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Abstract

We present a framework for recovery of nonmonotonic theories, i.e. of theories
that are interpreted using a nonmonotonic semantics. Recovery of a nonmono-
tonic theory is needed if it does not have a model under the given nonmonotonic
semantics, i.e. if the theory is non-monotonically inconsistent. With classical
theories, inconsistency can only be removed by contracting the current theory;
for nonmonotonic databases, however, it is in general unclear how to restore the
consistency of a theory: indeed, several options for recovery that use (mixtures
of) contractions and expansions have been proposed in the literature. In this pa-
per, we propose a more fundamental approach to study the recovery problem by
stating some rationality postulates for recovery. In these postulates we assume
that, when recovering a theoryT with respect to some intended semantics, one
can fall back on a weaker, so called back-up semantics forT . Based on these
rationality postulates, our general conclusion is that, in most cases, contraction is
not adequate to handle nontrivial recovery problems in nonmonotonic theories.

1 Introduction

The idea about nonmonotonic theories is that they allow one to use common sense
reasoning patterns to infer facts thatnormallycan be expected, given a state of affairs
represented by the theory. Usually, the use of such non-classical reasoning schemes
enables one to draw more and stronger conclusions than a classical reasoning scheme
would do. If, however, the world is not as normal as one expects it to be, such reasoning
patterns significantly diverge from classical ones. For example, suppose a nonmono-
tonic reasoner Alice knows that (i) Y (z) will be the case ifX(z) is not the case and
(ii) normallyX(z) is not the case. Then Alice will expect bothnotX(z) andY (z) to
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hold. If, however, Alice observes for somea thatX(a) actually is true, she will not
be surprised ifY (a) is not the case, since she no longer had a reason to expectY (a)
to hold. One might say that in this case the nonmonotonic machinery is able to deal
with the unexpected in the sense that the new informationX(a) makes a shift in the
reasoner’s theory: from a theoryT in whichnotX(a) andY (a) hold, into a theoryT 0

in whichX(a) holds andY (a) is undetermined. Here, the nonmonotonic mode of our
reasoner is perfectly demonstrated— adding the factX(a) to the theoryT makes the
reasoner retractnotX(a) and, induced by that retraction, also every reason forY (a) is
lost.

However, unexpected behaviour of the world may also cause the nonmonotonic
reasoner to face a situation from which he cannot recover. This can happen, for exam-
ple, if a conclusion based on nonmonotonic reasoning from expectations clashes with
an observation that contradicts it without giving any direct clue for the reason why
the rule used to infer this expectation could not be used. For example, suppose that
Bob (i) uses a reasoning mechanism thatY (z) will be the case if he has no reason to
assume thatX(z) is the case and (ii) he has no direct reason to assume thatX(a) is
true, but (iii) Bob actually observes thatY (a) is not the case. In this case, using his
nonmonotonic inference machine Bob might derive an inconsistency, since using (i)
and (ii), he will derive thatY (a) holds, contradicting his observationY (a).

Confronted with such difficulties, in principle we could choose between to possible
ways to overcome them:

1. change the underlying reasoning mechanism
The original nonmonotonic semantics is considered as defective and has to be re-
placed by a more sophisticated semantics that is also able to handle such (slight)
abnormalities.

2. change the theory
Instead of considering these properties as defects of a nonmonotonic semantics,
one could also reason that such consequences have to be expected if the world
apparently is not as normal as expected and therefore, instead of changing our
semantics, we have to change our ideas about what actually is the case. Adapt-
ing to such slight abnormalities should be sufficient to make our nonmonotonic
reasoning applicable again.

Semantically, using a nonmonotonic logic to reason about a theoryT boils down
to selecting a subset of intended models from some given collection of models for
T , which we call the backup semantics forT . Those intended models are useful for
making predictions about the world if it is as normal as we suppose it is. In slightly ab-
normal circumstances then, we should not be surprised to find that some conceivable,
but non-intended models will better describe what we might expect. Should we blame
our semantics for failing to provide the right models? We don’t think so, since this
semantics was intended to be used if the world was behaving normal. This explains
why we adhere to the principlechange the theory and not the logic.
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If we are in a situation in which the intended set of models forT is empty, whereas
the set of models from the backup semantics is not, we consider the latter set as a
first approximation of the set of intended models— it assumes oflessfacts that they
normally hold. Since the backup semantics is weaker, therefore allows for more ab-
normalities to occur and also is successful (i.e,doesyield models), it may give us
clues about which abnormalities we have to be prepared for. This information then,
can be used to change the original theoryT to a recoveredtheoryT 0. Since the ab-
normalities have now been accounted for in0, it seems natural to apply our original
intended semantics toT 0 to derive our standard expectationsmodulothe abnormalities
we discovered. Returning to Bob once again, he might fall back to a classical reasoner,
interpreting (i) as (i0): :X(z)! Y (z) which, together with his observation yields the
factX(a), providing Bob with a new theoryT 0 consisting of (i), (ii), (iii), X(a) and
:Y (a).

Let us now present a more formal example from the area of logic programming.
The example not only provides a reason why changing the theory has advantages over
changing the reasoning mechanism, it also demonstrates that the backup semantics
need not be classical: it may be nonmonotonic as well. Suppose we have the following
program:

P : :a  not b

c  notd

a  

Let the stable model semantics be our intended semantics. For this programP , the
stable model semantics is contradictory and does not succeed in resolving the conflict
betweena and:a. Using the weaker minimal model semantics as a backup seman-
tics, we have two minimal modelsI1 = fa; b; cg andI2 = fa; b; dg. Hence, using the
backup semantics with a skeptical reasoning mode, we concludeb. But clearly, revis-
ing P by addingb  to it, results in a programP 0 having as its unique stable model
the interpretationI1.

