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Abstract

Digital elevation models can represent many types of geographic data. One of the
common digital elevation models is the triangulated irregular network (also called TIN,
or polyhedral terrain, or triangulated terrain). We discuss ways to represent a TIN in a
data structure, and give some of the basic algorithms that work on TINs. These include
retrieving contour lines, computing perspective views, and constructing TINs from other
digital elevation data. We also give a recent method to compress and decompress a TIN
for storage and transmission purposes.

1 Introduction

Geographic Information Systems are large software packages that store and operate on ge-
ographic data. They are large because they usually include a full database system, and
set of functions to operate on spatial data. It is the spatial (or geometric) component that
distinguishes geographic information systems (or GIS for short) from standard databases.

roads

landuse

railroads

Figure 1: Layers of geographic data in a GIS.

Geographic data comes in many forms. Borders of countries and provences, locations of
roads and hospitals, and pollution of the lakes and rivers are types of man-made geographic
data. Natural geographic data includes elevation above sea level, annual percipitation, soil
type, and much more. GIS store the di�erent types of geographic data in di�erent map layers,
so there is a map layer with the major roads, one with the rivers, one with the current land
use, and one with the elevation above sea level. GIS typically store from ten up to a few
hundred map layers.
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It is rather useful to have types of data in di�erent layers. A GIS user may wish to see a
map on the screen with only cities and railroads, because this particular user plans to travel
by train somewhere. Or a physical geographer may wish to see the overlay of soil type and
amount wind erosion, to study how these two data sets are related.

For any speci�ed location on the Earth or on a map, one can say that some value is
associated to it in a particular theme. For instance, at 53�150 latitude and 6� longitude the
particular land use is \agricultural", the elevation is 1 meter above sea level, and the annual
percipitation is 790 mm. So the value can be a name, or a number, or something else. In the
�rst case the data is called nominal, in the second case it is called ratio. (Traditionally, four
scales of measurement were used: nominal, ordinal, interval, and ratio [27]. Geographic data
can also be a direction or a vector, like wind.)

This paper deals with data on the ratio scale, which can be seen as a function from a 2-
dimensional region to the reals. The domain can be referenced by geographic coordinates, for
example, but we'll do as if we have a function from the xy-plane into the third, z-dimension.
Elevation above sea level is the most obvious type of data that is modelled by such a function.

One of the problems when storing and computing on elevation data is that the amount
of data can be enormous. Currently available for the US is elevation data for points at a
regular spacing of 30 meters, which means a few billion points. In the future data sets of
considerably smaller spacing will be collected, leading to even larger data sets. A consequence
is that only e�cient algorithms can be used to process the data. This paper surveys the
common models to store elevation data, in particular the triangulated irregular network. We
then discuss a couple of the basic algorithms that operate on this model, like determining
contour lines, visualization by perspective views, and conversion from other elevation models.
Then we concentrate on a recent result on e�cient compression and decompression for the
triangulated irregular network, which is important for background storage and for network
transmission.

Figure 2: Perspective view of a triangulated irregular network.

This paper presents several algorithms for terrains. To analyse and express the e�ciency
of these algorithms we'll use big-Oh notation. For instance, for a triangulated irregular
network determined by a set of n data points, the contour lines of some given elevation can
be determined in O(n), or linear time. It is important that the algorithms have running times
like O(n) or O(n logn), because quadratic time usually is too slow in practice for the amount
of data involved.
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2 Digital elevation models

In the computer the true geographic elevation (function) has to be approximated by some
�nite representation of it. This is called a digital elevation model. There are three common
digital elevation models (or DEMs for short). They are the regular square grid, the contour
lines, and the triangulated irregular network.

The regular square grid is a 2-dimensional array where each entry stores an elevation. An
entry represents some region on the Earth of, say, 10 by 10 meters, and the stored value is
the elevation of the center point of the region.

Figure 3: Contour lines of a terrain.

A contour map consists of a collection of separate contour lines that each have some
elevation. Each contour line can be stored as a sequence of control points through which
the contour line is assumed to pass. A contour line is a closed curve, or it may have its
endpoints on the boundary of the region for which the elevation function is de�ned. It can
be represented by a polygon or polygonal line, or a spline curve.
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Figure 4: Triangulation with elevation values at vertices.

