Reduction Algorithms for Graphs of Small Treewidth

Hans L. Bodlaender
Department of Computer Science, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, the Netherlands
e-mail: hansb@cs.ruu.nl

Babette de Fluiter
Centre for Quantitative Methods
P.O. Box 414, 5600 AK Eindhoven, the Netherlands
e-mail: deFluiter@cgm.nl

Abstract

This paper presents a number of new ideas and results on graph reduction applied to
graphs of bounded treewidth. Arnborg et al. [2] have shown that many decision problems
on graphs can be solved in linear time on graphs of bounded treewidth, by using a finite
set of reduction rules. These algorithms can be used to solve problems on graphs of
bounded treewidth without the need to first obtain a tree decomposition of the input graph.
We show that the reduction method can be extended to solve the construction variants of
many decision problems on graphs of bounded treewidth, including all problems definable
in monadic second order logic.

We also show that a variant of the reduction algorithms presented in [2] can be used to
solve (constructivepptimizationproblems inO(n) time. For example, optimization and
construction variants oONDEPENDENTSET and HAMILTONIAN COMPLETION NUMBER
can be solved in this way on graphs of small treewidth.

Additionally we show that the results of [8] can be applied to our reduction algorithms,
which results in parallel reduction algorithms that @§@) operations an®(lognlog* n)
time on an EREW PRAM, o®(logn) time on a CRCW PRAM.

1 Introduction

In this paper we discugeduction algorithmdor decision and optimization problems. A re-
duction algorithm is based on a finite setrefiuction rulesand a finite set of graphs. Each
reduction rule describes a way to modify a graph locally. The original idea of a reduction algo-
rithm is to solve a decision problem by repeatedly applying reduction rules on the input graph
until no more rule can be applied. If the resulting graph is in the finite set of graphs, then the
algorithm returngrue, otherwise it returnfalse.

*This research was carried out while the second author was working at the Department of Computer Science of
Utrecht University, with support by the Foundation for Computer Science (S.1.0.N) of the Netherlands Organization
for Scientific Research (N.W.0O.). Parts of this research have been published in preliminary formin [7, 5].

The idea of reduction algorithms originates from Duffin’s [12] characterization of series-
parallel graphs: a multigraph is series-parallel if and only if it can be reduced to a single edge
by applying a sequence sériesandparallel reductions. In [18] it was shown how a reduction
algorithm based on this set of reduction rules can be implemented in linear time, and hence
series-parallel graphs can be recognized in linear time.

Arnborg and Proskurowski [4] extended these ideas, and obtained reduction rules that char-
acterize the graphs of treewidth at most two or three, and, amongst others, showed that these
reduction rules can be used to recognize graphs of treewidth at most th@éantime. In
[17] itis shown that with a slightly different set of reduction rules graphs of treewidth at most
three can be recognized in linear time. Additionally, a tree decomposition of minimum width
can be constructed in linear time if the input graph has treewidth at most three.

A much more general approach is taken in [2]: a set of conditions is given that must hold
for a set of reduction rules to ensure that the reduction algorithm works correctly. It is also
shown that for all finite state decision problems on graphs of bounded treewidth, there is a set
of reduction rules for which these conditions hold, and that the algorithm based on such a set of
reduction rules take®(n) time (but more than linear space). The finite state decision problems
include all MS-definable decision problems. The results of [2] are stated in a general, algebraic
setting.

Bodlaender and Hagerup [8] have shown that the sequential reduction algorithms of [2]
and [5] can efficiently be parallelized, if some additional conditions hold for the set of reduction
rules. Their reduction algorithm us€§lognlog” n) time with O(n) operations and space on
an EREW PRAM, andD(logn) time with O(n) operations and space on a CRCW PRAM.

A sequential version of this algorithm gives a reduction algorithm which @ge$ time and
space. They show that such sets of reduction rules can be found for all finite state decision
problems, assuming yes-instances have bounded treewidth.

In this paper, we extend these results in two directions. We show that reduction algorithms
can also be used to solve constructive versions of many problems, and we show that reduction
algorithms can also be used to solve some optimization problems, still assuming bounded
treewidth of yes-instances. We also discuss parallelizations of these algorithms.

Many decision problems have a constructive version, in which we are not only interested
in whether a certain property holds for a given graph, but we are also interestesblutian
if the property holds. For example, in the constructive versiok-GOLORABILITY we want
to find ak-coloring of a given graph, if one exists. Ordinary reduction algorithms do not
provide a possibility to construct solutions, but only decide upon membership in a class of
graphs. In this paper we show how reduction algorithms can be adapted in such a way that
solutions can be constructed, and we show that these algorithms run within the same time and
resource bounds as the basic reduction algorithms (both sequentially and in parallel). We also
show that for a number of graph problems on graphs of bounded treewidth, the technique can
be used, including all MS-definable construction problems whose solution structure satisfies
certain conditions.

Ordinary reduction algorithms (with the extension described above) can be used for (con-
structive) decision problems. In this paper, we extend the notion of reduction algorithms to
(constructive) optimization problems: we introduce a new notion of reduction rules for op-
timization problems, callededuction-counter rulesand give a set of conditions which are

necessary for a set of reduction-counter rules in order to make a reduction algorithm work
correctly. This results in efficient reduction algorithms for (constructive) optimization prob-
lems which run within the same time and resource bounds as the original reduction algorithms,
both sequentially and in parallel. For simple graphs of bounded treewidth this gives efficient
algorithms for a number of optimization problems.

This paper is organized as follows. In Section 2 we discuss reduction algorithms for de-
cision problems as introduced in [2], and reprove some results, but in a less algebraic setting.
We also give a reduction algorithm which uses linear time and space, based on the ideas of [2]
and of [8]. In Section 3 we extend the theory of reduction algorithms for decision problems
to constructive reduction algorithms. In Sections 4 and 5 we extend the notion of reduction
algorithms and constructive reduction algorithms to optimization problems. In Section 6, we
discuss the parallel reduction algorithms of [8], and in Section 7, we mention some additional
results.

For reasons of clarity we present the reduction algorithms in this paper for problems on
connected graphs. In Section 7 we briefly discuss how to extend these results to graphs which
are not necessarily connected.

2 Reduction Algorithms for Decision Problems

In this section we discuss the results of [2], and reprove some of these results, but in a more
direct way, avoiding the algebraic setting from [2] — this facilitates our later extensions of
the results. We start with definitions or reduction rules and reduction systems (Section 2.1).
Then we give an efficient reduction algorithm based on a special type of reduction system
(Section 2.2). Finally, we show that this reduction algorithm can be used to solve a large class
of decision problems on graphs of bounded treewidth (Section 2.3).

2.1 Reduction Systems

The graphs we consider are simple and do not contain self-loops, unless stated otherwise.
A graph propertyis a functionP which maps each graph to the valuee or false. We

assume that isomorphic graphs are mapped to the same value. We daytids for graph

G or P(G) holds, if P(G) = true. A graph propertyP corresponds directly to a decision prob-

lem: given a graple, doesP hold for G? An algorithm decides a proper®/if it solves the

corresponding decision problem. A propertyeffectively decidablé@ an algorithm isknown

that decides the property.

Definition 2.1 (Terminal Graph). A terminal graptG is a triple (V, E, X) with (V,E) a simple
graph, and XC V an ordered subset of} O vertices. We denote X Hys,...,x). Vertices in
X are calledterminalsor terminal verticesVertices in V&X are calledinner vertices

The graphsG andH depicted in Figure 1 are examples of terminal graphs.

A terminal graph withl terminals [> 0O) is also called an-terminal graph. LeG =
(V,E,X) be anl-terminal graph) > 0, with X = (xq,...,x). Foreach, 1<i <I, we call
x; theith terminal ofG. A terminal graph(V,E,X) is said to beopenif there are no edges
between its terminals.

Definition 2.2. The operation® maps two terminal graphs G and H with the same number |
of terminals to a simple graph GH, by taking the disjoint union of G and H, then identifying
fori=1,...,l, the ith terminal of G with the ith terminal of H, and removing multiple edges.

For an example of thes-operation, see Figure 1. Note that the result oftanperation is a
simple graph, and not a terminal graph.

o - T

G H GoH

Figure 1: Example of operatiop applied to two three-terminal graphs.

Two terminal graph§Vy, Ez, (X1, -+ , X)) and(Va, Ez, (y1,---,¥i)) are said to besomorphic
if k=1 and there is an isomorphism frof\, E;) to (V», E2) which mapsx to y; for eachi,
1<i<k

Definition 2.3 (Reduction Rule)A reduction rule is an ordered pair(H1,H>), where H and
H, are |-terminal graphs for somex 0.

A matchto reduction rule r= (Hy,Hz) in graph G is a terminal graph @which is isomor-
phic to Hy, such that there is a terminal graph,®ith G= G; © G,.

If G contains a match to r, then applicationof r to G is an operation that replaces G by
a graph G, such that there are terminal graphs, G5, and Gs, with G; isomorphic to H, G,
isomorphic to H, and G= G; © G3, G = G, & Gz. We also say that, in G, Gs replaced by
Go. An application of a reduction rule is also called@duction

Figure 2 shows an example of a reduction mile@nd an application of to a graphG. We
depict a reduction rul¢H;,H,) by the two graphdd; andH, with an arrow fromH; to Ho.

Given a reduction rule = (Hy,H), we callH; the left-hand side of, andH, the right-hand
side ofr.

H1 Ha
1 1
r 2% —>2
3 3

Figure 2: An example of a reduction rute= (H1,H>), and an application of to a graph
G, resulting in graphG'. The dotted lines irG and G’ denote the parts d6 andG' that are
involved in the reduction.

Let G be a graph and = (H1,H;) a reduction rule. IiG contains a matcks; to r, then
an application of to G which replace<s; by a terminal graph isomorphic td, is called a
reduction corresponding to the maiGh.

If there is an application of rule to graphG which results in a grapl&’, then we write

G > G. LetR be a set of reduction rules. For two graghsndG', we writeG R, G if there
exists arr € R with G 5 G'. We sayG contains a matcks; if there is arr € R such thaiG,
is a match ta in G. If G contains no match, then we say tkais irreducible (for R).

The following conditions are useful for a set of reduction rules in order to get a characteri-
zation of a graph property.

Definition 2.4. Let P be a graph property anld a set of reduction rules.

¢ R is safefor P if, whenever & G/, then RG) & P(G').
e R is completefor P if the setl of irreducible graphs for which P holds is finite.

e R isdecreasingf, whenever GFi> G/, then G contains fewer vertices than G.

Definition 2.5 (Reduction System). A reduction systenior a graph property P is a pair
(R, 1), withR afinite set of reduction rules which is safe, complete and decreasing for P, and
| the set of irreducible graphs for which P holds.

A reduction systentR , I) for a propertyP gives a complete characterizationRif P(G)
holds for a graplG if and only if any sequence of reductions frdtnon G leads to a grapks’
which belongs td (i.e. is isomorphic to a graph ih).

2.2 An Efficient Reduction Algorithm

A reduction systeniR , 1) for a propertyP corresponds to a polynomial time algorithm that
decides whether properfy holds for a given grapks: repeat applying rules frolR starting

with the input graph, until no rule frorR can be applied anymore. If the resulting graph
belongs to the sdk, thenP holds for the input graph, otherwise, it does not. The number of
reductions that has to be performed is at mgstince each reduction reduces the number of
vertices by at least one. In order to obtain a linear time reduction algorithm, we define a special
type of reduction systerfR , |) which has the property that for any gra@hfor which P(G)

holds, eitheiG belongs td , or G contains a match which can be found in an efficient way. We
consider the method used in [8], called thmunded adjacency list search meth@kh [8] this
method is used to obtain an efficient parallel algorithm; we give an efficient sequential version
of this parallel algorithm in this section.)

Definition 2.6. Let d be a positive integer. Let G be a graph given by some adjacency list
representation and let Gbe an I-terminal graph. We say;@s d-discoverablén G if

1. Gy is open and connected, and the maximum degree of any vertexisraGmost d,
2. there is an I-terminal graph &such that G= G; & Gy, and

3. G contains an inner vertex v such that for all vertices W(G;) there is awalk W in @
with W = (ug,up, ... ,Us), V= Uz, W= Us, and for each i2 < i < s&1, in the adjacency
list of u in G, the edgesu;_1,u; } and {u;,u;+1} have distance at most d.

Let G be a graphd a positive integer, and l€b; be ad-discoverable terminal graph @. It

can be seen that there is a walk from any inner vertéa any other vertexv in G; in which

two subsequent edges have distance at chwsthe adjacency list of their common vertex, and
each edge occurs at most twice. This, and the fact that each edge in an open termin@h graph
is incident with an inner vertex (which has degree at ndpdtplies the following result.

Lemma 2.1.1f a terminal graph G is d-discoverable in a graph G for some fixed-d., then
for any inner vertex v of g all vertices and edges of;&an be found from v in an amount of
time that only depends on the integer d and the size;pb@ not on the size of the graph G.

Definition 2.7 (Special Reduction Systerm)et P be a graph property an@R , |) a reduction
system for P. Letfux be the maximum number of vertices in any left-hand side of a rule
reR. (R,l) is aspecial reduction systefior P if we know positive integers and d,

Nmin < Nmax < d, such that the following conditions hold.

1. For each reduction ruléH;,H,) € R, H; and H, are open and connected.

2. For each connected graph G and each adjacency list representation of G3)fif@lds
and G has at least), vertices, then G contains a d-discoverable match.

As a simple example of a special reduction system, consider the graph prBperere
P(G) holds if and only ifG is a two-colorable cycle. LeR contain the one reduction rule
depicted in Figure 3, and ldt be the set containing just the cycle on four vertices (see also
Figure 3). It can easily be seen th#& . 1) is a special reduction system fBr(d = Nyax=

T umes

Figure 3: A reduction system for the property that a graph is a two-colorable cycle.

