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Abstract

This paper presents a number of new ideas and results on graph reduction applied to
graphs of bounded treewidth. Arnborg et al. [2] have shown that many decision problems
on graphs can be solved in linear time on graphs of bounded treewidth, by using a finite
set of reduction rules. These algorithms can be used to solve problems on graphs of
bounded treewidth without the need to first obtain a tree decomposition of the input graph.
We show that the reduction method can be extended to solve the construction variants of
many decision problems on graphs of bounded treewidth, including all problems definable
in monadic second order logic.

We also show that a variant of the reduction algorithms presented in [2] can be used to
solve (constructive)optimizationproblems inO(n) time. For example, optimization and
construction variants of INDEPENDENTSET and HAMILTONIAN COMPLETION NUMBER

can be solved in this way on graphs of small treewidth.
Additionally we show that the results of [8] can be applied to our reduction algorithms,

which results in parallel reduction algorithms that useO(n) operations andO(lognlog�n)
time on an EREW PRAM, orO(logn) time on a CRCW PRAM.

1 Introduction

In this paper we discussreduction algorithmsfor decision and optimization problems. A re-
duction algorithm is based on a finite set ofreduction rulesand a finite set of graphs. Each
reduction rule describes a way to modify a graph locally. The original idea of a reduction algo-
rithm is to solve a decision problem by repeatedly applying reduction rules on the input graph
until no more rule can be applied. If the resulting graph is in the finite set of graphs, then the
algorithm returnstrue, otherwise it returnsfalse.

�This research was carried out while the second author was working at the Department of Computer Science of
Utrecht University, with support by the Foundation for Computer Science (S.I.O.N) of the Netherlands Organization
for Scientific Research (N.W.O.). Parts of this research have been published in preliminary form in [7, 5].
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The idea of reduction algorithms originates from Duffin’s [12] characterization of series-
parallel graphs: a multigraph is series-parallel if and only if it can be reduced to a single edge
by applying a sequence ofseriesandparallel reductions. In [18] it was shown how a reduction
algorithm based on this set of reduction rules can be implemented in linear time, and hence
series-parallel graphs can be recognized in linear time.

Arnborg and Proskurowski [4] extended these ideas, and obtained reduction rules that char-
acterize the graphs of treewidth at most two or three, and, amongst others, showed that these
reduction rules can be used to recognize graphs of treewidth at most three inO(n3) time. In
[17] it is shown that with a slightly different set of reduction rules graphs of treewidth at most
three can be recognized in linear time. Additionally, a tree decomposition of minimum width
can be constructed in linear time if the input graph has treewidth at most three.

A much more general approach is taken in [2]: a set of conditions is given that must hold
for a set of reduction rules to ensure that the reduction algorithm works correctly. It is also
shown that for all finite state decision problems on graphs of bounded treewidth, there is a set
of reduction rules for which these conditions hold, and that the algorithm based on such a set of
reduction rules takesO(n) time (but more than linear space). The finite state decision problems
include all MS-definable decision problems. The results of [2] are stated in a general, algebraic
setting.

Bodlaender and Hagerup [8] have shown that the sequential reduction algorithms of [2]
and [5] can efficiently be parallelized, if some additional conditions hold for the set of reduction
rules. Their reduction algorithm usesO(lognlog�n) time with O(n) operations and space on
an EREW PRAM, andO(logn) time with O(n) operations and space on a CRCW PRAM.
A sequential version of this algorithm gives a reduction algorithm which usesO(n) time and
space. They show that such sets of reduction rules can be found for all finite state decision
problems, assuming yes-instances have bounded treewidth.

In this paper, we extend these results in two directions. We show that reduction algorithms
can also be used to solve constructive versions of many problems, and we show that reduction
algorithms can also be used to solve some optimization problems, still assuming bounded
treewidth of yes-instances. We also discuss parallelizations of these algorithms.

Many decision problems have a constructive version, in which we are not only interested
in whether a certain property holds for a given graph, but we are also interested in asolution,
if the property holds. For example, in the constructive version ofk-COLORABILITY we want
to find a k-coloring of a given graph, if one exists. Ordinary reduction algorithms do not
provide a possibility to construct solutions, but only decide upon membership in a class of
graphs. In this paper we show how reduction algorithms can be adapted in such a way that
solutions can be constructed, and we show that these algorithms run within the same time and
resource bounds as the basic reduction algorithms (both sequentially and in parallel). We also
show that for a number of graph problems on graphs of bounded treewidth, the technique can
be used, including all MS-definable construction problems whose solution structure satisfies
certain conditions.

Ordinary reduction algorithms (with the extension described above) can be used for (con-
structive) decision problems. In this paper, we extend the notion of reduction algorithms to
(constructive) optimization problems: we introduce a new notion of reduction rules for op-
timization problems, calledreduction-counter rules, and give a set of conditions which are
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necessary for a set of reduction-counter rules in order to make a reduction algorithm work
correctly. This results in efficient reduction algorithms for (constructive) optimization prob-
lems which run within the same time and resource bounds as the original reduction algorithms,
both sequentially and in parallel. For simple graphs of bounded treewidth this gives efficient
algorithms for a number of optimization problems.

This paper is organized as follows. In Section 2 we discuss reduction algorithms for de-
cision problems as introduced in [2], and reprove some results, but in a less algebraic setting.
We also give a reduction algorithm which uses linear time and space, based on the ideas of [2]
and of [8]. In Section 3 we extend the theory of reduction algorithms for decision problems
to constructive reduction algorithms. In Sections 4 and 5 we extend the notion of reduction
algorithms and constructive reduction algorithms to optimization problems. In Section 6, we
discuss the parallel reduction algorithms of [8], and in Section 7, we mention some additional
results.

For reasons of clarity we present the reduction algorithms in this paper for problems on
connected graphs. In Section 7 we briefly discuss how to extend these results to graphs which
are not necessarily connected.

2 Reduction Algorithms for Decision Problems

In this section we discuss the results of [2], and reprove some of these results, but in a more
direct way, avoiding the algebraic setting from [2] — this facilitates our later extensions of
the results. We start with definitions or reduction rules and reduction systems (Section 2.1).
Then we give an efficient reduction algorithm based on a special type of reduction system
(Section 2.2). Finally, we show that this reduction algorithm can be used to solve a large class
of decision problems on graphs of bounded treewidth (Section 2.3).

2.1 Reduction Systems

The graphs we consider are simple and do not contain self-loops, unless stated otherwise.
A graph propertyis a functionP which maps each graph to the valuetrue or false. We

assume that isomorphic graphs are mapped to the same value. We say thatP holds for graph
G or P(G) holds, if P(G) = true. A graph propertyP corresponds directly to a decision prob-
lem: given a graphG, doesP hold for G? An algorithm decides a propertyP if it solves the
corresponding decision problem. A property iseffectively decidableif an algorithm isknown
that decides the property.

Definition 2.1 (Terminal Graph).A terminal graphG is a triple(V;E;X) with (V;E) a simple
graph, and X�V an ordered subset of l� 0 vertices. We denote X byhx1; : : : ;xl i. Vertices in
X are calledterminalsor terminal vertices. Vertices in V�X are calledinner vertices.

The graphsG andH depicted in Figure 1 are examples of terminal graphs.
A terminal graph withl terminals (l � 0) is also called anl -terminal graph. LetG =

(V;E;X) be anl -terminal graph,l � 0, with X = hx1; : : : ;xl i. For eachi, 1� i � l , we call
xi the ith terminal ofG. A terminal graph(V;E;X) is said to beopenif there are no edges
between its terminals.
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Definition 2.2. The operation� maps two terminal graphs G and H with the same number l
of terminals to a simple graph G�H, by taking the disjoint union of G and H, then identifying
for i = 1; : : : ; l, the ith terminal of G with the ith terminal of H, and removing multiple edges.

For an example of the�-operation, see Figure 1. Note that the result of an� operation is a
simple graph, and not a terminal graph.

3
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� =

G H G�H

Figure 1: Example of operation� applied to two three-terminal graphs.

Two terminal graphs(V1;E1;hx1; � � � ;xki) and(V2;E2;hy1; � � � ;yl i) are said to beisomorphic
if k = l and there is an isomorphism from(V1;E1) to (V2;E2) which mapsxi to yi for eachi,
1� i � k.

Definition 2.3 (Reduction Rule).A reduction ruler is an ordered pair(H1;H2), where H1 and
H2 are l-terminal graphs for some l� 0.

A matchto reduction rule r= (H1;H2) in graph G is a terminal graph G1 which is isomor-
phic to H1, such that there is a terminal graph G2 with G= G1�G2.

If G contains a match to r, then anapplicationof r to G is an operation that replaces G by
a graph G0, such that there are terminal graphs G1, G2 and G3, with G1 isomorphic to H1, G2

isomorphic to H2, and G= G1�G3, G0 = G2�G3. We also say that, in G, G1 is replaced by
G2. An application of a reduction rule is also called areduction.

Figure 2 shows an example of a reduction ruler, and an application ofr to a graphG. We
depict a reduction rule(H1;H2) by the two graphsH1 andH2 with an arrow fromH1 to H2.
Given a reduction ruler = (H1;H2), we callH1 the left-hand side ofr, andH2 the right-hand
side ofr.

!r
G

G0

1

2

3

1

2

3

!
r

H1 H2

Figure 2: An example of a reduction ruler = (H1;H2), and an application ofr to a graph
G, resulting in graphG0. The dotted lines inG andG0 denote the parts ofG andG0 that are
involved in the reduction.

Let G be a graph andr = (H1;H2) a reduction rule. IfG contains a matchG1 to r, then
an application ofr to G which replacesG1 by a terminal graph isomorphic toH2 is called a
reduction corresponding to the matchG1.
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If there is an application of ruler to graphG which results in a graphG0, then we write

G
r
!G0. Let R be a set of reduction rules. For two graphsG andG0, we writeG

R
!G0 if there

exists anr 2 R with G
r
!G0. We sayG contains a matchG1 if there is anr 2 R such thatG1

is a match tor in G. If G contains no match, then we say thatG is irreducible (for R ).
The following conditions are useful for a set of reduction rules in order to get a characteri-

zation of a graph propertyP.

Definition 2.4. Let P be a graph property andR a set of reduction rules.

� R is safefor P if, whenever G
R
!G0, then P(G), P(G0).

� R is completefor P if the setI of irreducible graphs for which P holds is finite.

� R is decreasingif, whenever G
R
!G0, then G0 contains fewer vertices than G.

Definition 2.5 (Reduction System). A reduction systemfor a graph property P is a pair
(R ;I ), with R a finite set of reduction rules which is safe, complete and decreasing for P, and
I the set of irreducible graphs for which P holds.

A reduction system(R ;I ) for a propertyP gives a complete characterization ofP: P(G)
holds for a graphG if and only if any sequence of reductions fromR on G leads to a graphG0

which belongs toI (i.e. is isomorphic to a graph inI ).

2.2 An Efficient Reduction Algorithm

A reduction system(R ;I ) for a propertyP corresponds to a polynomial time algorithm that
decides whether propertyP holds for a given graphG: repeat applying rules fromR starting
with the input graph, until no rule fromR can be applied anymore. If the resulting graph
belongs to the setI , thenP holds for the input graph, otherwise, it does not. The number of
reductions that has to be performed is at mostn, since each reduction reduces the number of
vertices by at least one. In order to obtain a linear time reduction algorithm, we define a special
type of reduction system(R ;I ) which has the property that for any graphG for which P(G)
holds, eitherG belongs toI , or G contains a match which can be found in an efficient way. We
consider the method used in [8], called thebounded adjacency list search method. (In [8] this
method is used to obtain an efficient parallel algorithm; we give an efficient sequential version
of this parallel algorithm in this section.)

Definition 2.6. Let d be a positive integer. Let G be a graph given by some adjacency list
representation and let G1 be an l-terminal graph. We say G1 is d-discoverablein G if

1. G1 is open and connected, and the maximum degree of any vertex in G1 is at most d,

2. there is an l-terminal graph G2 such that G= G1�G2, and

3. G1 contains an inner vertex v such that for all vertices w2V(G1) there is a walk W in G1
with W= (u1;u2; : : : ;us), v= u1, w= us, and for each i,2� i � s�1, in the adjacency
list of ui in G, the edgesfui�1;uig andfui;ui+1g have distance at most d.
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Let G be a graph,d a positive integer, and letG1 be ad-discoverable terminal graph inG. It
can be seen that there is a walk from any inner vertexw to any other vertexw0 in G1 in which
two subsequent edges have distance at mostd in the adjacency list of their common vertex, and
each edge occurs at most twice. This, and the fact that each edge in an open terminal graphG1

is incident with an inner vertex (which has degree at mostd) implies the following result.

Lemma 2.1. If a terminal graph G1 is d-discoverable in a graph G for some fixed d� 1, then
for any inner vertex v of G1, all vertices and edges of G1 can be found from v in an amount of
time that only depends on the integer d and the size of G1, but not on the size of the graph G.

Definition 2.7 (Special Reduction System).Let P be a graph property and(R ;I ) a reduction
system for P. Let nmax be the maximum number of vertices in any left-hand side of a rule
r 2 R . (R ;I ) is a special reduction systemfor P if we know positive integers nmin and d,
nmin� nmax� d, such that the following conditions hold.

1. For each reduction rule(H1;H2) 2 R , H1 and H2 are open and connected.

2. For each connected graph G and each adjacency list representation of G, if P(G) holds
and G has at least nmin vertices, then G contains a d-discoverable match.

As a simple example of a special reduction system, consider the graph propertyP, where
P(G) holds if and only ifG is a two-colorable cycle. LetR contain the one reduction rule
depicted in Figure 3, and letI be the set containing just the cycle on four vertices (see also
Figure 3). It can easily be seen that(R ;I ) is a special reduction system forP (d = nmax=
nmin = 5).

! IR
r

Figure 3: A reduction system for the property that a graph is a two-colorable cycle.

In Section 2.3, we show that one can find special reduction systems for many problems on
graphs of bounded treewidth.

Theorem 2.1.Let P be a graph property. If we have a special reduction system for P, then we
have an algorithm which decides P in O(n) time and O(n) space on connected graphs.

