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Abstract

In this paper we present a parallel algorithm that decides whether a graphG has
treewidth at most two, and if so, construct a tree decomposition or path decomposition
of minimum width ofG. The algorithm usesO(n) operations andO(lognlog�n) time
on an EREW PRAM, orO(logn) time on a CRCW PRAM. The algorithm makes use of
the resemblance between series parallel graphs and partial two-trees. It is a (non-trivial)
extension of the parallel algorithm for series parallel graphs that is presented in [8].

1 Introduction

In this paper we consider the problem of finding a tree decomposition of width at most two of
a graph, if one exists.

Many important graph classes have bounded treewidth. Given a tree decomposition of
bounded width of a graph, many (even NP-hard) problems can be solved sequentially in linear
time, and in parallel inO(logn) time with O(n) operations on an EREW PRAM, wheren
denotes the number of vertices of the graph (see e.g. [5, 9]) (the number of operations that an
algorithm uses is the product of the number of processors and the time it uses). Therefore, the
problem of finding a tree decomposition of bounded width of a graph is well studied.

Sequentially, there exist linear time algorithms for each fixedk that, when given a graph
G, decide whether the treewidth ofG is at mostk, and if so, build a tree decomposition of
minimum width forG. Practical algorithms exist fork= 1, 2, 3, and 4 [4, 16, 17]; in [6], linear
time algorithms are given for each fixedk.

�This research was carried out while the second author was working in the Department of Computer Science
at Utrecht University. It was partially supported by the Foundation for Computer Science (S.I.O.N) of the Nether-
lands Organization for Scientific Research (N.W.O.) and by ESPRIT Long Term Research Project 20244 (project
ALCOM IT: Algorithms and Complexity in Information Technology).

1



The best known parallel algorithm forrecognizinggraphs of treewidth at mostk was found
by Bodlaender and Hagerup [9]. It usesO(n) operations, withO(logn) time on a CRCW
PRAM or O(lognlog�n) time on an EREW PRAM. They also gave a parallel algorithm for
building a tree decomposition of width at mostk, which usesO(n) operations andO(log2n)
time on a CRCW or EREW PRAM. Related, earlier results can be found e.g. in [14, 15].

For treewidth one there is a more efficient algorithm than the one of [9]. A connected
simple graph has treewidth one if and only if it is a tree, and a tree can be recognized by
using a tree contraction algorithm. This takesO(logn) time withO(n) operations on an EREW
PRAM [1]. One can easily construct a tree decomposition of a tree inO(1) time with O(n)
operations on an EREW PRAM. The algorithm can be modified such that it can be used on
input graphs which are not necessarily connected (see also Section 4).

In this paper, we improve on the algorithm of [9] for treewidth two. Our algorithm con-
structs a tree decomposition of width at most two of a graph, if the graph has treewidth at
most two. It usesO(n) operations,O(logn) time on a CRCW PRAM andO(lognlog�n)
time on an EREW PRAM. We also obtain an algorithm solving the problem on multigraphs,
which usesO(n+m) operations withO(log(n+m) log�(n+m)) time on an EREW PRAM and
O(log(n+m)) time on a CRCW PRAM. From these results and a result from [9] we imme-
diately obtain parallel algorithms for the problem of finding a path decomposition of width at
most two of a graph, if it has pathwidth at most two, both for the case of simple graphs and
multigraphs. These algorithms run in the same time and resource bounds as the algorithms for
treewidth two.

A central technique in this paper isgraph reduction, introduced in [2]. In [7] and [9] it
is shown how the technique can be used to obtain parallel algorithms for graphs of bounded
treewidth. In [8] this technique is used for checking whether a given graph is series parallel,
and if so, finding a decomposition of the graph in series and parallel compositions. Our al-
gorithm for treewidth two uses the resemblance between series parallel graphs and graphs of
treewidth two: we show that a graph has treewidth at most two if and only if its biconnected
components are series parallel. We modify the reduction algorithm that is presented in [8] for
recognizing series parallel graphs in order to obtain an algorithm for graphs of treewidth at
most two: we add extra reduction rules and show how a tree decomposition of width at most
two is constructed. (Also, the counting arguments needed for showing the time bounds for this
algorithm are different from those of the algorithm in [8].) It is interesting to note that the
sequential algorithm to recognize graphs of treewidth two [4, 16] is also based upon a (much
smaller) set of graph reductions.

This paper is organized as follows. In Section 2 we start with definitions and preliminary
results. In Section 3 we give a reduction algorithm which checks whether a given graph has
treewidth at most two, and if so, finds a tree decomposition of width at most two of the graph.
We give this algorithm for a special type of input graph, namely aconnectedB-labeled multi-
graph. Finally in Section 4, we show how this algorithm can be used for general multigraphs
and simple graphs, and we give some additional results.
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2 Preliminaries

Unless stated otherwise, graphs considered are undirected, may have parallel edges but have
no self-loops. Graphs without parallel edges are called simple graphs.

A biconnected component of a graph is also called ablock. A block is trivial if it consists
of one edge. All other blocks arenon-trivial.

Definition 2.1 (Treewidth). Let G= (V;E) be a graph. Atree decompositionTD of G is a
pair (T;X ), where T= (I ;F) is a tree, andX = fXi j i 2 Ig is a family of subsets of V , one for
each node (vertex) of T , such that

�
S

i2I Xi =V,

� for every edgefv;wg 2 E, there is an i2 I with v2 Xi and w2 Xi, and

� for all i ; j;k2 I, if j is on the path from i to k in T , then Xi \Xk � Xj.

Thewidth of a tree decomposition((I ;F);fXi j i 2 Ig) is maxi2I jXij �1. Thetreewidthof a
graph G is the minimum width over all possible tree decompositions of G.

A graphG= (V;E) is said to be aminorof a graphH = (W;F), if a graph isomorphic toG
can be obtained fromH by a series of vertex deletions, edge deletions, and edge contractions.

Lemma 2.1. If the treewidth of G is at most two, then G does not contain K4 (the complete
graph on four vertices) as a minor.

A source-sink labeled graphis a triple(G;s; t), whereG is a graph ands andt are distinct
vertices ofG, called thesourceandsinkof the graph, respectively.

Theseries compositionof two or more source-sink labeled graphs is the operation which
takesr � 2 source-sink labeled graphs(G1;s1; t1); : : : ;(Gr ;sr ; tr) and returns a new source-sink
labeled graph(G;s; t) that is obtained by taking the disjoint union ofG1; : : : ;Gr , identifying
si+1 with ti for all i, 1� i < r, and lettings= s1 andt = tr .

Theparallel compositionof two or more source-sink labeled graphs is the operation which
takesr � 2 source-sink labeled graphs(G1;s1; t1); : : : ;(Gr ;sr ; tr) and returns a new source-sink
labeled graph(G;s; t) that is obtained by taking the disjoint union ofG1; : : : ;Gr , identifying all
verticess1; : : : ;sr into the new sources, and identifying all verticest1; : : : tr into the new sinkt.