In Section 2.3, we show that one can find special reduction systems for many problems on
graphs of bounded treewidth.

Theorem 2.1.Let P be a graph property. If we have a special reduction system for P, then we
have an algorithm which decides P in® time and @Qn) space on connected graphs.

Suppose we have a special reduction system for propgertyOur algorithm findsd-
discoverable matches and executes the corresponding reductions, until there are e more
discoverable matches. If the resulting graph id jrthenP holds for the input graph, and
true is returned. Otherwisdalse is returned. The algorithm is a simplified sequential simu-
lation of the parallel algorithm given in [8]. It resembles the algorithm of [2], but @{eg
space, whereas the algorithm of [2] use&P) space, wherg equals the maximum number
of terminal vertices in any reduction rule.

We now give the complete algorithm, given the special reduction syskenh) and the
integersnmin andd.

Algorithm ReduceG)

Input: Connected grapt®

Output: P(G)

Nmax < Max{|V(H)| | H is left-hand side of somee R }
2. S+ {veV(G)|deqv) <d}
3. while S#0

4, dotakeve S
5

6

7

=

if vis inner vertex of al-discoverable matcts; to a ruler € R
then applyr to G:
letG, be a new terminal graph isomorphich, such thatG; andG, have
the same set of terminals

8. replaceG; by G,

9. S+ S&{veV(Gy) | visinner vertex ofG1 }

10. S+ SU{veV(Gy) |deqv) <d}

11. for all terminalsx of G,

12. do let L denote adjacency list of

13. for all {x,w} € L for which L changed within distance
14. do if degw) < d then S« SU {w}

15. S+ S&{v}

16. if G € | then return true else return false

We first show that the algorithm is correct.

Lemma 2.2. Algorithm Reduce correctly recognizes connected graphs for which a property P
holds, given a special reduction systé, |) for P.

Proof. Suppose the input graph is connected. Now, one can establish three invariants for the
main loop of the algorithm@ is the graph the algorithm ‘works with’)5 is connectedP(G)

holds if and only ifP holds for the input graph; for eachdiscoverable matc; in G, there is

a vertexw € Swhich is an inner vertex dB;. Correctness of the algorithm follows from these
invariants, whose proof we leave to the reader (see [11] for full details). O

Consider the time and space complexity of the algorithm.

Lemma 2.3. Algorithm Reduce uses(6) time and space.

Proof. We first show that the main loop of the algorithm is itera@ah) times. We do this by
showing that the number of times a vertex is adde8 i®O(n). Initially, in line 2, Scontains
O(n) vertices. In the main loop, there are only vertices addeSlif@ reduction takes place.
Since at mosh reductions take place, and after each reduction, at most a constant number of
vertices is added t§, this means that the total number of vertices addefdaring the main
loop is alsoO(n). Since in each iteration of the main loop, at least one vertex is removed from
S, this means that the main loop is execu@ah) times.

Consider one iteration of the main loop. In line 5g-aliscoverable match i that con-
tainsv as an inner vertex can be found in constant time, as we described. Furthermore, each
reduction can be done in constant time. The loop in lines 11 — 14 can also be done in constant

7

time: during the reduction, it is possible to store the places in the adjacency lists of the termi-
nals where something changes, so that they can be easily found. Hence each iteration of the
main loop take®(1) time, and the algorithm can be doneQxin) time.

It is easy to see that the amount of space used by the algoritBinjs O

This completes the proof of Theorem 2.1.

2.3 Decision Problems for Graphs of Bounded Treewidth

In this section, we show that algorithm Reduce can be used for a large class of graph properties
on graphs of bounded treewidth.

Definition 2.8 (Tree Decomposition & Treewidth).et G= (V,E) be a graph. Aree decom-
positionTD of G is a pair(T,X), where T= (I,F) is a tree, andX = {X; |i € |} is a family
of subsets of V, one for each node (vertex) of T, such that

b U|E|X|:V1
o for every edggv,w} € E, there is an i | with v € X and we X;, and
e foralli,j,kel,if jis onthe path fromitokin T, thenX X, C X;.

Thewidth of a tree decompositiof(1,F),{X | i € I}) is maxe| |X| <1. The treewidth of a
graph G, denoted biw(G), is the minimum width over all possible tree decompositions of G.

Definition 2.9. Let P be a graph property, and | a non-negative integer. For I-terminal graphs
G1 and G, we define the equivalence relatien,; as follows:

G1~p G2 <« foralll-terminal graphs H: RG1 & H) < P(Ga & H).
Property P is offinite indexif for all | > 0, ~p; has finitely many equivalence classes.

Note that a seR of reduction rules for a properfyis safe if and only if for each reduction
rule (H1,H2) € R, Hi ~p) Hy, for | the number of terminals df; andH,.

An equivalence relatior”’ is arefinemenbf an equivalence relatior if each equivalence
class of~' is a subset of an equivalence class-ofClearly, if ~' is finite, then so isv.

The following result is well-known.

Lemma 2.4[9, 13]. Let R and B be graph properties of finite index. Let;@nd Q be
graph properties defined as follows: for each graph G(® = P1(G) AP>(G), and Q(G) =
P1(G) VP,(G). Then Q and @ are also of finite index.

For each integek > 1, let TW, be the graph property defined as follows: for each gi@ph
TW(G) holds if and only if tw(G) < k.

Lemma 2.5[3, 16]. For each fixed k> 1, TW is of finite index, and for eachX O, there is a
finite, effectively decidable refinement-ofy .

For a propertyP and an integek, we define the properti asP(G) = P(G) A TW(G).

It follows from Lemmas 2.4 and 2.5 that for each fixett 1, if P is of finite index, then so is
P, and furthermore, if we have a refinementof ~p; which is effectively decidable, then we
have a refinement| of ~p | which is effectively decidable.

Finite index corresponds to ‘finite state’: there exists a linear time algorithm that decides
finite index properties on graphs, given their tree decomposition of bounded treewidth. More-
over, this algorithm is of a special, well-described structure [10, 9, 1]. The disadvantage of this
algorithm is that a tree decomposition of the input graph is needed. Although for each fixed
k, there is a linear time sequential algorithm which, given a gi@plehecks if twWG) < k,
and if so, computes a minimum width tree decompositios §6], this algorithm is not very
practical, due to the large constant factors involved. With reduction algorithms, one does not
need to build a tree decomposition first.

Lemma 2.6[8]. Let k and m,in be positive integers. There are integers d aR@2(Nmin <

1) < nmax< d, and a constant & 0, such that in each connected graph G of treewidth at most
K, if n > nmin, then G contains at leadicn| d-discoverable open and connected I-terminal
graphs H with 1< 2(k+ 1) and fin < [V(H)| < Nmax

The following theorem has originally been proved in [2] for a slightly different kind of
special reduction system. In [8] the proof was adapted for the special reduction system as
defined here. Using the techniques from [2, 8] we give a proof with some details in a different
form.

Theorem 2.2.Let P a graph property and suppose P is of finite index. For each integet k
there exists a special reduction systé, |) for R..

If P is also effectively decidable, and there is an equivalence relatipfor each [> 0
which is a finite refinement efp| and is effectively decidable, then such a systBml) can
effectively be constructed.

Proof. Letk > 1. We first construct all right-hand sides of reduction rules. For elvety
2(k+ 1) and every equivalence clagsof ~p |, do the following. IfC contains open and
connected-terminal graphs with treewidth at mokt then choose a representing open and
connected-terminal graphHc € C with treewidth at mosk. Let nyi, be one more than the
maximum number of vertices of all chosen graphs Letd, nmaxandc be as in Lemma 2.6.

LetR denote the set of reduction rules to be built. Fol alith 0 <1 < 2(k+ 1) and for
all open connectetiterminal graphdd with at leastnm,i, and at moshax vertices, if we have
a representative for the equivalence cl@ss which H is contained, then add the reduction
rule (H,Hc) to R . Note that if we do not have such a representative, then dithraust have
treewidth at leask+ 1, orH is not open and connected. In the first case there is no terminal
graphG for which B(H & G) holds. In the latter casé] is not discoverable in any graph.

Letl = {G| Gisirreducible A B((G) A G is connected.

It is easy to see thdk is finite: there are finitely manirterminal graphs with at most
Nmax Vertices. Safeness of the resulting Befollows directly from the fact that each left- and
right-hand side of arule iR belong to the same equivalence class of the relatign.

Condition 1 of a special reduction system (Definition 2.7) clearly holds Raimgldecreas-
ing.

We now show thaR is complete, i.e. thal | is finite and that condition 2 of Definition 2.7
holds. LetG be a graph for whicli(G) holds. Note that tyG) < k. If G has at leastiyn
vertices, then, by Lemma 2.6,contains at leasfic|V (C)|| > 1 d-discoverable opehterminal
graphsH with | < 2(k+ 1) andnmin < [V(H)| < nmax. Hence, by construction of the reduction
system,G contains al-discoverable match, so condition 2 holds.

Clearly, all graphs il have less thany, vertices, and hendd | is finite. This completes
the proof thaR is complete, and hence thd , I) is a special reduction system.

The effective construction of the reduction system can be done using the results from [2]
and [16]. O

From the proof of Theorem 2.2, we can also conclude the following.

Corollary 2.1. Let P be a graph property, and for each®l0, let ~| be a refinement ofp.
Let k> 1. If ~| is finite for each I> O, then there is a special reduction systér, I) for P,
such that for eacliH,H’) € R, H ~; H'. Moreover, if~| and P are effectively decidable, then
such a system can effectively be constructed.

Courcelle [10] has given a large class of graph properties which are of finite index, namely
the class of properties that are definabldlonadic Second Order Logmr MSOL for graphs.
MSOL for graphsG = (V, E) consists of a language in which predicates can be built with

¢ the logic connectives, Vv, =, = and< (with their usual meanings),

¢ individual variables which may be vertex variables (with dom&inedge variables (with
domainE), vertex set variables (with domak(V), the power set o¥/), and edge set
variables (with domai® (E)),

¢ the existential and universal quantifiers ranging over varialdleenlV, respectively),
and

¢ the following binary relations:

— ve W, wherev is a vertex variable and/ a vertex set variable,

— ec€ F, whereeis an edge variable arfél an edge set variable,

— ‘vandw are adjacent iis’, wherev andw are vertex variables,

— ‘visincident withein G', wherev is a vertex variable, anglan edge variable, and
— equality for variables.

Graph properties that can be defined by an MSOL predicate are &é8edkfinableyraph
properties. In [10] is was shown that MS-definable graph properties are of finite index. There
are many (even NP-complete) decision problems which are MS-definable (i.e. the correspond-
ing graph properties are MS-definable). These includeidroNnIAN CIRcUIT and (for fixed
k) k-COLORABILITY (see e.g. [3] for a list). Theorem 2.2 now immediately implies the fol-
lowing result.

Corollary 2.2. Let P be a graph property which is MS-definable. For each integerlkthere

is a linear time algorithm which decideg Bn connected graphs without using a tree decom-
position of the input graph. Moreover, such an algorithm can be automatically constructed
from an MSOL predicate for P.

10

3 Reduction Algorithms for Construction Problems

In this section we extend the results discussed in the previous section to construction problems:
we extend the reduction algorithmsdonstructivereduction algorithms, which can be used to
construct solutions for decision problems.

The basic idea of a constructive reduction algorithm is the following. The algorithm con-
sists of two parts. In the first part, an ordinary reduction algorithm is applied. The reduced
graph is then passed to the second part. In this part, a solution is constructed for the reduced
graph, if it exists. After that, the reductions that are applied in part 1 are undone one by one,
in reversed order, and each time a reduction is undone, the solution of the graph is adapted to a
solution of the new graph. This results in a solution of the input graph.

In order to keep the running time and amount of resources for the second part within the
same bounds as for first part, we must be able to efficiently construct a solution for the new
graph from a solution of the old graph, after an undo-action is applied. Therefore, we require
that the new solution can efficiently be constructed from the old solution.

In this section we start with definitions of a constructive reduction system and an extension
of the efficient reduction algorithm presented in Section 2.2 to construction problems. After
that, we show how this algorithm can be applied to solve a large class of construction problems
on graphs of bounded treewidth.

3.1 Constructive Reduction Systems and Algorithms

Many graph properties are of the form
P(G) = ‘there is anSe D(G) for which Q(G, S) holds’,

whereD(G) is asolution domair(or shortly domain), which is some set depending3rand

Q is anextendedyraph property ofc andS i.e. Q(G,S) € {true,false} for all graphsG and

all Se D(G). An Se D(G) for which Q(G, S) holds is called aolutionfor G. For example,
for the perfect matching problem on a graphD(G) can beP (E), the power set o, and for
Se D(G), Q(G,S) holds if and only if every vertex i is end point of exactly one edge $

HenceSis a solution forG if Sis a perfect matching d&.

If a graph property is of the forrR(G) = ‘there is anS < D(G) for which Q(G, S) holds’,
then we callP a construction propertylefined by the paifD, Q).

In this section, we introduce constructive reduction algorithms which, for a construction
propertyP defined by(D,Q), do not only decidéd®, but if P holds for an input grapks, also
construct anS € D(G) for which Q(G,S) holds. To this end, we generalize the notion of
reduction systems.

Definition 3.1 (Constructive Reduction System)et P be a construction property defined by
(D, Q). Aconstructive reduction systefor P is a quadruplgR ,1,Ag , A), where

e (R,1)is areduction system for P,
e AR is an algorithm which, given

— areduction rule r= (Hy,Hz) € R,

11

— two terminal graphs G and G, such that G is a isomorphic to H and G is
isomorphic to H,

— agraph G with G= G, @ H for some H, and

— an Se D(G) for which Q G, S) holds,

computes an'S G; © H such that @G; @ H, S) holds,

e A is an algorithm which, given a graph G which is isomorphic to some H computes
an Se D(G) for which Q G, S) holds.