This example shows how a stable reasoner may fall back on a weaker minimal
model semantics to recover from a theoryP that has no stable models. It also demon-
strates the advantages of changing the theoryP rather than the underlying reasoning
mode. For suppose that our reasoner would decide to stick to the skeptical minimal
model semantics, once having discovered that the intended semantics fails for the cur-
rent theoryP . Given the two minimal modelsI1 andI2 then, he would not be able
to predictc anymore, whereas, for a stable reasoner,c is a desirable conclusion, since
the conflict betweena and:a seems to be independent from the reasons to expectc

to be true: the fact that the world is behaving abnormal insomerespect is, for normal
people, not a reason to assume that it is abnormal ineveryrespect.
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Summarizing, the backup semantics only serves to indicate the abnormalities that
we have to account for. This information is used to translate the original theoryT into
a theoryT 0 such thatT 0 has intended models. The models of the backup semantics
serve as a first approximation, or upperbound, for the recovered set of intended mod-
els of the theoryT and will be used to select the intended models from. In this way,
exceptions to the expected are really treated as exceptional, rather than forcing them
to become predictable.

Position and overview of the paper
Comparing this recovery process with the recovery of classical theories, there are some
resemblances but also some differences. A classical theory has to be recovered if the
theory is not satisfiable. In the dominant AGM [3] framework for recovery of classical
theories, also a transformational approach is applied. A recovery of such an inconsis-
tent theoryT always comes down to contractingT by deleting some statements from
it in such a way that the contractionT 0 is consistent: the intended models ofT are
obtained from the classical models ofT 0. In recovery of non-monotonic theories, it is
only the set of intended models of the theoryT that is empty, while, viewed in a clas-
sical way,T still might have classical models. With respect to the recovery process
this means that it is not clear at all which kind of recovered theoryT 0 of T would be a
most suitable: in some cases it might be that an expansion ofT has intended models,
in other cases it might be that a contraction ofT has suitable intended models, while
in still other cases a recovered theory which is obtained by adding some statements to
T and deleting others, is a most suitable candidate for the recovered theory.

It comes as no surprise that in the literature different proposals for recovery of
nonmonotonic theories have been offered. Many of these approaches, however, seem
to work well for only a particular formalism, and for some ad hoc reasons. What
the field lacks is a formulation of the ideas underlying the recovery process in a clear
and unifying way. It is the purpose of this paper first of all to state some clear and
very generalrationality postulatessuch a recovery process has to satisfy. Essentially,
these postulates describe which properties a suitable nonmonotonic recovery operation
R should have independently from the specific properties of the nonmonotonic logic
used. We introduce these postulates for recovery in Section 2, after we have identified
some crucial properties of nonmonotonic consequence operators. Then, in Section 3,
using those properties, we state some results pertaining to thetypeof the recovery
operation that should be applied in order to satisfy the rationality postulates. Our
general conclusion is that for mainstream nonmonotonic semantics, contrary to what
one might expect on the basis of recovery of classical theories, theory-contraction is
not suitablefor recovery of nonmonotonic theories. Finally, in Section 4, we show
how the framework can be applied successfully in the recovery of logic programs.
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2 The framework

2.1 Preliminaries

Given a languageL, a theoryT is any subset ofL. We assume to have a way to assign
to eachT some (possibly empty) set of modelsMod(T ) in some specified class. For
any class of theoriesT a semanticsSem then is a way to associate consequences'

to someT 2 T , based onMod(T ). Such a semantics is calledwell-behavedw.r.t.
T , if Sem(T ) is defined and is not equal toL.1 We often identify a semanticsSem
with a consequence operationCSem : 2L ! 2L, where, in this paper, we stipulate that
CSem(T ) = L in caseSem(T ) is not defined. Generalizing the above, we say that a
consequence operatorC is well-behaved w.r.tT if C(T ) 6= L. We focus theories that
have more than one semantics, i.e. a backup semantics with associated consequence
operatorCb and a intended semantics that corresponds toCi. Slightly abusing ter-
minology, if T is a set of theories, we say that atwin semantics (forT ) is a tuple
S = (T ; Cb; Ci) with the following property ofsupra-inferentiality:

For allA � L, Cb(A) � Ci(A) (Supra).

A recovery operatoris a computable functionR : T ! T . Given a twin seman-
ticsS for T and a recovery operatorR on T , we call the tupleR = (T ; Cb; Ci; R) a
recovery framework.

Properties of consequence operators
In this paper, we want to state some general results about the properties a suitable
recovery operator should have. These properties partly depend on some abstract prop-
erties of the consequence operatorsCb andCi. Therefore we recall (see e.g. [9]) some
general properties along which one can classify consequence operators:

A � C(A) (Inclusion)
C(A) = C(C(A)) (Idempotency)
If A � B thenC(A) � C(B) (Monotony)
If A � B � C(A) thenC(B) � C(A) (Cut)
If A � B � C(A) thenC(A) � C(B) (Cautious Monotony)

A classicalinference operationC will also be denoted byCn. An inference op-
erationC is calledTarskian2 if it satisfiesInclusion, IdempotencyandMonotony, it
satisfiesCumulativityif both Cut andCautious Monotonyhold forC. Finally, C is
called acumulativeinference operation, if it satisfiesInclusionandCumulativity.

1Note that under this definition, ifMod(T ) = ;, both a credulous and a skepticalSem determines
Sem(T ) to be not well-behaved.

2In particular,Cn is a Tarskian consequence operator
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The following weaker forms of Cut and Cautious Monotony are also useful:

If A � B � C(A) andC(A) 6= L thenC(B) 6= L (Weak Cut)
If A � B � C(A) andC(B) 6= L thenC(A) 6= L (Weak Monotony)

To see thatCut impliesWeak Cut, assume thatA � B � C(A) andC(A) 6= L.
With Cut we infer thatC(B) � C(A) and, sinceC(A) 6= L, we immediately have
C(B) 6= L, so Weak Cutholds. The same holds for the relation betweenCautious
MonotonyandWeak Monotony. We say thatC satisfiesWeak Cumulativityif C satis-
fies bothWeak CutandWeak Monotony. FurthermoreC is calledweakly cumulativeif
it satisfiesInclusionandWeak Cumulativity.