A source-sink labeled graph is aseries parallel graph, if and only if it is a single edge, or
it is obtained by a series or parallel composition ofr � 2 series parallel graphs. A graphG is
series parallel, if there are verticess, t, such that the source-sink labeled graph(G;s; t) is series
parallel.

Lemma 2.2. A graph G has treewidth at most two if and only if each block of G is series
parallel.

Proof. SupposeG has treewidth at most two. LetG0 be a block ofG (G0 has treewidth at most
two). We show by induction onjV(G0)j+ jE(G0)j thatG0 is series parallel.

If jV(G0)j � 3, then it clearly holds. SupposejV(G0)j > 3, note thatjE(G0)j � jV(G0)j. If
G0 contains parallel edges, then apply a parallel reduction onG0. The graph obtained this way
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has treewidth two and is biconnected. By the induction hypothesis, it is series parallel. This
implies thatG0 is series parallel.

SupposeG0 does not contain any parallel edges. LetTD= (T;X ) be a tree decomposition
of width two ofG0 with T = (I ;F) andX = fXi j i 2 Ig. Modify TD by repeating the following
as often as possible. For eachi 2 I , if i has exactly one neighborj 2 I , andXi �Xj , then remove
Xi. Note thatTD is a tree decomposition of width two ofG0, and it has at least two nodes. Let
i 2 I such thati has exactly one neighborj 2 I in T. There is av2 Xi such thatv =2 Xj .

Let v2Xi such thatv =2Xj . Vertexv must have degree two inG0, and bothv’s neighbors are
contained inXi. Apply the series reduction onv and its neighborsu andw. This gives the graph
G00 = (V(G0)�fvg;E(G0)+fu;wg). GraphG00 has treewidth two, since the tree decomposition
obtained from(T;X ) by removing vertexv from nodeXi is a tree decomposition of width two
of G00. Furthermore,G00 is biconnected. By the induction hypothesis,G00 is a series parallel
graph, and thusG0 is also series parallel.

Now suppose each block ofG is series parallel. By Lemma 3.4 of [8], each block ofG has
treewidth at most two, and hence the treewidth ofG is at most two. 2

We briefly describe the notion ofterminal graphsand reduction ruleshere. For a more
detailed description, see Section 2 of [8].

A terminal graphG is a triple(V;E;X) with (V;E) a graph, andX �V a subset ofl � 0
vertices. Vertices inX are calledterminals, and they are numbered from 1 tol . Vertices in
V�X are calledinner vertices. The operation� maps two terminal graphsG andH with the
same numberl of terminals to an ordinary graphG�H, by taking the disjoint union ofG and
H, and then identifying theith terminal ofG with the ith terminal ofH for i = 1; : : : ; l .

Two k-terminal graphsG1 andG2 are said to beisomorphic, if there exists an isomorphism
from G1 to G2 which maps theith terminal ofG1 to theith terminal ofG2 for eachi.

A reduction rule ris an ordered pair(H1;H2), whereH1 andH2 arel -terminal graphs for
somel � 0. A matchto reduction ruler = (H1;H2) in graphG is a terminal graphG1 which is
isomorphic toH1, such that there is a terminal graphG2 with G= G1�G2. An applicationof
r to G is an operation that replacesG of the formG1�G3 by a graphG0 of the formG2�G3,
whereG1 is isomorphic toH1 andG2 is isomorphic toH2. We also say that, inG, G1 is replaced
by G2. An application of a reduction rule is also called areduction.

A reduction rule(H1;H2) is safefor a class of graphsG , if for all terminal graphsH3 with
the same number of terminals asH1 (andH2): H1�H3 2G , H2�H3 2 G .

Let G = (V;E) be a graph. Abridge of G is an edgee2 E for which the graph(V;E�
feg) has more connected components thanG. In order to make the set of reduction rules
conveniently small, we put a labeling on the edges of a graph: each edge in a graph is either
labeled with labelB, or it is not labeled (the labelB stands for ‘bridge’). We call such a graph
a B-labeled graph. We extend the notion of treewidth at most two for graphs to treewidth at
most two forB-labeled graphs.

Definition 2.2. Let G= (V;E) be a connectedB-labeled graph. Let G0 be the underlying
unlabeled graph. The graph G hastreewidth at most twoif and only if G0 has treewidth at most
two and for each edge e2 E, if e has labelB, then e is a bridge of G.

A tree decomposition of width at most twoof G is a tree decomposition TD= (T;X ) of
width at most two of G0 with T = (I ;F) and X = fXi j i 2 Ig, such that for each edge e with
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label B and end points u and v, there is a node i2 I with Xi = fu;vg such that there is no
component in T[I �fig] which contains both u and v.

We can easily prove by induction that aB-labeled graphG has treewidth at most two if and
only if there is a tree decomposition of width at most two ofG.

Note that an edge in a graph is a bridge if and only if the edge is a (trivial) block. Hence
we can derive the following from Lemma 2.2.

Corollary 2.1. Let G be a connectedB-labeled graph. G has treewidth at most two if and only
if each non-trivial block of G has no labeled edges and is series parallel.

We useB-labeled terminal graphs instead of unlabeled ones: aB-labeled terminal graph is
a terminal graph of which edges may have labelB. Two B-labeled terminal graphsG1 andG2

are isomorphic if there is an isomorphism from the underlying unlabeled terminal graph ofG1

to the underlying unlabeled terminal graph ofG2, such that labeled edges inG1 are mapped to
labeled edges inG2 and unlabeled edges inG1 are mapped to unlabeled edges inG2.

Reduction rules consist of pairs ofB-labeled terminal graphs instead of ordinary terminal
graphs.

The following result on trees is used in Section 3.2.

Lemma 2.3.Let H be a tree. Let l(H) denote the number of leaves of H, and let nr(H) denote
the sum of the degrees of all vertices of degree at least three. Then nr(H)� 3l(H).

Proof. We prove this by induction on the numbern of vertices ofH. If n� 2, then clearly
nr(H)� 3l(H).

Supposen > 2. Let v be a leaf ofH, and letw be the only neighbor ofv. Let d denote
the degree ofw in H and note thatd� 2. Furthermore, letH 0 = H[V�fvg]. By the induction
hypothesis,nr(H 0) � 3l(H 0). If d = 2, thenl(H) = l(H 0) andnr(H) = nr(H 0), sonr(H) �
3l(H). If d = 3, thenl(H) = l(H 0)+1 andnr(H) = nr(H 0)+3, and thusnr(H) � 3l(H). If
d� 4, thenl(H) = l(H 0)+1 andnr(H) = nr(H 0)+1, and hence alsonr(H)� 3l(H). 2

3 A Constructive Reduction Algorithm

In this section we give an algorithm for finding a tree decomposition of width at most two of
a connectedB-labeled graph, if one exists. In Section 4 it is shown how this algorithm can be
used for graphs which may be unconnected or for simple graphs.