Algorithm A; in a constructive reduction systefR ,l,Ar,A) is used to construct an
initial solution of the reduced gragh, if G € | . Algorithm Ag is used to reconstruct a solution,
each time a reduction is undone on the graph.

As an example, consider the constructive version of the graph propevtyich holds for
graphsG which are two-colorable cycles (see the example of Figure 3): we are looking for a
two-coloring of the graph, if the graph is a two-colorable cycle. For each deapgt D(G) be
the set of partitiongVi,V2) of V(G), and for eactS € D(G), let Q(G, S) betrue if and only if
Gis a cycle andsis a two-coloring ofG.

We extend the reduction system f@igiven in Figure 3 to a constructive reduction system
for P. Algorithm Ag uses a table: for reduction rute= (H1,H,) € R, and each possible
two-coloring of the terminal grapHl,, it gives a two-coloring of the terminal grapty which
is the same on the set of terminals. The contents of this table are depicted in part | of Figure 4
(symmetric cases are considered only once, hence there is only one two-coloring). Given
as input a reduction rulg two terminal graph$, andGs, a graphG = G, ®H, and a two-
coloring of G, algorithmAr can easily compute a two-coloring @f & H using the given table:
the algorithm looks which vertices @&, have which color, and looks up the corresponding
coloring of Gy in the table. Then it removes the inner vertice$gffrom the solution and adds
the inner vertices o6 in the correct way.

Algorithm A; also uses a table: for the only elemétte I, this table contains a two-
coloring ofH. See part Il of Figure 4. Hena® , | , Az ,A}) is a constructive reduction system
for P defined by(D, Q). Note that both algorithms can be made to ru®id) time if we use
a convenient data structure.

e

e :inner or terminal vertex in one part of partition
© :inner or terminal vertex in the other part of partition

Figure 4: Example of tables used By and A, for constructive reduction system for two-
colorability on cycles.

In order to make an efficient constructive reduction algorithm based on a constructive re-

duction systemR ,1,Ag ,A), we want that algorithm#g andA; work efficiently. This is
required in a special constructive reduction system.

12

Definition 3.2 (Special Constructive Reduction System).et P be a construction property
defined byD, Q). A constructive reduction systeiR , | , Az , A) for P is aspecial constructive
reduction systerfor P if

1. (R,1) is a special reduction system for P (Definition 2.7), and
2. algorithms A& and A runin O(1) time.

Note that the constructive reduction system we gave for two-colorability of cycles is a special
constructive reduction system, since algorithtisand AR as described take constant time,
and we have shown that the reduction system depicted in Figure 3 is a special reduction system
for the problem.

One way to obtain an algorith#y in a constructive reduction system which run€ifi)
time is to ensure thag only has to change a solution locally, i.e. that the solution to construct
only differs from the input solution in the part of the graph that was involved in the reduction.
We use this technique in most of our algorithms.

Let P be a construction property defined b,Q) and let(R ,l,Ar,A;) be a special
constructive reduction system fBr The following algorithm computes for a given grata
solution ofG if one exists.

Algorithm Reduce-Construdg)

Input: Connected grapts

Output: Se D(G) for whichQ(G, S) holds if P(G) holds,false otherwise

1. (x Part 1x)

2. Apply as many reductions as possible ®rin the way of algorithm Reduce. Store the
resulting sequenc@Gt, G3), (G2,G3), ..., (G}, G), wheret denotes the number of reduc-
tions, and for each, 1 < i <t, in theith reduction,G} is replaced byG,. LetG be the
reduced graph.

3. (x Part 2x)

4. if G¢ | thenreturn false

5. (x Construct initial solutiorx)

6. S+ A(G)

7. fori+tdowntol

8 doletr = (Hy,Hz) € R such thatH; and G‘l are isomorphic anéi, and G‘2 are iso-

morphic.
9. (* reconstruct solutior)
10. S« AR (,G},G,,G,S)
11. (x undoith reductionx)
12. replaces, by G, in G
13. return S

It is clear from Lemma 2.2 and the definition of a constructive reduction system that algo-
rithm Reduce-Construct is correct. Consider the running time of the algorithm. Part 1 takes
O(n) time, by Lemma 2.3. In part 2, the initial solution can be constructed in constant time,
since algorithmA; takesO(1) time. Every undo-action also takes constant time: undoing a
reduction can be done in the same way as applying it, which t@késtime, and algorithm

13

AR usesO(1) time. Hence the complete algorithm take&) time. This proves the following
theorem.

Theorem 3.1.Let P be a construction property defined by the gairQ). If we have a special
constructive reduction system for P, then we have an algorithm which, given a connected graph
G, returns a solution & D(G) for which QG,S) holds, if RG) holds, andfalse otherwise.

The algorithm runs in n) time and uses () space.

3.2 Construction Problems for Graphs of Bounded Treewidth

In this section we show that algorithm Reduce-Construct can be used for a large class of con-
struction properties on graphs of bounded treewidth.

For reasons of clarity, we only consider solution domains of the following form: there is a
t > 1, such that for all graph§, all elements oD(G) aret-tuples(S;,S,...,S), where for
eachi, 1<i <t, §is an element 0¥ (G), of E(G), of P (V(G)) or of P(E(G)). If D is of this
form, we say thaD is at-vertex-edge-tupler, if t is not important, arertex-edge-tupleAn
example of a domain which istavertex-edge-tuple is the domadihfor which for each graph
G, D(G) contains all ordered-partitions ofV(G), i.e. for eachS € D(G), S= (V4,...,M),
whereVy, ... ,\; partitionV (G).

If D is at-vertex-edge-tuple with = 1, each solution is of the forfS). In this case we
usually omit the().

Let D be some solution domain which ig-&ertex-edge-tuple. L&t andH bel-terminal
graphs and leBe D(G@& H). We want to be able to restri@to the terminal graph& and
H. For these restrictions, we use the notat#6| and SH|, defined as follows. Suppose
S=(S,...,8) e D(GEHH). Then§G] = (S]C],...,S[G]), where for eacl, S[G] is defined
as follows.

(SNV(G) if domain ofS isP (V(GEH))
SNE(G) ifdomainofSisP(E(G@&H))
S[G] = S if domain of S isV(G@® H) andS € V(G)
S if domain of S isE(G@&H) andS € E(G)
€ if domain of S isV(G@H) andS ¢ V(G)
€ if domain of S iIsE(G@® H) andS ¢ E(G)

Note that with this definition§G] does not contain any vertices or edges which are nGt in

Definition 3.3. Let D be a vertex-edge-tuple. For eack 10, and each |-terminal graph G,
define

D(G) = {SG] | S€ D(G@ H) for some I-terminal graph Hi.

Each Se D;(G) is called apartial solutionof G, and D is called the partial solution domain
for D.

14

Let D be a vertex-edge-tuple. Note that, for each twierminal graphss andH (I > 0)
andSs € Dj(G) andS, € Dyj(H), there is at most onge D(G® H) such thaSG|] = S and
SH] = S

Definition 3.4. Let D be a vertex-edge-tuple. Let G and H be I-terminal graphs, det S
D)(G) and $; € Dyj(H). If there is an S D(G® H) such that 5] = Ss and $H] = S, then
(G,S) and(H,Sy) are called®-compatible and we write § Sy = S.

The intuition behind®-compatibility is the following: if (G,Ss) and (H,S4) are &-
compatible, thergs andSy can be ‘glued’ upon each other in order to get a solutio@ inH.

Let P be a construction property defined @y, Q). Let G andH be terminals graphs, and
let S€ Dj(G) andS € Dyj(H). The value oQ(G® H,S® S) is only defined ifG andH are
both I-terminal graphs for some> 0, and(G,S) and(H,S) are®-compatible. For shorter
notation, we defin€Q(G ®H,S® S) to befalse if G andH are not botH-terminal graphs for
somel >0, orif (G,S) and(H, S) are nott-compatible.

Definition 3.5 (Compatibility). Let D be a vertex-edge-tuple. Let @nd G be I-terminal
graphs for some > 0, and let § € DH(Gl) and S € D[](Gz)- (G1,S) and (G2, S) are
compatibleif for each I-terminal graph H and each&Dyj(H), (Gy,S,) is ©-compatible with
(H,S) if and only if (G,) is ®-compatible with H, S).

The intuition behind compatibility is the following: {G1,S;) and(Gy,S;) are compatible,
then for each terminal gragh with the same number of terminals @g (andGy), any partial
solutionS; in H that can be ‘glued’ upof; can also be glued upd®, and vice versa.

Note that compatibility is an equivalence relation. The set of all equivalence classes of this

relation is denoted b{.mp, for eachl, and the equivalence classes are also called compati-
bility classes. Note that, for vertex-edge-tup@sthe equivalence relation is of finite index.
For two equivalence class€&andC' of some equivalence relation which is a refinement of
compatibility, we say tha€ andC' are®-compatible if, for eachiG,S) € C and(H,S) € C/,
(G,9) and(H,S) are®-compatible.

Let P be a construction property defined {9, Q), whereD is a vertex-edge-tuple.

Definition 3.6. For each |> 0, ~q, is an equivalence relation on pairs of |-terminal graphs
and patrtial solutions, which is defined as follows. Lat G, be I-terminal graphs, and;S
D[](Gl) and S e D[](Gz)

(G1,S1) ~a1 (G2, S) & (G1,S1) and (G, S) are compatible and
for all I-terminal graphs H and all & Djj(H):
QG1oH, 585 = Q(G20H,$D9

The set of equivalence classes-f, is denoted b¥q, and for each I-terminal graph G and
Se Dyj(G), the equivalence class 6f, that containg(G, S) is denoted bgg (G,).

By ~rq, we usually denote an equivalence relation which is a refinemengef By Ciq
we denote the set of equivalence classes-@f,, and for each-terminal graphG and each
Se Dj(G), e6q,(G,S) =Cif (G,9) is in equivalence class € Ciq, .

15

Definition 3.7. Let ~;q, be a refinement of-q, for each |> 0. By =g, we denote the
equivalence relation on I-terminal graphs which is defined as follows. For every two I-terminal

graphs G and G,
Gi~i G2 & {e6qi(G1,S) | S €Dy(G1) } = {e6qi(C2, %) [S € D(G2) }-

SupposeP is a construction property defined b, Q). For eachk > 1, let Qx denote the
property with for each grapB8, eachSe D(G), Q«(G, S) holds if and only ifQ(G, S) ATW,(G)
holds. Note thaF is the construction property defined @y, Q).

For eactk > 1, let~,qx, be the refinement oo, which is defined as follows. For every
two |-terminal graph$; andG; and eact§; € Djj(G1) and$; € Dyj(Gy),

(G1,S1) ~rkl (G2,2) & (G1,S1) ~rq) (G2, S) A Gy ~1wy 1 Go.
Lemma 3.1.Let~q, be arefinement ofq, and let k> 1.

For each I> O, ~q, is a refinement okq,.

For each I> 0, =q, is a refinement of-p).

For each I> O, if ~(q is finite, therr,q is finite.
For each |I> O, if ~q is finite, therr,qy is finite.

P wbNPE

Proof.
1. Follows directly from the definition ofq.

2. Follows from the fact that for every tweterminal graph€s; andG,, if G1 =q, Gz, then
for eachS, € DH(Gl) there is ars, € DH(GZ) such that{G1,S;) ~q) (G2, S).

3. The number of equivalence classess, is at most £l

4. Follows from Lemmas 2.5 and 2.4. O

The next theorem is the analog of Theorem 2.2 for construction properties: we give a set of
conditions for a construction properB; and we show that these conditions are sufficient for
proving the existence of a special constructive reduction syster for anyk > 1.

Theorem 3.2. Let P a construction property defined bR, Q), suppose that D is a vertex-
edge-tuple. I~q, has finitely many equivalence classes for eaghd, then for each k> 1,
there exists a special constructive reduction systBml , Az , A) for B defined byD, Q).

If, in addition, Q and a finite refinement,q, of ~q, are effectively decidable, then such
a special constructive reduction system can effectively be constructed. Moreover for each rule
r = (Hi,Hy) in this system, =g, H>.

Proof. Letk > 1. Since|Cq,| is finite, =qk has a finite number of equivalence classes,
and it is a refinement ofp ;. Let (R 1) be a special reduction system fi@, such that for
each rule(Hy,Hy) € R, Hi =gk Hz. By Corollary 2.1, such a system exists, and it can be
effectively constructed ifQ is effectively decidable and a finite refinemenfg of ~q, is

16

effectively decidable, since in that cageand~qk, are effectively decidable as well (for each
constructed rul¢H1,Hy), Hy ~rqki Ha).

We now describe algorithm&g andA; for which (R ,1,Ag,A;) is a special constructive
reduction system foPs. Both algorithmAr and A; use a table (see also the example for
two-colorability in Figure 4).

For algorithmAg , we make a table which contains for each role (Hy,H,) € R and
eachS e DH(HZ) ans € DH(Hl) such that(H1,S;) ~qkl (H2,$2). This table is computed
as follows. For each reduction rufél;,Hy) in R, we construct ali; € Dj(Hy) and all$; €
D[](Hz)- Then, for eachs, € DH(HZ), we pick oneS, € DH(Hl) for which (Hy,S;) ~rq)
(H2,S). Note that these tables ha@1) size, and can be effectively constructedQfis
effectively decidable and a finite refinemeniy is effectively decidable.

For algorithmA|, we make a table which contains for eddhe | a solutionSof H. This
is done as follows. For eadH € |, we construct alS e D(H), and we pick one sucB for
which Q(H, S) holds. These tables can be effectively construct&ligf effectively decidable.