The role of the weak principles in nonmonotonic logics
Our main motivation to introduce the weak variants of Cut and Monotony, is that they
help us in distinguishing the mainstream nonmonotonic semantics from other (non-
classical) semantics. Let us, following [9] and others, make a distinction between a
skepticaland achoice mode3 of using a consequence operator. It is well-known that
mainstream nonmonotonic logics as Reiter’s default logic, auto-epistemic logic and
the stable model semantics of logic programming do not satisfyCautious Monotony
neither in the skeptical, nor in the choice mode. With respect toCut, however, a distinc-
tion has to be made between these modes: while the skeptical modes of nonmonotonic
consequence operations in general do satisfyCut, their choice modes do not satisfy it
(see [9]). This means these principles fail to distinguish these logics uniformly, i.e.
independently from the mode in which they are used.

As we will show now, our weak principles are capable to characterize these main-
stream nonmonotonic logics uniformly. We show, using default logic as an example,
that irrespective of the mode (skeptical or choice) in which the nonmonotonic infer-
ence operator is used, these nonmonotonic operators all satisfyWeak Cut, but fail to
satisfyWeak Monotony. By the correspondences between default logic and other non-
monotonic logics, this result also holds for auto-epistemic logic and the stable model
semantics of logic programming.

Proposition 2.1 LetD be an arbitrary set of default rules and letCD denote the infer-
ence operator usingD and based on Reiter’s default logic. ThenCD does not satisfy
Weak Monotonybut does satisfyWeak Cut, irrespective from the mode (skeptical or
choice) in which it is used.

PROOF We first show that in none of the inference modesWeak Monotonyis satisfied.
It suffices to present one counter example. Take the following set of defaultsD =
f;;:c

c
g. ConsiderCD(;) = L. Sincefcg � L, we have; � fcg � L, but Weak

Monotonyfails, sinceCD(fcg) = Cn(fcg) 6= L, both in the skeptical and in the
choice mode.

3We do not consider the credulous mode for consequence operators since it behaves rather irregu-
larly. For example,Ci(A) may contain both� and:� without also having� ^ :�.

6



Next we show that Default Logic does satisfyWeak Cutin both modes. Since it
satisfiesCut in the skeptical mode, we only have to show that it satisfiesWeak Cutin
the choice mode. From [10], we know that Default Logic satisfies theConfirmation of
Evidence(CE) principle, stating that for every default theory� = (W;D), the theory
�0 = (W [W 0;D) has at least one extensionE, whenever(W;D) has a consistent
extensionE andW 0 � E. Now letA;B be sets of sentences such thatA � B �
CD(A) and suppose thatCD(A) 6= L. Hence, bothA andB are consistent sets of
sentences and there is some consistent extensionEA of the default theory(A;D) such
thatCD(A) = EA. SinceB � EA, B �A � EA, and hence, by the Confirmation of
Evidence principle, there is at least one consistent extensionEB for (A[(B�A);D) =
(B;D). Select such an extensionEB. SinceEB is consistent,CD(B) 6= L andWeak
Cut is satisfied.

Hence, Default Logic also satisfiesWeak Cutif the choice mode of inference is
used.

With respect to the dominant semantics of other formalisms like Auto-epistemic
Logic and Logic Programming, we can easily show the same results. We conclude
that irrespective of the mode in which consequence operators based on mainstream
nonmonotonic semantics are used, they all satisfyWeak Cutand none of them satisfies
Weak Monotony.

Some first results about recovery frameworks
Using the abstract principles we can derive some properties that will turn out to be
useful when dealing with recovery.

Observation 2.2 LetR = (T ; Cb; Ci; R) be an arbitrary recovery framework, where
Cb satisfies Inclusion andCi satisfies Weak Cut. Then for everyT 2 T ,Ci(R(T )) 6= L

impliesCi(Cb(R(T ))) 6= L.

PROOF Let T 2 T . Since the underlying twin semanticsS = (T ; Cb; Ci) satisfies
Supra andCb satisfiesInclusion, we haveR(T ) � Cb(R(T )) � Ci(R(T )). By Weak
Cut, we haveCi(R(T )) 6= L impliesCi(Cb(R(T ))) 6= L.

Observation 2.3 LetR = (T ; Cb; Ci; R) be an arbitrary recovery framework, where
Cb satisfies Inclusion andCi satisfies Weak Monotony.
Then for everyT 2 T , Ci(Cb(R(T ))) 6= L impliesCi(R(T )) 6= L.

PROOF Let T 2 T . Since the underlying twin semanticsS = (T ; Cb; Ci) satisfies
SupraandCb satisfiesInclusion, we haveR(T ) � Cb(R(T )) � Ci(R(T )). By Weak
Monotonyit follows thatCi(Cb(R(T )) 6= L implies thatCi(R(T )) 6= L.

Combining these observations, we have the following useful corollary:
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Corollary 2.4 Let R = (T ; Cb; Ci; R) be an arbitrary recovery framework, where
Cb satisfies Inclusion andCi satisfies Weak Cumulativity. Then for everyT 2 T ,
Ci(Cb(R(T ))) 6= L iff Ci(R(T )) 6= L.

The conclusion of this corollary is a weaker variant of the well-known stronger ab-
sorption principleCiCb = Ci = CbCi that holds whenCi is cumulative andCi is
supra-inferential with respect to an operatorCb satisfyingInclusion(cf. [9]).

2.2 The postulates

In this section we introduce our postulates for recovery and use them to define a suc-
cessful recovery framework, of which we also give an example. We then derive some
simple but useful results about recovery frameworks and elaborate on the weak princi-
ples.

Postulates for recovery
Given a recovery frameworkR = (T ; Cb; Ci; R) we formulate some postulates to
characterize a recovery approach forCi-theories, using a backup semanticsCb.

R1. Success:
Ci(R(T )) is well-behaved wheneverCb(T ) is well-behaved.
This means that the recovery should besuccessful: if in the back-up seman-
tics, one can attach a meaning toT , this postulate guarantees thatR(T ) is well-
behaved with respect to the intended semantics.

R2. Conservativity:
R(T ) = T wheneverCi(T ) is well-behaved.
This postulate guarantees that recovery is done in aconservativeway: a recovery
only leads to a change ofT if it is necessary to do so, i.e, if one is unable to assign
T a meaning under the intended semantics.