The structure of the algorithm for connectedB-labeled graphs is the same as the algorithm
for series parallel graphs as presented in Section 4 of [8]: it is aconstructive reduction algo-
rithm. The algorithm consists of two phases: the first phase is the reduction phase, in which the
input graph is reduced to a graph consisting of one vertex, if it has treewidth at most two. The
second phase is the construction phase, in which the reductions are undone in reverse order,
and a tree decomposition of the graph is constructed during the undoing of the reductions. The
algorithm uses a setR tw of reduction rules, which we define later. We briefly describe the basic
idea of the two phases (for more details, see Section 4 of [8]). Suppose aB-labeled graphG is
given.
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Phase 1. The first phase consists of a number of reduction rounds. In each reduction round,
a number of applications of rules fromR tw is carried out simultaneously. In this phase, the
input graphG is reduced to a single vertex if and only ifG has treewidth at most two. IfG
has treewidth more than two, then the algorithms stops. Otherwise, it proceeds with the second
phase.

The setR tw must besafe: for eachr 2 R tw, if a B-labeled graphG0 can be obtained from
a B-labeled graphG by applying r, thenG has treewidth at most two if and only ifG0 has
treewidth at most two. In Section 3.1, we give the setR tw of reduction rules, and we show that
it is safe.

In each reduction round,Ω(jE(G)j) reductions are applied, if the graph has treewidth at
most two. These reductions must be non-interfering: no inner vertex of a subgraph that is
rewritten may occur in another subgraph that is rewritten (see also Section 4 of [8]).

Finding theΩ(jE(G)j) non-interfering matches is done as follows. First, a set ofΩ(jE(G)j)
matches is found. Next a subset ofΩ(jE(G)j) non-interfering reductions is selected from this
set. This is done similar as in [8] with a technique from [9]. Finally, these non-interfering
reductions are carried out simultaneously.

The second and third step are done in the same way as for series parallel graphs (see
also [9]): each reduction in the third round is carried out by a single processor inO(1) time.
To be able to findΩ(jE(G)j) matches sufficiently fast, we need the following two properties of
R tw.

� There isc>0 such that each connectedB-labeled graphG with at least one edge contains
at leastcjE(G)j matches to rules inR tw. This is shown in Section 3.2.

� In each connectedB-labeled graphG with at least one edge, sufficiently many (c0jE(G)j
for somec0 > 0) of these matches can be found inO(1) time withO(jE(G)j) processors.
This is shown in Section 3.3.

Phase one can be carried out inO(logmlog�m) time on an EREW PRAM and inO(logm)
time on a CRCW PRAM, both withO(m) operations (see [8] and [9] for more details).

Phase 2. In the second phase, all reductions are undone in reversed order in the construction
rounds. During the undoing of the reductions, a tree decomposition of width at most two of the
current graph is maintained. Each time a reduction is undone, the tree decomposition is ‘lo-
cally’ modified. When the last construction round is finished, we obtain a tree decomposition
of the input graph.

The undoing of a reduction is carried out by the same processor which carried out the
reduction in phase one. This processor also locally modifies the tree decomposition for this
reduction. Each undo action of a reduction, including the reconstruction of the tree decom-
position, is done inO(1) time by one processor. This implies the phase two can be done in
O(logm) time with O(m) operations on an EREW or CRCW PRAM. In Section 3.4 we de-
scribe in more detail how the construction of the tree decomposition is done.

Phase two can be carried out inO(logm) time withO(m) operations on a CRCW or EREW
PRAM.

Together with the results of Sections 3.1 – 3.4 and the results described in Section 4 of [8],
we obtain the following theorem.
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Theorem 3.1. The following problem can be solved in O(m) operations, and O(logmlog�m)
time on a EREW PRAM, and O(logm) time on a CRCW PRAM: given a connectedB-labeled
graph G, determine whether it is has treewidth at most two, and if so, find a tree decomposition
of width at most two of G.

3.1 A Safe Set of Reduction Rules

The setR tw of reduction rules for treewidth at most two is depicted in Figure 1. It is an exten-
sion of the set of reduction rules for series parallel graphs that is presented in [8] (Section 4.1):
rules 1a and 2 – 18 form the set of rules for series parallel graphs. Rule 1 consists of two parts,
which distinguish between the case in which none of the edges that are involved in the reduc-
tion have labelB (rule 1a), and the case in which at least one of the edges that are involved in
the reduction has labelB (rule 1b).

Rules 21 – 23 are necessary to reduce long sequences of ‘small’ biconnected components
as shown in Figure 2 quickly enough: in such a sequence, only two concurrent reductions are
possible without rules 21 – 23.

Rule 20 is necessary for reducing dangling edges, i.e. edges of which one end vertex has
degree one: these edges may not appear in series parallel graphs, unless if they can be reduced
with rule 1 or the graph consists of one edge. However, in graphs of treewidth at most two,
these edges can exist.

In rule 20, we pose a degree constraint of eight on the terminal vertex. This means that if
we rewrite a terminal subgraphG1 in G which is isomorphic to the left-hand side of rule 20,
then the terminal vertex ofG1 has degree at most eight inG. This degree constraint is added to
avoid problems with writing conflicts in the parallel algorithm. It also makes the presence of
rule 19 necessary: without rule 19, a large star-like graph can not be reduced.

Note that, in rules 3 – 18, we pose degree constraints on the edges between terminals (see
Section 4.1 of [8]).

The following lemma was first proved by Duffin [12], although not precisely in this form.

Lemma 3.1. A graph is series parallel if and only if it can be reduced to a single edge by
applying any sequence of reductions by rule 1a and 2. A source-sink labeled graph is series
parallel if and only if it can be reduced to a single edge by applying any sequence of reductions
by rule 1a and 2, such that neither s or t is the inner vertex in rule 1a in any of the reductions.

This shows safeness of rules 1a and 2 for series parallel graphs. In [8], it was shown that
rules 3 – 18 are safe for series parallel graphs.

Hence, given a connectedB-labeled graphhG, a match to a reduction ruler = (H1;H2) 2
R tw in (G;s; t) is a terminal graphG1 that is isomorphic toH1, such that

� there is a terminal graphG2 with G= G1�G2,

� if r is one of the rules 3 – 18, then for each edgee= fu;vg 2 E(G1) for which u andv
are terminals ofG1, u or v has degree at most seven inG, and

� if r is rule 20, then the terminal vertexu in G1 has degree at most eight inG.

Lemma 3.2. The setR tw of reduction rules is safe for treewidth at most two on connected
B-labeled graphs.
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Figure 1: Reduction rules for treewidth at most two on connected,B-labeled graphs
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Figure 2: A chain of ‘small’ biconnected components

Proof. Let G be a connectedB-labeled graph, letr 2 R tw, and supposeG contains a matchH
to r. Let G0 be the graph obtained fromG by applying the reduction corresponding to match
H. We show thatG has treewidth at most two if and only ifG0 has treewidth at most two. Note
that aB-labeled graph has treewidth at most two if and only if all its blocks have treewidth at
most two.