The triangulated irregular network (or TIN, or polyhedral terrain, or triangulated terrain)
is a third way to represent elevation. A triangulation on some �nite set S of points is a planar
subdivision into triangles that is maximal, and such that only the points of S appear as vertices
of the subdivision. When used as an elevation model, the vertices of the triangulation store
an elevation value. The elevations on the edges and inside the triangles of the subdivision are
obtained by linear interpolation. So if some point q = (�x; �y) lies inside a triangle with vertices
vi = (xi; yi), vj = (xj; yj), and vk = (xk; yk) with elevations zi, zj , and zk, then we consider
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the unique plane that passes through the three points (xi; yi; zi), (xj ; yj; zj), and (xk; yk; zk).
Then we determine the value �z of q such that the point (�x; �y; �z) lies on the plane, which gives
the interpolated value.

Note that there are many di�erent triangulations possible of a given set of points. All
must have the same number of edges and triangles, because triangulations are maximal pla-
nar subdivisions. By Euler's relation for planar graphs, the number of edges and triangles is
linear in the number of points, the vertices that determine the subdivision. Di�erent triangu-
lations of a point set lead to di�erent elevations at points on edges and inside triangles. For
interpolation purposes, it seems natural to choose one that has small, well-shaped triangles.
The standard choice is the so-called Delaunay triangulation that will be discussed later.

The contour line model isn't used as a way to store elevation data permanently. However,
one of the ways to obtain elevation data is by digitizing the contour lines on contour maps,
so one may have to deal with the contour model nevertheless. Often, the contour model is
converted to the grid or TIN model before further processing.

One of the advantages of the TIN over the grid is that it is adaptive: more data points can
be used in regions where there is much elevation change, and fewer points in regions where
the elevation hardly changes. One of the disadvantages of the TIN when compared to the
grid is that the algorithms usually are somewhat more complex.

3 Data structures for a TIN

This section gives two di�erent ways to represent TINs. One is edge based and the other is
triangle based. In both cases it will be possible to navigate on the TIN, going from one triangle
to an adjacent one e�ciently, or �nding all triangles that are incident to a particular vertex.
The two structures are simpli�ed versions of data structures that can store arbitrary planar
subdivsions such as the doubly-connected edge list, winged edge, or quad edge structure,
commonly used in GIS, graphics, and computational geometry [6, 8, 14, 32].

In the triangle-based structure for a TIN, any triangle and vertex is represented by an
object or record. A triangle object has six references, three to the adjacent triangles, and
three to the incident vertices. Vertices are stored by objects that only have the x-, y-,
and z-coordinates. Edges are not stored explicitly, but they can be determined from the
structure if necessary. The cgal-library of geometric primitives and algorithms provides this
structure [2].

In the edge-based structure for a TIN, any edge is an object that has a dual purpose. It
connects two vertices and it separates two triangles. In the structure any edge object has
references to two vertex objects (of the vertices it connects) and to two triangle objects (of
the triangles it separates; there may only be one). The triangle objects have references to
the three edge objects that bound the triangle. Vertices again only store the x-, y-, and
z-coordinates. There are no references between vertex objects and triangle objects.

4 Visualization and traversal of a TIN

The most common way to show elevation on maps is by contour lines at regular intervals. The
map can be enhanced by hill shading, a technique where an imaginary light source is placed
in 3-dimensional space, and parts of the terrain that don't receive much light are shaded.
Another way to visualize a terrain is by a perspective view. The algorithms required for
visualization are standard graph algorithms on the TIN structure in both cases.
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Figure 5: Left, the edge-based and right, the triangle-based structures of the triangulation
shown at the top.

4.1 Contour maps

To determine all contour lines of, say, 1000 meters, on a TIN representing a terrain, observe
that any triangle contains at most one line segment that is part of the contour lines of 1000
meters. In fact, the contour lines of 1000 meters are nothing else than the cross-section of the
terrain as a 3-dimensional surface, and the horizontal plane z = 1000. So, to determine the
contour lines on a TIN it su�ces to examine every triangle once and see if it contributes to
the contour lines. Similarly, to compute hill shading for a TIN, one needs to determine the
slope of each triangle and its aspect (the compass direction to which the triangle is facing, in
the xy-projection). The slope and aspect determine how much a triangle is shaded, given a
position of the light source. As for contour lines, it su�ces to examine every triangle of the
TIN once to compute hill shading for the whole terrain.

view point

Figure 6: Left, dual graph of the TIN, with grey nodes and solid arcs. Right, dual directed
acyclic graph for agiven view point.