Suppose we have a special reduction system for propertyP. Our algorithm findsd-
discoverable matches and executes the corresponding reductions, until there are no mored-
discoverable matches. If the resulting graph is inI , thenP holds for the input graph, and
true is returned. Otherwise,false is returned. The algorithm is a simplified sequential simu-
lation of the parallel algorithm given in [8]. It resembles the algorithm of [2], but usesO(n)
space, whereas the algorithm of [2] usesΩ(np) space, wherep equals the maximum number
of terminal vertices in any reduction rule.

We now give the complete algorithm, given the special reduction system(R ;I ) and the
integersnmin andd.
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Algorithm Reduce(G)
Input: Connected graphG
Output: P(G)
1. nmax maxfjV(H)j j H is left-hand side of somer 2 R g
2. S fv2V(G) j deg(v)� dg
3. while S 6= /0
4. do takev2 S
5. if v is inner vertex of ad-discoverable matchG1 to a ruler 2 R
6. then applyr to G:
7. letG2 be a new terminal graph isomorphic toH2, such thatG1 andG2 have

the same set of terminals
8. replaceG1 by G2

9. S S�fv2V(G1) j v is inner vertex ofG1g
10. S S[fv2V(G2) j deg(v)� dg
11. for all terminalsx of G2

12. do let L denote adjacency list ofx
13. for all fx;wg 2 L for whichL changed within distanced
14. do if deg(w)� d then S S[fwg
15. S S�fvg
16. if G2 I then return true else return false

We first show that the algorithm is correct.

Lemma 2.2.Algorithm Reduce correctly recognizes connected graphs for which a property P
holds, given a special reduction system(R ;I ) for P.

Proof. Suppose the input graph is connected. Now, one can establish three invariants for the
main loop of the algorithm (G is the graph the algorithm ‘works with’):G is connected;P(G)
holds if and only ifP holds for the input graph; for eachd-discoverable matchG1 in G, there is
a vertexw2 Swhich is an inner vertex ofG1. Correctness of the algorithm follows from these
invariants, whose proof we leave to the reader (see [11] for full details). 2

Consider the time and space complexity of the algorithm.

Lemma 2.3.Algorithm Reduce uses O(n) time and space.

Proof. We first show that the main loop of the algorithm is iteratedO(n) times. We do this by
showing that the number of times a vertex is added toS is O(n). Initially, in line 2, Scontains
O(n) vertices. In the main loop, there are only vertices added toS if a reduction takes place.
Since at mostn reductions take place, and after each reduction, at most a constant number of
vertices is added toS, this means that the total number of vertices added toSduring the main
loop is alsoO(n). Since in each iteration of the main loop, at least one vertex is removed from
S, this means that the main loop is executedO(n) times.

Consider one iteration of the main loop. In line 5, ad-discoverable match inG that con-
tainsv as an inner vertex can be found in constant time, as we described. Furthermore, each
reduction can be done in constant time. The loop in lines 11 – 14 can also be done in constant
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time: during the reduction, it is possible to store the places in the adjacency lists of the termi-
nals where something changes, so that they can be easily found. Hence each iteration of the
main loop takesO(1) time, and the algorithm can be done inO(n) time.

It is easy to see that the amount of space used by the algorithm isO(n). 2

This completes the proof of Theorem 2.1.

2.3 Decision Problems for Graphs of Bounded Treewidth

In this section, we show that algorithm Reduce can be used for a large class of graph properties
on graphs of bounded treewidth.

Definition 2.8 (Tree Decomposition & Treewidth).Let G= (V;E) be a graph. Atree decom-
positionTD of G is a pair(T;X ), where T= (I ;F) is a tree, andX = fXi j i 2 Ig is a family
of subsets of V , one for each node (vertex) of T , such that

�
S

i2I Xi =V,

� for every edgefv;wg 2 E, there is an i2 I with v2 Xi and w2 Xi, and

� for all i ; j;k2 I, if j is on the path from i to k in T , then Xi \Xk� Xj.

Thewidth of a tree decomposition((I ;F);fXi j i 2 Ig) is maxi2I jXij �1. The treewidth of a
graph G, denoted bytw(G), is the minimum width over all possible tree decompositions of G.

Definition 2.9. Let P be a graph property, and l a non-negative integer. For l-terminal graphs
G1 and G2, we define the equivalence relation�P;l as follows:

G1�P;l G2 , for all l-terminal graphs H: P(G1�H), P(G2�H):

Property P is offinite indexif for all l � 0,�P;l has finitely many equivalence classes.

Note that a setR of reduction rules for a propertyP is safe if and only if for each reduction
rule (H1;H2) 2 R , H1�P;l H2, for l the number of terminals ofH1 andH2.

An equivalence relation�0 is arefinementof an equivalence relation� if each equivalence
class of�0 is a subset of an equivalence class of�. Clearly, if�0 is finite, then so is�.

The following result is well-known.

Lemma 2.4 [9, 13]. Let P1 and P2 be graph properties of finite index. Let Q1 and Q2 be
graph properties defined as follows: for each graph G, Q1(G) = P1(G)^P2(G), and Q2(G) =
P1(G)_P2(G). Then Q1 and Q2 are also of finite index.

For each integerk� 1, letTWk be the graph property defined as follows: for each graphG,
TWk(G) holds if and only if tw(G)� k.

Lemma 2.5[3, 16]. For each fixed k� 1, TWk is of finite index, and for each l� 0, there is a
finite, effectively decidable refinement of�TWk;l .
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For a propertyP and an integerk, we define the propertyPk asPk(G) = P(G)^TWk(G).
It follows from Lemmas 2.4 and 2.5 that for each fixedk� 1, if P is of finite index, then so is
Pk, and furthermore, if we have a refinement�l of �P;l which is effectively decidable, then we
have a refinement�0

l of �Pk;l which is effectively decidable.
Finite index corresponds to ‘finite state’: there exists a linear time algorithm that decides

finite index properties on graphs, given their tree decomposition of bounded treewidth. More-
over, this algorithm is of a special, well-described structure [10, 9, 1]. The disadvantage of this
algorithm is that a tree decomposition of the input graph is needed. Although for each fixed
k, there is a linear time sequential algorithm which, given a graphG, checks if tw(G) � k,
and if so, computes a minimum width tree decomposition ofG [6], this algorithm is not very
practical, due to the large constant factors involved. With reduction algorithms, one does not
need to build a tree decomposition first.

Lemma 2.6 [8]. Let k and nmin be positive integers. There are integers d and nmax, 2(nmin�
1)� nmax� d, and a constant c> 0, such that in each connected graph G of treewidth at most
k, if n� nmin, then G contains at leastdcne d-discoverable open and connected l-terminal
graphs H with l� 2(k+1) and nmin� jV(H)j � nmax.

The following theorem has originally been proved in [2] for a slightly different kind of
special reduction system. In [8] the proof was adapted for the special reduction system as
defined here. Using the techniques from [2, 8] we give a proof with some details in a different
form.

Theorem 2.2.Let P a graph property and suppose P is of finite index. For each integer k� 1,
there exists a special reduction system(R ;I ) for Pk.

If P is also effectively decidable, and there is an equivalence relation�l for each l� 0
which is a finite refinement of�P;l and is effectively decidable, then such a system(R ;I ) can
effectively be constructed.

Proof. Let k� 1. We first construct all right-hand sides of reduction rules. For everyl �
2(k+ 1) and every equivalence classC of �Pk;l , do the following. IfC contains open and
connectedl -terminal graphs with treewidth at mostk, then choose a representing open and
connectedl -terminal graphHC 2C with treewidth at mostk. Let nmin be one more than the
maximum number of vertices of all chosen graphsHC. Let d, nmax andc be as in Lemma 2.6.

Let R denote the set of reduction rules to be built. For alll with 0� l � 2(k+1) and for
all open connectedl -terminal graphsH with at leastnmin and at mostnmax vertices, if we have
a representative for the equivalence classC in which H is contained, then add the reduction
rule (H;HC) to R . Note that if we do not have such a representative, then eitherH must have
treewidth at leastk+1, or H is not open and connected. In the first case there is no terminal
graphG for which Pk(H�G) holds. In the latter case,H is not discoverable in any graph.

Let I = fG jG is irreducible^Pk(G)^G is connectedg.
It is easy to see thatR is finite: there are finitely manyl -terminal graphs with at most

nmax vertices. Safeness of the resulting setR follows directly from the fact that each left- and
right-hand side of a rule inR belong to the same equivalence class of the relation�Pk;l .
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Condition 1 of a special reduction system (Definition 2.7) clearly holds, andR is decreas-
ing.

We now show thatR is complete, i.e. thatjI j is finite and that condition 2 of Definition 2.7
holds. LetG be a graph for whichPk(G) holds. Note that tw(G) � k. If G has at leastnmin

vertices, then, by Lemma 2.6,C contains at leastdcjV(C)je � 1 d-discoverable openl -terminal
graphsH with l � 2(k+1) andnmin� jV(H)j � nmax. Hence, by construction of the reduction
system,G contains ad-discoverable match, so condition 2 holds.

Clearly, all graphs inI have less thannmin vertices, and hencejI j is finite. This completes
the proof thatR is complete, and hence that(R ;I ) is a special reduction system.

The effective construction of the reduction system can be done using the results from [2]
and [16]. 2

From the proof of Theorem 2.2, we can also conclude the following.

Corollary 2.1. Let P be a graph property, and for each l� 0, let�l be a refinement of�P;l .
Let k� 1. If �l is finite for each l� 0, then there is a special reduction system(R ;I ) for Pk,
such that for each(H;H 0) 2 R , H �l H 0. Moreover, if�l and P are effectively decidable, then
such a system can effectively be constructed.

Courcelle [10] has given a large class of graph properties which are of finite index, namely
the class of properties that are definable inMonadic Second Order Logicor MSOL for graphs.
MSOL for graphsG= (V;E) consists of a language in which predicates can be built with

� the logic connectiveŝ , _, :,) and, (with their usual meanings),
� individual variables which may be vertex variables (with domainV), edge variables (with

domainE), vertex set variables (with domainP (V), the power set ofV), and edge set
variables (with domainP (E)),

� the existential and universal quantifiers ranging over variables (9 and8, respectively),
and

� the following binary relations:

– v2W, wherev is a vertex variable andW a vertex set variable,
– e2 F, wheree is an edge variable andF an edge set variable,
– ‘v andw are adjacent inG’, wherev andw are vertex variables,
– ‘v is incident withe in G’, wherev is a vertex variable, andean edge variable, and
– equality for variables.

Graph properties that can be defined by an MSOL predicate are calledMS-definablegraph
properties. In [10] is was shown that MS-definable graph properties are of finite index. There
are many (even NP-complete) decision problems which are MS-definable (i.e. the correspond-
ing graph properties are MS-definable). These include HAMILTONIAN CIRCUIT and (for fixed
k) k-COLORABILITY (see e.g. [3] for a list). Theorem 2.2 now immediately implies the fol-
lowing result.

Corollary 2.2. Let P be a graph property which is MS-definable. For each integer k� 1, there
is a linear time algorithm which decides Pk on connected graphs without using a tree decom-
position of the input graph. Moreover, such an algorithm can be automatically constructed
from an MSOL predicate for P.
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3 Reduction Algorithms for Construction Problems

In this section we extend the results discussed in the previous section to construction problems:
we extend the reduction algorithms toconstructivereduction algorithms, which can be used to
construct solutions for decision problems.

The basic idea of a constructive reduction algorithm is the following. The algorithm con-
sists of two parts. In the first part, an ordinary reduction algorithm is applied. The reduced
graph is then passed to the second part. In this part, a solution is constructed for the reduced
graph, if it exists. After that, the reductions that are applied in part 1 are undone one by one,
in reversed order, and each time a reduction is undone, the solution of the graph is adapted to a
solution of the new graph. This results in a solution of the input graph.

In order to keep the running time and amount of resources for the second part within the
same bounds as for first part, we must be able to efficiently construct a solution for the new
graph from a solution of the old graph, after an undo-action is applied. Therefore, we require
that the new solution can efficiently be constructed from the old solution.

In this section we start with definitions of a constructive reduction system and an extension
of the efficient reduction algorithm presented in Section 2.2 to construction problems. After
that, we show how this algorithm can be applied to solve a large class of construction problems
on graphs of bounded treewidth.

3.1 Constructive Reduction Systems and Algorithms

Many graph properties are of the form

P(G) = ‘there is anS2 D(G) for which Q(G;S) holds’;

whereD(G) is asolution domain(or shortly domain), which is some set depending onG, and
Q is anextendedgraph property ofG andS, i.e. Q(G;S) 2 ftrue; falseg for all graphsG and
all S2 D(G). An S2 D(G) for which Q(G;S) holds is called asolution for G. For example,
for the perfect matching problem on a graphG, D(G) can beP (E), the power set ofE, and for
S2 D(G), Q(G;S) holds if and only if every vertex inG is end point of exactly one edge inS.
HenceS is a solution forG if S is a perfect matching ofG.

If a graph property is of the formP(G) = ‘there is anS2 D(G) for which Q(G;S) holds’,
then we callP aconstruction propertydefined by the pair(D;Q).

In this section, we introduce constructive reduction algorithms which, for a construction
propertyP defined by(D;Q), do not only decideP, but if P holds for an input graphG, also
construct anS2 D(G) for which Q(G;S) holds. To this end, we generalize the notion of
reduction systems.

Definition 3.1 (Constructive Reduction System).Let P be a construction property defined by
(D;Q). A constructive reduction systemfor P is a quadruple(R ;I ;AR ;AI ), where

� (R ;I ) is a reduction system for P,

� AR is an algorithm which, given

– a reduction rule r= (H1;H2) 2 R ,

11



– two terminal graphs G1 and G2, such that G1 is a isomorphic to H1 and G2 is
isomorphic to H2,

– a graph G with G= G2�H for some H, and
– an S2 D(G) for which Q(G;S) holds,

computes an S0 2G1�H such that Q(G1�H;S0) holds,

� AI is an algorithm which, given a graph G which is isomorphic to some H2 I , computes
an S2 D(G) for which Q(G;S) holds.