First supposer is one of the rules 2 – 18. ThenH is contained in one of the blocks ofG.
Let B denote this block (note thatB is a non-trivial block andH is also a match inB), and let
B0 be the graph obtained fromB by applying the rule. ThenB0 is a block ofG0. Therefore, it
suffices to show thatB has treewidth at most two if and only ifB0 has treewidth at most two.
This follows from Lemma 2.2 and the fact that rules 2 – 18 are safe for series parallel graphs.

Supposer is rule 1. If all vertices ofH are contained in one blockB, then this is a non-
trivial block. It easily follows thatG has treewidth at most two if and only ifG0 has treewidth
at most two: rule 1a is safe for series parallel graphs, and if an edge inH has aB-label then
neitherG norG0 have treewidth at most two.

Suppose the vertices ofH are not in one block. Then the two edges ofH are separate
blocks, and they are both bridges (hence they both have treewidth at most two). This implies
that the new edge is a block inG0, and it is also a bridge inG0 (hence it also has treewidth at
most two). This shows thatG has treewidth at most two if and only ifG0 has treewidth at most
two.

It is easy to see that rules 19 and 20 are safe for TW2: ifr is rule 19 or 20, then the blocks
of G have treewidth at most two if and only if the blocks ofG0 have treewidth at most two.

Supposer is one of the rules 21, 22 and 23. Letx andy be the terminals ofH. SupposeG
has treewidth at most two. IfG contains a path between the terminals ofH which avoids the
inner vertices ofH, thenG contains aK4 minor, hence this is not the case. This means that
x andy are cut vertices ofG, and henceH is a block ofG. This implies that inG0, the edge
betweenx andy is a bridge ofG0, and hence it is a block ofG0 which has treewidth at most
two. HenceG0 has treewidth at most two.

If G0 has treewidth at most two, then the edge betweenx andy is a bridge, and hence is a
block with treewidth at most two. This implies thatH is a block inG. As H has treewidth at
most two, we have thatG has treewidth at most two. 2

3.2 A Lower Bound on the Number of Matches

In this section, we show that each connected graphG of treewidth at most two with at least one
edge has at leastΩ(jE(G)j) matches.

We first prove the following lemma.

Lemma 3.3.Let G be a connectedB-labeled graph and let v2V(G) such that v has degree at
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most eight. Then the number of matches to rules 1 – 23 in G which contain v is at most some
integer constant k.

Proof. We give a very rude bound which is probably far too large, but easy to prove. Note that
all inner vertices of left-hand sides of rules 1 – 23 have degree at most eight. LetG1 be a match
in G which containsv. It can be seen that all vertices and edges inG1 are reachable by a path
P from v to this vertex or edge, such that all vertices on the path except possibly the first and
the last one are inner vertices ofG1, or are terminals ofG1 with degree at most eight. Hence
each vertex on such a path, except the last one, has degree at most eight. Furthermore, the path
has length at most seven, as each left-hand side of a reduction rule has at most eight vertices.
Therefore, the number of vertices and edges inG which are reachable fromv by such a path is
at most 87. This implies that there is at most a constant number of matches containingv. 2

Let G= (V;E) be a connectedB-labeled graph, suppose the treewidth ofG is at most two,
and letjEj � 1.

A dangling edgein G is an edgee= fu;vg for which eitheru or v has degree one. Ifu has
degree one, thene is called a dangling edge ofv. A star is a graph consisting of one vertex
with dangling edges. Apseudo blockis a graph which is a star, or consists of one block with
dangling edges, i.e.G consists of a block of which some vertices have dangling edges.

We divideG into pseudo blocks as follows. IfG is a star, thenG itself is the only pseudo
block. Otherwise, letB denote the set of all blocks ofG, and letB 0 �B be the set of all blocks
which are non-trivial or have two or more cut vertices. Note thatB 0 contains exactly all blocks
which are not dangling edges, and each dangling edge has an end point in one of the blocks in
B 0. Assign each dangling edge to a block inB 0 which contains one of its end points. A pseudo
block of G consists of a block inB 0 with the dangling edges assigned to it. LetP B be the set
of all the pseudo blocks. For each pseudo blockPB2 P B , we call the block ofPBwhich is in
B 0 theunderlyingblock of PB.

The vertices that are contained in two or more pseudo blocks are called thestrong cut
verticesof G, and we denote the set of all strong cut vertices byS . If v is a strong cut vertex,
thenv is a cut vertex ofG andv is contained in the underlying block of each pseudo block it is
contained in.

Let M denote the set of all matches inG.

Lemma 3.4. If G consists of one pseudo block, thenjEj � k0jMj for some integer constant k0.

Proof. Let m= jEj. If m= 1, thenG contains a match to rule 20. Supposem� 2. If G is a star,
thenG hasm(m�1)=2 matches to rule 19, and hencem� 2jMj. If G consists of an edge with
one or more dangling edges at each end point, then eitherm= 3 andG has a match to rule 1
or 19, orm> 3 andG has at least(m�1)(m�3)=8 matches to rule 19 (at least(m�1)=2
edges are dangling edges of the same end point). Hencem� 9jMj.

SupposeG consists of a non-trivial blockB with dangling edgesD. Note thatB has no
edges labeledB. Let D1 denote the dangling edges which are dangling edges of some vertex of
B that has one dangling edge, and letD�2 denote the other dangling edges. Note thatG has at
leastjD�2j=2 matches to rule 19, and hencejD�2j � 2jMj.
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Consider blockB. As B is series parallel and has at least two edges, it contains at least
jE(B)j=139 matches to rules 1 – 18 (Lemma 4.4 in [8]). Consider the setMsp of all these
matches. LetH 2 Msp. EitherH is a match inG or not. If H is not a match inG, we callH a
disturbed match.

If H is disturbed, then either an inner vertexv of H has one or more dangling edges, or a
terminal vertexv of H which has degree at most seven inB has one or more dangling edges.
In both cases,v has degree at most seven inB. Furthermore, ifv has one dangling edge, then it
has degree at most eight inG and hencee is a match to rule 20. Ifv has two or more dangling
edges, then two of these edges form a match to rule 19 inG. By Lemma 3.3, the number of
matches inG which containsv is at mostk. Hence the number of disturbed matches is at most
k times the number of matches to rules 19 and 20 inG. This means that we can derive the
following upper bound forjMspj.

jMspj= jfnon-disturbed matchesgj+ jfdisturbed matchesgj

� jfmatches to rules 1 – 18gj+k � jfmatches to rules 19 and 20gj

� kjMj

Furthermore,jD�2j � 2jMj andjD1j � jV(B)j � jE(B)j. Hencem= jE(B)j+ jD1j+ jD�2j �
2jE(B)j+2jMj � 278jMspj+2jMj � 278(k+1)jMj, so the lemma holds withk0 = 278(k+1).

2

In the following discussion, we denote for each pseudo blockPB the set of matches inPB
by MPB. A match inMPB is either a match inG, in which case it is called anon-disturbed
match, or it is not a match inG, in which case it is called adisturbedmatch. The set of
non-disturbed matches inMPB is denoted byMnd

PB, and the set of disturbed matches inMPB

is denoted byMd
PB. Note thatMnd

PB� M. The union over all pseudo blocks ofMnd
PB (Md

PB) is
denoted byMnd

G (Md
G).