A traversal that visits every triangle once is like a depth-�rst search in a graph dual to
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the TIN. This graph has a node for every triangle, and two nodes are connected by an arc if
the corresponding triangles share an edge in the triangulation. Both the triangle-based and
the edge-based TIN structures implicitly store this graph, and depth-�rst search through all
the triangles is easy if a mark bit is available in every object, to see if it has been visited
before. So for a TIN with n vertices and, hence, O(n) edges and triangles, one can compute
all contour lines of a given elevation in O(n) time by depth-�rst search. Similarly, one can
compute hill shading in linear time.

4.2 Perspective views

Another way to visualize a TIN is by a perspective view of the terrain. We can produce such a
view using the Painter's Algorithm, where all triangles are drawn from back to front, so that
the ones more to the front erase the ones more to the back. What is the appropriate drawing
order for the triangles of a TIN? Given the view point and a TIN, every two triangles that
share an edge must be drawn in a speci�c order (unless the line supporting the edge happens
to pass through the view point). This necessary condition on the drawing order happens to
be su�cient as well: if for all edges of a TIN, the triangle `behind' the edge is drawn before
the triangle `in front of' the edge, then the drawing order is correct. So the drawing order is a
partial order as well, and it can be obtained by a topological sort of a directed graph. Again,
this directed graph is implicitly present in either of the two structures for storing a TIN. It
is the same dual graph as we used for depth-�rst search, but now the arcs have a direction.
The direction of an arc can be determined by checking the coordinates of the endpoints of
the dual edge of that arc, and the coordinates of the view point. So a TIN with n vertices
can be drawn in perspective view in O(n) time using the Painter's Algorithm.

5 Construction of a TIN

We'll now study algorithms for constructing a TIN from elevation data. First we consider
the case that a set of data points with elevations is given, and the problem is to construct a
triangulation on that set. Then we assume that the input is a large grid of regularly spaced
data points, and the problem is to produce a TIN that approximates the grid to within a
speci�ed maximum error.

5.1 Delaunay triangulation on a point set

Figure 7: Left, a set of points in the plane. Middle, the Delaunay triangulation of the
points, where all triangles have the empty circle property as shown for one triangle. Right, a
triangulation of the same points with a triangle that doesn't have the empty circle property.
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The most popular triangulation of a set of points without doubt is the Delaunay trian-
gulation. For a set P of n points in the plane, three points p; q; r 2 P are the vertices of a
triangle in the Delaunay triangulation of P if the circle through p; q; r doesn't contain any
other points of P . If P doesn't contain four points that are co-circular, then the de�nition just
given really de�nes a unique triangulation. It has the property that, among all triangulations
of P , it is the one that maximizes the minimum angle of the triangles in the triangulation
(in other words, no triangulation has a larger smallest angle). This property implies that the
triangles generally will be well-shaped, which is important for the interpolation function it
de�nes. More information on the Delaunay triangulation is in the book of Okabe, Boots, and
Sugihara [19] and in textbooks on computational geometry [6, 20, 21].

Several algorithms are known that construct the Delaunay triangulation of a set on n
points in O(n logn) time, and this is optimal. We sketch one that is simple and requires
O(n logn) time expected, based on randomized incremental construction. The expectation
in the running time is only dependent on the random choices made by the algorithm and is
valid for any set of points, independent of the distribution.

In the randomized incremental construction algorithm for the Delaunay triangulation,
all points of P are added one by one, and after each insertion, the Delaunay triangulation
is restored to incorporate the new point. So we in fact compute a sequence T1; : : : ; Tn of
triangulations, where triangulation Ti contains i points of P . To compute Ti+1, we choose
one of the remaining n � i points at random and insert it. So if p1; : : : ; pn is a random
permutation of P , we can simply insert the points in this order, and Ti is the Delaunay
triangulation of p1; : : : ; pi.

pi+1

t

pi+1

Figure 8: New point pi+1 in triangle t of Ti, and three of the new edges.

One insertion of a point requires locating the triangle of the triangulation that contains
the point, and then the actual insertion. We'll skip the location part and assume that the
new point pi+1 falls inside some triangle t of triangulation Ti. For certain, the Delaunay
triangulation Ti+1 will contain the three edges between pi+1 and the vertices of t. It is not
certain, however, that the three triangles of which pi+1 is now a vertex really satisfy the
Delaunay property: the circle through pi+1 and two of the vertices of t may contain other
vertices of Ti. If this is the case, we'll 
ip: we destroy the edge between the two vertices of t
and we create a new edge from pi+1 to repair the triangulation.