Algorithm AI in a constructive reduction system(R ;I ;AR ;AI ) is used to construct an
initial solution of the reduced graphG, if G2 I . AlgorithmAR is used to reconstruct a solution,
each time a reduction is undone on the graph.

As an example, consider the constructive version of the graph propertyP which holds for
graphsG which are two-colorable cycles (see the example of Figure 3): we are looking for a
two-coloring of the graph, if the graph is a two-colorable cycle. For each graphG, let D(G) be
the set of partitions(V1;V2) of V(G), and for eachS2 D(G), let Q(G;S) be true if and only if
G is a cycle andS is a two-coloring ofG.

We extend the reduction system forP given in Figure 3 to a constructive reduction system
for P. Algorithm AR uses a table: for reduction ruler = (H1;H2) 2 R , and each possible
two-coloring of the terminal graphH2, it gives a two-coloring of the terminal graphH1 which
is the same on the set of terminals. The contents of this table are depicted in part I of Figure 4
(symmetric cases are considered only once, hence there is only one two-coloring). Given
as input a reduction ruler, two terminal graphsG2 andG1, a graphG= G2�H, and a two-
coloring ofG, algorithmAR can easily compute a two-coloring ofG1�H using the given table:
the algorithm looks which vertices ofG2 have which color, and looks up the corresponding
coloring ofG1 in the table. Then it removes the inner vertices ofG2 from the solution and adds
the inner vertices ofG1 in the correct way.

Algorithm AI also uses a table: for the only elementH 2 I , this table contains a two-
coloring ofH. See part II of Figure 4. Hence(R ;I ;AR ;AI ) is a constructive reduction system
for P defined by(D;Q). Note that both algorithms can be made to run inO(1) time if we use
a convenient data structure.

 

: inner or terminal vertex in one part of partition

: inner or terminal vertex in the other part of partition

I II

Figure 4: Example of tables used byAR andAI for constructive reduction system for two-
colorability on cycles.

In order to make an efficient constructive reduction algorithm based on a constructive re-
duction system(R ;I ;AR ;AI ), we want that algorithmsAR andAI work efficiently. This is
required in a special constructive reduction system.
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Definition 3.2 (Special Constructive Reduction System).Let P be a construction property
defined by(D;Q). A constructive reduction system(R ;I ;AR ;AI ) for P is aspecial constructive
reduction systemfor P if

1. (R ;I ) is a special reduction system for P (Definition 2.7), and

2. algorithms AR and AI run in O(1) time.

Note that the constructive reduction system we gave for two-colorability of cycles is a special
constructive reduction system, since algorithmsAI andAR as described take constant time,
and we have shown that the reduction system depicted in Figure 3 is a special reduction system
for the problem.

One way to obtain an algorithmAR in a constructive reduction system which runs inO(1)
time is to ensure thatAR only has to change a solution locally, i.e. that the solution to construct
only differs from the input solution in the part of the graph that was involved in the reduction.
We use this technique in most of our algorithms.

Let P be a construction property defined by(D;Q) and let(R ;I ;AR ;AI ) be a special
constructive reduction system forP. The following algorithm computes for a given graphG a
solution ofG if one exists.

Algorithm Reduce-Construct(G)
Input: Connected graphG
Output: S2 D(G) for which Q(G;S) holds ifP(G) holds,false otherwise
1. (� Part 1�)
2. Apply as many reductions as possible onG in the way of algorithm Reduce. Store the

resulting sequence(G1
1;G

1
2);(G

2
1;G

2
2); : : : ;(G

t
1;G

t
i), wheret denotes the number of reduc-

tions, and for eachi, 1� i � t, in the ith reduction,Gi
1 is replaced byGi

2. Let G be the
reduced graph.

3. (� Part 2�)
4. if G =2 I then return false
5. (� Construct initial solution�)
6. S AI (G)
7. for i t downto 1
8. do let r = (H1;H2) 2 R such thatH1 andGi

1 are isomorphic andH2 andGi
2 are iso-

morphic.
9. (� reconstruct solution�)
10. S AR (r;Gi

1;G
i
2;G;S)

11. (� undoith reduction�)
12. replaceGi

2 by Gi
1 in G

13. return S

It is clear from Lemma 2.2 and the definition of a constructive reduction system that algo-
rithm Reduce-Construct is correct. Consider the running time of the algorithm. Part 1 takes
O(n) time, by Lemma 2.3. In part 2, the initial solution can be constructed in constant time,
since algorithmAI takesO(1) time. Every undo-action also takes constant time: undoing a
reduction can be done in the same way as applying it, which takesO(1) time, and algorithm
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AR usesO(1) time. Hence the complete algorithm takesO(n) time. This proves the following
theorem.

Theorem 3.1.Let P be a construction property defined by the pair(D;Q). If we have a special
constructive reduction system for P, then we have an algorithm which, given a connected graph
G, returns a solution S2 D(G) for which Q(G;S) holds, if P(G) holds, andfalse otherwise.
The algorithm runs in O(n) time and uses O(n) space.

3.2 Construction Problems for Graphs of Bounded Treewidth

In this section we show that algorithm Reduce-Construct can be used for a large class of con-
struction properties on graphs of bounded treewidth.

For reasons of clarity, we only consider solution domains of the following form: there is a
t � 1, such that for all graphsG, all elements ofD(G) aret-tuples(S1;S2; : : : ;St), where for
eachi, 1� i � t, Si is an element ofV(G), of E(G), of P (V(G)) or of P (E(G)). If D is of this
form, we say thatD is a t-vertex-edge-tupleor, if t is not important, avertex-edge-tuple. An
example of a domain which is at-vertex-edge-tuple is the domainD for which for each graph
G, D(G) contains all orderedt-partitions ofV(G), i.e. for eachS2 D(G), S= (V1; : : : ;Vt),
whereV1; : : : ;Vt partitionV(G).

If D is a t-vertex-edge-tuple witht = 1, each solution is of the form(S). In this case we
usually omit the().

Let D be some solution domain which is at-vertex-edge-tuple. LetG andH be l -terminal
graphs and letS2 D(G�H). We want to be able to restrictS to the terminal graphsG and
H. For these restrictions, we use the notationS[G] and S[H], defined as follows. Suppose
S= (S1; : : : ;St)2D(G�H). ThenS[G] = (S1[G]; : : : ;St [G]), where for eachi, Si [G] is defined
as follows.

Si [G] =

8>>>>>>>>><
>>>>>>>>>:

Si \V(G) if domain ofSi is P (V(G�H))

Si \E(G) if domain ofSi is P (E(G�H))

Si if domain ofSi isV(G�H) andSi 2V(G)

Si if domain ofSi is E(G�H) andSi 2 E(G)

ε if domain ofSi isV(G�H) andSi =2V(G)

ε if domain ofSi is E(G�H) andSi =2 E(G)

Note that with this definition,S[G] does not contain any vertices or edges which are not inG.

Definition 3.3. Let D be a vertex-edge-tuple. For each l� 0, and each l-terminal graph G,
define

D[ ](G) = fS[G] j S2D(G�H) for some l-terminal graph Hg:

Each S2 D[ ](G) is called apartial solutionof G, and D[ ] is called the partial solution domain
for D.
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Let D be a vertex-edge-tuple. Note that, for each twol -terminal graphsG andH (l � 0)
andSG 2 D[ ](G) andSH 2D[ ](H), there is at most oneS2 D(G�H) such thatS[G] = SG and
S[H] = SH .

Definition 3.4. Let D be a vertex-edge-tuple. Let G and H be l-terminal graphs, let SG 2
D[ ](G) and SH 2D[ ](H). If there is an S2D(G�H) such that S[G] = SG and S[H] = SH, then
(G;SG) and(H;SH) are called�-compatible, and we write SG�SH = S.

The intuition behind�-compatibility is the following: if (G;SG) and (H;SH) are�-
compatible, thenSG andSH can be ‘glued’ upon each other in order to get a solution inG�H.

Let P be a construction property defined by(D;Q). Let G andH be terminals graphs, and
let S2 D[ ](G) andS0 2 D[ ](H). The value ofQ(G�H;S�S0) is only defined ifG andH are
both l -terminal graphs for somel � 0, and(G;S) and(H;S0) are�-compatible. For shorter
notation, we defineQ(G�H;S�S0) to befalse if G andH are not bothl -terminal graphs for
somel � 0, or if (G;S) and(H;S0) are not�-compatible.

Definition 3.5 (Compatibility). Let D be a vertex-edge-tuple. Let G1 and G2 be l-terminal
graphs for some l� 0, and let S1 2 D[ ](G1) and S2 2 D[ ](G2). (G1;S1) and (G2;S2) are
compatibleif for each l-terminal graph H and each S2D[ ](H), (G1;S1) is�-compatible with
(H;S) if and only if(G2;S2) is�-compatible with(H;S).

The intuition behind compatibility is the following: if(G1;S1) and(G2;S2) are compatible,
then for each terminal graphH with the same number of terminals asG1 (andG2), any partial
solutionSH in H that can be ‘glued’ uponS1 can also be glued uponS2, and vice versa.

Note that compatibility is an equivalence relation. The set of all equivalence classes of this
relation is denoted byCcmp;l , for eachl , and the equivalence classes are also called compati-
bility classes. Note that, for vertex-edge-tuplesD, the equivalence relation is of finite index.
For two equivalence classesC andC0 of some equivalence relation which is a refinement of
compatibility, we say thatC andC0 are�-compatible if, for each(G;S) 2C and(H;S0) 2C0,
(G;S) and(H;S0) are�-compatible.

Let P be a construction property defined by(D;Q), whereD is a vertex-edge-tuple.

Definition 3.6. For each l� 0, �Q;l is an equivalence relation on pairs of l-terminal graphs
and partial solutions, which is defined as follows. Let G1, G2 be l-terminal graphs, and S1 2
D[ ](G1) and S2 2 D[ ](G2).

(G1;S1) �Q;l (G2;S2) , (G1;S1) and(G2;S2) are compatible and

for all l-terminal graphs H and all S2 D[ ](H):

Q(G1�H;S1�S) � Q(G2�H;S2�S)

The set of equivalence classes of�Q;l is denoted byCQ;l , and for each l-terminal graph G and
S2 D[ ](G), the equivalence class ofCQ;l that contains(G;S) is denoted byecQ;l (G;S).

By �rQ;l we usually denote an equivalence relation which is a refinement of�Q;l . By CrQ;l

we denote the set of equivalence classes of�rQ;l , and for eachl -terminal graphG and each
S2 D[ ](G), ecrQ;l (G;S) =C if (G;S) is in equivalence classC2 CrQ;l .
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Definition 3.7. Let �rQ;l be a refinement of�Q;l for each l� 0. By�rQ;l we denote the
equivalence relation on l-terminal graphs which is defined as follows. For every two l-terminal
graphs G1 and G2,

G1�rQ;l G2 , fecrQ;l (G1;S1) j S1 2 D[ ](G1)g= fecrQ;l (G2;S2) j S2 2 D[ ](G2)g:

SupposeP is a construction property defined by(D;Q). For eachk � 1, let Qk denote the
property with for each graphG, eachS2D(G), Qk(G;S) holds if and only ifQ(G;S)^TWk(G)
holds. Note thatPk is the construction property defined by(D;Qk).

For eachk� 1, let�rQk;l be the refinement of�rQ;l which is defined as follows. For every
two l -terminal graphsG1 andG2 and eachS1 2 D[ ](G1) andS2 2 D[ ](G2),

(G1;S1)�rQk;l (G2;S2) , (G1;S1)�rQ;l (G2;S2) ^ G1�TWk;l G2:

Lemma 3.1.Let�rQ;l be a refinement of�Q;l , and let k� 1.

1. For each l� 0,�rQ;l is a refinement of�Q;l .

2. For each l� 0,�Q;l is a refinement of�P;l .

3. For each l� 0, if �rQ;l is finite, then�rQ;l is finite.

4. For each l� 0, if �rQ;l is finite, then�rQk;l is finite.

Proof.
1. Follows directly from the definition of�rQ;l .

2. Follows from the fact that for every twol -terminal graphsG1 andG2, if G1�Q;l G2, then
for eachS1 2 D[ ](G1) there is anS2 2 D[ ](G2) such that(G1;S1)�Q;l (G2;S2).

3. The number of equivalence classes of�rQ;l is at most 2jCrQ;l j.

4. Follows from Lemmas 2.5 and 2.4. 2

The next theorem is the analog of Theorem 2.2 for construction properties: we give a set of
conditions for a construction propertyP, and we show that these conditions are sufficient for
proving the existence of a special constructive reduction system forPk for anyk� 1.

Theorem 3.2. Let P a construction property defined by(D;Q), suppose that D is a vertex-
edge-tuple. If�Q;l has finitely many equivalence classes for each l� 0, then for each k� 1,
there exists a special constructive reduction system(R ;I ;AR ;AI ) for Pk defined by(D;Qk).

If, in addition, Q and a finite refinement�rQ;l of�Q;l are effectively decidable, then such
a special constructive reduction system can effectively be constructed. Moreover for each rule
r = (H1;H2) in this system, H1�rQ;l H2.

Proof. Let k � 1. SincejCQ;l j is finite, �Qk;l has a finite number of equivalence classes,
and it is a refinement of�Pk;l . Let (R ;I ) be a special reduction system forPk, such that for
each rule(H1;H2) 2 R , H1 �Qk;l H2. By Corollary 2.1, such a system exists, and it can be
effectively constructed ifQ is effectively decidable and a finite refinement�rQ;l of �Q;l is
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effectively decidable, since in that case,P and�rQk;l are effectively decidable as well (for each
constructed rule(H1;H2), H1�rQk;l H2).

We now describe algorithmsAR andAI for which (R ;I ;AR ;AI ) is a special constructive
reduction system forPk. Both algorithmAR and AI use a table (see also the example for
two-colorability in Figure 4).

For algorithmAR , we make a table which contains for each ruler = (H1;H2) 2 R and
eachS2 2 D[ ](H2) an S1 2 D[ ](H1) such that(H1;S1) �Qk;l (H2;S2). This table is computed
as follows. For each reduction rule(H1;H2) in R , we construct allS1 2 D[ ](H1) and allS2 2
D[ ](H2). Then, for eachS2 2 D[ ](H2), we pick oneS1 2 D[ ](H1) for which (H1;S1) �rQ;l

(H2;S2). Note that these tables haveO(1) size, and can be effectively constructed ifQ is
effectively decidable and a finite refinement�rQ;l is effectively decidable.