In order to make algorithm&r andA; run inO(1) time, we use a data structure for storing
tuplesS=(S,,...,S) € Dj(G) which consists of an array ofdata structures, one for eagh
If S is a set of vertices or edges, then these vertices or edges are put in a (doubly linked) list.
If § is a vertex or edge, a, then this vertex or edge eris stored. Furthermore, we keep a
pointer from each vertex and edge in the graph to each place in the data structure where this
vertex or edge occurs. There are at maxtthese pointers for each vertex and each edge. This
implies that algorithmA; can be made to run i®(1) time.

Consider algorithr\r . Suppose we have a rule= (H1, H>) to undo, and we have terminal
graphsG; andG, (isomorphic toH; andH,, respectively), a graps = G, & H for someH,
and anS € D(G) for which Q(G,S) holds. Now we compute a8 € D(G; © H) such that
Q(G1®H,S) holds, as follows. First, we compuBG;]| as follows. Make a new data structure
for §G,] with §[Gz] empty for each. For each vertexin G, follow the pointers fronv to the
places in which it occurs i, and check in which pa§ of Sit occurs. Then add to §[G;).

Do the same for all edges. Then for eacbheck ifS is a set of vertex or edge, but there is no
vertex or edge in the data structure at the locatio§ [@;], and if so, add to S[G,]. This can

all be done in constant time, sinG has constant size, and each vertex or edge occurs at most
once in eacly, so at most times inS.

Next, find anS = (S,,...,§) € Djj(G1) with the table that is kept for rule (note that
(G1,8) ~qkl (G2,5Gy])). This can again be done in constant time.

Then comput&S @ SH] as follows. Remove all vertices and edge$effrom S. Next, for
eachi, 1 <i <t, append the lis§ to the listS[H] (do not copyt). The resulting data structure
representS & SH]. Hence algorithmAr usesO(1) time.]

As an important special case, we now consider the MS-definable construction properties.
The construction properties defined Y, Q), whereD is a vertex-edge-tuple an@ is an
MS-definable extended graph property, correspond exactly to the MS-definable construction
problems (see e.g. [3]). These MS-definable construction problems can be sal/ed ime
and space for graphs of bounded treewidth if a tree decomposition of bounded width the input
graph is given.

Theorem 3.3. Let P be a construction property defined (®,Q), where D is a vertex-edge-

17

tuple and Q is MS-definable. For each>kl there is a special constructive reduction system
for P, which can be effectively constructed if a definition of Q in MSOL is known.

Proof. In [9]is was shown that for eadh> 1, there is a homomorphisih mapping each pair
(G,S), where eithelG is an ordinary graph anfi € D(G) or G is anl-terminal graph] <k,
andSe Dyj(G), to an element of a finite sé, such that the following conditions hold.

1. For every two graph&; andG,, and eaclt; € D(G;) andS; € D(Gy), if h(G1,S) =
h(Gz,), thenQ(G, S1) = Q(G2,S).

2. There is a functiorfy, : Ax X Ax — Ax, such that for each < k, every twol-terminal
graphsG andH, and eactS € Dj(G) andS € Dy(H), if (G,S) and (H,S) are -
compatible, then

h(GHH,S®S) = f4(h(G,S),h(H,S)).

This homomorphism can be computed from an MSOL predicat®for

For eacH > 0, each-terminal graptG andSe Dy (G), let e¢(G, S) = (h(G,S),C), where
C € Cempl is such thatG, S) belongs to compatibility class. Furthermore, le€; = Ax x Cempi,
and let(G1,S) ~ (G, S) if and only if G(G1,S1) = eq(Gz, S). Since|A¢| and|Cemp)| are
both finite,|C;| is also finite. We now show thag, is a refinement of-q.

Letl > 0, letG; andG; bel-terminal graphs, and I&; € D;j(G;) and$; € Djj(Gy), such
that(G1,S1) ~i (G2,S). We have to show that for dliterminal graphsi and allS€ Djj(H),
QG1EH,§ 99 =Q(GC28H,$®S). LetH be anl-terminal graph, and leg € D;j(H) such
that(G1,S;) and(H, S) ared®-compatible. Then, sinde(G1,S;) = h(G2,S),

h(Gi&H, 56 S) = f(h(G1,S),h(H,)
= f@(h(G27SZ)ah(HaS))
—h(GyaH,$6).

HenceQ(G1®oH, 5@ =Q(G2,@H,S @ S). This shows that the conditions of Theorem 3.2
hold. 0

Theorem 3.3 implies that for each MS-definable construction property, there is a linear time
and space algorithm which solvEsconstructively on graphs of bounded treewidth, without
making use of a tree decomposition of the input graph. For instance, this gives linear time
algorithms for the constructive versions ofAMILTONIAN CIRCUIT andk-COLORABILITY
for fixedk, all on graphs of bounded treewidth.

4 Reduction Algorithms for Optimization Problems

In this section we show how the idea of reduction algorithms can be extended to optimization
problems. The general idea is to extend the reduction algorithm as follows. During the reduc-
tions, an integer is kept which is initially zero. Each time a reduction is applied, this integer is
increased (or possibly decreased) with some specified amount. When no more reductions are
possible, the integer represents the optimal value of the problem.

18

In Section 4.1 we show how this algorithm can be made to work: we extend reduction
systems to reduction-counter systems and give an efficient reduction algorithm based on such a
system. In Section 4.2 we show that this algorithm can be used for a large class of optimization
problems on graphs of small treewidth.

4.1 Reduction-Counter Systems and Algorithms

Let ® be a function which maps each graph to a valug i {false} (we assume that isomor-
phic graphs are mapped to the same value). Typic@llyill be an optimization problem like
MAX INDEPENDENT SET. We will call @ a graph optimization problemThe valuefalse is
used to denote that a certain condition does not hold, i.e. that there is no optimum for a graph.
Let Z denote the séZ U {false}. Define addition orZ as follows: ifi, j € Z , then we take
for i + j the usual sum, and for dlk Z, i +false = false + i = false.
Instead of reduction rules, we usmluction-counterules for graph optimization problems.

Definition 4.1 (Reduction-Counter Rule)A reduction-counter rules a pair (r,i), where r is
a reduction rule and i an integer.

A match to a reduction-counter rule,i) in a graph G is a match to r in G.

If G contains a match to a reduction-counter rule=f (r,i), then an application of'rto a
graph G and an integer counter cnt is an operation which applies r to G and replaces cnt by
cnt+i. An application of a reduction-counter rule is also called a reduction.

Let G and G’ be two graphs. If there is a reduction-counter rulguch that applying

to G and some counternt can result inG', then we writeG s G'. If we have a seR of
. R . . :

reduction-counter rules, we wri@ — G’ if there exists am € R with G 5 G'. If a graphG

has no match iR , then we say tha® is irreducible (w.r.tR).
We extend the notions of safeness, completeness and decrease to reduction-counter rules.

Definition 4.2. Let® be a graph optimization problem aitl a set of reduction-counter rules.

e R is safefor @ if, whenever G% G’ for some r= (1',i) € R, then®(G) = ®(G') +1i.
¢ R iscompletefor @ if the setl of irreducible graphs G for whickP(G) # false is finite.

. - R . ,
¢ R isdecreasingf whenever G- G/, then G contains fewer vertices than G.

Definition 4.3 (Reduction-Counter System.reduction-counter systefar a graph optimiza-
tion problem is a triple (R, 1,), whereR is a finite set of reduction-counter rules which
is safe, complete and decreasing fr | is the set of graphs G which are irreducible and for
which®(G) # false, andgis a function mapping each graph &l to the valued(G).

As a simple example we give a reduction-counter system for the optimization problem
MAX INDEPENDENT SET on cycles: for each grap8, if G is a cycle ther®d(G) is the size
of a maximum independent set @ otherwised®(G) = false. LetR = {(r,1)}, wherer is
the reduction rule depicted in Figure 5, ket= {C3,Cs}, whereCz andC, are the cycles on
three and four vertices (see Figure 5), andg€s) = 1, ¢(C4) = 2. It can easily be seen that
(R, 1,9) is a reduction-counter system fox.

19

SRS

Figure 5: A reduction rule and a set of irreducible graphs that form the basis for a reduction-
counter system for MX INDEPENDENT SET on cycles.

Let ® be a graph optimization problem. LBtbe the graph property with for each graph
G, P(G) =true if ®(G) € Z , andP(G) = false if ®(G) = false. We callP the derivedgraph
property (of®). From a reduction-counter systeiR , |, @) for ®, we can derive a reduction
system forP: letR’ = {r | (r,i) € R for somei € Z }. Then(R’,l) is a reduction system for
P. We call this system thderived reduction systeffrom (R, 1, @)).

If we are given a reduction-counter syst8re= (R . |,) for a graph optimization problem
®, we can again use a reduction algorithm to salven polynomial time. LetS’ denote the
derived reduction system. A reduction algorithm based as a modification of a reduction
algorithm for the derived graph property basedéninstead of repeatedly applying reduction
rules fromS’ on the input graptG, repeatedly apply reduction-counter rules frénon the
graphG and a countecnt. Initially, cntis set to zero.

Let G;j denote the graph after thigh reduction is done, and lent; denote the value of
the counter at this moment (hen@g denotes the input graph, anodfy = 0). It is important to
note that the sur(G;) +cnt; is invariant during the reduction process, because of the safeness
property. Thus, at each moment in the reduction algorithiGy) = ®(G;) + cnt;. Hence,
when the reduction process stops aftierations, becausg is irreducible, therb(Gop) € Z
if and only if G; € | (or, more preciselyG is isomorphic to a graphl € |). Hence ifG; € I,
then®(Gp) = ¢(Gt) + cni, otherwise P(Gp) = false.

Definition 4.4 (Special Reduction-Counter System special reduction-counter system is a
reduction-counter system of which the derived reduction system is special (Definition 2.7).

Note that the reduction-counter system foAX INDEPENDENT SET on cycles that we
have given above is also a special reduction-counter system for this problem.

Clearly, if we have a special reduction-counter system for a graph optimization problem
@, then we can apply the modifications described above to algorithm Reduce in order to get a
linear time algorithm for solvingd on connected graphs.

Theorem 4.1.Let ® be a graph optimization problem. If we have a special reduction-counter
system foid, then we have an algorithm which, for each connected graph G, compu&s
in O(n) time with Qn) space.

4.2 Optimization Problems for Graphs of Bounded Treewidth

In this section, we derive a similar result as Theorem 2.2 for reduction-counter systems.
In analogy to~p; for graph propertie®, we define an equivalence relatien, | for graph
optimization problemsp.

20

Definition 4.5. For a graph optimization problen® the equivalence relation-q; on I-
terminal graphs is defined as follows. Let énd G be two |-terminal graphs.

G1~91 G2 <« thereisanieZ such that for all I-terminals graphs H:
P(G1DH)=P(GydH) +i.

Optimization problen® is of finite integer indexf ~q is finite for each fixed I.

Note that a if reduction-counter rulé¢H,H’),i) is safe for a graph optimization problem
®, thenH ~q H'. Furthermore, iH ~¢; H’' for two |-terminal graph#d andH’, then there
is ani € Z for which the reduction-counter rulgH,H’),i) is safe ford. Note furthermore
that, for eacH > 0, ~q is a refinement of-p|, whereP is the derived graph property df.
Hence ifd is of finite integer index, then the derived propeRys of finite index.

For any graph optimization probled and any integek > 1, @y is the graph optimization
problem with for each grap,

O (G) = false iftW(G?>k
®(G) otherwise.

From Lemma 2.4 and Lemma 2.5 it follows thatdfis of finite integer index, then for
eachk > 1, @y is of finite integer index.
The following theorem is the analog of Theorem 2.2 for finite integer index problems.

Theorem 4.2.Let® is a graph optimization problem of finite integer index. For each integer
k > 1 there exists a special reduction-counter systemnfar

If @ is also effectively computable and there is an equivalence relatjoffor each 1> 0,
which is a finite refinement ef and is effectively decidable, then such a special reduction-
counter systend can effectively be constructed. Moreover, for each reduction-counter rule
((H,H"),i)in S, H ~ H'.

Proof. Letk> 1. LetP be the derived graph property df. Since for eaclh > 0, ~¢, |
is a refinement of-p |, Corollary 2.1 implies that there is a special reduction system
(R, 1) for P, such that for eackH,H’) € R, H ~¢, | H’. We show that we can construct a
special reduction-counter system fbrfor which S is the derived reduction system. For each
reduction rule(H,H’), make a reduction-counter ru(¢H,H’),i), wherei = 0 if for all G,
®(H & G) = false (and hencap(H' & G) = false), andi = ®(H © G) <P (H' @ G) for someG
such thatb(H & G) € Z otherwise. LeR ' denote the set of all these reduction-counter rules.
Leto: | —Z be the function mapping each gra@he | to its value®(G). Then(R', 1l ,¢) is
a special reduction-counter system for

If @ is effectively computable and we have a refinemenbf ~¢, for eachl > 0, then
Py is effectively computable anl andP are effectively decidable. Hence we can effectively
construct a special reduction systéR, |) for R, such that for each ruleH,H’), H ~| H'.
Furthermore, we can turn this reduction system in a special reduction-counter $istdn)
for @ in the following way. The functiorp can be computed by simply computidG) for
eachGe |.