R3. Back-up preservation:
Cb(T ) � Cb(R(T )).
Since the original theory is meaningful under the backup semantics, we do not
want to lose information obtainable from the original theory when using the
transformed theoryR(T ).

R4. Back-up inclusion:
Cb(R(T )) � Cb(T )
This postulate constrains the recoveryR by requiring that all backup conse-
quences ofR(T ) should be derivable fromCb(T ). That is, we are not allowed
to add some new information when using the transformed theory.

The intention of a recovery framework is to characterize recovery operations that
are both intuitively acceptable andsuccessful:
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Definition 2.5 We say that a recovery frameworkR = (T ; Cb; Ci; R) is successful if
for everyT 2 T such thatCb(T ) is well-behaved,R(T ) satisfies the postulates R1 to
R4.

This does not exclude recovery frameworks that are successful in atrivial way, for
example ifCb(T ) is not well-behaved for anyT 2 T or Ci(T ) is well-behaved for
everyT 2 T . Therefore, we define anontrivially successful recovery framework as
follows:

Definition 2.6 Let R = (T ; Cb; Ci; R) be a successful recovery framework. We say
thatR is non-trivially successful if there exists at least oneT 2 T such thatCb(T ) is
well-behaved andCi(T ) is not well-behaved.

Before we demonstrate that recovery frameworks exist that are non-trivially suc-
cessful, we first make the following observation about successful frameworks, say-
ing that the intended consequences of the recovered theory are bounded below by the
backup consequences of the original theory.

Observation 2.7 If R = (T ; Cb; Ci; R) is a successful recovery framework then
Cb(T ) � Ci(R(T )).

PROOF By Postulate R3,Cb(T ) � Cb(R(T )). Since the underlying twin semantics
S = (T ; Cb; Ci) satisfiesSupra, Cb(R(T )) � Ci(R(T )). Hence,Cb(T ) � Ci(R(T )).

Example 2.8 Let us relate the postulates to an example. Consider the following pro-
gram

P : :a  not b

a  

Let us take forCb the minimal model semantics, and forCi the stable semantics.
In this case, the conclusion:a of the first rule is attacked by an observationa, without
giving direct evidence forb to be true. Using the stable semantics, we have to conclude
that the program is contradictory, since we expect both:a anda to be true. Hence,
there is no stable model for this program and we conclude that the associated (intended)
inference operatorCi applied to the programP is not well-behaved. Still, we could
reason as follows: if the programP represents all we know, then, from the apparent
contradiction that botha and:a seem to hold we would derive that it is impossible to
assume thatb is not true. Hence, we are forced to assume thatb is true. But combining
this information with the programP , we conclude that this recovered program has an
intuitively acceptable stable model in which we expect botha andb to hold.

It is not difficult to see that such a line of reasoning is sanctioned by using the
weaker minimal model semanticsCb: there is exactly one minimal model ofP and in
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this model botha andb are true. We use such information in the recoveryR(P ) of P ,
since it gives us a clue about what abnormalities should be taken into (explicit) account.
Summarizing, when takingR(P ) = P [fb g, we infer that for this particularP ,this
approach gives rise to a successful recovery.

3 Successful and unsuccessful frameworks

The recovery postulates R1-R4 restrict the class of possible recovery operations to the
ones that are considered to beacceptable, i.e., well-behaved. They do not, however,
tell us whether, given some class of theories, the class of acceptable recovery functions
will be non-empty. That is, we do not know whether a recovery framework will be
(nontrivially) successful or not.

In this section we will study the interaction between the postulates R1-R4 and some
abstract properties of inference operations in order to to find out

1. in which cases the recovery framework cannot be applied, i.e. when the recovery
of a theory as we have proposed is not possible in a successful way;

2. which recovery functions can be excluded if the recovery framework can be
applied;

3. in which cases the recovery framework is guaranteed to be (nontrivially) suc-
cessful.

3.1 General failure for Weak Cumulative semantics

We show that there is no recoveryR satisfying the postulates ifR = (T ; Cb; Ci; R)
is a recovery framework based on a twin semantics, where the intended semantics is
weakly cumulative and the back-up semantics satisfies Inclusion.

In fact, we prove a slightly stronger result showing that every recovery framework
satisfying the first three postulates R1-R3 cannot be non-trivially successful.

Theorem 3.1 Let R = (T ; Cb; Ci; R) be a recovery framework, whereCb satisfies
Inclusion andCi is weakly cumulative. ThenR cannot be nontrivially successful with
respect to the recovery postulates R1-R3.

PROOF Assume, on the contrary, that there exists a recovery frameworkR = (T ; Cb;

Ci; R) that is nontrivially successful and whereCi satisfiesWeak Cumulativity. By
Definition 2.6, there exists a theoryT 2 T such thatCb(T ) andCi(R(T )) are well-
behaved, butCi(T ) is not.

SinceCi satisfiesWeak CumulativityandCb satisfiesInclusion, by Observation 2.4,
we have thatCi(R(T )) 6= L implies Ci(Cb(R(T )) 6= L. Since, by assumption,
Ci(R(T )) 6= L, it follows thatCi(Cb(R(T )) 6= L.
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SinceCb satisfiesInclusionandR satisfies Postulate R3, we have

T � Cb(T ) � Cb(R(T )) (1)

By InclusionandSupra, it follows that

Cb(R(T )) � Cb(Cb(R(T ))) � Ci(Cb(R(T ))) (2)

Hence, combining these inclusions, we have

T � T � Ci(Cb(R(T )))

SinceCi satisfiesWeak MonotonyandCi(Cb(R(T )) 6= L, by Observation 2.5 it fol-
lows thatCi(T ) 6= L, contradicting the assumption thatCi(T ) = L. SoR cannot be
nontrivially successful; a contradiction.

The following corollary is immediate:

Corollary 3.2 LetR = (T ; Cb; Ci; R) be a recovery framework, whereCb satisfies
Inclusion andCi satisfies Weak Cumulativity. ThenR cannot be nontrivially successful
with respect to the recovery postulates R1-R4.