For algorithmAI , we make a table which contains for eachH 2 I a solutionSof H. This
is done as follows. For eachH 2 I , we construct allS2 D(H), and we pick one suchS for
which Q(H;S) holds. These tables can be effectively constructed ifQ is effectively decidable.

In order to make algorithmsAR andAI run inO(1) time, we use a data structure for storing
tuplesS= (S1; : : : ;St) 2D[ ](G) which consists of an array oft data structures, one for eachSi .
If Si is a set of vertices or edges, then these vertices or edges are put in a (doubly linked) list.
If Si is a vertex or edge, orε, then this vertex or edge orε is stored. Furthermore, we keep a
pointer from each vertex and edge in the graph to each place in the data structure where this
vertex or edge occurs. There are at mostt of these pointers for each vertex and each edge. This
implies that algorithmAI can be made to run inO(1) time.

Consider algorithmAR . Suppose we have a ruler = (H1;H2) to undo, and we have terminal
graphsG1 andG2 (isomorphic toH1 andH2, respectively), a graphG= G2�H for someH,
and anS2 D(G) for which Q(G;S) holds. Now we compute anS0 2 D(G1�H) such that
Q(G1�H;S0) holds, as follows. First, we computeS[G2] as follows. Make a new data structure
for S[G2] with Si [G2] empty for eachi. For each vertexv in G2, follow the pointers fromv to the
places in which it occurs inS, and check in which partSi of S it occurs. Then addv to Si [G2].
Do the same for all edges. Then for eachi, check ifSi is a set of vertex or edge, but there is no
vertex or edge in the data structure at the location ofSi [G2], and if so, addε to Si [G2]. This can
all be done in constant time, sinceG2 has constant size, and each vertex or edge occurs at most
once in eachSi , so at mostt times inS.

Next, find anS0 = (S01; : : : ;S
0
t) 2 D[ ](G1) with the table that is kept for ruler (note that

(G1;S0)�Qk;l (G2;S[G2])). This can again be done in constant time.
Then computeS0�S[H] as follows. Remove all vertices and edges ofG2 from S. Next, for

eachi, 1� i � t, append the listS0i to the listSi [H] (do not copyε). The resulting data structure
representsS0�S[H]. Hence algorithmAR usesO(1) time. 2

As an important special case, we now consider the MS-definable construction properties.
The construction properties defined by(D;Q), whereD is a vertex-edge-tuple andQ is an
MS-definable extended graph property, correspond exactly to the MS-definable construction
problems (see e.g. [3]). These MS-definable construction problems can be solved inO(n) time
and space for graphs of bounded treewidth if a tree decomposition of bounded width the input
graph is given.

Theorem 3.3. Let P be a construction property defined by(D;Q), where D is a vertex-edge-
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tuple and Q is MS-definable. For each k� 1 there is a special constructive reduction system
for Pk, which can be effectively constructed if a definition of Q in MSOL is known.

Proof. In [9] is was shown that for eachk� 1, there is a homomorphismh, mapping each pair
(G;S), where eitherG is an ordinary graph andS2 D(G) or G is an l -terminal graph,l � k,
andS2 D[ ](G), to an element of a finite setAk, such that the following conditions hold.

1. For every two graphsG1 andG2, and eachS1 2 D(G1) andS2 2 D(G2), if h(G1;S1) =
h(G2;S2), thenQ(G1;S1) = Q(G2;S2).

2. There is a functionf� : Ak�Ak! Ak, such that for eachl � k, every twol -terminal
graphsG and H, and eachS2 D[ ](G) and S0 2 D[ ](H), if (G;S) and (H;S0) are�-
compatible, then

h(G�H;S�S0) = f�(h(G;S);h(H;S0)):

This homomorphism can be computed from an MSOL predicate forQ.
For eachl � 0, eachl -terminal graphG andS2D[ ](G), let ecl (G;S) = (h(G;S);C), where

C2Ccmp;l is such that(G;S) belongs to compatibility classC. Furthermore, letCl =Ak�Ccmp;l ,
and let(G1;S1)�l (G2;S2) if and only if ecl (G1;S1) = ecl (G2;S2). SincejAkj andjCcmp;l j are
both finite,jCl j is also finite. We now show that�l is a refinement of�Q;l .

Let l � 0, letG1 andG2 be l -terminal graphs, and letS1 2 D[ ](G1) andS2 2 D[ ](G2), such
that(G1;S1)�l (G2;S2). We have to show that for alll -terminal graphsH and allS2 D[ ](H),
Q(G1�H;S1�S) = Q(G2�H;S2�S). Let H be anl -terminal graph, and letS2D[ ](H) such
that(G1;S1) and(H;S) are�-compatible. Then, sinceh(G1;S1) = h(G2;S2),

h(G1�H;S1�S) = f�(h(G1;S1);h(H;S))

= f�(h(G2;S2);h(H;S))

= h(G2�H;S2�S):

HenceQ(G1�H;S1�S) = Q(G2�H;S2�S). This shows that the conditions of Theorem 3.2
hold. 2

Theorem 3.3 implies that for each MS-definable construction property, there is a linear time
and space algorithm which solvesP constructively on graphs of bounded treewidth, without
making use of a tree decomposition of the input graph. For instance, this gives linear time
algorithms for the constructive versions of HAMILTONIAN CIRCUIT andk-COLORABILITY

for fixedk, all on graphs of bounded treewidth.

4 Reduction Algorithms for Optimization Problems

In this section we show how the idea of reduction algorithms can be extended to optimization
problems. The general idea is to extend the reduction algorithm as follows. During the reduc-
tions, an integer is kept which is initially zero. Each time a reduction is applied, this integer is
increased (or possibly decreased) with some specified amount. When no more reductions are
possible, the integer represents the optimal value of the problem.
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In Section 4.1 we show how this algorithm can be made to work: we extend reduction
systems to reduction-counter systems and give an efficient reduction algorithm based on such a
system. In Section 4.2 we show that this algorithm can be used for a large class of optimization
problems on graphs of small treewidth.

4.1 Reduction-Counter Systems and Algorithms

Let Φ be a function which maps each graph to a value in[ffalseg (we assume that isomor-
phic graphs are mapped to the same value). Typically,Φ will be an optimization problem like
MAX INDEPENDENT SET. We will call Φ a graph optimization problem. The valuefalse is
used to denote that a certain condition does not hold, i.e. that there is no optimum for a graph.
Let Z denote the set [ffalseg. Define addition onZ as follows: if i; j 2 , then we take
for i + j the usual sum, and for alli 2 Z, i + false = false+ i = false.

Instead of reduction rules, we usereduction-counterrules for graph optimization problems.

Definition 4.1 (Reduction-Counter Rule).A reduction-counter ruleis a pair (r; i), where r is
a reduction rule and i an integer.

A match to a reduction-counter rule(r; i) in a graph G is a match to r in G.
If G contains a match to a reduction-counter rule r0 = (r; i), then an application of r0 to a

graph G and an integer counter cnt is an operation which applies r to G and replaces cnt by
cnt+ i. An application of a reduction-counter rule is also called a reduction.

Let G andG0 be two graphs. If there is a reduction-counter ruler such that applyingr

to G and some countercnt can result inG0, then we writeG
r 0

! G0. If we have a setR of

reduction-counter rules, we writeG
R
!G0 if there exists anr 2 R with G

r
!G0. If a graphG

has no match inR , then we say thatG is irreducible (w.r.t.R ).
We extend the notions of safeness, completeness and decrease to reduction-counter rules.

Definition 4.2. LetΦ be a graph optimization problem andR a set of reduction-counter rules.

� R is safefor Φ if, whenever G
r
!G0 for some r= (r 0; i) 2 R , thenΦ(G) = Φ(G0)+ i.

� R is completefor Φ if the setI of irreducible graphs G for whichΦ(G) 6= false is finite.

� R is decreasingif whenever G
R
!G0, then G0 contains fewer vertices than G.

Definition 4.3 (Reduction-Counter System).A reduction-counter systemfor a graph optimiza-
tion problemΦ is a triple (R ;I ;φ), whereR is a finite set of reduction-counter rules which
is safe, complete and decreasing forΦ, I is the set of graphs G which are irreducible and for
whichΦ(G) 6= false, andφ is a function mapping each graph G2 I to the valueΦ(G).

As a simple example we give a reduction-counter system for the optimization problem
MAX INDEPENDENT SET on cycles: for each graphG, if G is a cycle thenΦ(G) is the size
of a maximum independent set inG, otherwiseΦ(G) = false. Let R = f(r;1)g, wherer is
the reduction rule depicted in Figure 5, letI = fC3;C4g, whereC3 andC4 are the cycles on
three and four vertices (see Figure 5), and letφ(C3) = 1, φ(C4) = 2. It can easily be seen that
(R ;I ;φ) is a reduction-counter system forΦ.

19



! C4
r

C3

Figure 5: A reduction rule and a set of irreducible graphs that form the basis for a reduction-
counter system for MAX INDEPENDENT SET on cycles.

Let Φ be a graph optimization problem. LetP be the graph property with for each graph
G, P(G) = true if Φ(G) 2 , andP(G) = false if Φ(G) = false. We callP thederivedgraph
property (ofΦ). From a reduction-counter system(R ;I ;φ) for Φ, we can derive a reduction
system forP: let R 0 = fr j (r; i) 2 R for somei 2 g. Then(R 0;I ) is a reduction system for
P. We call this system thederived reduction system(from (R ;I ;φ)).

If we are given a reduction-counter systemS = (R ;I ;φ) for a graph optimization problem
Φ, we can again use a reduction algorithm to solveΦ in polynomial time. LetS 0 denote the
derived reduction system. A reduction algorithm based onS is a modification of a reduction
algorithm for the derived graph property based onS 0: instead of repeatedly applying reduction
rules fromS 0 on the input graphG, repeatedly apply reduction-counter rules fromS on the
graphG and a countercnt. Initially, cnt is set to zero.

Let Gj denote the graph after thejth reduction is done, and letcntj denote the value of
the counter at this moment (henceG0 denotes the input graph, andcnt0 = 0). It is important to
note that the sumΦ(Gj)+cntj is invariant during the reduction process, because of the safeness
property. Thus, at each moment in the reduction algorithm,Φ(G0) = Φ(Gj)+ cntj . Hence,
when the reduction process stops aftert iterations, becauseGt is irreducible, thenΦ(G0) 2
if and only if Gt 2 I (or, more precisely,G is isomorphic to a graphH 2 I ). Hence ifGt 2 I ,
thenΦ(G0) = φ(Gt)+cntt , otherwise,Φ(G0) = false.

Definition 4.4 (Special Reduction-Counter System).A special reduction-counter system is a
reduction-counter system of which the derived reduction system is special (Definition 2.7).

Note that the reduction-counter system for MAX INDEPENDENT SET on cycles that we
have given above is also a special reduction-counter system for this problem.

Clearly, if we have a special reduction-counter system for a graph optimization problem
Φ, then we can apply the modifications described above to algorithm Reduce in order to get a
linear time algorithm for solvingΦ on connected graphs.

Theorem 4.1.Let Φ be a graph optimization problem. If we have a special reduction-counter
system forΦ, then we have an algorithm which, for each connected graph G, computesΦ(G)
in O(n) time with O(n) space.

4.2 Optimization Problems for Graphs of Bounded Treewidth

In this section, we derive a similar result as Theorem 2.2 for reduction-counter systems.
In analogy to�P;l for graph propertiesP, we define an equivalence relation�Φ;l for graph

optimization problemsΦ.
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Definition 4.5. For a graph optimization problemΦ the equivalence relation�Φ;l on l-
terminal graphs is defined as follows. Let G1 and G2 be two l-terminal graphs.

G1�Φ;l G2 , there is an i2 such that for all l-terminals graphs H:

Φ(G1�H) = Φ(G2�H)+ i:

Optimization problemΦ is of finite integer indexif �Φ;l is finite for each fixed l.

Note that a if reduction-counter rule((H;H 0); i) is safe for a graph optimization problem
Φ, thenH �Φ;l H 0. Furthermore, ifH �Φ;l H 0 for two l -terminal graphsH andH 0, then there
is an i 2 for which the reduction-counter rule((H;H 0); i) is safe forΦ. Note furthermore
that, for eachl � 0,�Φ;l is a refinement of�P;l , whereP is the derived graph property ofΦ.
Hence ifΦ is of finite integer index, then the derived propertyP is of finite index.

For any graph optimization problemΦ and any integerk� 1, Φk is the graph optimization
problem with for each graphG,

Φk(G) =

(
false if tw(G)> k

Φ(G) otherwise.

From Lemma 2.4 and Lemma 2.5 it follows that, ifΦ is of finite integer index, then for
eachk� 1, Φk is of finite integer index.

The following theorem is the analog of Theorem 2.2 for finite integer index problems.

Theorem 4.2.Let Φ is a graph optimization problem of finite integer index. For each integer
k� 1 there exists a special reduction-counter system forΦk.

If Φ is also effectively computable and there is an equivalence relation�l , for each l� 0,
which is a finite refinement of�Φ;l and is effectively decidable, then such a special reduction-
counter systemS can effectively be constructed. Moreover, for each reduction-counter rule
((H;H 0); i) in S , H �l H 0.

Proof. Let k � 1. Let P be the derived graph property ofΦ. Since for eachl � 0, �Φk;l

is a refinement of�Pk;l , Corollary 2.1 implies that there is a special reduction systemS =
(R ;I ) for P, such that for each(H;H 0) 2 R , H �Φk;l H 0. We show that we can construct a
special reduction-counter system forΦ for which S is the derived reduction system. For each
reduction rule(H;H 0), make a reduction-counter rule((H;H 0); i), wherei = 0 if for all G,
Φ(H�G) = false (and henceΦ(H 0�G) = false), andi = Φ(H�G)�Φ(H 0�G) for someG
such thatΦ(H�G) 2 otherwise. LetR 0 denote the set of all these reduction-counter rules.
Let φ : I ! be the function mapping each graphG2 I to its valueΦ(G). Then(R 0;I ;φ) is
a special reduction-counter system forΦ.