The only matches inG which involve two or more pseudo blocks may be matches to rules 1
or 19: both can involve only two pseudo blocks. LetM2 denote the set of matches inG which
involve two pseudo blocks. Note thatM = Mnd

G [M2.
Lemma 3.4 implies the following result.

Corollary 3.1. For each pseudo block PB,jE(PB)j � k0jMPBj.

This implies thatjEj � k0jMj = k0jMnd
G j+ k0jMd

Gj. If we prove thatjMd
Gj � kjMj for somek,

then the proof of the main result of this section is finished. We prove this by accounting each
disturbed match to either a non-disturbed match or a match inM2, such that each match inM
has at most a constant number of disturbed matches accounted to it.

Consider a disturbed matchH in Md
PB. Then there is a strong cut vertexv in PB for which

either

� v is an inner vertex ofH,

� H is a match to rule 20 andv is a terminal ofH, v has degree at most eight inPB andv
has degree more than eight inG, or
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� H is a match to one of the rules 3 – 18,v is a terminal ofH, v has degree at most seven
in PB, andv has degree more than seven inG.

If one of these cases holds for a strong cut vertexv and a disturbed matchH, we say thatv
disturbs H.

Lemma 3.5. Each strong cut vertex disturbs at most k matches in each pseudo block it is
contained in.

Proof. Let PBbe a pseudo block and letv be a strong cut vertex inPB. Let H be a match that
is disturbed byv. Note thatv has degree at most eight inPB. Hence, by Lemma 3.3, there are
at mostk matches inPBwhich containv. This means thatv disturbs at mostk matches. 2

We divide the pseudo blocks ofG into different classes, which correspond to the type of
pseudo block that they are contained in. After that, we give for each class an upper bound on
the number of edges in this class with respect to the number of matches inG. Therefore, we
first construct apseudo block tree T= (N;F) as follows.

N = P B [S
F = ffv;PBg j v2 S ^PB2 P B ^v2V(PB)g

HenceT contains as its vertices the pseudo blocks and strong cut vertices ofG, and there is an
edge between two vertices inT if and only if one of them is a cut vertexv, the other one is a
pseudo blockPB, andv is contained inPB. Note that the degree of a strong cut vertex inT
equals the number of pseudo blocks it is contained in, and the degree of a pseudo block inT
equals the number of strong cut vertices it contains. We call a pseudo block adegree d pseudo
block if its corresponding node inN has degreed in T. A degree one pseudo block is also
called a leaf pseudo block. Note that each leaf pseudo block has at least two edges (if it had
only one edge, then it would be a dangling edge of one of the blocks it shares a vertex with).

We partition the setP B of pseudo blocks into four sets:P B0, P B1, P B2 andP B�3. For
i = 0;1;2, P B i is the set of degreei pseudo blocks. The setP B�3 is the set of all degreed
pseudo blocks withd� 3.

Degree zero pseudo blocks. A degree zero pseudo block has no disturbed matches, as it has
no strong cut vertices.

Degree one pseudo blocks.As a degree one pseudo block contains only one strong cut
vertex, it has at mostk disturbed matches. It suffices to show that each such block contains
at least one non-disturbed match: each disturbed match can be accounted to a non-disturbed
match such that at mostk disturbed matches are accounted to each non-disturbed match in a
degree one pseudo block.

Lemma 3.6.Each degree one pseudo block contains at least one non-disturbed match.
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Proof. Let PB be a leaf pseudo block, letx denote the strong cut vertex inPB. We show that
jMnd

PBj � 1. If the underlying block ofPB is an edgee, then the end point ofewhich is notx has
at least one dangling edge, and hence there is at least one match to rule 19 or 20. This match is
not disturbed byx, sojMnd

PBj � 1.
Suppose the underlying blockB of PB is non-trivial. Note thatx 2 V(B). Let y be a

neighbor ofx in B. By Lemma 9 from [13],(B;x;y) is series parallel and hence it has at least
one match to rules 1 or 2 which does not havex or y as inner vertex. This means thatPB has
at least one match to rule 1, 2, 19 or 20 which does not havex as an inner vertex, and hence is
not disturbed inG. HencejMnd

PBj � 1. 2

Degree two pseudo blocks. Consider the setP B2. Note that each degree two pseudo block
contains at most 2k disturbed matches.

We split P B2 in two partsP B nt
2 andP B t

2. The first set contains all degree two pseudo
blocks of which the underlying block is non-trivial, and the second set contains all other degree
two pseudo blocks (i.e. the degree two pseudo blocks of which the underlying block is trivial).

First consider the degree two pseudo blocks inP B nt
2 . It suffices to show that each such

pseudo block contains at least one non-disturbed match: then we can account each disturbed
match to such a non-disturbed match.

Lemma 3.7. Each degree two pseudo block PB2 P B nt
2 contains at least one non-disturbed

match.

Proof. The idea of the proof is the following: if a degree two pseudo block contains no non-
disturbed matches to one of the rules 1 — 20, then it must contain a match to one of the rules
21 – 23. The complete proof consists of a long and tedious case analysis, which we omit here
(see [11] for the complete proof). 2

Next consider the pseudo blocks inP B t
2. Let PB2 P B t

2. If PB contains a non-disturbed
match, then the disturbed matches can be accounted to this match and we are done.

SupposePB contains no non-disturbed match. ThenPB consists of one edgee= fu;vg
which is the underlying block, with at most one dangling edge at bothu andv. Note that both
u andv are strong cut vertices with degree at least two.

If u or v is a strong cut vertex with degree three or more, then we can use Lemmas 2.3
and 3.6 and account all disturbed matches inPB to a non-disturbed match in a leaf pseudo
block in such a way that each such non-disturbed match has at most 6k disturbed matches of
pseudo blocks likePBaccounted to it.

Supposeu andv are strong cut vertices with degree two. Supposeu is contained in another
pseudo blockPB0. If PB0 is a degree two pseudo block of the same type asPB (i.e. PB0 is
a degree two pseudo block of which both strong cut vertices have degree two), thenPB and
PB0 together contain a match to one of the rules 1, 19 or 20, and we can account the disturbed
matches inPB (andPB0) to this match. This match has at most 4k of disturbed matches of
pseudo blocks likePBaccounted to it.

If PB0 is not of the same type, then a detailed case analysis, based on the type of pseudo
block PB0 is, shows that the disturbed matches ofPB can be accounted to a non-disturbed
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match in another pseudo block, such that each such non-disturbed match has at most a constant
number of disturbed matches accounted to it. We do not give the full details here; they can be
found in [11].

Degree� 3 pseudo blocks. Let d � 3 and letPB be a degreed pseudo block. Note that
the underlying blockB of PB is non-trivial. By Lemma 3.5, there are at mostd � k disturbed
matches inPB. Lemma 2.3 shows that the sum over all degrees of the pseudo blocks inP B�3

is at most three times the number of leaf pseudo blocks. By Lemma 3.6, each leaf pseudo block
contains at least one match inM. Hence we can account each disturbed match in a degree� 3
pseudo block to a non-disturbed match in a leaf pseudo block such that each such non-disturbed
match has at most 3k disturbed matches in degree� 3 pseudo blocks accounted to it.