The correctness of such a 
ip depends on two facts that can be shown from the Delaunay
property of Ti. Firstly, all edges that appear in Ti+1 but not in Ti must have pi+1 as one
of the endpoints. Secondly, if any triangle t0 incident to pi+1 doesn't have the empty circle
property, then at least the vertex opposite of the edge opposite of pi+1 in t0 must be in this
circle. The 
ip will connect pi+1 to this vertex.

Any 
ip destroys one triangle incident to pi+1 and another triangle, and creates two
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pi+1

pi+1

Figure 9: Flipping an edge because the empty circle property is violated.

pi+1

Figure 10: One more 
ip is needed to obtain Ti+1. Right, the empty circles of the triangles
incident to the new point.

triangles incident to pi+1. Any edge opposite to pi+1 of a triangle incident to pi+1 must be
tested to see if a 
ip is necessary. If all such edges are tested and none have to be 
ipped to
guarantee the empty circle property, then we have computed Ti+1, the Delaunay triangulation
of p1; : : : ; pi+1.

After locating the triangle of Ti in which pi+1 lies, all the 
ipping and testing requires
time linear in the number of new edges created, which is the degree of point pi+1 in the
triangulation Ti+1.

One can show that the expected time for the 
ipping is constant, even though it is linear in
the worst case. Consider the triangulation Ti+1. Since p1; : : : ; pi+1 is a random permutation
of the set fp1; : : : ; pi+1g of i+1 points, each one of those i+1 points is equally likely to have
been inserted as the last one. The sums of the degrees of all points in Ti+1 is O(i+ 1), since
Ti+1 is a planar triangulation of i + 1 points. So the average degree of a point is constant,
which shows that the expected time for inserting pi+1 after locating the triangle t is also
constant. This proof idea is called backwards analysis [6, 24]. A more complete description
of randomized incremental construction of the Delaunay triangulation and its analysis can be
found in [4, 6, 13].

5.2 Delaunay triangulation to approximate an elevation grid

We proceed with the construction of a TIN from a large grid of elevation data. The algorithm
we'll describe selects a subset of the grid points, such that the Delaunay triangulation of this
subset is a TIN that approximates the elevation at all grid points to within a prespeci�ed
error �. In other words, at all grid points, the absolute di�erence of its z-coordinate and the
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Figure 11: The right TIN shows the situation if the square grid point on the left is the one
with maximum error.

interpolated z-coordinate of the TIN is at most �. The approach is to start with a coarse TIN
with only a few vertices, and keep adding more points from the grid to the TIN to obtain
a TIN with smaller error. The algorithm was described before by Heller [16], Fj�allstr�om [9],
and Heckbert and Garland [15].

1. Let P be the set of midpoints of grid cells, with their elevation value. Take the four
corner points and remove them from P , and put them in a set S under construction.

2. Compute the Delaunay triangulation DT(S) of S.

3. Determine for all points in P in which triangle of DT(S) they fall. For points on edges
we can choose either one. Store with each triangle of DT(S) a list of the points of P
that lie in it.

4. If all points of P are approximated with error at most � by the current TIN then the
TIN is accepted and the algorithm stops. Otherwise, take the point with maximum
approximation error, remove it from P and add it to S. Continue at step 2.

If we assume a simple and slow implementation of the algorithm, we observe that at most
n times a Delaunay triangulation is computed. For each one, the points in P are distibuted
among the triangles of DT(S). This requires for the whole algorithm �(n3) tests of the type
point in triangle, if a linear number of points is added to S.

A much faster implementation has a worst case performance of O(n2 logn) time, and in
typical situations even better: typically O(n logn) time. The algorithm resembles incremental
construction of the Delaunay triangulation to some extent. But the TIN construction algo-
rithm must also distribute the points of P and �nd the one with maximum approximation
error. We'll show that these steps can be done e�ciently.

Assume that p 2 P has been determined as the point with maximum error, bigger than
�, and p must be removed from P and added to S. Then we locate the triangle t of DT(S)
that contains p, and we �nd the vertices that will become neighbors of p in DT(S [ fpg).
This update step of the Delaunay triangulation is the same as in the incremental construction
algorithm. To distribute the points of Pnfpg over the triangles of DT(S[fpg), we know that
only the triangles of which p is a vertex in DT(S [ fpg) have changed. So for all triangles of
DT(S) that don't exist in DT(S [fpg), we collect the associated lists of points. These points
are distibuted among the new triangles and stored in new lists.