If Φ is effectively computable and we have a refinement�l of �Φ;l , for eachl � 0, then
Φk is effectively computable andP andPk are effectively decidable. Hence we can effectively
construct a special reduction system(R ;I ) for Pk, such that for each rule(H;H 0), H �l H 0.
Furthermore, we can turn this reduction system in a special reduction-counter system(R 0;I ;φ)
for Φ in the following way. The functionφ can be computed by simply computingΦ(G) for
eachG2 I .
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For each reduction ruler = (H;H 0) 2 R , we compute an integeri such that(r; i) is a
safe reduction-counter rule inR . SupposeH andH 0 are l -terminal graphs. LetG be a finite
class ofl -terminal graphs containing at least one terminal graph of each equivalence class of
�Φ;l . Such a setG can be effectively computed, similar as for finite index problems (use
techniques similar as in [2, 16].) Now if there is aG 2 G for which Φ(H �G) 2 , then
take any suchG and let i = Φ(H �G)�Φ(H 0�G). Note that, sinceH �Φ;l H 0, for each
G 2 G with Φ(G�H) 2 , Φ(G�H)�Φ(G�H 0) has the same value, hence this gives
a proper value. IfG contains no graphG for which Φ(H �G) 2 , then leti = 0. Note
that in this case, for everyl -terminal graphG, Φ(H �G) = Φ(H 0�G) = false, and hence
Φ(H�G) = false = false+0= Φ(H 0�G)+ i. Let R 0 be the set of all reduction-counter rules
that are found this way. 2

Unfortunately, we can not apply Theorem 4.2 to all MS-definable graph optimization prob-
lems (see e.g. [3] for a definition). Hence the analog of Corollary 2.2 does not hold for op-
timization problems. However, there are a number of problems for which we can prove that
they are of finite integer index. We give them in the next theorem. In Section 5.2 we prove that
these problems are of finite integer index (Theorem 5.3). These proofs make use of techniques
introduced for constructive optimization problems in Section 5. Definitions of the problems
can also be found in Theorem 5.3.

Theorem 4.3. The following problems are of finite integer index:MAX INDUCED d-
DEGREE SUBGRAPH for all d � 1, MAX INDEPENDENT SET, MIN VERTEX COVER, MIN

p-DOMINATING SET for all p � 1, MAX CUT on graphs with bounded degree,MIN PARTI-
TION INTO CLIQUES, MIN HAMILTONIAN PATH COMPLETION, andMAX LEAF SPANNING

TREE.

As said before, there are a number of optimization problems which are not of finite integer
index, although the problems are MS-definable, and thus standard methods can be used to solve
these problems inO(n) time sequentially if a tree decomposition of the input graph is given.
We state a number of these problems in the next theorem. We prove it only for one problem;
the other proofs are similar, and can be found in [11].

Theorem 4.4.The following problems are not of finite integer index.

M AX CUT: given a graph G, find a partition(V1;V2) of V(G) such that the number of edges
with one end point in V1 and one in V2 is maximum.

M IN COVERING BY CLIQUES: given a graph G, find a set of cliques in G of minimum
cardinality, such that each edge of G is contained in at least one clique.

L ONGEST PATH : given a graph G, find a path in G of maximum length.

L ONGEST CYCLE : given a graph G, find a cycle in G of maximum length.

Proof. We only give the proof of MIN COVERING BY CLIQUES. For each graphG, let Φ(G)
denote the minimum number of cliques to coverG. We show that�Φ;l has infinitely many
equivalence classes for somel � 0 by giving an infinite class of graphs and showing that the
elements of this class are pairwise not equivalent.
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For eachn� 1, letGn be the two-terminal graph with (see also Figure 6)

V(Gn) = fx1;x2g[fa1; : : : ;ang, and

E(Gn) = ffxi;ajg j 1� i � 2^1� j � ng:

Verticesx1 andx2 are the first and the second terminal, respectively.

x1 x2

Gn

y1 y2

a1 a2 an

y1 y2

H H 0

Figure 6: The graphsGn (n� 2), H andH 0 for MIN COVERING BY CLIQUES.

Let G = fGn j n� 1g. We show that for eachGn;Gm2 G , if n 6= m, thenGn 6�Φ;2 Gm.
Let H be the two-terminal graph consisting of terminalsy1 andy2 and no edges, and letH 0

be the two-terminal graph consisting of terminalsy1 andy2 and edgefy1;y2g (see Figure 6).
For eachi, i � 1, Φ(Gi�H) = jE(Gi)j= 2i, sinceGi�H contains no cliques of more than

two vertices. Furthermore,Φ(Gi�H 0) = jffx1;x2;ajg j 1� j � ngj = i. This means that for
all n andm, n 6= m,

Φ(Gn�H)�Φ(Gm�H) = 2n�2m 6= n�m= Φ(Gn�H 0)�Φ(Gm�H 0);

and henceGn 6�Φ;l Gm. This shows that the number of equivalence classes of�Φ;l is infinite
for somel . 2

5 Reduction Algorithms for Constructive Optimization Problems

In this section we show how the idea of constructive reduction algorithms and of reduction
algorithms for optimization problems can be combined for constructive optimization problems.
We start with a definition of a constructive reduction-counter system and an efficient reduction
algorithm for constructive optimization problems. After that, we show that this algorithm can
be used to solve a large class of constructive optimization problems on graphs of bounded
treewidth.

5.1 Constructive Reduction-Counter Systems and Algorithms

Many graph optimization problems are of the form

Φ(G) = optfz(S) j S2 D(G)^Q(G;S)g;

whereD is a solution domain, for eachS2 D(G), z is a function fromD(G) to , and either
opt= max or opt= min. (If there is noS2 D(G) for which Q(G;S) holds, then we define
Φ(G) to befalse.) If Φ is of this form, then we sayΦ is a constructive optimization problem
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defined by the quadruple(D;Q;z;opt). MAX INDEPENDENT SET is an example of such an
optimization problem: for this problem, we can choose opt= max,D(G) = P (V(G)), Q(G;S)
holds if and only if for eachv;w2 S, fv;wg =2 E(G), andz(S) = jSj.

In this section, we consider reduction algorithms for constructive optimization problemsΦ
which return the value ofΦ(G) for an input graphG, and also construct an optimal solution
for G, i.e. a solutionS2 D(G) for which Q(G;S) holds andz(S) = Φ(G) (if Φ(G) 6= false).
We again only consider solution domainsD which are vertex-edge-tuples. We first define the
constructive version of a reduction-counter system.

Definition 5.1 (Constructive Reduction-Counter System).Let Φ be a constructive opti-
mization problem defined by(D;Q;z;opt). A constructive reduction-counter systemfor Φ is
a quadruple(R ;I ;φ;AR ;AI ), where

� (R ;I ;φ) is a reduction-counter system forΦ (Definition 4.3),

� AR is an algorithm which, given

– a reduction rule r= (H1;H2) 2 R ,
– two terminal graphs G1 and G2, such that G1 is a isomorphic to H1 and G2 is

isomorphic to H2,
– a graph G with G= G2�H for some H, and
– an S2 D(G) for which Q(G;S) holds and z(S) = Φ(G),

computes an S0 2G1�H for which Q(G1�H;S0) holds and z(S0) = Φ(G1�H),

� AI is an algorithm which, given a graph G which is isomorphic to some H2 I , computes
an S2 D(G) for which Q(G;S) holds and z(S) = Φ(G).

As an example, consider the optimization problemΦ defined as follows. For each graph
G, Φ(G) is the maximum size of an independent set ifG is a cycle,Φ(G) = false otherwise
(see Section 4.1). Consider the constructive version ofΦ defined by(D;Q;z;max), whereD,
Q andz are defined as follows. For each graphG, D(G) = P (V(G)), and for eachS2 D(G),
Q(G;S) holds if and only ifG is a cycle andS is an independent set ofG, andz(S) = jSj.

We extend the reduction-counter system forΦ depicted in Figure 5 to a constructive
reduction-counter system forΦ. Therefore, we again use the table method used in the proof of
Theorem 3.2. For algorithmAR , we make a table which contains the following information.
For the only reduction ruler = (H1;H2)2R and each independent setS2 of H2 for which there
is a maximum independent setS in some graphH2�H with S2 = S\V(H2), the table contains
an independent setS1 of H1 such thatS1 andS2 contain the same terminals andjS1j= jS2j+1.
All these cases are depicted in part I of Figure 7 (symmetric cases are given only once). Note
that algorithmAR can be made to run inO(1) time with this table, since it only has to remove
inner vertices ofH2 from the independent set of the old graph and add some inner vertices of
H1 to the independent set of the new graph.

For algorithmAI , we make a table which contains for eachH 2 I a maximum independent
set of H (see part II of Figure 7). AlgorithmAI also usesO(1) time. It can be seen that
(R ;I ;φ;AR ;AI ) is a constructive reduction-counter system forΦ defined by(D;Q;z;max).

Let Φ be a constructive optimization problem defined by(D;Q;z;opt). Let P be the con-
struction property defined by(D;Q). We call P the derived construction property. From a
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Figure 7: Tables for algorithmsAR andAI for constructive reduction-counter system for MAX

INDEPENDENTSET on cycles.

constructive reduction-counter system(R ;I ;φ;AR ;AI ) for Φ we can derive a constructive re-
duction systemS for P: let R 0 = fr j (r; i) 2 R g, and letS = (R 0;I ;AR ;AI ). We callS the
derived constructive reduction system.

Definition 5.2 (Special Constructive Reduction-Counter System).A special constructive
reduction-counter system is a constructive reduction-counter system whose derived construc-
tive reduction system is special.

Note that the constructive reduction-counter system that we gave for MAX INDEPENDENTSET

on cycles is special.
Let Φ be a constructive optimization problem defined by(D;Q;z;opt), such thatD is a

vertex-edge-tuple. LetS = (R ;I ;φ;AR ;AI ) be a special constructive reduction-counter system
for Φ. We can modify algorithm Reduce-Construct (Section 3.1) to obtain a constructive re-
duction algorithm forΦ based onS : in part 1, use the reduction-counter algorithm as described
in Section 4.1 instead of algorithm Reduce. In Part 2, line 6 of algorithm Reduce-Construct,
store the valueφ(G) in some variableopt. In line 13, return withS the valueopt.

Hence we have the following result.

Theorem 5.1. Let Φ be a constructive optimization problem defined by(D;Q;z;opt). If we
have a special constructive reduction-counter system forΦ then we have an algorithm which,
given any connected graph G, computesΦ(G) and, if Φ(G) 6= false, computes an S2 D(G)
such that Q(G;S) holds and z(S) = Φ(G). The algorithm uses O(n) time and space.

5.2 Constructive Optimization Problems for Graphs of Bounded Treewidth

In this section we give a number of conditions that are sufficient for constructive optimization
problems on graphs of bounded treewidth in order to assure that there is a special constructive
reduction system. We also show that these conditions hold for a number of problems.

Let (D;Q;z;opt) define a constructive optimization problemΦ and supposeD is a vertex-
edge-tuple. For eachl � 0, let�rQ;l be a refinement of�Q;l .

Let G be a terminal graph. We want to be able to compare the quality of two partial
solutionsSandS0 for which(G;S)�rQ;l (G;S0). More formally, we want that there is an integer
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i 2 such that for each terminal graphH and eachSH 2 D[ ](H) for which Q(G�H;S�SH)
holds,z(S�SH)� z(S0�SH) = i. Therefore, we define an extension of the functionz to the
domain of terminal graphs.

Definition 5.3. Let z̄ be a function which, for each terminal graph G and each S2 D[ ](G),
maps S to a value in . Functionz̄ is anextensionof z with respect tof�rQ;l j l � 0g if, for
each l� 0, and each C;C0 2 CrQ;l for which C and C0 are�-compatible, there is a constant
dl (C;C0) 2 such that the following holds. For every two l-terminal graphs G and H and all
SG 2 D[ ](G) and SH 2 D[ ](H) such thatecrQ;l(G;SG) =C andecrQ;l (H;SH) =C0,

Q(G�H;SG�SH) ) z(SG�SH) = z̄(SG)+ z̄(SH)�dl(C;C
0)

The constants dl (C;C0) are called theextension constantsfor z̄.

Note that, if there is a refinement�rQ;l of �Q;l for eachl � 0 and there is an extension ¯z
of z with respect tof�rQ;l j l � 0g, then it is not necessarily the case that ¯z is an extension ofz
with respect tof�Q;l j l � 0g. However,z̄ is an extension forz with respect to any refinement
of �rQ;l .

Lemma 5.1. Supposēz is an extension of z with respect tof�rQ;l j l � 0g. Let G be an l-
terminal graph (l� 0). Let S;S0 2 D[ ](G) such that(G;S) �rQ;l (G;S0). For each terminal
graph H and each SH 2 D[ ](H), if Q(G�H;S�SH) holds, then

z(S�SH)�z(S0�SH) = z̄(S)� z̄(S0):

Proof. Let C = ecrQ;l(G;S) and letdl denote the extension constants for ¯z. Let H be a
terminal graph and letSH 2 D[ ](H) such thatQ(G�H;S�SH) holds. LetC0 = ecrQ;l(H;SH).
ThenQ(G�H;S0�SH) also holds. Furthermore,z(S�SH)� z(S0�SH) = (z̄(S) + z̄(SH)�
dl (C;C0))� (z̄(S0)+ z̄(SH)�dl(C;C0)) = z̄(S)� z̄(S0). 2

In other words, Lemma 5.1 shows that if(G;S) �rQ;l (G;S0) and z̄(S) > z̄(S0), thenSalways
leads to better solutions thanS0 (assuming opt= max).

Let G be anl -terminal graph, andC2 CrQ;l . Let

opt(G;C) = optfz̄(S) j S2 D[ ](G)^ecrQ;l (G;S) =Cg

(hence opt(G;C) = false if there is noS2D[ ](G) for which ecrQ;l (G;S) =C). If opt(G;C)2 ,
then let optS(G;C) denote anS2 D[ ](G) for which z̄(S) = opt(G;C). Informally speaking,
opt(G;C) represents ‘the value of the best partial solution ofG in equivalence classC’, and
optS(G;C) gives such a partial solution (if existing).