We have now shown that each disturbed match inMd
PB can be accounted to either a non-

disturbed match inMnd
PB or a match inM2, such that each match inM = Mnd

PB[M2 has at most
a constant number of disturbed matches accounted to it. This proves the following result.

Lemma 3.8. There is a constant c> 0, such that each connectedB-labeled graph G= (V;E)
with treewidth at most two andjEj � 1 contains at least cjEj matches.

3.3 A Lower Bound on the Number of Enabled Matches

In this section we show that, in each connectedB-labeled graphG of treewidth at most two with
at least one edge, a number of at leastcjE(G)j matches to rules inR tw can be found inO(1)
time with O(jE(G)j) processors. This is done in the same way as for series parallel graphs in
Section 4.3 of [8]; only rule 19 gives extra complications.

The finding of the rules is done as follows. Given an edgee it can easily be checked
whethere can occur in an application of one of the rules 1, 3 – 18 or 20 – 23: follow all paths
of length at most eight frome which visit only vertices of degree at most eight (except for the
last vertex of a path). For rules 2 and 19, not all matches are found. Instead, for rule 2, every
edgee= fu;vg searches in the adjacency lists ofu andv for all edges that have distance at
most ten toe in this list. Edgee proposes an application of rule 2 if one of the edges it found
also has end pointsu andv (see also [8]). For rule 19, every edgee= fu;vg of which end point
u has degree one searches in the adjacency list ofv for all edges which have distance at most
ten toe in this list. The edgeeproposes an application of rule 19 if it finds an edgee0 = fv;wg
for which w has degree one. (Adjacency lists are assumed to be cyclic.)

Each reduction found in this way is said to beenabled. We now show thatΩ(jEj) re-
ductions are enabled. The proof is similar to, but more complicated than the proof for series
parallel graphs.

Let G be aB-labeled graphG= (V;E) given by some adjacency list representation. Recall
from [8] that an edgee is bad if it has a parallel edge, but all its parallel edges have distance at
least 21 in the adjacency lists of the end points ofe.

A dangling edgee is called abad dangling edgeif it is incident with a vertexv that has two
or more dangling edges, but in the adjacency list ofv, these dangling edges have distance at
least 21 toe. Note that an edge is bad if and only if it occurs in a match to rule 2, but not in an
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enabled match to rule 2. A dangling edge is bad if and only if it occurs in a match to rule 19,
but not in a enabled match to rule 19.

Lemma 3.9. Let G= (V;E) be aB-labeled graph of treewidth at most two, given by some
adjacency list representation. The graph G has at mostjEj=5 bad edges and at mostjEj=10
bad dangling edges.

Proof. For the bound on the bad edges, see [8], Lemma 4.6. Consider the bad dangling edges.
Let v 2V(G). If the adjacency list ofv has length at most 20, thenv does not have any bad
dangling edges. If the adjacency list ofv has length more than 20, then each 20 successive
entries in the (cyclic) adjacency list contain at most one bad dangling edge. Hence there are at
most deg(v)=20 bad dangling edges in the adjacency list ofv. If we sum over all vertices, we
get that the number of bad dangling edges is at mostjEj=10. 2

Lemma 3.10. There is a constant c0 > 0 for which each connectedB-labeled graph G of
treewidth at most two with at least one edge has at least c0jE(G)j enabled matches.

Proof. We use the same idea as in the proof of Lemma 4.7 of [8]. LetG = (V;E) be aB-
labeled graph with at least one edge. Letn= jVj and letm= jEj. Let dedenote the number of
dangling edges ofG of which one end point has at least two dangling edges, i.e. the dangling
edges which occur in a match to rule 19. We distinguish between three cases:

1. m� 4n,

2. de�m=5, and

3. m< 4n andde< m=5.

Case 1. Supposem� 4n. As G has treewidth at most two, the underlying simple graph has
at most 2n edges. This means that at leastm�2n edges are parallel to another edge. At most
m=5 of these are bad edges, hence at leastm�2n�m=5� 4m=5�m=2= 3m=10 edges occur
in an enabled match to rule 2. This means that there are at least 3m=20 enabled matches to
rule 2 inG.

Case 2. Suppose thatde�m=5. Of thededangling edges which occur in a match to rule 19,
at mostm=10 are bad. Hence at leastde�m=10� m=10 of these dangling edges occur in a
enabled match to rule 19. This means that there are at leastm=20 enabled matches to rule 19
in G.

Case 3. Suppose thatm< 4n andde< m=5. If G is a star, thenG contains at leastm=20
enabled matches to rule 19.

SupposeG is not a star. For eachv2V(G), remove all dangling edges adjacent tov except
one (if there is at least one). Furthermore, for each pairu;v of vertices inG which have two
or more parallel edges between them, do the following. Ifu and v both have two or more
neighbors, then remove all edges except one betweenu andv. If u or v has only one neighbor,
then remove all but two edges betweenu andv. Let G0 denote the resulting graph, and let
n0 = jV(G0)j, m0 = jE(G0)j.
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Note that ifG0 contains a match to rule 2, then one of the terminals of this match has degree
two, and hence this match is enabled. FurthermoreG0 has no matches to rule 19. Hence all
matches are enabled.

We expressn0 andm0 in terms ofm: n0 � n�de> m=4�m=5= m=20. AsG is not a star,
it follows thatn0 � 2. Furthermore,G0 is connected, and hencem0 � n0�1� n0=2�m=40.

Note thatm0� 1 (sinceG is not a star). By Lemma 3.8,G0 contains at leastc�m0 � c=40�m
matches. LetM denote the set of all matches inG0. Each of these matches is either an enabled
match inG, or it is not a enabled match inG. We call the first set the set of non-disturbed
matches, denoted byMnd, and the second the set of disturbed matches, denoted byMd. Let
Mnew denote the set of enabled matches inG which are not inG0. Note that the set of enabled
matches inG is Mnd+Mnew.

We account each match inMd to a match inMnd+Mnew, such that each match has at most a
constant number of disturbed matches accounted to it. By the fact thatjMndj+ jMdj � c=40�m,
this proves the lemma.

Consider a matchH 2 Md. If H is a match to rule 2, then the terminalv of H which has
degree two inG0 has degree more than two inG. If H is a match to one of the other rules, then
eitherH contains an inner vertexv which has dangling edges inG or which is incident with
parallel edges inG, or v is a terminal which has degreed� 8 in G0, but has degree more than
d in G. In all cases, there is a vertexv2V(H) which has degreed � 8 in G0 and has degree
more thand in G.