This result shows that our framework cannot be used if the intended nonmonotonic
semantics is (weakly) cumulative. This is the case with such systems as the Closed
World Assumption (CWA), system C ([7]) and some reconstructions of Default Logic
as Brewka’s Cumulative Default Logic4.

Note that our theorem also excludes such approaches if only the postulates R1-
R3 are used. It is easy to show that, for example Pereira’s Contradiction Removal
Semantics ([12]) using the classical consequence operatorCn as the backup semantics,
satisfies the postulates R1-R3 and hence cannot be successful if the intended semantics
is cumulative.

Although there are some weakly cumulative nonmonotonic logics, as we remarked
before, the mainstream semantics for nonmonotonic logics as Default Logic, Auto-
epistemic logic and nonmonotonic logic programming do not satisfyWeak Cumulativ-
ity, but satisfy weaker principles. So let us now consider the cases where the intended
semantics is weaker and try to find out which types of recovery functions can or cannot
be used that satisfy the postulates.

3.2 Failure for specific recovery functions

To exclude specific types of recovery functions in successful recovery frameworks, in
this section we concentrate on two major types of recovery functions:

Definition 3.3 A recovery functionR is called anexpansionif for all T 2 T we have
T � R(T ) andR is called aretraction if for all T 2 T we haveR(T ) � T .

4and of course assuming a backup semantics that satisfiesInclusion.
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It turns out that the two principles making upWeak Cumulativitynicely discrimi-
nate between expansions and contractions:

Theorem 3.4 Let R = (T ; Cb; Ci; R) be a recovery framework, whereCb satisfies
Inclusion,Ci satisfies Weak Monotony andR is an expansion. ThenR cannot be
nontrivially successful w.r.t. the postulates R1-R4.

PROOF Suppose thatR is nontrivially successful, then there is a theoryT 2 T such
thatCb(T ) andCi(R(T )) are well-behaved butCi(T ) is not, i.e. Ci(T ) = L. This
implies thatR(T ) 6= T . Hence, sinceR is an expansion,T � R(T ). Therefore, since
Cb satisfies Inclusion, we haveT � R(T ) � Cb(R(T )). From this, by R4 and Supra,
it follows thatT � R(T ) � Cb(T ) � Ci(T ). Using Weak Monotony,Ci(R(T )) 6= L

implies thatCi(T ) 6= L. By assumption,Ci(R(T )) 6= L, henceCi(T ) 6= L; a contra-
diction.

On the other hand, if we requireCi to satisfyWeak Cutinstead ofWeak Monotony,
contractionis no longer applicable:

Theorem 3.5 Let R = (T ; Cb; Ci; R) be a recovery framework, whereCb satisfies
Inclusion,Ci satisfies Weak Cut andR is a contraction. ThenR cannot be nontrivially
successful w.r.t. the postulates R1-R3.

PROOF SupposeR is nontrivially successful, then there is a theoryT 2 T such that
Cb(T ) andCi(R(T )) are well-behaved butCi(T ) is not. This implies thatT 6= R(T ).
Hence, sinceR is a contraction,R(T ) � T . Therefore, sinceCb satisfiesInclusion,
we haveR(T ) � T � Cb(T ). By R3 and Supra, we haveR(T ) � T � Cb(T ) �
Cb(R(T )) � Ci(R(T )). UsingWeak Cut, Ci(R(T )) 6= L implies thatCi(T ) 6= L.

This shows thatWeak MonotonyandWeak Cutnicely discriminate between two
types of recoveries. Since we have seen that the dominant nonmonotonic logics satisfy
Weak Cut, but notWeak Monotony, we conclude that

in general, retractions are not useful in non-monotonic theory recovery.

Example 3.6 We all know that, normally, adults do not read research reports; on the
other hand, normally, researchers do. But normally, researchers are not prototypical
adults. So suppose you meet a researcherR. Of course, you will expectR to read
reports and you also expect him not to behave like a normal adult. But suppose that you
learn thatR is not reading research reports. Wouldn’t you guess that he is an abnormal
researcher? Let us model this example with Reiter’s default theory and consider the
following set of defaults:

D = f
researcher;:abResearcher

abAdult
;
;;:abResearcher

readReports
;
;;:abAdult

:readReports
g
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If W1 = fresearcherg, i.e., we know that someone is a researcher, the default theory
�1 = (W1;D) has exactly one (intuitively correct) extension

E = Cn(fresearcher; abAdult; readReportsg):

If we learn that this person does not read research reports, i.e.W2 = fresearcher;
:readReportsg, �2 = (W2;D) does not have a Reiter-extension, although it seems
intuitively right to expect thatabResearcher will hold.

Let us look at a weaker default semantics, such as the minimal extension seman-
tics5, for which�2 has an extension. Under this semantics, the unique minimal exten-
sion is

Emin = Cn(fresearcher;:readReports; abResearcherg):

Taking this semantics as our backup semantics, we haveCb(W2) = Emin.
Since we know that the consequence operatorCi based on the Reiter semantics

satisfiesWeak Cutand the minimal extension semantics is cumulative, according to
Theorem 3.5 we cannot retract information fromW2 to obtain a Reiter extension for
�2.

We decide to apply an expansion:R(W2) = W2 [ fabResearcherg and, indeed,
we observe thatCb(W ) = Cb(R(W )) while Ci(R(W )) has a unique extension equal
toEmin, so for this theory, the recovery operator satisfies the postulates.

3.3 Intermediate Conclusions

The results just obtained show that, first of all, our recovery framework for nonmono-
tonic theories contrasts with recovery frameworks for classical theories. To recover a
classical theory from inconsistency, one is almost forced to apply a contraction opera-
tor to the inconsistent theory in order to rescue its intended meaning. Such a retraction,
however, is not suitable for recovery of theories using a nonmonotonic semantics that
satisfies both the weak principles we have introduced.