21

For each reduction rule = (H,H’) € R, we compute an integdrsuch that(r,i) is a
safe reduction-counter rule R. Supposed andH’ arel-terminal graphs. Le& be a finite
class ofl-terminal graphs containing at least one terminal graph of each equivalence class of
~@). Such a sec can be effectively computed, similar as for finite index problems (use
techniques similar as in [2, 16].) Now if there isGe G for which ®(H & G) € Z , then
take any suchG and leti = ®(H & G) &®(H’' & G). Note that, sinced ~q; H’, for each
G e G with d(GaH) eZ, (GhH)=d(GaH') has the same value, hence this gives
a proper value. IfG contains no graplt for which ®(H & G) € Z , then leti = 0. Note
that in this case, for everltterminal graphG, ®(H © G) = ®(H' & G) = false, and hence
®(H B G) =false =false+0=P(H' @ G) +i. LetR " be the set of all reduction-counter rules
that are found this way. |

Unfortunately, we can not apply Theorem 4.2 to all MS-definable graph optimization prob-
lems (see e.qg. [3] for a definition). Hence the analog of Corollary 2.2 does not hold for op-
timization problems. However, there are a number of problems for which we can prove that
they are of finite integer index. We give them in the next theorem. In Section 5.2 we prove that
these problems are of finite integer index (Theorem 5.3). These proofs make use of techniques
introduced for constructive optimization problems in Section 5. Definitions of the problems
can also be found in Theorem 5.3.

Theorem 4.3. The following problems are of finite integer indexMAX INDUCED d-
DEGREE SUBGRAPH for all d > 1, MAX INDEPENDENT SET, MIN VERTEX COVER, MIN
p-DOMINATING SET for all p > 1, MAX CuT on graphs with bounded degred,IN PARTI-
TION INTO CLIQUES, MIN HAMILTONIAN PATH COMPLETION, andMAX LEAF SPANNING
TREE

As said before, there are a number of optimization problems which are not of finite integer
index, although the problems are MS-definable, and thus standard methods can be used to solve
these problems i®(n) time sequentially if a tree decomposition of the input graph is given.

We state a number of these problems in the next theorem. We prove it only for one problem;
the other proofs are similar, and can be found in [11].

Theorem 4.4.The following problems are not of finite integer index.

MaAx CuT: given a graph G, find a partitiofivy,V,) of V(G) such that the number of edges
with one end point in ¥and one in Y is maximum.

MIN COVERING BY CLIQUES: given a graph G, find a set of cliques in G of minimum
cardinality, such that each edge of G is contained in at least one clique.

LONGEST PATH: given a graph G, find a path in G of maximum length.
LONGEST CYCLE: given a graph G, find a cycle in G of maximum length.

Proof. We only give the proof of M\ COVERING BY CLIQUES. For each grapks, let ®(G)
denote the minimum number of cliques to cor We show thatvq has infinitely many
equivalence classes for sorhe 0 by giving an infinite class of graphs and showing that the
elements of this class are pairwise not equivalent.

22

For eacn > 1, let G,, be the two-terminal graph with (see also Figure 6)

V(Gp) = {x1,%}U{a,...,a,}, and
E(Gn) = {{x.a} |1<i<2Al<j<n}.

Verticesx; andx, are the first and the second terminal, respectively.

Figure 6: The graph&,, (n > 2), H andH’ for MIN COVERING BY CLIQUES.

LetG = {G, | n> 1}. We show that for eacB®n,Gm € G, if n# m, thenGp, %o 2 Gm.

Let H be the two-terminal graph consisting of terminglsandy, and no edges, and let’
be the two-terminal graph consisting of terminglsandy, and edg€]yi,Y»} (see Figure 6).

Foreach,i>1,®(G @& H) = |E(G;)| = 2i, sinceG; & H contains no cliques of more than
two vertices. Furthermorgp(G; & H') = |[{{x1,%2,a;} | 1 < j <n}| =i. This means that for
all nandm, n# m,

D(GrBH) P(GndH) = 2ne2m# nem= O(G, & H') &®(Gna H),

and hences, #£¢ Gy This shows that the number of equivalence classesqfis infinite
for somel. O

5 Reduction Algorithms for Constructive Optimization Problems

In this section we show how the idea of constructive reduction algorithms and of reduction
algorithms for optimization problems can be combined for constructive optimization problems.
We start with a definition of a constructive reduction-counter system and an efficient reduction
algorithm for constructive optimization problems. After that, we show that this algorithm can
be used to solve a large class of constructive optimization problems on graphs of bounded
treewidth.

5.1 Constructive Reduction-Counter Systems and Algorithms
Many graph optimization problems are of the form
®(G) = op{z(S) | S€ D(G)AQ(G. 9)},

whereD is a solution domain, for eache D(G), zis a function fromD(G) to Z , and either
opt= max or opt= min. (If there is noS € D(G) for which Q(G,S) holds, then we define
®(G) to befalse.) If ® is of this form, then we sagp is a constructive optimization problem

23

defined by the quadrupleD,Q,z 0pt). MAX INDEPENDENT SET is an example of such an
optimization problem: for this problem, we can choose-ephax,D(G) =P (V(G)), Q(G,)
holds if and only if for eaclvw € S {v,w} ¢ E(G), andz(S) = |S.

In this section, we consider reduction algorithms for constructive optimization prolgems
which return the value ofo(G) for an input graphG, and also construct an optimal solution
for G, i.e. a solutionS € D(G) for which Q(G,S) holds andz(S) = ®(G) (if ®(G) # false).
We again only consider solution domaibDswhich are vertex-edge-tuples. We first define the
constructive version of a reduction-counter system.

Definition 5.1 (Constructive Reduction-Counter System).Let ® be a constructive opti-
mization problem defined by, Q,z 0pt). A constructive reduction-counter systdar ® is
a quadruple(R ,1,¢,Ar ,Ar), where

e (R, is areduction-counter system far (Definition 4.3),
e AR is an algorithm which, given

a reduction rule r= (Hy,Hy) € R,

two terminal graphs @ and G, such that G is a isomorphic to H and G is
isomorphic to H,

a graph G with G= G, » H for some H, and

an Se D(G) for which Q G, S) holds and zS) = ®(G),

computes an’S G; © H for which QG; 4 H,S) holds and £S) = ®(G; B H),
e A is an algorithm which, given a graph G which is isomorphic to sonme H computes
an Se D(G) for which Q G, S) holds and zS) = ®(G).

As an example, consider the optimization problénaefined as follows. For each graph
G, ®(G) is the maximum size of an independent seBifs a cycle,®(G) = false otherwise
(see Section 4.1). Consider the constructive versiof defined by(D, Q,z max), whereD,

Q andz are defined as follows. For each gra@hD(G) =P (V(G)), and for eacts € D(G),
Q(G,S) holds if and only ifG is a cycle andsis an independent set &, andz(S) = |S.

We extend the reduction-counter system frdepicted in Figure 5 to a constructive
reduction-counter system f@r. Therefore, we again use the table method used in the proof of
Theorem 3.2. For algorithmAr , we make a table which contains the following information.
For the only reduction rule= (H1,H,) € R and each independent >of H, for which there
is @ maximum independent s&in some grapl, & H with S, = SNV (Hy,), the table contains
an independent s&; of H; such thatS; andS; contain the same terminals affl| = |$| + 1.

All these cases are depicted in part | of Figure 7 (symmetric cases are given only once). Note
that algorithmAgr can be made to run i@(1) time with this table, since it only has to remove
inner vertices oH, from the independent set of the old graph and add some inner vertices of
H; to the independent set of the new graph.

For algorithmA;, we make a table which contains for edt¢ke | a maximum independent
set of H (see part Il of Figure 7). Algorithn#; also usedO(1) time. It can be seen that
(R,1,0,AR,A;) is a constructive reduction-counter systemdodefined by(D, Q,z max).

Let ® be a constructive optimization problem defined(By Q,z opt). Let P be the con-
struction property defined byD,Q). We call P the derived construction propertyFrom a

24

1]
L] }>

" : contains vertices in independent set

Figure 7: Tables for algorithm&g andA, for constructive reduction-counter system foak
INDEPENDENT SET On cycles.

constructive reduction-counter systéR, |, @ Ar,A;) for ® we can derive a constructive re-
duction systend for P: letR’ = {r | (r,i) e R}, and letS = (R',l ,Ag ,A;). We callS the
derived constructive reduction system

Definition 5.2 (Special Constructive Reduction-Counter System)A special constructive
reduction-counter system is a constructive reduction-counter system whose derived construc-
tive reduction system is special.

Note that the constructive reduction-counter system that we gaveAsrIMDEPENDENTSET
on cycles is special.

Let @ be a constructive optimization problem defined (i, Q,z opt), such thatD is a
vertex-edge-tuple. L& = (R ,l,9,Ag ,A) be a special constructive reduction-counter system
for ®. We can modify algorithm Reduce-Construct (Section 3.1) to obtain a constructive re-
duction algorithm foxd based o1$: in part 1, use the reduction-counter algorithm as described
in Section 4.1 instead of algorithm Reduce. In Part 2, line 6 of algorithm Reduce-Construct,
store the valug(G) in some variabl@pt. In line 13, return withSthe valueopt.

Hence we have the following result.

Theorem 5.1. Let @ be a constructive optimization problem defined(ByQ,z opt). If we
have a special constructive reduction-counter systenftiien we have an algorithm which,
given any connected graph G, compu®<5) and, if ®(G) # false, computes an 8 D(G)
such that @G, S) holds and £S) = ®(G). The algorithm uses @) time and space.

5.2 Constructive Optimization Problems for Graphs of Bounded Treewidth

In this section we give a number of conditions that are sufficient for constructive optimization
problems on graphs of bounded treewidth in order to assure that there is a special constructive
reduction system. We also show that these conditions hold for a number of problems.

Let (D, Q,z opt) define a constructive optimization probleand suppos® is a vertex-
edge-tuple. For eadh> 0, let~,q, be a refinement ofq.

Let G be a terminal graph. We want to be able to compare the quality of two partial
solutionsSands for which (G, S) ~rq, (G, S). More formally, we want that there is an integer

25

i € Z such that for each terminal graphand eact§; € Dyj(H) for whichQ(G©& H,S® &)
holds,z(S® Sy) ©z(S © Sy) = i. Therefore, we define an extension of the functido the
domain of terminal graphs.

Definition 5.3. LetZz be a function which, for each terminal graph G and each [3;(G),
maps S to a value i . Functionz is anextensionof z with respect tq ~q,| | > 0} if, for
each 1> 0, and each QC’ € C,q, for which C and Care @&-compatible, there is a constant
d (C,C") € Z such that the following holds. For every two I-terminal graphs G and H and all
Ss € Dyj(G) and $ € Dyj(H) such thategq, (G, Ss) = C andegq,(H,S4) =C,

QGEH, H5SH) = S Si) =7S)+7S) =d(C,C)

The constants|¢(C,C’) are called theextension constanfsr z.

Note that, if there is a refinement,q | of ~q, for eachl > 0 and there is an extensian
of zwith respect to{~q,| | > 0}, then it is not necessarily the case th# an extension af
with respect to{~q,| | > 0}. However,zis an extension foz with respect to any refinement
Of NrQJ .

Lemma 5.1. Suppose is an extension of z with respect {e.;q| | > 0}. Let G be an I-
terminal graph (1> 0). Let SS € Dy(G) such that(G,S) ~q, (G,S). For each terminal
graph H and each$€ Djj(H), if Q(G® H,S® &) holds, then

2(SHSH)eSHSH) = Z9ezS).

Proof. LetC = eGq,(G,S) and letd, denote the extension constants for Let H be a
terminal graph and leg; € Dyj(H) such thaQ(G® H,S® §4) holds. LetC’ = eGq,(H,S4).
ThenQ(G®H,S®Sy) also holds. Furthermorg(S® S4) z(S & Sy) = (ZS) +Z4S) <
d(C,C")) «(ZS) +ZS) «d(C,C)) =ZS) =ZS). O

In other words, Lemma 5.1 shows that@®,S) ~q; (G,S) andz(S) > z(S), thenS always
leads to better solutions th&(assuming opt max).
Let G be anl-terminal graph, an@ € C,q,. Let

opt(G,C) = opt{z(S |SeD(G)Aeaqi(G,S) =C}

(hence opG,C) = false if there is noSe Dy (G) for which e¢q, (G,S) =C). Ifopt(G,C) € Z ,
then let opt$G,C) denote arS € D;j(G) for which z(S) = opt(G,C). Informally speaking,
opt(G,C) represents ‘the value of the best partial solutiorGah equivalence clas€’, and
optSG,C) gives such a partial solution (if existing).

LetSe Dyj(G), letC = eGq, (G, S) and suppos8may lead to an optimal solution, i.e. there
is a terminal graphd and anSy € Dj(H) such thaQ(G @ H,S@ Sy) holds andz(S®) =
®(GoH). Lemma 5.1 shows thatS) = opt(G,C). Hence only partial solutionS for which
Z(S) = opt(G,eGq,(G,S)) may lead to optimal solutions.

Theorem 5.2. Let @ be a constructive optimization problem defined(ByQ,z opt). Sup-
pose D is a vertex-edge-tuple and there is a refinemegl of ~q, for which the following
conditions hold.

26

1. foreach I> 0, |Cq,| is finite.

2. There is an extensianof z with respect t§~q| | > 0} and for each I> 0, there is a
constant K& IN, such that for each I-terminal graph G and ever8S: Dj;(G), if both
S and Scan lead to optimal solutions, thér S) <z(S)| < K.

Then for each k> 1, there exists a special constructive reduction-counter sySteor @y
defined byD, Qx, z, opt), and for each reduction-counter ruléHi,Hy),i) in S, Hy =g Ha.

If, in addition, (i) Q and~q, are effectively decidable, (ii) z is effectively computable,
and (iii) in condition 2,z and K are effectively computable, then such a special constructive
reduction-counter system can be effectively constructed.

Proof. Suppose conditions 1 and 2 hold for Let zbe the extension of condition 2 and let
d(C,C’) denote the corresponding extension constants fa€&l € C,q;. For each >0,
let K| € IN be as in condition 2. LeP be the construction property derived frain(i.e. P is
defined by(D, Q)).