LetS2D[ ](G), letC= ecrQ;l (G;S) and supposeSmay lead to an optimal solution, i.e. there
is a terminal graphH and anSH 2 D[ ](H) such thatQ(G�H;S�SH) holds andz(S�SH) =
Φ(G�H). Lemma 5.1 shows that ¯z(S) = opt(G;C). Hence only partial solutionsS for which
z̄(S) = opt(G;ecrQ;l (G;S)) may lead to optimal solutions.

Theorem 5.2. Let Φ be a constructive optimization problem defined by(D;Q;z;opt). Sup-
pose D is a vertex-edge-tuple and there is a refinement�rQ;l of �Q;l for which the following
conditions hold.
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1. for each l� 0, jCrQ;l j is finite.

2. There is an extension̄z of z with respect tof�rQ;l j l � 0g and for each l� 0, there is a
constant Kl 2 IN, such that for each l-terminal graph G and every S;S0 2D[ ](G), if both
S and S0 can lead to optimal solutions, thenjz̄(S)� z̄(S0)j � Kl .

Then for each k� 1, there exists a special constructive reduction-counter systemS for Φk

defined by(D;Qk;z;opt), and for each reduction-counter rule((H1;H2); i) in S , H1�rQ;l H2.
If, in addition, (i) Q and�rQ;l are effectively decidable, (ii) z is effectively computable,

and (iii) in condition 2,z̄ and Kl are effectively computable, then such a special constructive
reduction-counter system can be effectively constructed.

Proof. Suppose conditions 1 and 2 hold forΦ. Let z̄ be the extension of condition 2 and let
dl (C;C0) denote the corresponding extension constants for allC;C0 2 CrQ;l . For eachl � 0,
let Kl 2 IN be as in condition 2. LetP be the construction property derived fromΦ (i.e. P is
defined by(D;Q)).

We first construct a refinement�l of �rQ;l such that for each pair(G1;G2) of l -terminal
graphs, ifjV(G2)j < jV(G1)j andG1 �l G2, then there is ani 2 for which the following
holds.

a. ((G1;G2); i) is a safe reduction-counter rule forΦ, and

b. for eachS2 2 D[ ](G2) which can lead to an optimal solution, there is anS1 2 D[ ](G1)
such that(G1;S1) �l (G2;S2) and for eachl -terminal graphH and eachS2 D[ ](H), if
Q(G2�H;S2�S) holds andz(S2�S) = Φ(G2�H), thenQ(G1�H;S1�S) holds, and
z(S1�S) = Φ(G1�H).

We also show that�l is finite. After that, we show how to use�l to build a special constructive
reduction-counter system forΦk (k� 1).

For eachl � 0, eachl -terminal graphG, do the following. If there is a partial solution inG
which can lead to an optimal solution, then letS̃G 2D[ ](G) such thatS̃G can lead to an optimal
solution. LetiG = z̄(S̃G) (note thatiG 2 ). Otherwise,S̃G is not defined andiG = 0. Let
hG : CrQ;l !f�Kl ; : : : ;Klg[ffalseg be a function with for eachC2 CrQ;l ,

hG(C) =

(
opt(G;C)� iG if jopt(G;C)� iGj � Kl

false otherwise.

For eachl � 0, each pairG1, G2 of l -terminal graphs and eachS1 2D[ ](G1) andS2 2D[ ](G2),
let

(G1;S1)�l (G2;S2) , (G1;S1)�rQ;l (G2;S2)

^hG1(ecrQ;l (G1;S1)) = hG2(ecrQ;l (G2;S2)):

Note that�l is a refinement of�rQ;l and hence of�Q;l . For eachl � 0, the range ofhG for any
l -terminal graphG has finite cardinality, and�rQ;l is finite, which means that�l is also finite.

Consider the equivalence relation�l on l -terminal graphs as defined in Definition 3.7. Let
l � 0, let G1 and G2 be l -terminal graphs, such thatjV(G2)j < jV(G1)j andG1 �l G2. By
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definition of�l and�l , hG1 = hG2. Let i = iG1� iG2, and leth= hG1 = hG2. We show thatG1,
G2 andi satisfy conditions a and b given above.

Note that, if there is anS2 D[ ](G1) which can lead to a solution, then there is anS0 2
D[ ](G2) which can lead to a solution, and vice versa.

Claim 5.1. Suppose there is a partial solution inG1 which can lead to a solution. Let
C 2 CrQ;l such that opt(G1;C) 2 . Let H be anl -terminal graph. LetS1 = optS(G1;C),
S2 = optS(G2;C) andSH 2D[ ](H), and supposeQ(G1�H;S1�SH) holds. Thenz(S1�SH) =
z(S2�SH)+ i.

Proof. As there is a partial solution inG1 which can lead to a solution,̃SG1 is defined and
z̄(S̃G1) = iG1. This also means that̃SG2 is defined and ¯z(S̃G2) = iG2. Hence, by condition 2
of the theorem,jz̄(S1)� iG1j � Kl , so z̄(S1) = iG1 +h(C), and similarly,z̄(S2) = iG2 +h(C).
Furthermore,

z(S1�SH) = z̄(S1)+ z̄(SH)�dl (C;C
0)

= h(C)+ iG1 + z̄(SH)�dl(C;C
0)

= h(C)+ iG2� iG2 + iG1 + z̄(SH)�dl (C;C
0)

= z̄(S2)+ z̄(SH)�dl (C;C
0)� iG2 + iG1

= z(S2�SH)� iG2 + iG1

= z(S2�SH)+ i:

2

Claim 5.2. ((G1;G2); i) is safe forΦ.

Proof. Let H be anl -terminal graph. We have to show thatΦ(G1�H) = Φ(G2�H)+ i. Since
G1 �l G2, and�l is a refinement of�Q;l , which in turn is a refinement of�P;l , Φ(G1�H)
is false if and only if Φ(G2�H) is false. Hence ifΦ(G1�H) = false, thenΦ(G1�H) =
Φ(G2�H)+ i.

Now supposeΦ(G1�H) 2 , and letS2 D(G1�H) such thatz(S) = Φ(G1�H). Let
S1 = S[G1] andSH = S[H]. Let S2 = optS(G2;ecrQ;l (G1;S1)). By the previous claim,z(S1�
SH) = z(S2�SH)+ i, and hence if opt= max, thenΦ(G1�H)�Φ(G2�H)+ i, and if opt=
min, thenΦ(G1�H)�Φ(G2�H)+ i. By symmetry, we can also show that if opt=max, then
Φ(G2�H) � Φ(G1�H)� i and if opt= min thenΦ(G2�H) � Φ(G1�H)� i, and hence
Φ(G1�H) = Φ(G2�H)+ i. 2

Claim 5.3. For eachS2 2 D[ ](G2) which can lead to an optimal solution, there is anS1 2
D[ ](G1) such that(G1;S1) �l (G2;S2) and for eachl -terminal graphH and eachS2 D[ ](H),
if Q(G2�H;S2�S) holds andz(S2�S) = Φ(G2�H), thenQ(G1�H;S1�S) holds, and
z(S1�S) = Φ(G1�H).

Proof. Let S2 2 D[ ](G2) such thatS2 can lead to an optimal solution, letC = ecrQ;l (G2;S2).
Note that opt(G2;C) = z̄(S2) 6= false (and hence opt(G1;C) 6= false). Let S1 = opt(G1;C). Let
H be anl -terminal graph, letSH 2D[ ](H) and letC0 = ecrQ;l (H). SupposeQ(G2�H;S2�SH)
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holds andz(S2�SH) = Φ(G2�H). By a previous claim,z(S1�SH) = z(S2�SH)+ i. Since
Φ(G1�H) =Φ(G2�H)+ i andΦ(G2�H)= z(S2�H), this implies thatz(S1�H)=Φ(G1�
H). 2

The claims show that conditions a and b hold.
Let k� 1. We show that there is a special constructive reduction-counter system forΦk.

Theorem 3.2 shows that there is a special constructive reduction systemS = (R ;I ;AR ;AI )
for Pk such that for each(H1;H2) 2 R , H1�l H2. We show how to transformS into a special
constructive reduction-counter systemS 0 = (R 0;I 0;φ;A0

R ;A0
I ) for Φk. First, we make a setR 0

of reduction-counter rules fromR : for eachr = (H1;H2) 2 R , make a reduction-counter rule
(r; i) in R 0 with i = iH1� iH2. By condition a,R 0 is safe forΦk.

Next, let I 0 = I , and for eachG 2 I 0, let φ(G) = Φ(G). We let the algorithmsA0
R and

A0
I be the same asAR and AI , but with different tables. ForA0

I , we make a table which
gives for eachG2 I 0 an S2 D(G) such thatΦ(G) = z(S). For A0

R , we make a table which,
for each reduction-counter ruler = ((H1;H2); i) 2 R 0, and eachS2 2 H2 for which z̄(S2) =
opt(H2;ecl (H2;S2)), contains optS(H1;S1). Now, (R 0;I 0;φ;A0

R ;A0
I ) is a special constructive

reduction-counter system forΦk. The effectiveness result easily follows. 2

Note that, if only condition 1 of Theorem 5.2 holds forΦ, thenΦ is of finite integer index,
and hence for eachk� 1, there is a special reduction-counter system forΦk.

In the following theorem we show for a number of constructive optimization problems that
they are efficiently solvable, using the methods of Theorem 5.2.. The proofs are all of the same
type; we only give the first one completely, the others can be found in [11].

Theorem 5.3.Each of the following constructive optimization problems can be solved in O(n)
time and space on graphs of bounded treewidth without making a tree decomposition of the
input graph.

M AX I NDUCED d-DEGREE SUBGRAPH for all d� 0: given a graph G, find a set W�
V(G) of maximum cardinality such that the degree of each vertex in G[W] is at most d (for
d = 0 this isMAX INDEPENDENTSET).

M IN VERTEX COVER: given a graph G, find a set W�V(G) of minimum cardinality, such
that each edge in G has at least one end point in W.

M IN p-DOMINATING SET for all p� 1: given a graph G, find a set W�V(G) of minimum
cardinality such that each v2V(G)�W has at least p neighbors in W.

M AX CUT on graphs with bounded degree.

M IN PARTITION INTO CLIQUES: given a graph G, find a partitionfV1; : : : ;Vsg of V(G)
such that s is minimum and for each i, G[Vi ] is a complete graph.

M IN HAMILTONIAN PATH COMPLETION : given a graph G, find the minimum number of
edges that should be added to G such that G contains a Hamiltonian path.

M IN HAMILTONIAN CIRCUIT COMPLETION : given a graph G, find the minimum number
of edges that should be added to G such that G contains a Hamiltonian cycle.

M AX L EAF SPANNING TREE: given a graph G, find a spanning tree of G in which the
number of leaves is maximum.
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Proof. For eachl � 0, let Il = f1; : : : ; lg, andFl = ffi; jg j 1� i < j � lg. Furthermore, for
eachl -terminal graphG= (V;E;hx1; : : : ;xl i), let

F(G) = ffi; jg j fxi ;xjg 2 Eg;

and for eachW �V(G) let

I(W) = fi 2 Il j xi 2Wg:

We give the full proof for MAX INDUCED d-DEGREESUBGRAPH; for the other problems
we omit many (lengthy) details.

MAX INDUCED d-DEGREE SUBGRAPH. Let d � 0 be fixed. LetΦ be defined by
(D;Q;z;max), whereD, Q andz are defined as follows. For each graphG, let D(G) = P (V),
and for eachS2 D(G), let

Q(G;S) = ‘for all v2 S: jNG;S(v)j � d’ ;

whereNG;S(v) = fw2 Sj fv;wg 2 E(G)g. Furthermore, letz(S) = jSj. We show that for each
k� 1, there is a special constructive reduction-counter system forΦk, by using Theorem 5.2.
We define a refinement�rQ;l of �Q;l by giving the setsCrQ;l and the functions ecrQ;l . For each
l � 0, let

CrQ;l = f(I ; false) j I � Ilg[

f(F; I ;N) j F � Fl ^ I � Il ^N� f(i;n) j i 2 I ^n2 f1; : : : ;dgg:

jCrQ;l j is bounded, becaused is fixed. For eachl -terminal graphG= (V;E;hx1; : : : ;xl i), each
S2D[ ](G), let ecrQ;l(G;S)2CrQ;l be defined as follows. If there is av2Ssuch thatjNG;S(v)j>
d, then ecrQ;l (G;S) = (I(S); false) (S can not lead to a solution), otherwise, ecrQ;l(G;S) =
(F(G); I(S);N), whereN = f(i; jNG;S(xi)j) j i 2 I(S)g.

We first show that�rQ;l is a refinement of�Q;l for all l . Suppose(G1;S1) �rQ;l (G2;S2).
Clearly, (G1;S1) and(G2;S2) are compatible. LetH be anl -terminal graph, letSH 2 D[ ](H)
such that(G1;S1) and(H;SH) are�-compatible. We have to show thatQ(G1�H;S1�SH)
holds if and only ifQ(G2�H;S2�H) holds. If ecrQ;l (G1;S1) = ecrQ;l (G2;S2) = (I(S1); false),
thenQ(G1�H;S1�SH) = false = Q(G2�H;S2�SH).

Suppose ecrQ;l (G1;S1) = ecrQ;l (G2;S2) = (F; I ;N), whereN = f(i;ni) j i 2 Ig. Let X =
hx1; : : : ;xl i, Y = hy1; : : : ;yl i, andZ = hz1; : : : ;zl i denote the terminal sets ofG1, G2 andH,
respectively.