These results, however does not apply to this framework, but also to less restric-
tive frameworks as e.g. the Contradiction Removal framework of Pereira et al. (see
[1]). Using the language of logic programming, the main idea behind this approach is
that logic programs that do not have acceptable models can be revised adequately by
removing assumptions. These assumptions are literals of the formnot l. Removal of
such an assumptionnot l can be accomplished by adding a rulel  to the program
and taking the acceptable models of this expanded program as the intended models
of the original program. It turns out that, taking a classical semantics as the back-
up semantics, the Contradiction Removal Semantics is a special recovery framework
in which the postulates R1-R3 are satisfied. This means that (i) it cannot be applied
if the intended semantics satisfiesWeak Cumulativityand (ii) since the Contradiction

5A minimal extension of a default theory� = (W;D) is a minimal setE containingW and closed
under classical consequences and application of default rules.
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Removal Semantics aims at adding a minimal set of revisions, the expansion approach
can be justified by pointing out that retraction never can be an option, as we will show
in the next section.

At second look, one observes that the results we have obtained arenegative: they
do not tell us which conditions had to be satisfied in order toguaranteethat a revision
framework would be successful. Since we want to concentrate on recovery methods
for mainstream nonmonotonic logics, in the next sections we will first of all show that,
whenever the recovery framework can be applied but retraction is not possible, we can
always rely onexpansionas a successful recovery method.

Next, we will investigate which conditions have to be satisfied in order to apply an
expansion successfully.

3.4 Applying Expansions

In this subsection we will concentrate on the use of expansions as useful recovery
functions.

First we show that expansions can be used to represent more general recovery func-
tions whenever these are successfully applicable. That is, expansions can be used as
indicators (whenever contractions are not applicable) to check whether or not there ex-
ist successful recovery functions. It turns out that we can construct such an expansion
in a uniform way. Next we show, that whenever one wants to recover a theoryT by
changing it in a minimal way, one has to use expansions. So in case ofminimal-change
recovery, expansions are the only successful recovery functions.

Our first result shows that expansion frameworks are able to represent all successful
recovery frameworks, whenever the backup semantics is cumulative and the intended
semantics is a nonmonotonic one, satisfyingWeak Cut.

Theorem 3.7 Let (T ; Cb; Ci) be a twin semantics whereCb is cumulative andCi satis-
fies Weak Cut. Then there exists a successful recovery frameworkR = (T ; Cb; Ci; R)
satisfying the postulates R1-R4 iff there exists a successful recovery frameworkR0 =
(T ; Cb; Ci; R

0), whereR0 is an expansion.

PROOF The if-direction is obvious: takeR = R0. To prove the only-if direction, sup-
pose thatR = (T ; Cb; Ci; R) is a successful recovery framework. Define the function
R0 asR0(T ) = R(T ) [ T . Note thatR0 is an expansion.

We show that the frameworkR0 = (T ; Cb; Ci; R
0) is a successful recovery frame-

work. So letT 2 T and assume thatCb(T ) 6= L.

� To show that postulate R1 is satisfied, it satisfies to show thatCi(R0(T )) 6= L.

SinceCb is cumulative, it satisfiesInclusion, henceT � Cb(T ) andR(T ) �
Cb(R(T )). SinceR0(T ) = R(T ) [ T , it follows thatR0(T ) � Cb(R(T )) [
Cb(T ). Moreover, sinceR satisfies R3 and R4,Cb(R(T )) = Cb(T ). Hence,
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we haveR0(T ) � Cb(R(T )). By Supraand the definition ofR0(T ), we have
R(T ) � R0(T ) � Cb(R(T )) � Ci(R(T )). Remember thatR satisfies the
recovery postulates, soCi(R(T )) 6= L. Now applyingWeak Cutimmediately
implies thatCi(R0(T )) 6= L. SoR0 satisfies R1.

� Postulate P2 is satisfied, sinceCi(T ) 6= L implies thatR(T ) = T , sinceR
satisfies Postulate R2. HenceR0(T ) = T andR0 satisfies R2.

� To show that R3 and R4 are satisfied byR0, we show thatCb(T ) = Cb(R0(T )).
We haveT � R(T ) [ T . By Inclusionand the fact thatR satisfies R3 and R4 it
follows thatT � R0(T ) = R(T )[T � Cb(R(T ))[Cb(T ) = Cb(T )[Cb(T ) =
Cb(T ). Cb is cumulative, so we haveCb(R0(T )) = Cb(Cb(T )) = Cb(T ), since
cumulativity ofCb impliesIdempotency.

Theorem 3.7 shows that using a mainstream nonmonotonic logic and a cumula-
tive back-up semantics expansions are able to characterize successful recovery frame-
works.

In some cases, however, we are able to prove a much stronger result. Let us define
a recovery framework aminimal changerecovery framework if the recovery operator
R minimizes the difference betweenT andR(T ):

Definition 3.8 Let (T ; Cb; Ci) be a twin semantics. We callR = (T ; Cb; Ci; R) a
successful minimal change recovery framework based onS if for every successful
recovery frameworkR0 = (T ; Cb; Ci; R

0) based onS and everyT 2 T it holds that
R(T )	T � R0(T )	T . HereX	Y = (X�Y )[ (Y �X), the symmetric difference
betweenX andY .

It is not difficult to see that the only recovery operators that can be used in a suc-
cessful minimal change recovery framework are expansions if we use a cumulative
backup semantics and an intended semantics satisfyingWeak Cut.

Theorem 3.9 Let R = (T ; Cb; Ci; R) be a nontrivial successful minimal change re-
covery framework whereCb is cumulative andCi satisfiesWeak Cut. ThenR has to
be an expansion.

PROOF LetR = (T ; Cb; Ci; R) be a nontrivial successful recovery framework where
Cb is cumulative andCi satisfiesWeak Cut. Assume thatR is not an expansion. By
Theorem 3.5R cannot be a contraction. Hence, there is a theoryT 2 T such that
R(T ) = T 0 [ N whereT 0 � T , T 0 6= T , N 6= ; andN \ T = ;. By (the proof of)
Theorem 3.7, if we define a recovery operatorR0 byR0(T ) = R(T )[T , the framework
R0 = (T ; Cb; Ci; R

0) is also a successful recovery framework. SinceR0(T ) = R(T ) [
T = (T 0 [N) [ T = T [ N , we have

R0(T )	 T = N � (T � T 0) [N = R(T )	 T
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But that implies thatR = (T ; Cb; Ci; R) cannot be a minimal change recovery frame-
work; contradiction. ThereforeR has to be an expansion.