The problem that remains is locating the point with maximum error. It is solved as
follows. For each triangle of the TIN we determine the point of P inside it with maximum
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T

Figure 12: The situation for a TIN with vertices shown as small squares (top right), and the
corresponding structure with a few of the pointers between triangle objects, list elements, and
tree nodes.

error. These points are stored in the nodes of a balanced binary search tree T sorted on error.
This allows us to locate the point p with maximum error e�ciently; it is in the rightmost
leaf of T . Before p is moved from P to S, the Delaunay triangulation must be changed
accordingly. To �nd the triangle in DT(S) that contains p we'll use a pointer from the node
in T to the triangle record in the TIN structure; such pointers are shown as dashed lines with
arrows in Figure 12. The triangle records are shown as grey triangles. After updating the
TIN to be DT(S [ fpg) we move p from P to S.

Then we reorganize the lists that were stored with the triangles. When p was added to
the Delaunay triangulation, some triangles were destroyed. The point of P inside each one
that had maximum error is deleted from T . The lists of points of the destroyed triangles
contain p and the points that must be distributed among the new triangles, and stored in
new lists. For each of the new lists we must �nd the point that has the maximum error in
the corresponding triangle, and store it in T .

If k is the number of neighbors of p in DT(S [ fpg), then k � 2 triangles were destroyed
and k new ones were made. Let m be the number of points in the triangles incident to p in
DT(S [ fpg). Then the iteration that added p as a vertex of the TIN requires O(k + logn)
time for updating the Delaunay triangulation, O(km) time to redistribute the m points over
the k triangles, and O(k logn) time to update the balanced binary tree T . In the worst case,
m and k are both linear in n, giving an worst case performance of O(n3). But redistribution
of the points can also be done in O(k+m logm) time by sorting the m points by angle around
p. Since all new triangles in the TIN are incident to p, we can distribute the m points over
the k triangles by using the sorted order. The modi�cation improves the worst case running
time to O(n2 logn).

One can expect that k is usually constant, and after a couple of iterations of the algorithm,
m will probably be much smaller than n. The more iterations, the smaller m tends to be.
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One can expect that the algorithm behaves more like the best case than like the worst case,
for typical inputs. In the best case, k will be constant, and every list of points stored with
a triangle reduces in length considerably each time it is involved in a redistribution. On the
average, a new vertex has degree about six, which means that four triangles are destroyed.
One can hope that the points of P in these four triangles are distributed more or less evenly
over the six new triangles, implying that each of the six new triangles, on the average, only has
2=3 of the points of P when compared to the average of the four triangles that were destroyed.
So later iterations in the algorithm tend to go faster and faster, and m decreases from linear
in n to a constant. Or the algorithm may stop sooner because the error criterion is met. If
k is assumed to be a constant, we needn't use the modi�cation to distribute the points, but
simply spend O(km) = O(m) time. Using an amortized analysis technique, one can show
that the whole algorithm will take O(n logn) time under the (best case) assumptions given.

Emperical tests of the running time on real world input has shown that the typical running
time seems to be closer to linear than to quadratic [9, 15, 16].

6 Compression and decompression of a TIN

In this section we explain a recent result for the compression and decompression of a TIN,
assuming that the Delaunay triangulation is used for the data points. As we mentioned in the
introduction, terrain data usually is huge in size, which means that a lot of storage is needed
for the permanent storage of terrains, and a lot of bandwidth is needed for transmission over
a network. We'll give a simple and e�cient algorithm for compression and for decompression.
The idea applies to some other geometric structures as well, like Voronoi diagrams, convex
hulls, and vertical decompositions. It was introduced by Jack Snoeyink and the author of
this paper [25, 26].

A structure like the Delaunay triangulation can be compressed by omitting all structural
information (egdes and triangles), leaving only the vertices. This is true because the Delaunay
triangulation is uniquely determined by its vertices. So to compress a Delaunay triangulation
we need only store the vertices by the x-, y-, and z-coordinates. However, if we would do this,
it'll take O(n logn) time to reconstruct the TIN, since it takes this much time to construct
the Delaunay triangulation of n points from scratch. We'll show that if the vertices are stored
in a particular order, then the reconstruction takes only O(n) time, and it is simpler too.
The algorithm to compute this particular order takes O(n) time as well. Interestingly, the
sorted order on x-coordinate doesn't work to (re)construct the Delaunay triangulation of a
point set; the 
(n logn) lower bound remains valid [7].