Q(G1�H;S1�SH)

= (8v2S1�SH jNG1�H;S1�SH (v)j � d)

= (8i2I jNH;SH (zi)j+ jNG1;S1(xi)j� jf j 2 I j xj 2 NG1;S1(xi)^zj 2 NH;SH (zi)gj � d)

^ (8v2S1�X jNG1;S1(v)j � d) ^ (8v2SH�Z jNH;SH (v)j � d)

= (8i2I jNH;SH (zi)j+ jnij� jf j 2 I j fi; jg 2 F ^fzi;zjg 2 E(H)gj � d)

^ (8v2S1�X jNG1;S1(v)j � d) ^ (8v2SH�Z jNH;SH (v)j � d)

= (8i2I jNH;SH (zi)j+ jNG;S2(yi)j� jf j 2 I j yj 2 NG2;S2(yi)^zj 2 NH;SH (zi)gj � d)

^ (8v2S2�Y jNG2;S2(v)j � d) ^ (8v2SH�Z jNH;SH (v)j � d)

= Q(G2�H;S2�SH)
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Hence�rQ;l is a refinement of�Q;l . This proves condition 1 of Theorem 5.2.
Consider condition 2 of Theorem 5.2. For each terminal graphG, eachS2 D[ ](G), let

z̄(S) = jSj. We show that ¯z is an extension ofz. Let C;C0 2 CrQ;l , such thatC andC0 are
compatible. LetI � Il such thatC = (I ; false) or C = (F; I ;N) for someF andN, andC0 =
(I ; false) orC0 =(F 0; I ;N0) for someF 0 andN0. LetGandH bel -terminal graphs, letS2D[ ](G)
andS0 2 D[ ](H) such that ecrQ;l (G;S) =C and ecrQ;l (H;S0) =C0. Thenz(S�S0) = jS�S0j=
jS[S0j = jSj+ jS0j � jI j = z̄(S) + z̄(S0)� jI j, hencedl (C;C0) = jI j, which shows that ¯z is an
extension ofz.

For eachl � 0 let Kl = 2l . Let G be anl -terminal graph. LetCG 2 CrQ;l denote the
equivalence class(F(G); /0; /0). Note that opt(G;CG) 6= false, since ecrQ;l (G; /0) =CG.

Let S2 D[ ](G). We show that, ifS can lead to an optimal solution, thenjz̄(S)�
opt(G;CG)j � l . This proves that condition 2 of Theorem 5.2 withKl = 2l .

Claim 5.4. If Scan lead to an optimal solution thenjz̄(S)�opt(G;CG)j � l .

Proof. SupposeScan lead to an optimal solution.
First consider the value of ¯z(S)�opt(G;CG). Let S0 = S�X. Note that ecrQ;l (G;S0) =CG

andz̄(S)� z̄(S0)+ l . Hence ¯z(S)�opt(G;CG)� z̄(S0)+ l �opt(G;CG)� l .
Next consider the value of opt(G;CG)� z̄(S). Suppose that opt(G;CG)� z̄(S) > l . Let H

be anl -terminal graph andSH 2 D[ ](H) such that(G;S) and (H;SH) are�-compatible and
S�SH is an optimal solution ofG�H (this is possible sinceScan lead to an optimal solution).
Let S0 2D(G�H) be the set obtained fromS�SH by deleting all terminals fromG. Note that
Q(G�H;S0) holds, and thus ecrQ;l (G;S0[G]) = CG. Furthermorez(S0) � z(S�SH)� l . But
then optS(G;CG)�S0[H] is also a solution forG�H, and furthermore,

z(optS(G;CG)�S0[H]) = z̄(optS(G;CG))+ z̄(S0[H])

> z̄(S0[G])+ l + z̄(S0[H])

= z(S0)+ l

� z(S�SH):

This is a contradiction, sinceS�SH is an optimal solution. Hence opt(G;CG)� z̄(S)� l . 2

This proves that conditions 1 and 2 of Theorem 5.2 hold. Moreover,Q and�rQ;l are effectively
decidable and ¯z andKl are effectively computable, and thus there is an effectively computable
special constructive reduction-counter system for MAX INDUCED d-DEGREESUBGRAPH.

MIN VERTEX COVER and MIN p-DOMINATING SET. Similar to MAX INDUCED d-DEGREE

SUBGRAPH.

MAX CUT on graphs with bounded degree and MAX LEAF SPANNING TREE . Can be solved
with techniques, similar to the other problems considered here.

MIN PARTITION INTO CLIQUES. Note that partitionsfV1; : : : ;Vsg of the vertices of a graph
can not be directly represented by a vertex-edge-tuple, since the numbers can be arbitrarily
large, depending on the size of the graph. Therefore, we define for each graphG, D(G) =
P (E(G)), and for eachS2 D(G), we let

Q(G;S) = ‘each component of(V(G);S) is a clique’;
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opt= min andz(S) = ‘the number of components of(V(G);S)’. Given a setF � E(G) for
which Q(G;F) holds, we can compute a clique partition ofG by computing the connected
components of(V(G);F). This can be done in linear time.

Alternatively, we can, during the construction phase of the reduce-construct algorithm,
maintain a clique partition of the current graph as a set of subsets of the vertices. This can be
done in a similar way as for vertex-edge-tuples. The remaining details of the proof are omitted.

MIN HAMILTONIAN PATH COMPLETION. We have the same problem as for MIN PARTITION

INTO CLIQUES: a set of ‘edges to be added’ can not be represented by a vertex-edge-tuple.
Therefore, we define the problem as follows. LetΦ be defined by(D;Q;z;min), whereD, Q
andz are defined as follows. For each graphG, let D(G) be a set of edge setsF � E(G) for
which each component of(V(G);F) is a path. For eachS2 D(G), let Q(G;S) = true, and let
z(S) = ‘the number of components of(V(G);S)’.

Again we can compute such a set of extra edges in linear time from an optimal solution
F for G: compute the components of(V(G);F), and for each such component, find the end
vertices of the path. Now concatenate the paths in an arbitrary way. The edges that are added
for the concatenation are the desired edges. The remaining details of the proof are omitted.

MIN HAMILTONIAN CIRCUIT COMPLETION. Use the algorithm for MIN HAMILTONIAN

PATH COMPLETION: if a graph is not Hamiltonian (which can be tested a reduction algorithm
as HAMILTONIAN CIRCUIT is MS-definable), then its Hamiltonian circuit completion number
is one larger than its Hamiltonian path completion number. 2

6 Parallel Reduction Algorithms

In [8] an efficient parallel variant of algorithm Reduce was given, based on a variant of the
special reduction system. In this section we show how to use this algorithm to make an efficient
parallel variant of algorithm Reduce-Construct (Section 6.2). We also show that the parallel
variant of Theorem 3.2 holds. Furthermore we show how to extend the parallel algorithm such
that it can also be used for (constructive) optimization problems (Sections 6.3 and 6.4), and we
give the parallel variants of Theorems 4.2 and 5.2. We show that these algorithms can be used
for large classes of problems on graphs of small treewidth.

We start with a description of the parallel reduction algorithm as introduced in [8].

6.1 Decision Problems

The basic idea of the parallel reduction algorithm is that, if there are two or more possible
applications of reduction rules at a certain time, and these applications do not interfere, then
they can be applied concurrently.

Definition 6.1 (Non-Interfering Matches).Let R be a set of reduction rules and let G be a
graph with a fixed adjacency list representation. Two matches G1 and G2 in G are said to be
non-interferingif

� no inner vertex of Gi (i = 1;2) is a vertex of G3�i ,
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� the sets of edges of G1 and G2 are disjoint, and

� if G1 and G2 have a common terminal x, then in the adjacency list of x, there are no two
consecutive edges e1 and e2 such that e1 2 E(G1) and e2 2 E(G2).

A set of matches in G is non-interfering if all matches in the set are pairwise non-interfering.

Let R be a set of reduction rules and letG be a graph with a fixed adjacency list represen-
tation. If we have a set of non-interfering matches inG, then the reductions corresponding to
these matches can be executed in parallel without concurrent reading or writing, and this gives
the same result as if the reductions were executed subsequently, in an arbitrary order. In order
to make an efficient parallel reduction algorithm for a given graph propertyP, we want to have
a special reduction system which gives sufficiently many matches in any graphG for which P
holds. Therefore, we introduce a specialparallel reduction system.

Definition 6.2 (Special Parallel Reduction System).Let P be a graph property, and(R ;I ) a
reduction system for P. Let nmax be the maximum number of vertices in any left-hand side of
a rule r 2 R . (R ;I ) is called aspecial parallel reduction systemfor P if we know positive
integers nmin and d, nmin� nmax� d, and a constant c> 0, such that the following conditions
hold.

1. For each reduction rule(H1;H2) 2 R , H1 and H2 are open and connected.

2. For each connected graph G and each adjacency list representation of G, if P(G) holds
and G has at least nmin vertices, then G contains at least c� jV(G)j d-discoverable
matches.

Note that, since for each integern> 1 and each constantc, if c> 0 thencn> 0, a special
parallel reduction system is also a special reduction system.

Consider the graph property which holds if a graph is a two-colorable cycle. The reduction
system that we have given for this property in Figure 3 is an example of a special parallel
reduction system (taked = nmax= nmin = 5 andc= 1=5).

Let P be a graph property andS = (R ;I ) a special parallel reduction system forP. Let
nmin, nmax, d andc be as in Definition 6.2. The parallel reduction algorithm introduced in [8]
based onS works as follows. The algorithm findsd-discoverable matches and executes the
corresponding reductions, until there are no mored-discoverable matches. In more detail, the
following is done.

Suppose we are given an input graphG with n vertices. The algorithm consists of a number
of reduction rounds, which are executed subsequently. In each reduction round,Ω(m) reduc-
tions are applied to the current graph, which hasmvertices, ifP(G) holds. This is done in four
steps.

1. In the first step, the algorithm finds ad-discoverable match from each vertexv which has
degree at mostd and is an inner vertex of ad-discoverable match. If this succeeds, the
corresponding reduction ruler is looked up. LetA denote the set of all matches that are
found. Note thatA is not necessarily non-interfering.

2. In the second step, the algorithm computes a subsetA0 of A with sizeΩ(jAj), which is a
set of non-interfering matches.
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3. In the last step, all reductions corresponding to the matches inA0 are applied.

The first and third step can be done in constant time onm processors, without concurrent
reading or writing: in step 1, take one processor for each vertex of degree at mostd. In
step 3, for each match inA0, let the processor which discovered the match in step 2 apply its
corresponding reduction. The second step is more complicated. It is basically done as follows.
First, aconflict graphof all matches inA is built. This graph contains a vertex for each match
in A, and an edge between two vertices if and only if the corresponding matches are interfering.
Now an independent set in the conflict graph corresponds to a set of non-interfering matches. It
can be seen that the conflict graph has bounded degree. This means that there is an independent
setA0 of sizeΩ(jAj) which can be found efficiently in parallel on an EREW PRAM (for more
details, see [8]).

Note that in step 2, the size ofA is at leastcmas long asP holds for the input graph. This
implies that at mostO(logn) reduction rounds have to be done: if the graph resulting after
these steps is inI , thenP holds for the input graph andtrue is returned. Otherwise,P does not
hold for the input graph andfalse is returned.

Consider the amount of resources used by the algorithms. As said before, we haveO(logn)
reduction rounds, and in each reduction round the number of vertices of the graph is reduced
by a constant fraction (ifP holds for the input graph). The only part in a reduction round which
takes more than constant time is step 2. By a careful analysis, it can be seen that the algorithm
can be made to run inO(lognlog�n) time withO(n) operations and space on an EREW PRAM.
For a CRCW PRAM, the algorithm can be slightly improved: it runs inO(logn) time withO(n)
operations and space (see [8] for details).

Theorem 6.1.Let P be a graph property. If we have a special parallel reduction system for P,
then we have an algorithm which decides P on connected graphs in O(lognlog�n) time with
O(n) operations and space on an EREW PRAM, and in O(logn) time with O(n) operations
and space on a CRCW PRAM.

The definition of a special parallel reduction system, Lemma 2.6 and (the proof of) Theo-
rem 2.2 immediately imply the following result.

Theorem 6.2.Let P a graph property, and suppose P is of finite index. For each integer k� 1,
there is a special parallel reduction system for Pk.

If P is also effectively decidable, and there is an equivalence relation�l for each l� 0,
which is a finite refinement of�P;l and is effectively decidable, then such a system(R ;I ) can
effectively be constructed.

The analog of Corollary 2.2 also holds for the parallel case.
In the parallel case, there exist algorithms that decide finite index properties inO(logn)

time with O(n) operations and space, given a tree decomposition of bounded width of the
graph [15]. However, the best known parallel algorithm for finding a tree decomposition of
the input graph takesO(log2n) time withO(n) operations on an EREW or CRCW PRAM [8].
Hence the reduction algorithms presented in this section are more efficient.
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6.2 Construction Problems

We start with adapting the definition of a special constructive reduction system.

Definition 6.3. Let P be a construction property defined by(D;Q) and let (R ;I ;AR ;AI )
be a constructive reduction system for P. Algorithm AR is non-interferingif for each graph
G, each S2 D(G), if AR is executed simultaneously for the reconstructions corresponding to
the undoing of two non-interfering reductions, then this gives the same result as running AR
successively for these two reconstructions. Furthermore, no concurrent reading or writing
takes place.

Definition 6.4 (Special Parallel Constructive Reduction System).Let P be a construction
property defined by(D;Q). A constructive reduction systemS = (R ;I ;AR ;AI ) for P is a
special parallel constructive reduction systemfor P if

� (R ;I ) is a special parallel reduction system for P,

� algorithms AR and AI use O(1) time on a single processor, and

� algorithm AR is non-interfering.

Note that the constructive reduction system that we have defined for two-colorability of
cycles (Figure 4) is a special parallel constructive reduction system: we represent each two-
coloring as a labeling of the graph, i.e. each vertex is labeled with an integer denoting its color.
We can implement algorithmAR such that it is non-interfering, and it runs inO(1) time (use
the tables as given in Figure 4). AlgorithmAI also takesO(1) time.

If we have a special parallel constructive reduction system for a given construction prop-
erty P defined by(D;Q), then we can use a parallel variant of algorithm Reduce-Construct
to construct a solution for an input graphG, if one exists. The parallel algorithm consists of
two parts. In part one, reductions are applied as often as possible, using the parallel algorithm
described in Section 6.1.