It might be difficult to find a successful expansion framework. If, however, we can
assume that the backup semantics is cumulative, there is an easy way to tell whether
or not there is a successful recovery framework:

Theorem 3.10 Let (T ; Cb; Ci) be a twin semantics whereCb is cumulative andCi sat-
isfies Weak Cut. Then there exists a successful expansion frameworkR = (T ; Cb; Ci; R)
satisfying the postulates R1-R4 iff the recovery frameworkR0 = (T ; Cb; Ci; R

0) is suc-
cessful, whereR0 is the full expansionR0(T ) = Cb(T ) iff Ci(T ) = L andR0(T ) = T

else.

PROOF

()). Suppose thatR = (T ; Cb; Ci; R) is a successful expansion framework. We
show thatR0 = (T ; Cb; Ci; R

0), is successful, too. So assumeCb(T ) 6= L. Since
R is an expansion, by Postulate R4,T � R(T ) � Cb(T ), By cumulativity ofCb,
this impliesCb(R(T )) = Cb(T ) = Cb(Cb(T )) = Cb(R0(T )). Hence, it is im-
mediate thatR0 satisfies R3 and R4. By definition,R0 satisfies R2. Finally, we
have to show thatR0 satisfies R1, i.e. thatCi(R0(T )) 6= L. But that is easy, since
T � Cb(T ) = Cb(R(T )) � Ci(R(T )). SinceCi(R(T )) 6= L, by Weak Cutit follows
thatCi(Cb(T )) = Ci(R0(T )) 6= L.
((). Trivial, sinceR0(T ) by definition is an expansion.

As a consequence, we can easily show now that the framework cannot be applied to
the CWA with classical logic as the backup semantics: Take for exampleT = fp_ qg.
NowCn(T ) 6= L, butCWA(T ) = L. SinceCWA(T ) = CWA(Cn(T )) = L, there
exists no successful recovery framework satisfying the postulates R1-R4 for the closed
world assumption semantics.

4 Recovery of Logic programs

The main goal of this section is to show that our recovery framework can be applied
successfully to logic programming, especially to the stable model semantics of ex-
tended logic programs.

We assume to reader to be acquainted with the basic concepts and notations used
in logic programming (cf. [5, 8]). We consider the class of finite, propositional
normal logic programs with explicit negation and we will call such programs sim-
ply logic programs. Such a program consists of a finite set of rules of the form
l0  l1; : : : lm; notlm+1; : : : ; notlm+n, m;n � 0, where eachli is a literal Given some
fixed set of propositional symbols,Pelp denotes the set of all normal programs with
explicit negation.
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As usual, an interpretation of a programP is denoted by the set of literals true in
that interpretation. An interpretationM is called a model ofP if M satisfies every rule
of P . Given a modelM of P , G(P;M) denotes the Gelfond-Lifschitz reduction ofP
with M . Rules(BP ) denotes the set of all possible rules that can be formed by using
atoms occurring inP .

We useMod(P ) to denote the set of classical models ofP ; MinMod(P ) denotes
the set of minimal models andStable(P ) the set of stable models ofP . These sets are
related byStable(P ) �MinMod(P ) �Mod(P ).

Given such a semanticsSem 2 fMod;MinMod; Stableg and a programP , we
define the associated inference operationCSem as

CSem(P ) = f� 2 Rules(BP ) j Sem(P ) j= �g

It is not difficult to show that for everyP and every such a semanticsSem, CSem

satisfiesWeak Cut.
We will now prove a very general result for recovery of logic programs, showing

that if the stable model semantics is used as the intended model semantics, we can
use as our backup semantics every cumulative semanticsSem such thatSem(P ) 6= ;
andStable(P ) � Sem(P ) � MinMod(P ), i.e. every semantics weaker than the
stable semantics and consisting of minimal models6. We will call such a semantics a
potential back-upsemantics (w.r.t. the stable semantics):

Definition 4.1 Let Sem be a semantics forPelp. Sem is called a potential back-up
semantics if for everyP , Stable(P ) � Sem(P ) �MinMod(P ).

The following proposition is very helpful in proving properties of a potential back-
up semanticsSem:

Proposition 4.2 Let Sem be a potential back-up semantics forPelp andP a program
such thatSem(P ) 6= ;. ThenSem(P ) j= �Sem;P where�Sem;P =

W
M2Sem(P )

V
M .

PROOF Note that�Sem;P is just the disjunction of all (finite) modelsM in Sem(P )
expressed as (finite) conjunctions of literals true inM .

We will need the following lemma pertaining to properties of stable models:

Lemma 4.3 (Marek & Truszczyński [10]) LetM be a model of a programP and let
MG(P;M) be the least modelG(P;M). ThenMG(P;M) �M .

The following lemma shows that a potential back-up semantics can be used as a
back-up semantics in a successful recovery framework with the stable semantics as the
intended semantics.

6An example of such a semantics is the positivist semantics (see [4]).
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Lemma 4.4 Let Sem be a potential back-up semantics forPelp. Then, for everyP
such thatSem(P ) 6= ;, there is a programP 0 containingP , such thatCSem(P ) =
CSem(P 0) andStable(P 0) 6= ;.

PROOF SinceSem(P ) 6= ;, we also haveMinMod(P ) 6= ;. Hence, accord-
ing to Proposition 4.2,Sem(P ) j= �Sem;P where�Sem;P =

W
M2Sem(P )

V
M . Let

CNF (�Sem;P ) be the conjunctive normal form of�Sem;P . For every disjunction� =
x1 _ x2 _ : : : xm occurring inCNF (�Sem;P ), letP Sem

� be the program

P Sem
� = fxi  notx1; : : :not xi�1;notxi+1; : : : ;not xm j i = 1; : : : ;mg

and, finally, letP Sem be the union of all such programsP Sem
� , � being a disjunction

occurring inCNF (�Sem;P ). We show thatP 0 = P [ P Sem satisfies the conditions.
First of all, we prove the following claims:

� Claim 1.P � P 0 � CSem(P ).
The first inclusion is by definition ofP 0. SinceCSem is cumulative it satisfies
Inclusion, henceP � CSem(P ). Furthermore, sinceSem(P ) j= �P it follows
thatSem(P ) j= P Sem. Hence,P Sem � CSem(P ). Therefore,P 0 = P [P Sem �
CSem(P ).