Our �rst algorithm produces a permutation of the data; our second takes this permutation
and reconstructs the Delaunay triangulation.

6.1 Compression

Let P be a set of n points in the plane, of which the Delaunay triangulation is given in
some structure. For simplicity we'll assume that the point set lies in some rectangle of which
the four vertices are also data points of the set, and that there are no other four co-circular
points in P . To construct the permutation of P , we deconstruct its Delaunay triangulation in
phases, by deleting groups of points in a speci�c way. More precisely (but still as an outline
of the algorithm), in one phase we �nd a subset of the vertices that are an independent set
in the Delaunay triangulation, see Figure 13. Then we delete this subset and restore the
Delaunay triangulation for the remaining vertices, while remembering in which new triangles
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Figure 13: The steps for one phase in the compression algorithm.

the deleted points fall. Next the Delaunay triangulation is traversed, and on the way we
collect the subset of points that were removed. So the order in which the triangles are visited
determines the order of the subset. This concludes one phase, and we repeat the steps by
�nding a new independent set in the smaller Delaunay triangulation.

6.1.1 Find an independent set S.

The algorithm starts with the Delaunay triangulation of a point set P . There are three
conditions on the independent set we choose in the Delaunay triangulation, for e�ciency or
for simplicity of the algorithm. Firstly, we won't choose any of the four corner points in this
step. Secondly, we'd like all vertices in the chosen independent set to have constant degree in
the graph, say, each chosen vertex has at most ten neighbors. Thirdly, the independent set
should be large, in any case at least some constant fraction of the whole set. By the four-color
theorem, any planar graph on m vertices has an independent set of size dm=4e. However,
it takes quadratic time to �nd it [23]. Much simpler algorithms are known to compute an
independent set of sizem=5 [3]. However, the algorithms don't give only vertices with constant
degree.

The following simple algorithm determines an independent set satisfying these conditions.
The idea was introduced by Kirkpatrick [17], and used for e�cient planar point location.
Initially, all vertices are unmarked and not chosen. Traverse the vertices of the Delaunay
triangulation in any order and choose a vertex if it has degree at most 10, it is not a corner,
and it is unmarked. After choosing a vertex we mark the at most 10 neighbors, and then we
continue the traversal. This simple algorithm runs in linear time.

One can show that at least 5=121 of all non-corner vertices are chosen. For convenience of
analysis we forget about not choosing corner vertices. Let m be the total number of vertices
in the Delaunay triangulation. The total number of neighbors of all vertices is at less than 6m
by Euler's relation. Therefore, there are less than 6m=11 vertices with degree > 10, and more
than 5m=11 vertices with degree � 10. So, an algorithm that chooses one vertex with degree
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at most 10 and throws away the neighbors chooses at least 1 of 11 vertices of degree � 10,
and in total 1=11 times 5m=11 vertices are chosen in the independent set S. The analysis
given can be re�ned to get a larger constant than 5=121. A more clever linear time algorithm
can guarantee choosing roughly 4=21 of the vertices, and in practice gives a fraction close to
1=3 [26].

6.1.2 Delete the points of S.

After computing the subset S of independent vertices we must delete each one, and restore
the Delaunay triangulation. One can show that the only edges that were in DT(P ) but not
in DT(P nS) are the ones incident to the vertices of S. We start by removing all these edges.
Since S is an independent set and each vertex in S had degree � 10, the graph we obtain has
polygonal faces with at most 10 vertices. The faces can be triangulated separately, and in
linear time we determine the Delaunay triangulation of P n S. Then we determine for each
of the deleted points of S in which new triangle of DT(P nS) it occurs. This is easy, because
a deleted point occurs in one of the at most 7 new triangles formed to triangulate the face it
was in. So the total deletion time is linear.

6.1.3 Traverse to sort the deleted points.

The set of points S that has just been deleted will be placed in some order next. This order
is determined by any traversal algorithm of the triangles of the Delaunay triangulation, like
the depth-�rst search algorithm. When we visit a triangle that contains a deleted point, we
collect it and add it to the sequence of points already collected.

