graph, and make
all selected vertices adjacent to this dummy vertex. The new graph is connected, and has
treewidth at most two if and only if the original graph has treewidth at most two. Now we

21

solve the problem on the new connected graph with the reduction system given in the previous
section. After that, we remove the dummy vertex from all nodes it occurs in, and the resulting
tree decomposition is a tree decomposition of width at most two of the input graph. For more
details, see [9].

Theorem 4.1. There is a parallel algorithm which checks whether a givedabeled) graph

G has treewidth at most two, and if so, returns a tree decomposition of width at most two of
G. The algorithm uses @+ m) operations and space, and(log(n+ m)) time on a CRCW
PRAM, or Glog(n+ m)log*(n+m)) time on an EREW PRAM.

If the input graphG = (V,E) is simple, then we can use the same preprocessing step as
described in [8] (Section 5) for series parallel graphs. This results in the following.

Theorem 4.2. There is a parallel algorithm which checks whether a given simple graph G
has treewidth at most two, and if so, returns a tree decomposition of width at most two of
G. The algorithm uses @) operations and space, and(ldgn) time on a CRCW PRAM, or
O(lognlog® n) time on an EREW PRAM.

Many problems can be solved @(log p) time, andO(p) operations and space, when the
input graph is given together with a tree decomposition of bounded treewidth consisting of
p nodes. These include all problems that can be formulated in monadic second order logic
and its extensions, all problems that are ‘finite state’, etc. A large number of interesting and
important graph problems can be dealt in this way, includingRGMATIC NUMBER, MAX -

IMUM CLIQUE, MAXIMUM INDEPENDENT SET, HAMILTONIAN CIRCUIT, STEINER TREE,
LONGEST PATH, etc. See [3, 10, 9]. With the results of this paper, this implies that we can
solve the problems described above on graphs of treewidth at most two with the same resource
bounds as the algorithm for finding a tree decomposition of width two.

One of the problems which can be solved if a tree decomposition of bounded width of the
input graph is given, is the pathwidth problem: given a gr&and an integer constakf
check whethe6 has pathwidth at mogt and if so, find a path decomposition of width at most
k of the graph [9]. Hence we have the following result.

Theorem 4.3. Let k> 1 be an integer constant. There is a parallel algorithm which checks
whether a given simple graph G has treewidth at most two and pathwidth at most k, and if so,
returns a path decomposition of width at most k of G. The algorithm ugsesdperations and
space, and Qogn) time on a CRCW PRAM, or @gnlog® n) time on an EREW PRAM.

Note that the theorem also holds for multigraphs, if we replabg n+ min the time and
operations bounds. As graphs of pathwidth at most two also have treewidth at most two, the
theorem implies that we can find a path decomposition of width at most two of a graph, if one
exists, within the same resource bounds.

Acknowledgement

We like to thank Torben Hagerup for help and useful discussions.

22

References

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]
[13]

K. R. Abrahamson, N. Dadoun, D. G. Kirkpatrick, and T. Przytycka. A simple parallel
tree contraction algorithml. Algorithms 10:287-302, 1989.

S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese. An algebraic theory of graph
reduction.J. ACM 40:1134-1164, 1993.

S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable graphs.
Algorithms 12:308-340, 1991.

S. Arnborg and A. Proskurowski. Characterization and recognition of partial 3-trees.
SIAM J. Alg. Disc. Meth.7:305-314, 1986.

H. L. Bodlaender. NC-algorithms for graphs with small treewidth. In J. van Leeuwen,
editor, Proceedings 14th International Workshop on Graph-Theoretic Concepts in Com-
puter Science WG'8®ages 1-10. Springer Verlag, Lecture Notes in Computer Science,
vol. 344, 1988.

H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput.25:1305-1317, 1996.

H. L. Bodlaender and B. de Fluiter. Reduction algorithms for constructing solutions
in graphs with small treewidth. In J.-Y. Cai and C. K. Wong, editéh®ceedings 2nd
Annual International Conference on Computing and Combinatorics, COCOQpgs
199-208. Springer Verlag, Lecture Notes in Computer Science, vol. 1090, 1996.

H. L. Bodlaender and B. de Fluiter. Parallel algorithms for series parallel graphs. Techni-
cal Report UU-CS-1997-21, Dept. of Computer Science, Utrecht University, Utrecht, the
Netherlands, 1997.

H. L. Bodlaender and T. Hagerup. Parallel algorithms with optimal speedup for bounded
treewidth. In Z. RI6p and F. @Ctseq, editorsProceedings 22nd International Col-
loquium on Automata, Languages and Programmipgges 268-279, Berlin, 1995.
Springer-Verlag, Lecture Notes in Computer Science 944. To appear in SIAM J. Com-
puting, 1997.

B. Courcelle. The monadic second-order logic of graphs I: Recognizable sets of finite
graphs.Information and Computatiqrg5:12—75, 1990.

B. de Fluiter.Algorithms for Graphs of Small TreewidtRhD thesis, Utrecht University,
1997.

R. J. Duffin. Topology of series-parallel grapldsMath. Anal. Appl.10:303—-318, 1965.

D. Eppstein. Parallel recognition of series parallel grajfermation and Computatign
98:41-55, 1992.

23

[14] D. Granot and D. Skorin-Kapov. NC algorithms for recognizing partial 2-trees and 3-
trees.SIAM J. Disc. Meth.4(3):342-354, 1991.

[15] J. Lagergren. Efficient parallel algorithms for graphs of bounded tree-widittAlgo-
rithms 20:20-44, 1996.

[16] J. Matowsek and R. Thomas. Algorithms finding tree-decompositions of grapisgo-
rithms 12:1-22, 1991.

[17] D. P. Sanders. On linear recognition of tree-width at most f@&IAM J. Disc. Meth.
9(1):101-117, 1996.

24