We first construct a refinement; of ~q, such that for each paiiG,Gy) of I-terminal
graphs, if[V(Gy)| < [V(G;1)| andG; = Gy, then there is an€ Z for which the following
holds.

a. ((G1,Gy),i) is a safe reduction-counter rule féx and

b. for eachS; € Djj(Gz) which can lead to an optimal solution, there is@ne D()(Gy)
such that(Gy,S;) ~ (G2, $) and for each-terminal graphH and eacts € Dyj(H), if
QG2 dH,S® 9 holds andz(S® S) = P(G, B H), thenQ(Gy & H, S & S) holds, and
(S DS =P(G1BH).

We also show that is finite. After that, we show how to use to build a special constructive
reduction-counter system fdx (k > 1).

For eacll > 0, eacH-terminal graphG, do the following. If there is a partial solution &
which can lead to an optimal solution, then$ate D;(G) such thas can lead to an optimal
solution. Letig = Z(Ss) (note thatig € Z). Otherwise,s is not defined and; = 0. Let
he : Crq) — {<K,... K} U{false} be a function with for eacl € C;q,,

{opt(G,C) sig if |opt(G,C) «ig| < K|
hs(C) = _
false otherwise.

For each > 0, each paiG;, G, of I-terminal graphs and ea& € DH(Gl) and$S € DH(GZ),
let

(Glasl) ~| (GZaSZ) ~ (G]_,S_]_) ~rQ.l (G27SZ)
Ahg,(e6q(G1,S1)) = he,(€Gq1(G2,).
Note that~ is a refinement of;q and hence of.q,. For eacH > 0, the range ofg for any
I-terminal graptG has finite cardinality, anéekrq) is finite, which means that, is also finite.

Consider the equivalence relatien onl-terminal graphs as defined in Definition 3.7. Let
| >0, let G; and G, be |-terminal graphs, such thi¥ (Gy)| < |[V(G1)| andG;y =i G,. By

27

definition of~| and~, hg, = hg,. Leti =ig, ©ig,, and leth = hg, = hg,. We show thaGy,
G, andi satisfy conditions a and b given above.

Note that, if there is ai$ € Djj(Gy) which can lead to a solution, then there is $ire
D;)(G2) which can lead to a solution, and vice versa.

Claim 5.1. Suppose there is a partial solution @y which can lead to a solution. Let
C € Ciq, such that ofiG1,C) € Z . LetH be anl-terminal graph. LeS = opt§G;,C),
S =0pt§G,,C) andSy € Dyj(H), and suppos®(G1 ©H, S @ Sy) holds. Therg(S @ Sy) =
(S D) +i.

Proof. As there is a partial solution i1 which can lead to a squtionﬁNSG1 is defined and
ZS,) = ig,. This also means th&, is defined and(Ss,) = ic,. Hence, by condition 2
of the theorem|z(S) <ig,| < K|, sozZ(S;) = ig, + h(C), and similarly,z($) = ig, + h(C).
Furthermore,

2S5 S4) = ZAS) + AS1) <0 (C.C)

h(C) +ig, +2(S1) =d(C,C))

h(C) +ig, ©ic, +ic, +Z(S4) ©d (C,C)
2(S) +ZSy) ©d(C,C) wig, +ig,
(SEH) i, +ig,

(

SES) +i.

C
C

o
NN

Claim 5.2. ((Gy1,Gy),i) is safe ford.

Proof. LetH be arl-terminal graph. We have to show thatG; ©H) = (G, H) +i. Since
G1 = G, and= is a refinement ofq, which in turn is a refinement ofp;, ®(G1 B H)
is false if and only if ®(G, B H) is false. Hence if®(Gy & H) = false, then®(G; & H) =
D(Gy D H) +i.

Now supposeb(G1 & H) € Z , and letSe D(G;1 ® H) such thatz(S) = ®(G1 B H). Let
S = SGi1] andSy = §HJ. Let S, = optSGy,eGq,(G1,S1)). By the previous claimz(S; &
S$H) =2(SPSy) +1, and hence if opt max, thend(G; BH) < P(G, B H) +1, and if opt=
min, then®(G; ©H) > ®(G, @ H) +i. By symmetry, we can also show that if gpimax, then
DGy PH) < P(Gy B H) «i and if opt= min then®(G, ©H) > ®(G; B H) i, and hence
P(G1BH)=P(GydH) +1. O

Claim 5.3. For eachS; € D[](Gz) which can lead to an optimal solution, there is&ine
D}(Gy) such that(Gy,S) ~ (G2,S) and for each-terminal graphH and eactS € Dyj(H),
if QG2®H,S®S) holds andz(S, & S) = P(G, ® H), thenQ(G1®H,S ¢ S) holds, and
(S DS =P(GrDH).

Proof. Let$; € Djj(Gz) such thatS, can lead to an optimal solution, I€t= eGq (G2,).
Note that optG,,C) = z(S,) # false (and hence 0§)6G1,C) # false). Let S, = opt(G;,C). Let
H be anl-terminal graph, le§; € D;j(H) and letC’ = eGq, (H). Suppos®(G, & H, S Sy)

28

holds andz(S; & S4) = ®(G, & H). By a previous claimz(S$ & Sy) = 2(S; & Sy) +i. Since
D(G1BH)=P(CaBH)+iandP(Ga B H) =2SHH), thisimplies thaz(SHH) = P(G1 &
H). O

The claims show that conditions a and b hold.

Letk > 1. We show that there is a special constructive reduction-counter systehy.for
Theorem 3.2 shows that there is a special constructive reduction sfistertR , 1, Ar ,A})
for B such that for eackH;,Hy) € R, Hy = H,. We show how to transforr§ into a special
constructive reduction-counter systé&= (R’,1’,¢ Ay ,A}) for ®. First, we make a sdt’
of reduction-counter rules from : for eachr = (H;,H;) € R, make a reduction-counter rule
(r,i) in R" with i =iy, <in,. By condition aR '’ is safe fordy.

Next, letl” =1, and for eachG € I, let ¢(G) = ®(G). We let the algorithm#\; and
A| be the same a8r andA;, but with different tables. FoA], we make a table which
gives for eactG € |’ anSe D(G) such thatd(G) = z(S). For Ay, we make a table which,
for each reduction-counter ruke= ((H1,Hy),i) € R’, and eachs, € H, for which z($,) =
opt(H2,eq(Hz2,$)), contains opt8Hy1,S;). Now, (R, 17,¢,A; ,A}) is a special constructive
reduction-counter system fd¥. The effectiveness result easily follows. O

Note that, if only condition 1 of Theorem 5.2 holds for then® is of finite integer index,
and hence for eadkh> 1, there is a special reduction-counter systendipr

In the following theorem we show for a number of constructive optimization problems that
they are efficiently solvable, using the methods of Theorem 5.2.. The proofs are all of the same
type; we only give the first one completely, the others can be found in [11].

Theorem 5.3.Each of the following constructive optimization problems can be solvedrip O
time and space on graphs of bounded treewidth without making a tree decomposition of the
input graph.

MAX INDUCED d-DEGREE SUBGRAPH forall d > 0: given a graph G, find a set W
V(G) of maximum cardinality such that the degree of each vertexW|@ at most d (for
d = Othis isSMAX INDEPENDENT SET).

MIN VERTEX COVER: given a graph G, find a set W V(G) of minimum cardinality, such
that each edge in G has at least one end point in W.

MIN p-DOMINATING SET forall p> 1: given agraph G, find a setW V(G) of minimum
cardinality such that each & V(G) <W has at least p neighbors in W.

Max CuT on graphs with bounded degree.

MIN PARTITION INTO CLIQUES: given a graph G, find a partitioqVi, ... ,Vs} of V(G)
such that s is minimum and for each iM3 is a complete graph.

MIN HAMILTONIAN PATH COMPLETION : given a graph G, find the minimum number of
edges that should be added to G such that G contains a Hamiltonian path.

MIN HAMILTONIAN CIRCUIT COMPLETION : given agraph G, find the minimum number
of edges that should be added to G such that G contains a Hamiltonian cycle.

MAX LEAF SPANNING TREE: given a graph G, find a spanning tree of G in which the
number of leaves is maximum.

29

Proof. Foreach >0, letly ={1,...,I},andR = {{i,j} | 1 <i < j <I}. Furthermore, for
eachl-terminal graphG = (V,E, (x,...,X)), let

F(G) ={{i.j} [{x.x;} € E},
and for eaclW C V(G) let
[(W)={iel|x eW}.
We give the full proof for Max INDUCED d-DEGREE SUBGRAPH; for the other problems
we omit many (lengthy) details.

MAX INDUCED d-DEGREE SUBGRAPH. Let d > 0 be fixed. Let®d be defined by
(D,Q,z,max), whereD, Q andz are defined as follows. For each graphlet D(G) =P (V),
and for eacls€ D(G), let

Q(G,5) =forall ve S |[Ngs(v)| <d’,

whereNg s(v) = {w e S| {v,w} € E(G)}. Furthermore, le(S) = |S. We show that for each
k> 1, there is a special constructive reduction-counter syster®foby using Theorem 5.2.
We define a refinement,q of ~q by giving the set€;q, and the functions eg,. For each
| >0, let

Crou = {(I,false) || C 1} U

{(F,ILN) [FCRAICIANCH{(i,n)|ielAne{l,...,d}}.

|Crq.| is bounded, becauskis fixed. For eacli-terminal graphG = (V,E, (x1,...,X)), each
SeDy(G), letegq. (G, S) € Ciq, be defined as follows. If there isvee Ssuch thaNg s(v)| >
d, then egy(G,S) = (I(S),false) (S can not lead to a solution), otherwise,@gG,S) =
(F(G),1(S).N), whereN = {(i,Nas(x)|) | i € 1(S)}.

We first show that-q, is a refinement ofvq for all I. Suppos€Gy,S;) ~rq, (G2,).
Clearly, (G1,S;) and(G,S) are compatible. Letl be anl-terminal graph, le§y € Dj(H)
such that(G1,S;) and(H,Sy) are ®-compatible. We have to show th@{G1 $H, S & &)
holds if and only ifQ(G, & H, S @ H) holds. If e¢g(G1,S1) =€Gq (G2,) = (1(S1), false),
thenQ(G1 P H, 59 Sy) =false =Q(G2 & H, S %y).

Suppose §6,(G1,S1) = €G.(G2,.S) = (F,I,N), whereN = {(i,n;) |i € |}. LetX =
(X1,-.-,%), Y =(y1,..., W), andZ = (z,...,z) denote the terminal sets &, G, andH,
respectively.

QG1PH,S1dS)

= (Vvesies: INgaH.g0s,(V)] <d)

= (Viel INns,(2)[+ NG5 (%) | <{{] €1 | Xj € Ng,5,(X) AZj € Nu s, ()} <d)
A (Yves—x NG5 (V)] <d) A (Vvegi-z INng, (V)] < d)

= (Viel INus,(@)[+[ni|=[{i el [{i,]} eFA{z,z} €E(H)} <d)
A (Yves—x NG (V)] <d) A (Vvegi-z INng, (V)] < d)

= (Viel INn.s,(2)[+ Nes,(Yi)| =/{] €'Y} € No,s,(¥i) AZ € Nus,(z)}] <d)
A (Vves,-v [NG,5, (V)] <d) A (Vves;—z [Nus, (V)| <d)

=Q(G2aH, S8 Sy)

30

Hence~q, is a refinement of-q,. This proves condition 1 of Theorem 5.2.

Consider condition 2 of Theorem 5.2. For each terminal gi@pleachS e D;j(G), let
Z(S) = |§. We show thatz'is an extension of. LetC,C' € C,q;, such thatC andC' are
compatible. Let C I} such thaiC = (I,false) or C = (F,I,N) for someF andN, andC’ =
(I,false) orC’ = (F',1,N’) for someF’ andN'. LetG andH bel-terminal graphs, l&d€ Dj;(G)
andS € Dyj(H) such that e, (G,S) =C and egq(H,S) =C'. Thenz(S®S) = [S® S| =
|ISUS| = |9+ |S|<|l| = ZS) +Z(S) «<|l|, henced (C,C’) = |l|, which shows that is an
extension otz

For eachl > 0 letK; = 2I. Let G be anl-terminal graph. LeCg € C,q, denote the
equivalence clasd(G),0,0). Note that optG,Cg) # false, since egy (G, 0) = Cg.

Let S€ Dj(G). We show that, ifS can lead to an optimal solution, thea(S) <
opt(G,Cg)| <. This proves that condition 2 of Theorem 5.2 with= 2.

Claim 5.4. If Scan lead to an optimal solution théz{S) <opt(G,Cg)| < I.

Proof. Supposescan lead to an optimal solution.

First consider the value & S) <0pt(G,Cg). LetS = S<X. Note that eg)(G,S) =Cg
andz(S) < z(S) +1. Hencez(S) <opt(G,Cg) < Z(S) + 1 <opt(G,Cg) <.

Next consider the value of off,Cg) <z(S). Suppose that of,Cg) <z(S) > 1. LetH
be anl-terminal graph an& € Dyj(H) such that(G,S) and (H,Sy4) ared&-compatible and
S® Sy is an optimal solution o6 @ H (this is possible sinc8can lead to an optimal solution).
LetS € D(G@ H) be the set obtained fro®® S, by deleting all terminals fron®. Note that
Q(G®H,S) holds, and thus gg(G,S[G]) = Cg. Furthermorez(S) > z(S& Sy) <l. But
then opt$G,Cg) ¢ S[H] is also a solution fo6 4 H, and furthermore,

Z(0ptS(G,Cg) S[H]) = ZoptSG,Ca)) + ZAS[H])
> Z(S[Q]) +1+ZS[H])
=2Z(S)+I
>Z(SH).
This is a contradiction, sinc®® S is an optimal solution. Hence q@,Cg) <z(S) <I. O

This proves that conditions 1 and 2 of Theorem 5.2 hold. More@yand~q are effectively
decidable and andK are effectively computable, and thus there is an effectively computable
special constructive reduction-counter system fotXMNDUCED d-DEGREE SUBGRAPH.