Sincev has larger degree inG than inG0, it must be the case that inG, v has two or more
dangling edges, orv is incident with parallel edges. If the adjacency list ofv has length at most
20, then there are two edges incident withv which form a enabled match to rule 2 or rule 19.
Let Hv denote this match, note thatHv 2Mnew[Mnd. If the adjacency list ofv has length more
than 20, then consider a sublist of length 20 of this list. If this sublist contains two or more
dangling edges, then two of these form a enabled match to rule 19 inG, and hence this match
is in Mnew. Let Hv denote this match. If the sublist contains at most one dangling edge, then 20
or 21 of the places in this sublist contain an edgee betweenv and a neighbor ofv. As v has at
most eight distinct neighbors, there must be at least two edges with the same end points in the
sublist. Two of these edges correspond to a enabled match to rule 2 inG. Let Hv again denote
this match, and note thatHv 2Mnew[Mnd.

Note that, asv has degree at most eight inG0, it is contained in at mostk matches inM
and hence inMd (Lemma 3.3). For each matchH in Md, accountH to a matchHv of a vertex
v2V(H) which has degreed� 8 in G0 and degree more thand in G. In this way, each match
to rule 19 inMnew[Mnd has at mostk matches accounted to it, and each match to rule 2
in Mnew[Mnd has at most 2k matches accounted to it (at mostk for each end point). This
completes the proof. 2

3.4 Constructing a Tree Decomposition

In this section we show how, in the second phase of the algorithm, a tree decomposition of
the current graph is maintained in each construction round. The tree decomposition that is
maintained is of a special form, in order to make the constructions easier.
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Definition 3.1 (Special Tree Decomposition).Let G= (V;E) be a connectedB-labeled graph
with treewidth at most two. Let TD= (T;X ) be a tree decomposition of width two of G with
T = (I ;F) andX = fXi j i 2 Ig. Then TD is aspecial tree decompositionof G if it satisfies the
following conditions.

1. For each vertex u2V there is a unique node i with Xi = fug, called the node associated
with u.

2. Each edge e2 E with end points u and v has a node i with Xi = fu;vg associated with it.
Distinct edges have distinct associated nodes.

3. Let u be a cut vertex of G, let i denote the node associated with u. Then each component
of T[I �fig] contains vertices of at most one component of G[V�fug].

4. Let e be a bridge of G with end points u and v and let i be the node associated with
e. Then each component of T[I �fig] contains vertices of exactly one component of
(V;E�feg).

5. Let u;v2V. If there is an edge between u and v, andfu;vg is a minimal x;y-separator
for some vertices x and y, then there is a node i associated with some edge between u
and v such that x and y occur in different components of T[I �fig]. (fu;vg is a minimal
x;y-separator if x and y are in different components of G[V �fu;vg], but in the same
component of G[V�fug] and of G[V�fvg].)

6. For each two adjacent nodes i; j 2 I, j jXij� jXj j j = 1, unless if Xi = Xj = fu;vg and i
and j are nodes associated with different edges between u and v.

7. For each u;v2V, the nodes associated with edges between u and v induce a subtree of
T .

We use the following data structure for storing a special tree decomposition during the
second phase of the algorithm. We store a list containing all nodes of the tree decomposition.
Each nodei has an adjacency list which contains an entry for each neighbor ofi. An entry for
neighbor j in the adjacency list ofi contains a pointer toj, the contentsXj of node j, and a
pointer to the entry ofi in the adjacency list ofj. Furthermore, for each vertex and edge in the
graph, we keep a pointer to the node associated with it.

Phase two of the algorithm starts with a graphG with one vertexv. It simply constructs a
tree decomposition of one node which containsv. Note that this tree decomposition satisfies
conditions 1 – 7, and hence is a special tree decomposition.

Suppose at some construction round in the algorithm, we are given aB-labeled graphG
and a special tree decompositonTD= (T;X ) of G. Suppose some processor has to undo rule
r = (H1;H2) 2 R tw, and has a matchG2 = (V2;E2;X) to H2 which is replaced by a match
G1 = (V1;E1;X) to H1. Let T = (I ;F) andX = fXi j i 2 Ig. The construction algorithm that
is executed to locally modify the tree decomposition consists of 23 steps which are executed
consecutively. Each round corresponds to a rule inR tw: if the processor has to undo rule
numberr, then it is only active in stepr. We describe the algorithm per step.

Step 1. If r is not rule 1, then the algorithm is idle in this step. Supposer is rule 1, and
supposeV2 = fa;bg, E2 = feg andV1 = fa;b;cg. See part I of Figure 3 (labelings of edges
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are not shown). Leti and j be the nodes ofTD associated witha andb, and letk be the node
associated withe.

!a b a b
c

a bab ! a cac bcb

e

i k j i k j

I

II

III ab ! ab
ccb

k k

abc

ac

G2 G1

Figure 3: The construction for rule 1.

If e is a bridge inG, thena andb are cut vertices. The nodek associated withe separates
TD in different components corresponding to the components ofG0 = (V;E�feg). Note that
G0 has exactly two components, one containinga and one containingb. ¿From the conditions
of Defiition 4 we can derive thatTD contains a subtree as shown in the left-hand side of part II
of Figure 3. We replace this by the subtree shown in the right-hand side of part II (the light-
gray parts of the tree decompositions are the parts that are involved in the modification). Note
that the new edges are bridges andc is a cut vertex. Hence the new tree decomposition is a
special tree decomposition.

Consider the case thate is not a bridge. Then nodek does not necessarily havei and j as
its only neighbors. If this is indeed not the case, we add an extra nodel as new neighbor of
k, with Xl = fa;b;cg, and we add some other nodes to fulfil conditions 1 – 7. See part III of
Figure 3. Note that the new tree decomposition is indeed a special tree decomposition (c is
not a cut vertex, the new edges are not bridges, and the setsfa;cg andfc;bg are not minimal
x;y-separators).

Hence the following is done. If nodek has as its only neighbors nodei andk, the construci-
ton of part II of Figure 3 is applied. The new nodes are added, the contents ofXk is changed,
and in the adjacency lists ofi and j, the entries for nodek are modified. Furthermore, the nodes
with contentsfa;cg, fb;cg andfbg are the nodes associated with the edge betweena andc,
the edge betweenb andc, and vertexc, respectively.

If k does not have onlyi and j as its neighbors, the algorithm applies the construction of
part III of Figure 3. This can be done by adding the new nodes with their adjacency lists, and
adding an entry for the new node adjacent tok at the end of the adjacency list ofk. The new
nodes are the nodes associated with the new edges and vertices.

It can be seen that this construction is correct, and that it takesO(1) time on one processor.
Furthermore, the construction does not interfere with other constructions for rule 1 which take
place simultaneously: edgee is not involved in any other reduction at the same time, and hence
nodek is not involved in any other reductions that are performed in step 1. Nodesi and j
may be involved in other applications of rule 1, however, only the contents of entries in the
adjacency list ofi and j are modified, and this can be done in different places of the adjacency
list at the same time without concurrent reading or writing.
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Step 2. If r is not rule 2, then the algorithm is idle in this step. Supposer is rule 2. The
construction is very simple. Part I of Figure 4 showsG1 andG2. Let i be the node associated
with e. Then we can apply the construction of part II of Figure 4. The newly added node is the
node associated with edgee0. Note that condition 7 is satisfied, and henceTD is a special tree
decomposition. It is easy to see that this construction can be done inO(1) time and that it does
not interfere with other constructions in step 2.