Part two of the algorithm starts with constructing an initial solution for the reduced graph, if
P holds. This is done by one processor in constant time, by using algorithmAI . After that, the
reduction rounds of part one are undone in reversed order. In each undo-action of a reduction
round, all reductions of that round are undone, and the solution is adapted. Each undo-action
of a reduction is executed by the same processor that applied the rule in the first part of the
algorithm. This processor also applies algorithmAR . SinceAR is non-interfering, this results
in the correct output.

Part one of the algorithm takesO(lognlog�n) time with O(n) operations and space on an
EREW PRAM. Part two can be done inO(logn) time with O(n) operations and space on an
EREW PRAM: each undo action of a reduction can be done inO(1) time on one processor,
and the local adaptation of the solution can also be done inO(1) time by the same processor,
since algorithmAR takes constant time. This implies the following result.

Theorem 6.3.Let P be a construction property defined by(D;Q). If we have a special parallel
constructive reduction system for P, then we have an algorithm which, given a connected
graph G, checks if P(G) holds and if so, constructs an S2 D(G) for which Q(G;S) holds. The
algorithm takes O(lognlog�n) time with O(n) operations and space on an EREW PRAM, and
O(logn) time with O(n) operations and space on a CRCW PRAM.
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We next show that for a large class of construction properties on graphs of bounded
treewidth, there is a special constructive reduction system.

Theorem 6.4.Let P be a construction property defined by(D;Q). If D is a vertex-edge-tuple
and�Q;l is finite for each l� 0, then for each k� 1, there is a special parallel constructive
reduction system for Pk.

If in addition, Q and a finite refinement�rQ;l of�Q;l are effectively decidable, then such a
system can be effectively constructed.

Proof. Let k� 1. LetS = (R ;I ;AR ;AI ) be a special constructive reduction system forPk as
defined in the proof of Theorem 3.2. We show thatAR andAI can be made such thatS is a
special parallel reduction system forPk.

We use the following data structure for storing (partial) solutions. SupposeG is the cur-
rent graph andS= (S1;S2; : : : ;St) is the current solution forG. With each vertexv, we store
booleansb1; : : : ;bt : for eachi, 1� i � t, bi is true if and only if Di(G) = V(G) andv = Si ,
or Di(G) = P (V(G)) andv 2 Si . Similarly, with each edgee, we store booleansb1; : : : ;bt :
for eachi, 1� i � t, bi is true if and only if Di(G) = E(G) ande= Si , or Di(G) = P (E(G))
and e2 Si . It is easy to see that with this data structure, we can makeAR such that it is
non-interfering and runs inO(1) time. Furthermore,AI also runs inO(1) time. 2

Note that, with the data structure fort-vertex-edge-tuples as described in the proof of The-
orem 6.4, a returned solution for a given input graph is represented as a labeling of the vertices
and edges of the graph. However, we can transform this representation into the representation
as described in the proof of Theorem 3.2: for eachi, 1� i � t, use a parallel prefix algorithm
(see e.g. [14]) to make a list of all vertices or edges for whichbi is true. Sincet is fixed, this
takesO(logn) time with O(n) operations on an EREW PRAM, and hence does not increase
the total running time.

In particular, Theorem 6.4 shows that many well-known graph problems, when restricted
to graphs of bounded treewidth, can be solved constructively within the stated resource bounds.
These include all MS-definable construction properties for which the domain is a vertex-edge-
tuple.

6.3 Optimization Problems

It is again easy to adapt the parallel reduction algorithm for optimization problems. Therefore,
we define a special parallel reduction-counter system to be a reduction-counter system of which
the derived reduction system is a special parallel reduction system.

For instance, the reduction-counter system for MAX INDEPENDENTSET on cycles that we
defined in Figure 5 is a special parallel reduction-counter system for this problem.

Let Φ be a graph optimization problem, andS = (R ;I ;φ) a special parallel reduction-
counter system forΦ. A parallel reduction algorithm based onS is a combination of the par-
allel reduction algorithm based on the derived reduction system, and the sequential reduction
algorithm described in Section 4. Each processor has a counter, which is initially set to zero.
If a processor applies a reduction-counter rule in the algorithm, then it uses its own counter.
After the last reduction round is finished, the counters of all processors are added up. Letcnt
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denote the resulting counter, letG denote the input graph andH the reduced graph. Now, if
H 2 I , thenΦ(G) = cnt+φ(H), otherwise,Φ(G) = Φ(H) = false. The sum of all the counters
can be computed inO(logn) time with O(n) operations and space on an EREW PRAM.

Theorem 6.5.LetΦ be a graph optimization problem. If we have a special parallel reduction-
counter system forΦ, then we have an algorithm which, for each connected graph G with n
vertices, computesΦ(G) in O(lognlog�n) time with O(n) operations and space on an EREW
PRAM, and in O(logn) time with O(n) operations and space on a CRCW PRAM.

By Lemma 2.6 and Theorem 4.2, we also have the following result.

Theorem 6.6.LetΦ be a graph optimization problem which is of finite integer index. For each
integer k� 1, there exists a special parallel reduction systemS for Φk.

If, in addition, Φ is effectively computable, and there is an equivalence relation�l , for
each l� 0, which is a finite refinement of�Φ;l and is effectively decidable, then such a system
S can effectively be constructed.

Theorem 6.6 implies that there are special parallel reduction-counter systems for the fol-
lowing problems on graphs of bounded treewidth (see also Theorem 4.3): MAX INDUCED

d-DEGREESUBGRAPH for all d� 0, MIN p-DOMINATING SET for all p� 1, MIN VERTEX

COVER, MAX CUT on graphs with bounded degree, MIN PARTITION INTO CLIQUES, MIN

HAMILTONIAN PATH COMPLETION, and MAX LEAF SPANNING TREE.

6.4 Constructive Optimization Problems

A similar approach can be taken for constructive optimization problems. LetΦ be a construc-
tive optimization problem defined by(D;Q;z;opt). Let S be a special constructive reduction-
counter system forP. ThenS is aspecial parallel constructive reduction-counter systemif the
derived constructive reduction system is a special parallel constructive reduction system.

Note that the constructive reduction-counter system that we defined for MAX INDEPEN-
DENT SET on cycles (Figure 7) is a special parallel constructive reduction-counter system, if
we represent an independent set as a labeling of the vertices of the graph: each vertex is labeled
with a boolean which istrue if and only if the vertex is in the independent set.

In the same way as described above we can transform the parallel algorithm for optimiza-
tion problems as given in Section 6.3 into a parallel algorithm for constructive optimization
problems, based on a special parallel constructive reduction-counter system.

Theorem 6.7. Let Φ be a constructive optimization problem defined by(D;Q;z;opt). If we
have a special parallel constructive reduction-counter system forΦ, then we have an algorithm
which, given a connected graph G, checks ifΦ(G) 2 , and if so, constructs an S2 D(G) for
which Q(G;S) holds and z(S) = Φ(G). The algorithm takes O(lognlog�n) time with O(n)
operations and space on an EREW PRAM, and O(logn) time with O(n) operations and space
on a CRCW PRAM.

From Theorem 6.4 and Theorem 5.2, we also derive the following result.
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Theorem 6.8. Let Φ be a constructive optimization problem defined by(D;Q;z;opt), where
D is a vertex-edge-tuple. Suppose there is a refinement�rQ;l of �Q;l for which the following
conditions hold.

1. For each l� 0, jCrQ;l j is finite.

2. There is an extension̄z with respect tof�rQ;l j l � 0g and for each l� 0, there is a
constant Kl 2 IN, such that for each for each l-terminal graph G, each S;S0 2 D[ ](G), if
both S and S0 can lead to optimal solutions, thenjz̄(S)� z̄(S0)j � Kl .

Then for each k� 1, there exists a special parallel constructive reduction-counter system for
Φk defined by(D;Qk;z;opt).

If, in addition, (i) Q and�rQ;l are effectively decidable, (ii) z is effectively computable, and
(iii) in condition 2, z̄ and Kl are effectively computable, then such a reduction-counter system
can be effectively constructed.

This implies the existence of parallel algorithms with the stated resource bounds for
the constructive versions of MAX INDUCED d-DEGREE SUBGRAPH for all d � 0, MIN p-
DOMINATING SET for all p� 1, MIN VERTEX COVER, MAX CUT on graphs with bounded
degree, and MAX LEAF SPANNING TREEwhen restricted to graphs of bounded treewidth. For
a proof, see Theorem 5.3.

For the problems MIN PARTITION INTO CLIQUES and MIN HAMILTONIAN PATH COM-
PLETION we can apply Theorem 6.8 as well, but the returned solution is not exactly in the
form as it would be expected (see also the proof of Theorem 5.3). Sequentially these different
forms of solutions can be translated into each other inO(n) time. However in parallel we know
no method to do these translations inO(lognlog�n) time with O(n) operations on an EREW
PRAM, or inO(logn) time withO(n) operations on an EREW PRAM.

7 Additional Results and Final Comments

It is possible to generalize the results in this paper to graphs which are not necessarily con-
nected. For this case, the definition of a special reduction system is extended.

Definition 7.1 (Special Reduction System).Let P be a graph property, and(R ;I ) a reduction
system for P. Let nmax be the maximum number of vertices in any left-hand side of a rule
r 2 R . (R ;I ) is a special reduction systemfor P if we know positive integers nmin and d,
nmin� nmax� d, such that the following conditions hold.

1. For each reduction rule(H1;H2) 2 R ,

(a) if H1 has at least one terminal, then H1 is connected and H1 and H2 are open, and
(b) if H1 is a zero-terminal graph, thenjV(H2)j< nmin .

2. For each graph G and each adjacency list representation of G, if P(G) holds, then

(a) each component of G with at least nmin vertices has a d-discoverable match, and
(b) if all components of G have less than nmin vertices, then either G2 I or G contains

a match which is a zero-terminal graph.
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This system can again be used in anO(n) reduction algorithm. This algorithm consists of two
phases: the first phase actually is algorithm Reduce, except that, instead of line 16, the algo-
rithm checks whether each component of the current graph has at mostnmin vertices, otherwise
it returnsfalse. In the second phase, the small components of the graph are reduced by taking
components together and matching them to reduction rules. This can be done in a smart way,
such that it takesO(n) time, and after phase two, a graph inI remains if and only if the input
graph satisfies the property. A detailed description can be found in [11].

The definitions of special constructive reduction systems and special (constructive)
reduction-counter systems can be modified in the same way as the definition of special reduc-
tion systems. Furthermore we can modify algorithm Reduce-Construct and the algorithms for
optimization problems in the same way as algorithm Reduce, and obtainO(n) time algorithms.

Theorems 2.2, 3.2, 4.2 and 5.2 can also be shown to hold for the new type of special
reduction system. For the parallel variant a similar modification can be done to the special
parallel reduction system (see [11] for more details).

It is also possible to generalize the results in this paper to directed, mixed and/or labeled
graphs. In the case of labeled graphs, we can allow the input graph to have a labeling of the
vertices and/or edges, where the labels are taken from a set of constant size. These labels could
also act as weights for finite integer index problems, e.g., we can deal with MAX WEIGHTED

INDEPENDENTSET, with each vertex a weight fromf1;2; : : : ;cg for some fixedc, in the same
way as we dealt with MAX INDEPENDENTSET. Each of these generalizations can be handled
in a very similar way as the results that are given in this paper.

For constructive decision and optimization problems, we restricted ourselves to solution
domains which are vertex-edge-tuples. However, this is not always desirable. For instance,
for MIN PARTITION INTO CLIQUES we would prefer to represent a solution as a partition
fV1; : : : ;Vsg of the vertices of the graph (see also the proof of Theorem 5.3). It is possible
to use more general solution domains like the partition of vertices. However, these solution
domains should obey a number of conditions. For instance, the function[ ] to restrict solutions
to terminal subgraphs should be defined in such a way that for each twol -terminal graphsG
and H, and eachSG 2 D[ ](G), SH 2 D[ ](H), there is at most oneS2 D(G�H) for which
S[G] = SG and S[H] = SH . Furthermore, during the construction of solutions in the second
phase of the reduction algorithm, it should be possible to maintain a data structure in which
solutions can be adapted inO(1) time.

Unfortunately, the problem of TREEWIDTH, and the related problem of PATHWIDTH are
not known to have a special (parallel) constructive reduction system. Having a constructive
reduction system might lead to more efficient sequential algorithms for the problem to find
tree or path decompositions of bounded width (in terms of constant factors). Having a parallel
constructive reduction system leads to more efficient parallel algorithms for finding a tree or
path decompositions of bounded width: the gain in the amount of time isΘ(logn= log�n).

An interesting problem is which graph properties have special (constructive) reduction
systems. The property to have maximum degree at most some fixed constantk is an example
of a property that has a special reduction system and that has yes-instances of unbounded
treewidth. Also because of its associations to efficient recognition algorithms, it is interesting
to know which problems have such reduction systems, and which not.
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All MS-definable decision problems are of finite index, thus implying that there are effi-
cient reduction algorithms which solve these problems (Theorem 2.2). For optimization prob-
lems this does not hold: there are MS-definable optimization problems which are not of finite
integer index (Theorem 4.4), and thus these problems can not be solved with the reduction
algorithms presented in Section 4. It might be interesting to find out whether there is a method
with which all MS-definable optimization problems can be solved by using a type of reduction
algorithm. It is also interesting to find a language like MSOL to define optimization prob-
lems which are of finite integer index. Also, one can conceive more notions similar to finite
integer index, by using a different algebraic structure instead of integers and addition. It is
unclear whether there exists a choice for such a structure that gives new possibilities to deal
with (non-contrived) problems while keeping the same time and space bounds for the resulting
algorithms.

Finally, graph reduction can also be used as a preprocessing heuristic. For instance, sup-
pose we have a graphG on which we want to solve problemP. Now, if we have a special
(constructive) reduction system forPk, then note that all reductions from this system are also
safe forP. Thus, we can use the following approach: apply reductions from the system onG,
until no such reduction can be applied. Hopefully, we obtain a graphG0 that is smaller thanG.
Now, use another approach to solveP(G0), be it backtracking, techniques from integer linear
programming, simulated annealing, etc. Finally, translate the solution forG0 back to a solution
for G. The hope is that the reduction preprocessing step makesG sufficiently smaller to save
time in comparison with running the algorithm to solveP directly onG.
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