MIN VERTEX COVER and MIN p-DOMINATING SET. Similarto MAX INDUCED d-DEGREE
SUBGRAPH.

MaAXx CuT on graphs with bounded degree and MLEAF SPANNING TREE. Can be solved
with techniques, similar to the other problems considered here.

MIN PARTITION INTO CLIQUES. Note that partitiongV,...,Vs} of the vertices of a graph
can not be directly represented by a vertex-edge-tuple, since the ngroaerbe arbitrarily
large, depending on the size of the graph. Therefore, we define for each@ré&ii®) =
P(E(G)), and for eacl8 e D(G), we let

Q(G,S) = ‘each component afV(G), S) is a clique;

31

opt= min andz(S) = ‘the number of components ¢¥(G),S)’. Given a setF C E(G) for
which Q(G,F) holds, we can compute a clique partition ®fby computing the connected
components ofV(G),F). This can be done in linear time.

Alternatively, we can, during the construction phase of the reduce-construct algorithm,
maintain a clique partition of the current graph as a set of subsets of the vertices. This can be
done in a similar way as for vertex-edge-tuples. The remaining details of the proof are omitted.

MIN HAMILTONIAN PATH COMPLETION. We have the same problem as forNVPARTITION
INTO CLIQUES: a set of ‘edges to be added’ can not be represented by a vertex-edge-tuple.
Therefore, we define the problem as follows. debe defined byD,Q,z min), whereD, Q
andz are defined as follows. For each gra@hlet D(G) be a set of edge seisC E(G) for
which each component ¢¥(G),F) is a path. For eacBe D(G), let Q(G, S) = true, and let
Z(S) = ‘the number of components ¢¥(G),S)'.

Again we can compute such a set of extra edges in linear time from an optimal solution
F for G: compute the components ¢ (G),F), and for each such component, find the end
vertices of the path. Now concatenate the paths in an arbitrary way. The edges that are added
for the concatenation are the desired edges. The remaining details of the proof are omitted.

MIN HAMILTONIAN CIRCUIT COMPLETION. Use the algorithm for M\ HAMILTONIAN

PaTH COMPLETION: if a graph is not Hamiltonian (which can be tested a reduction algorithm
as HAMILTONIAN CIRCUIT is MS-definable), then its Hamiltonian circuit completion number
is one larger than its Hamiltonian path completion number. O

6 Parallel Reduction Algorithms

In [8] an efficient parallel variant of algorithm Reduce was given, based on a variant of the
special reduction system. In this section we show how to use this algorithm to make an efficient
parallel variant of algorithm Reduce-Construct (Section 6.2). We also show that the parallel
variant of Theorem 3.2 holds. Furthermore we show how to extend the parallel algorithm such
that it can also be used for (constructive) optimization problems (Sections 6.3 and 6.4), and we
give the parallel variants of Theorems 4.2 and 5.2. We show that these algorithms can be used
for large classes of problems on graphs of small treewidth.

We start with a description of the parallel reduction algorithm as introduced in [8].

6.1 Decision Problems

The basic idea of the parallel reduction algorithm is that, if there are two or more possible
applications of reduction rules at a certain time, and these applications do not interfere, then
they can be applied concurrently.

Definition 6.1 (Non-Interfering Matches)Let R be a set of reduction rules and let G be a
graph with a fixed adjacency list representation. Two matchgard G in G are said to be
non-interferingif

e no inner vertex of G(i = 1,2) is a vertex of @_j,

32

¢ the sets of edges ofi@nd G are disjoint, and

¢ if G; and G have a common terminal x, then in the adjacency list of x, there are no two
consecutive edges and e such that e € E(G;) and @ € E(Gy).

A set of matches in G is non-interfering if all matches in the set are pairwise non-interfering.

LetR be a set of reduction rules and {8tbe a graph with a fixed adjacency list represen-
tation. If we have a set of non-interfering matchesGinthen the reductions corresponding to
these matches can be executed in parallel without concurrent reading or writing, and this gives
the same result as if the reductions were executed subsequently, in an arbitrary order. In order
to make an efficient parallel reduction algorithm for a given graph propggniye want to have
a special reduction system which gives sufficiently many matches in any Grégphwhich P
holds. Therefore, we introduce a spegarallel reduction system.

Definition 6.2 (Special Parallel Reduction Systenbet P be a graph property, and®R , 1) a
reduction system for P. Letgx be the maximum number of vertices in any left-hand side of
arulereR. (R,I) is called aspecial parallel reduction systefor P if we know positive
integers min and d, min < Nmax < d, and a constant & 0, such that the following conditions
hold.

1. For each reduction rul¢H;,H,) € R, H; and H, are open and connected.

2. For each connected graph G and each adjacency list representation of G jfi®lds
and G has at least R, vertices, then G contains at least i/ (G)| d-discoverable
matches.

Note that, since for each integer- 1 and each constant if ¢ > 0 thencn > 0, a special
parallel reduction system is also a special reduction system.

Consider the graph property which holds if a graph is a two-colorable cycle. The reduction
system that we have given for this property in Figure 3 is an example of a special parallel
reduction system (také = Nmax = Nmin = 5 andc = 1/5).

Let P be a graph property arfl= (R , 1) a special parallel reduction system for Let
Nmin, Nmax d andc be as in Definition 6.2. The parallel reduction algorithm introduced in [8]
based orS works as follows. The algorithm finds-discoverable matches and executes the
corresponding reductions, until there are no nadiscoverable matches. In more detail, the
following is done.

Suppose we are given an input grapkvith n vertices. The algorithm consists of a number
of reduction rounds, which are executed subsequently. In each reduction €umdreduc-
tions are applied to the current graph, which hagertices, ifP(G) holds. This is done in four
steps.

1. Inthe first step, the algorithm findgladiscoverable match from each vertewhich has
degree at mogad and is an inner vertex of @-discoverable match. If this succeeds, the
corresponding reduction ruteis looked up. LefA denote the set of all matches that are
found. Note thaf is not necessarily non-interfering.

2. In the second step, the algorithm computes a suls#tA with sizeQ(|A|), which is a
set of non-interfering matches.

33

3. Inthe last step, all reductions corresponding to the match&'saire applied.

The first and third step can be done in constant timengrocessors, without concurrent
reading or writing: in step 1, take one processor for each vertex of degree atdmadst
step 3, for each match i, let the processor which discovered the match in step 2 apply its
corresponding reduction. The second step is more complicated. It is basically done as follows.
First, aconflict graphof all matches imA is built. This graph contains a vertex for each match
in A, and an edge between two vertices if and only if the corresponding matches are interfering.
Now an independent set in the conflict graph corresponds to a set of non-interfering matches. It
can be seen that the conflict graph has bounded degree. This means that there is an independent
setA’ of sizeQ(]A|) which can be found efficiently in parallel on an EREW PRAM (for more
details, see [8]).

Note that in step 2, the size éfis at leastmas long a$? holds for the input graph. This
implies that at mosO(logn) reduction rounds have to be done: if the graph resulting after
these steps is ih, thenP holds for the input graph artele is returned. Otherwisd® does not
hold for the input graph anfdise is returned.

Consider the amount of resources used by the algorithms. As said before, weX faye)
reduction rounds, and in each reduction round the number of vertices of the graph is reduced
by a constant fraction (# holds for the input graph). The only part in a reduction round which
takes more than constant time is step 2. By a careful analysis, it can be seen that the algorithm
can be made to run i@(lognlog® n) time with O(n) operations and space on an EREW PRAM.
Fora CRCW PRAM, the algorithm can be slightly improved: it run®ifogn) time withO(n)
operations and space (see [8] for details).

Theorem 6.1.Let P be a graph property. If we have a special parallel reduction system for P,
then we have an algorithm which decides P on connected graphglag@og” n) time with
O(n) operations and space on an EREW PRAM, and flogn) time with Qn) operations

and space on a CRCW PRAM.

The definition of a special parallel reduction system, Lemma 2.6 and (the proof of) Theo-
rem 2.2 immediately imply the following result.

Theorem 6.2.Let P a graph property, and suppose P is of finite index. For each integet,k
there is a special parallel reduction system fqtr P

If P is also effectively decidable, and there is an equivalence relatiofor each 1> 0,
which is a finite refinement efp| and is effectively decidable, then such a systBml) can
effectively be constructed.

The analog of Corollary 2.2 also holds for the parallel case.

In the parallel case, there exist algorithms that decide finite index properti@dagn)
time with O(n) operations and space, given a tree decomposition of bounded width of the
graph [15]. However, the best known parallel algorithm for finding a tree decomposition of
the input graph take®(log?n) time with O(n) operations on an EREW or CRCW PRAM [8].
Hence the reduction algorithms presented in this section are more efficient.

34

6.2 Construction Problems
We start with adapting the definition of a special constructive reduction system.

Definition 6.3. Let P be a construction property defined y,Q) and let (R ,1,Ag ,A)

be a constructive reduction system for P. Algorithg i& non-interferingif for each graph

G, each S D(G), if AR is executed simultaneously for the reconstructions corresponding to
the undoing of two non-interfering reductions, then this gives the same result as runping A
successively for these two reconstructions. Furthermore, no concurrent reading or writing
takes place.

Definition 6.4 (Special Parallel Constructive Reduction Systerhpt P be a construction
property defined byD,Q). A constructive reduction systeth= (R .l,Ag,A;) for P is a
special parallel constructive reduction systemP if

e (R,l)is a special parallel reduction system for P,
e algorithms A& and A use 1) time on a single processor, and
e algorithm Az is non-interfering.

Note that the constructive reduction system that we have defined for two-colorability of
cycles (Figure 4) is a special parallel constructive reduction system: we represent each two-
coloring as a labeling of the graph, i.e. each vertex is labeled with an integer denoting its color.
We can implement algorithrAg such that it is non-interfering, and it runs@(1) time (use
the tables as given in Figure 4). Algorithfy also take$D(1) time.

If we have a special parallel constructive reduction system for a given construction prop-
erty P defined by(D,Q), then we can use a parallel variant of algorithm Reduce-Construct
to construct a solution for an input graf) if one exists. The parallel algorithm consists of
two parts. In part one, reductions are applied as often as possible, using the parallel algorithm
described in Section 6.1.

Part two of the algorithm starts with constructing an initial solution for the reduced graph, if
P holds. This is done by one processor in constant time, by using algofithfter that, the
reduction rounds of part one are undone in reversed order. In each undo-action of a reduction
round, all reductions of that round are undone, and the solution is adapted. Each undo-action
of a reduction is executed by the same processor that applied the rule in the first part of the
algorithm. This processor also applies algoritAm. SinceAg is non-interfering, this results
in the correct output.

Part one of the algorithm tak&lognlog® n) time with O(n) operations and space on an
EREW PRAM. Part two can be done @(logn) time with O(n) operations and space on an
EREW PRAM: each undo action of a reduction can be don®(ib) time on one processor,
and the local adaptation of the solution can also be dor@ i time by the same processor,
since algorithmAg takes constant time. This implies the following result.

Theorem 6.3.Let P be a construction property defined iy, Q). If we have a special parallel
constructive reduction system for P, then we have an algorithm which, given a connected
graph G, checks if FG) holds and if so, constructs aneSD(G) for which Q G, S) holds. The
algorithm takes @ognlog® n) time with Qn) operations and space on an EREW PRAM, and
O(logn) time with Qn) operations and space on a CRCW PRAM.

35

We next show that for a large class of construction properties on graphs of bounded
treewidth, there is a special constructive reduction system.

Theorem 6.4.Let P be a construction property defined (), Q). If D is a vertex-edge-tuple
and ~q, is finite for each I> O, then for each k> 1, there is a special parallel constructive
reduction system for P

If in addition, Q and a finite refinement;q, of ~q, are effectively decidable, then such a
system can be effectively constructed.

Proof. Letk > 1. LetS = (R,l,AR,A|) be a special constructive reduction systemHpas
defined in the proof of Theorem 3.2. We show tAat andA; can be made such th&tis a
special parallel reduction system figy.

We use the following data structure for storing (partial) solutions. Sup@oisethe cur-
rent graph an®=(S,S,...,S) is the current solution fo&. With each vertex, we store
booleangbs, ... ,b: for eachi, 1 <i <t, by is true if and only if D;(G) =V(G) andv = S,
or Di(G) =P (V(G)) andv € §. Similarly, with each edge, we store booleank;, ... ,b:
for eachi, 1<i <t, b is true if and only if D;(G) = E(G) ande =S, or D;(G) =P (E(G))
ande € §. It is easy to see that with this data structure, we can mfgkesuch that it is
non-interfering and runs i®(1) time. FurthermoreA; also runs inO(1) time. O

Note that, with the data structure fovertex-edge-tuples as described in the proof of The-
orem 6.4, a returned solution for a given input graph is represented as a labeling of the vertices
and edges of the graph. However, we can transform this representation into the representation
as described in the proof of Theorem 3.2: for egch< i <t, use a parallel prefix algorithm
(see e.g. [14]) to make a list of all vertices or edges for witcis true. Sincet is fixed, this
takesO(logn) time with O(n) operations on an EREW PRAM, and hence does not increase
the total running time.

In particular, Theorem 6.4 shows that many well-known graph problems, when restricted
to graphs of bounded treewidth, can be solved constructively within the stated resource bounds.
These include all MS-definable construction properties for which the domain is a vertex-edge-
tuple.

6.3 Optimization Problems

It is again easy to adapt the parallel reduction algorithm for optimization problems. Therefore,
we define a special parallel reduction-counter system to be a reduction-counter system of which
the derived reduction system is a special parallel reduction system.