6.1.4 End a phase and continue.

We add an end-of-phase marker to the collected sequence of points. Then we decide whether
or not to restart by �nding an independent set of the current, smaller Delaunay triangulation.
We restart if more than �ve vertices are left. If only the four corner vertices and one more
vertex remain, we simply store them in any order, and the algorithm terminates. For the
�nal sequence of all n points, we start with the �nal �ve points, then an end-of-phase marker,
and then the points chosen and deleted in the last phase, in the order in which they were
collected. Then another end-of-phase marker, followed by the points of the second-last phase,
and so on.

The steps given above for one phase take O(m) time for a Delaunay triangulation with m
vertices. But it is also true that all phases together take O(n) time for an initial Delaunay
triangulation with n vertices. Since the problem that remains after a phase has at most
116n=121 vertices, the running time T (n) satis�es the recurrence T (n) � T (116n=121)+O(n)
if n > 5, and T (n) = O(1) if n � 5. This recurrence solves to T (n) = O(n) time.

Some �nal remarks about the compression algorithm. To make the algorithm work as
discribed we didn't choose the four corner vertices in the independent set. These wouldn't
fall in a triangle of the new, smaller Delaunay triangulation when they are deleted. Therefore
we leave the four corners in until the end. Secondly, the O(logn) markers that were placed in
the sequence are used in the decompression algorithm. There are a few ways to avoid them
altogether, and only use the order of the points [25, 26].
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6.2 Decompression

Decompression is done when a computer gets the data from background storage, or receives the
data over a network. The data arrives in a sequence, and the algorithm can start to reconstruct
the Delaunay triangulation as soon as the �rst points arrive. According to the compression
algorithm, these are the four corner points and one additional point. The following points
are inserted in phases. All steps of the algorithm basically are the reverse of some step of
compression, and therefore we only sketch it brie
y.

The �rst �ve points are used to initialize the reconstruction, so we start by computing their
Delaunay triangulation. Then one phase, until the next end-of-phase marker, can be inserted.
In any phase, the next sequence of points between two end-of-phase markers is inserted into
the current triangulation as follows. Traverse the current Delaunay triangulation using the

same traversal algorithm used to collect the points, but the traversal now serves to locate the
points and store them with the triangles containing them. During the traversal we need only
test if the next triangle contains the �rst point of the sequence. We know that the �rst point
in the sequence must be the �rst point that falls in a triangle, and all following points are in
triangles visited later in the traversal. After all points between two end-of-phase markers are
located in the triangles, we insert them in the Delaunay triangulation. This is the 
ipping
algorithm described before in this paper. The addition to the Delaunay triangulation ends a
phase, and the next sequence of points between end-of-phase markers can be added.

Just like the compression algorithm, decompression takes O(n) time for the Delaunay
triangulation of n points. For a comparison, the randomized incremental construction algo-
rithm for the Delaunay triangulation takes O(logn) time expected to locate the triangle that
contains the next point to be added. Then it spends O(k) time for 
ipping if the next point
has degree k. And one can agree that k is constant in the expected case. The reconstruction
algorithm of this section does the point location for one new point in O(1) time in the amor-
tized sense, that is, the location of all n points in O(n) triangles takes at most O(n) time
together. Then O(1) is used for adding a new point to the Delaunay triangulation, since we
have by construction that the new point has constant degree.

7 Conclusions and further reading

This paper surveyed a couple of geometric algorithms that can be used when working with
digital elevation data. These algorithms were developed in the research areas of computational
geometry and GIS. Both areas also have strong connections with computer graphics.

Two simple algorithms for visualization were presented. More e�cient methods are known
to �nd contour lines of a terrain, by using preprocessing [10, 28]. De Berg has written a
more extended survey on TIN visualization, including the use of levels of detail of terrains
in visualization [5]. More generally, visualization in GIS is treated in a book edited by
MacEachren and Taylor [18], see also [1, 22, 30].

Algorithms for the construction of TINs from digital elevation in another form has been
studied extensively. This can be the triangulation between contour lines, grid to TIN conver-
sion as in this paper, or producing a TIN from point data, with or without an interpolation
method. Surveys on digital elevation models contain many references to such methods [29, 31].

Compression of digital elevation data hasn't been studied so much yet. For gridded data,
Franklin gives a number of experimental results showing how well standard image compression
techniques work for elevation data [11, 12].
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More algorithms that operate on terrains and can be used in GIS have been described in
a survey of the author of this paper [29].
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