!a b a be
I

II ab ! ab

i i

ab

G2 G1
e
e0

Figure 4: The construction for rule 2.

Step 3. Supposer is rule 3 (otherwise, the algorithm is idle in this step). LetG1 andG2 be
as depicted in part I of Figure 5. Leti, j andk be the nodes associated to edgee1, e2 ande3,
respectively. By a detailed analysis, using the properties described in Definition 3.1, it can be
shown thatT contains a subtree as depicted in the left-hand side of part II of Figure 5. The
possible adjacencies of the nodes associated witha, b, c, andd are denoted by dashed lines.
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Figure 5: The construction for rule 3. Dashed lines denote possible adjacencies.

We replace a part of this subtree by a new subtree, as is depicted in the right-hand side
of part II of Figure 5. The dashed lines again denote possible adjacencies, which are the
same as in the left-hand side. Note that the new tree decomposition satisfies conditions 1 –
7 of Definition 3.1, and hence it is a special tree decomposition. It is easy to see that this
construction can be done inO(1) time, and that the construction does not interfere with other
constructions for rule 3. (Note that there are no write conflicts, as each edge that is involved in
this reduction is not involved in another simultaneous reduction.)

Steps 4 – 18. The constructions for rules 4 – 18 are similar to the construction for rule 3, so
we do not describe them. The rules of which the right-hand side contains a chordless four-cycle
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are a bit different, as there are two possibilities for the structure of the tree decomposition. As
an example, we depict the two possible constructions for rule 6 in Figure 6.
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Figure 6: The construction for rule 6. Dashed lines denote possible adjacencies.

Step 19. Supposer is rule 19. LetG1 andG2 be as depicted in part I of Figure 7 (labelings of
edges are not shown). Note that edgee is a bridge, and hence the tree decomposition contains a
subtree as depicted in the left-hand side of part II of Figure 7 (see also step 1). We replace this
subtree by the subtree depicted in the right-hand side of part II of Figure 7. Note the resulting
tree decomposition is special.

!a b a
b

c

a bab ! a
cac

bab

e
I

II

G2 G1

Figure 7: The construction for rule 19.

In order to make the construction non-interfering, it is done as follows. We make two new
nodes with contentsfa;cg andfcg, respectively, which are adjacent to each other. Furthermore,
we make a new entry in the adjacency list of the node associated witha. The new entry is for
the node associated with edgefa;cg. It is added between the entry for the node associated with
edgee and its right neighbor in the list. In this way, no two constructions for rule 19 try to
modify the same entry of the adjacency list of nodei.
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Step 20. Supposer is rule 20. LetG1 andG2 be as depicted in part I of Figure 8. Leti denote
the node associated witha. We apply the construction depicted in part II of Figure 8. Note that
the resulting tree decomposition is special.

!a ba

! a bab

I

II a
i i j k

G2 G1

Figure 8: The construction for rule 20.

In order to make the algorithm non-interfering in step 20, the construction is as follows.
Let H be aB-labeled terminal graph such thatG= G2�H. Note that, inG1�H, vertexa has
degree at most eight. We divide step 20 into eight substeps, which are executed subsequently.
First, edgee computes its rankk in the adjacency list ofa in G1�H. Then, in substepk, the
construction is applied by adding new nodesj andl with Xj = fa;bg andXl = fag which are
adjacent to each other, and makingj adjacent toi: an extra entry for nodej is added at the end
of the adjacency list of nodei. In each substep, at most one such construction that involves
vertexa is applied, and hence the algorithm is non-interfering and runs inO(1) time.

Steps 21 – 23. Rules 21, 22 and 23 are very similar to each other. We depict the construction
only for rule 21 in Figure 9. It is easy to see that the new tree decomposition is special, and
that the construction can be done inO(1) time and is non-interfering.

!a b a

a bab ! a ac bcd

eI

II acd

b

c

d

bcbcd

bdad

c d

B

Figure 9: The construction for rule 21.

4 Additional Results

We can use the algorithm of Section 3 for the same problem, but without requiring that the input
graph is connected. To this end, we use a technique of [9]: from each connected component
of the graph we select one vertex. Then we add a new dummy vertex to the graph, and make
all selected vertices adjacent to this dummy vertex. The new graph is connected, and has
treewidth at most two if and only if the original graph has treewidth at most two. Now we
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solve the problem on the new connected graph with the reduction system given in the previous
section. After that, we remove the dummy vertex from all nodes it occurs in, and the resulting
tree decomposition is a tree decomposition of width at most two of the input graph. For more
details, see [9].

Theorem 4.1. There is a parallel algorithm which checks whether a given (B-labeled) graph
G has treewidth at most two, and if so, returns a tree decomposition of width at most two of
G. The algorithm uses O(n+m) operations and space, and O(log(n+m)) time on a CRCW
PRAM, or O(log(n+m) log�(n+m)) time on an EREW PRAM.

If the input graphG = (V;E) is simple, then we can use the same preprocessing step as
described in [8] (Section 5) for series parallel graphs. This results in the following.

Theorem 4.2. There is a parallel algorithm which checks whether a given simple graph G
has treewidth at most two, and if so, returns a tree decomposition of width at most two of
G. The algorithm uses O(n) operations and space, and O(logn) time on a CRCW PRAM, or
O(lognlog�n) time on an EREW PRAM.

Many problems can be solved inO(log p) time, andO(p) operations and space, when the
input graph is given together with a tree decomposition of bounded treewidth consisting of
p nodes. These include all problems that can be formulated in monadic second order logic
and its extensions, all problems that are ‘finite state’, etc. A large number of interesting and
important graph problems can be dealt in this way, including CHROMATIC NUMBER, MAX -
IMUM CLIQUE, MAXIMUM INDEPENDENT SET, HAMILTONIAN CIRCUIT, STEINER TREE,
LONGEST PATH, etc. See [3, 10, 9]. With the results of this paper, this implies that we can
solve the problems described above on graphs of treewidth at most two with the same resource
bounds as the algorithm for finding a tree decomposition of width two.

One of the problems which can be solved if a tree decomposition of bounded width of the
input graph is given, is the pathwidth problem: given a graphG and an integer constantk,
check whetherG has pathwidth at mostk, and if so, find a path decomposition of width at most
k of the graph [9]. Hence we have the following result.

Theorem 4.3. Let k� 1 be an integer constant. There is a parallel algorithm which checks
whether a given simple graph G has treewidth at most two and pathwidth at most k, and if so,
returns a path decomposition of width at most k of G. The algorithm uses O(n) operations and
space, and O(logn) time on a CRCW PRAM, or O(lognlog�n) time on an EREW PRAM.

Note that the theorem also holds for multigraphs, if we replacen by n+m in the time and
operations bounds. As graphs of pathwidth at most two also have treewidth at most two, the
theorem implies that we can find a path decomposition of width at most two of a graph, if one
exists, within the same resource bounds.
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