For instance, the reduction-counter system faedMNDEPENDENT SET on cycles that we
defined in Figure 5 is a special parallel reduction-counter system for this problem.

Let ® be a graph optimization problem, aSd= (R ,l,9) a special parallel reduction-
counter system fo. A parallel reduction algorithm based 8nis a combination of the par-
allel reduction algorithm based on the derived reduction system, and the sequential reduction
algorithm described in Section 4. Each processor has a counter, which is initially set to zero.
If a processor applies a reduction-counter rule in the algorithm, then it uses its own counter.
After the last reduction round is finished, the counters of all processors are added ept Let

36

denote the resulting counter, IBtdenote the input graph ard the reduced graph. Now, if
H e |, then®d(G) = cnt+ ¢(H), otherwise ®(G) = ®(H) = false. The sum of all the counters
can be computed i®(logn) time with O(n) operations and space on an EREW PRAM.

Theorem 6.5.Let ® be a graph optimization problem. If we have a special parallel reduction-
counter system fo, then we have an algorithm which, for each connected graph G with n
vertices, compute®(G) in O(lognlog” n) time with Q'n) operations and space on an EREW
PRAM, and in Qlogn) time with Q'n) operations and space on a CRCW PRAM.

By Lemma 2.6 and Theorem 4.2, we also have the following result.

Theorem 6.6.Let ® be a graph optimization problem which is of finite integer index. For each
integer k> 1, there exists a special parallel reduction systgrfor ®y.

If, in addition, ® is effectively computable, and there is an equivalence relatignfor
each [> 0, which is a finite refinement ef4 and is effectively decidable, then such a system
S can effectively be constructed.

Theorem 6.6 implies that there are special parallel reduction-counter systems for the fol-
lowing problems on graphs of bounded treewidth (see also Theorem 4.8)% IMDUCED
d-DEGREESUBGRAPHfor all d > 0, MIN p-DOMINATING SET for all p> 1, MIN VERTEX
CoOVER, MAX CuT on graphs with bounded degreeMPARTITION INTO CLIQUES, MIN
HAMILTONIAN PATH COMPLETION, and MAX LEAF SPANNING TREE

6.4 Constructive Optimization Problems

A similar approach can be taken for constructive optimization problemsdlbet a construc-
tive optimization problem defined b{D,Q,z opt). LetS be a special constructive reduction-
counter system foP. ThenS is aspecial parallel constructive reduction-counter systéthe
derived constructive reduction system is a special parallel constructive reduction system.
Note that the constructive reduction-counter system that we defined Aor MDEPEN-
DENT SET on cycles (Figure 7) is a special parallel constructive reduction-counter system, if
we represent an independent set as a labeling of the vertices of the graph: each vertex is labeled
with a boolean which igrue if and only if the vertex is in the independent set.
In the same way as described above we can transform the parallel algorithm for optimiza-
tion problems as given in Section 6.3 into a parallel algorithm for constructive optimization
problems, based on a special parallel constructive reduction-counter system.

Theorem 6.7. Let ® be a constructive optimization problem defined(ByQ,z opt). If we
have a special parallel constructive reduction-counter systerd®fdinen we have an algorithm
which, given a connected graph G, check®() € Z , and if so, constructs an &D(G) for
which QG,S) holds and £S) = ®(G). The algorithm takes @ognlog*n) time with Qn)
operations and space on an EREW PRAM, aribgn) time with Q'n) operations and space
on a CRCW PRAM.

From Theorem 6.4 and Theorem 5.2, we also derive the following result.

37

Theorem 6.8. Let ® be a constructive optimization problem defined(ByQ, z opt), where
D is a vertex-edge-tuple. Suppose there is a refinemeant of ~q, for which the following
conditions hold.

1. Foreach I> 0, |Ciq,] is finite.

2. There is an extension with respect to{~q | | > 0} and for each I> 0, there is a
constant K¢ IN, such that for each for each I-terminal graph G, eac8 % D;(G), if
both S and Scan lead to optimal solutions, thénS) <Z(S)| < K.

Then for each k> 1, there exists a special parallel constructive reduction-counter system for
®y defined by(D, Qy, z opt).

If, in addition, (i) Q and~q, are effectively decidable, (i) z is effectively computable, and
(iii) in condition 2,z and K are effectively computable, then such a reduction-counter system
can be effectively constructed.

This implies the existence of parallel algorithms with the stated resource bounds for
the constructive versions of Mk INDUCED d-DEGREE SUBGRAPH for all d > 0, MIN p-
DOMINATING SET for all p> 1, MIN VERTEX COVER, MAX CuUT on graphs with bounded
degree, and Mx LEAF SPANNING TREEWhen restricted to graphs of bounded treewidth. For
a proof, see Theorem 5.3.

For the problems M PARTITION INTO CLIQUES and MIN HAMILTONIAN PATH COM-
PLETION we can apply Theorem 6.8 as well, but the returned solution is not exactly in the
form as it would be expected (see also the proof of Theorem 5.3). Sequentially these different
forms of solutions can be translated into each oth€¥(im) time. However in parallel we know
no method to do these translationsGflognlog* n) time with O(n) operations on an EREW
PRAM, or inO(logn) time with O(n) operations on an EREW PRAM.

7 Additional Results and Final Comments

It is possible to generalize the results in this paper to graphs which are not necessarily con-
nected. For this case, the definition of a special reduction system is extended.

Definition 7.1 (Special Reduction System)et P be a graph property, an® , 1) a reduction
system for P. Letfux be the maximum number of vertices in any left-hand side of a rule
reR. (R,l) is aspecial reduction systefior P if we know positive integers and d,

Nmin < Nmax < d, such that the following conditions hold.

1. For each reduction rul¢H;,Hy) € R,

(a) if Hy has at least one terminal, them lis connected and Hand H are open, and
(b) if Hy is a zero-terminal graph, thelV (Hz)| < Nmin -

2. For each graph G and each adjacency list representation of G Gf)olds, then

(a) each component of G with at leagjnvertices has a d-discoverable match, and
(b) if all components of G have less thag{wvertices, then either @ | or G contains
a match which is a zero-terminal graph.

38

This system can again be used in@fm) reduction algorithm. This algorithm consists of two
phases: the first phase actually is algorithm Reduce, except that, instead of line 16, the algo-
rithm checks whether each component of the current graph has abgpatrtices, otherwise

it returnsfalse. In the second phase, the small components of the graph are reduced by taking
components together and matching them to reduction rules. This can be done in a smart way,
such that it take©(n) time, and after phase two, a graphlimemains if and only if the input

graph satisfies the property. A detailed description can be found in [11].

The definitions of special constructive reduction systems and special (constructive)
reduction-counter systems can be modified in the same way as the definition of special reduc-
tion systems. Furthermore we can modify algorithm Reduce-Construct and the algorithms for
optimization problems in the same way as algorithm Reduce, and dbtajrtime algorithms.

Theorems 2.2, 3.2, 4.2 and 5.2 can also be shown to hold for the new type of special
reduction system. For the parallel variant a similar modification can be done to the special
parallel reduction system (see [11] for more details).

It is also possible to generalize the results in this paper to directed, mixed and/or labeled
graphs. In the case of labeled graphs, we can allow the input graph to have a labeling of the
vertices and/or edges, where the labels are taken from a set of constant size. These labels could
also act as weights for finite integer index problems, e.g., we can deal withWEIGHTED
INDEPENDENT SET, with each vertex a weight frofil, 2, ... , c} for some fixect, in the same
way as we dealt with Mx INDEPENDENT SET. Each of these generalizations can be handled
in a very similar way as the results that are given in this paper.

For constructive decision and optimization problems, we restricted ourselves to solution
domains which are vertex-edge-tuples. However, this is not always desirable. For instance,
for MIN PARTITION INTO CLIQUES we would prefer to represent a solution as a partition
{V4,...,Vs} of the vertices of the graph (see also the proof of Theorem 5.3). It is possible
to use more general solution domains like the partition of vertices. However, these solution
domains should obey a number of conditions. For instance, the furi¢tiomestrict solutions
to terminal subgraphs should be defined in such a way that for eachtesminal graph<s
andH, and eachSs € Dy)(G), S4 € Dyj(H), there is at most on& € D(G @ H) for which
SG| = S andSH] = §4. Furthermore, during the construction of solutions in the second
phase of the reduction algorithm, it should be possible to maintain a data structure in which
solutions can be adapted®(1) time.

Unfortunately, the problem of REEWIDTH, and the related problem oAPHWIDTH are
not known to have a special (parallel) constructive reduction system. Having a constructive
reduction system might lead to more efficient sequential algorithms for the problem to find
tree or path decompositions of bounded width (in terms of constant factors). Having a parallel
constructive reduction system leads to more efficient parallel algorithms for finding a tree or
path decompositions of bounded width: the gain in the amount of ti®édagn/log* n).

An interesting problem is which graph properties have special (constructive) reduction
systems. The property to have maximum degree at most some fixed cdoistamt example
of a property that has a special reduction system and that has yes-instances of unbounded
treewidth. Also because of its associations to efficient recognition algorithms, it is interesting
to know which problems have such reduction systems, and which not.

39

All MS-definable decision problems are of finite index, thus implying that there are effi-
cient reduction algorithms which solve these problems (Theorem 2.2). For optimization prob-
lems this does not hold: there are MS-definable optimization problems which are not of finite
integer index (Theorem 4.4), and thus these problems can not be solved with the reduction
algorithms presented in Section 4. It might be interesting to find out whether there is a method
with which all MS-definable optimization problems can be solved by using a type of reduction
algorithm. It is also interesting to find a language like MSOL to define optimization prob-
lems which are of finite integer index. Also, one can conceive more notions similar to finite
integer index, by using a different algebraic structure instead of integers and addition. It is
unclear whether there exists a choice for such a structure that gives new possibilities to deal
with (non-contrived) problems while keeping the same time and space bounds for the resulting
algorithms.

Finally, graph reduction can also be used as a preprocessing heuristic. For instance, sup-
pose we have a grapB on which we want to solve problefa. Now, if we have a special
(constructive) reduction system f8, then note that all reductions from this system are also
safe forP. Thus, we can use the following approach: apply reductions from the syst&n on
until no such reduction can be applied. Hopefully, we obtain a g@lighat is smaller thass.

Now, use another approach to soR€G'), be it backtracking, techniques from integer linear
programming, simulated annealing, etc. Finally, translate the solutid® floack to a solution
for G. The hope is that the reduction preprocessing step malasdficiently smaller to save
time in comparison with running the algorithm to soRelirectly onG.

References

[1] K. R. Abrahamson and M. R. Fellows. Finite automata, bounded treewidth and well-
quasiordering. In N. Robertson and P. Seymour, ediBns;eedings of the AMS Summer
Workshop on Graph Minors, Graph Structure Theory, Contemporary Mathematics vol.
147, pages 539-564. American Mathematical Society, 1993.

[2] S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese. An algebraic theory of graph
reduction.J. ACM 40:1134-1164, 1993.

[3] S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable graphs.
Algorithms 12:308-340, 1991.

[4] S. Arnborg and A. Proskurowski. Characterization and recognition of partial 3-trees.
SIAM J. Alg. Disc. Meth.7:305-314, 1986.

[5] H. L. Bodlaender. On reduction algorithms for graphs with small treewidttPrtrceed-
ings 19th International Workshop on Graph-Theoretic Concepts in Computer Science
WG'93 pages 45-56, 1994.

[6] H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput.25:1305-1317, 1996.

40

[7] H. L. Bodlaender and B. de Fluiter. Reduction algorithms for constructing solutions
in graphs with small treewidth. In J.-Y. Cai and C. K. Wong, editéhsiceedings 2nd
Annual International Conference on Computing and Combinatorics, COCOQ Nefes
199-208. Springer Verlag, Lecture Notes in Computer Science, vol. 1090, 1996.

[8] H. L. Bodlaender and T. Hagerup. Parallel algorithms with optimal speedup for bounded
treewidth. In Z. KIdp and F. @Cseq, editorsProceedings 22nd International Col-
loquium on Automata, Languages and Programmipgges 268-279, Berlin, 1995.
Springer-Verlag, Lecture Notes in Computer Science 944. To appear in SIAM J. Com-
puting, 1997.

[9] R. B. Borie, R. G. Parker, and C. A. Tovey. Automatic generation of linear-time algo-
rithms from predicate calculus descriptions of problems on recursively constructed graph
families. Algorithmica 7:555-581, 1992.

[10] B. Courcelle. The monadic second-order logic of graphs I: Recognizable sets of finite
graphs.Information and Computatiqrg5:12—-75, 1990.

[11] B. de Fluiter.Algorithms for Graphs of Small TreewidtRhD thesis, Utrecht University,
1997.

[12] R.J. Duffin. Topology of series-parallel graplis Math. Anal. Appl.10:303-318, 1965.

[13] M. R. Fellows and M. A. Langston. An analogue of the Myhill-Nerode theorem and
its use in computing finite-basis characterizations. Plceedings of the 30th Annual
Symposium on Foundations of Computer Sciepages 520-525, 1989.

[14] J. HH. An Introduction to Parallel AlgorithmsAddison-Wesley, 1992.

[15] J. Lagergren. Efficient parallel algorithms for graphs of bounded tree-widtiAlgo-
rithms 20:20—44, 1996.

[16] J. Lagergren and S. Arnborg. Finding minimal forbidden minors using a finite congru-
ence. InProceedings of the 18th International Colloquium on Automata, Languages and
Programming pages 532-543. Springer Verlag, Lecture Notes in Computer Science, vol.
510, 1991.

[17] J. Matowsek and R. Thomas. Algorithms finding tree-decompositions of grapisgo-
rithms 12:1-22, 1991.

[18] J. Valdes, R. E. Tarjan, and E. L. Lawler. The recognition of series parallel digraphs.
SIAM J. Comput.11:298-313, 1982.

41