� Claim 2.For everyM 2 Sem(P ) and everyl 2M , P Sem contains at least one
rule l � such thatM j= l andM j= �.
Let M 2 Sem(P ) such thatl 2 M . By definition,M j= l. SinceSem(P ) �
MinMod(P ), M is a minimal model ofCNF (�Sem;P ). Consider the set of dis-
junctions� occurring inCNF (�P ) such thatl occurs in�. SinceM minimally
satisfiesCNF (�Sem;P ), there is at least one disjunction�l = l_z1_: : :_zk con-
tainingl, such thatM minimally satisfies�l, i.e. fori = 1; : : : ; k,M 6j= zi. Now
P Sem
�l

contains the rulel  not z1; : : : ;not zk andM j= not z1 ^ : : : ^ not zk.
Hence, there exists at least one rulel � 2 P Sem such thatM j= l ^ �.

From Claim 1 and the fact thatCSem satisfies cumulativity, we immediately derive
thatCX(P ) = CX(P 0), i.e. the semanticsX is invariant under the transformation
fromP toP 0.

Using Claim 2, it is easy to show that every modelM 2 X(P ) is also stable model
of P 0: we only have to prove thatM is the minimal model of the reductionG(P 0;M)
of P 0 w.r.t. M . So letM 2 X(P ). From Claim 2 above, it follows that, for every
literal l occurring inM , there is at least one rulel  �l in �P such thatM j= l ^ �l.
Hence, since� contains only default-negated literals, by definition ofG(P 0;M), for
everyl 2 M , the rulel  occurs inG(P 0;M). Therefore,l occurs in the least model
MG(P 0;M) of G(P 0;M). This implies thatMG(P 0;M) � M . Hence, by Lemma 4.3,
M = MG(P 0;M) and therefore,M 2 Stable(P 0).

Note that, since SinceCStable satisfiesCut, it also satisfiesWeak Cut. However,
CStable(P ) does not satisfyWeak Monotonyas can be seen from the programP =
f:a not b ; a g: AlthoughCStable(P ) = L, we haveCStable(P [ fb g) 6= L.
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Hence, using the results obtained in the previous sections and the previous lemma,
we can state the following main results:

Theorem 4.5 LetR = (P; CX; CStable; R) be a recovery framework for elp-programs,
whereX is a potential back-up semantics and for everyP 2 P, R(P ) = P if
Stable(P ) 6= ; andR(P ) = P [PX else. ThenR is a successful recovery framework.

PROOF First of all, we note thatCX(P ) � CStable(P ), by definition of the conse-
quence operator for logic programs and the fact thatStable(P ) � X(P ). We show
that R1-R4 are satisfied wheneverCX(P ) is well-behaved:

R1 If CX(P ) is well-behaved,X(P ) 6= ;. By Lemma 4.4 and the definition ofR it
follows immediately thatStable(R(P )) = Stable(P [ PX) 6= ; and therefore
CStable(R(P )) is well-behaved.

R2 By definition ofR

R3+R4 Again by Lemma 4.4.

Theorem 4.6 LetR = (P; Cb; C
Stable; R) be a non-trivially successful minimal-change

recovery framework for elp-programs, whereCb is cumulative. ThenR has to be an
expansion.

PROOF Immediately from Theorem 4.5 and Theorem 3.9

Remark. Since we do not require the intended semantics to be two-valued, it is
also possible to revise logic programs with explicit negation using the Well-Founded
(WF) semantics (see [14]) as the intended semantics and, for example, the standard
three-valued Kleene semantics as the backup semantics. A program like:

P : a  

c  a;not b

:c  

does not have an acceptable WF-model:WF (P ) = fa; c;:c;:bg is contradictory. Its
least three-valued model (under the knowledge-ordering of truth-values), however, is
M = fa;:cg. So the following program

P 0 : a  

c  a;not b

:c  

b  not b

has an acceptable well-founded modelWF (P 0) = fa;:cg identical toM .
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5 Conclusions

We have presented a framework and some postulates for recovery of nonmonotonic
theories. We have shown that in case the intended semantics is a mainstream nonmono-
tonic semantics, under very general conditions set for the back-up semantics, recovery
cannot be accomplished by retraction operations. This distinguishes nonmonotonic
recovery from the AGM framework for recovery of classical theories.

This leaves only room for recovery operations in which either a part of the theory
is retracted and at the same time information is added to the resulting theory as well
(pure) expansion operators in which a theory is recovered by adding information to
it. As a special case, the Contradiction Removal framework developed by Pereira
and Alferes (see [1]), satisfies our first three rationality postulates and makes use of
expansions as recovery operators.

Our results show that, wheneverR is a mixed recovery that satisfies the postulates
R1-R4, it can always be replaced by a successful expansion that does not produce
more changes. In particular, we have shown that whenever the backup semantics is
cumulative, syntactically minimal recovery operators for nonmonotonic theories have
to be expansions in order to be successful.

This result can be related to the approach to theory recovery of Inoue and Sakama
(see [6]), where they propose to revise a theoryT by means of a minimal set of addi-
tionsI and removalsO such thatR(T ) = T + I �O has an acceptable model. Their
proposal thus comes down to advocating amixed recoveryapproach. Our results show
that, wheneverR is a mixed recovery that satisfies the postulates R1-R4, it can always
be replaced by a successful expansion that does not produce more changes.

Finally, in a case study of recovery in nonmonotonic logic programming, we have
shown that a stable model for a classical consistent program always can be approxi-
mated using a weaker cumulative (backup) semantics. The evidential semantics pre-
sented by Seipel ([13]) can be seen as a special case of our framework, taking (partial)
minimal model semantics as the backup semantics and (partial) stable model semantics
as the intended semantics.
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