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Abstract

We present a framework for recovery of nonmonotonic theories, i.e. of theories
that are interpreted using a nonmonotonic semantics. Recovery of a nonmono-
tonic theory is needed if it does not have a model under the given nonmonotonic
semantics, i.e. if the theory is non-monotonically inconsistent. With classical
theories, inconsistency can only be removed by contracting the current theory;
for nonmonotonic databases, however, it is in general unclear how to restore the
consistency of a theory: indeed, several options for recovery that use (mixtures
of) contractions and expansions have been proposed in the literature. In this pa-
per, we propose a more fundamental approach to study the recovery problem by
stating some rationality postulates for recovery. In these postulates we assume
that, when recovering a theoffy with respect to some intended semantics, one
can fall back on a weaker, so called back-up semantic§ foBased on these
rationality postulates, our general conclusion is that, in most cases, contraction is
not adequate to handle nontrivial recovery problems in nonmonotonic theories.

1 Introduction

The idea about nonmonotonic theories is that they allow one to use common sense
reasoning patterns to infer facts tmatrmally can be expected, given a state of affairs
represented by the theory. Usually, the use of such non-classical reasoning schemes
enables one to draw more and stronger conclusions than a classical reasoning scheme
would do. If, however, the world is not as normal as one expects it to be, such reasoning
patterns significantly diverge from classical ones. For example, suppose a nonmono-
tonic reasoner Alice knows that)(Y'(z) will be the case ifX(z) is not the case and

(22) normally X (=) is not the case. Then Alice will expect botht X (z) andY (=) to
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hold. If, however, Alice observes for somethat X («) actually is true, she will not

be surprised it’(«) is not the case, since she no longer had a reason to expegt

to hold. One might say that in this case the nonmonotonic machinery is able to deal
with the unexpected in the sense that the new informatiom) makes a shift in the
reasoner’s theory: from a theo¥yin which not X («) andY(«) hold, into a theory”

in which X («) holds andY’(«) is undetermined. Here, the nonmonotonic mode of our
reasoner is perfectly demonstrated— adding the k4ct) to the theoryl’ makes the
reasoner retractot X («) and, induced by that retraction, also every reasonyfas) is

lost.

However, unexpected behaviour of the world may also cause the nonmonotonic
reasoner to face a situation from which he cannot recover. This can happen, for exam-
ple, if a conclusion based on nonmonotonic reasoning from expectations clashes with
an observation that contradicts it without giving any direct clue for the reason why
the rule used to infer this expectation could not be used. For example, suppose that
Bob (¢) uses a reasoning mechanism that ) will be the case if he has no reason to
assume thak (=) is the case and4) he has no direct reason to assume tkigi) is
true, but (::) Bob actually observes that(«) is not the case. In this case, using his
nonmonotonic inference machine Bob might derive an inconsistency, since using (
and ¢z), he will derive thatt’(«) holds, contradicting his observatiof(a).

Confronted with such difficulties, in principle we could choose between to possible
ways to overcome them:

1. change the underlying reasoning mechanism
The original nonmonotonic semantics is considered as defective and has to be re-
placed by a more sophisticated semantics that is also able to handle such (slight)
abnormalities.

2. change the theory
Instead of considering these properties as defects of a nonmonotonic semantics,
one could also reason that such consequences have to be expected if the world
apparently is not as normal as expected and therefore, instead of changing our
semantics, we have to change our ideas about what actually is the case. Adapt-
ing to such slight abnormalities should be sufficient to make our nonmonotonic
reasoning applicable again.

Semantically, using a nonmonotonic logic to reason about a tHedryils down
to selecting a subset of intended models from some given collection of models for
T, which we call the backup semantics for Those intended models are useful for
making predictions about the world if it is as normal as we suppose itis. In slightly ab-
normal circumstances then, we should not be surprised to find that some conceivable,
but non-intended models will better describe what we might expect. Should we blame
our semantics for failing to provide the right models? We don’t think so, since this
semantics was intended to be used if the world was behaving normal. This explains
why we adhere to the principthange the theory and not the logic
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If we are in a situation in which the intended set of modelsifas empty, whereas
the set of models from the backup semantics is not, we consider the latter set as a
first approximation of the set of intended models— it assumdsssffacts that they
normally hold. Since the backup semantics is weaker, therefore allows for more ab-
normalities to occur and also is successful (degsyield models), it may give us
clues about which abnormalities we have to be prepared for. This information then,
can be used to change the original thedryo arecoveredtheory7’. Since the ab-
normalities have now been accounted for,iit seems natural to apply our original
intended semantics @' to derive our standard expectatiansdulothe abnormalities
we discovered. Returning to Bob once again, he might fall back to a classical reasoner,
interpreting €) as ¢’): ~X(z) — Y (z) which, together with his observation yields the
fact X (), providing Bob with a new theory”’ consisting of (), (:¢), (:¢7), X («) and
=Y(a).

Let us now present a more formal example from the area of logic programming.
The example not only provides a reason why changing the theory has advantages over
changing the reasoning mechanism, it also demonstrates that the backup semantics
need not be classical: it may be nonmonotonic as well. Suppose we have the following
program:

P: —a <+ notb
¢ < notd
a <

Let the stable model semantics be our intended semantics. For this prégrdma

stable model semantics is contradictory and does not succeed in resolving the conflict
between: and—«. Using the weaker minimal model semantics as a backup seman-
tics, we have two minimal models = {«, b, ¢} and/, = {a, b, d}. Hence, using the
backup semantics with a skeptical reasoning mode, we congluslat clearly, revis-

ing P by addingb <« to it, results in a progran®’ having as its unique stable model

the interpretatior;.

This example shows how a stable reasoner may fall back on a weaker minimal
model semantics to recover from a thedtyhat has no stable models. It also demon-
strates the advantages of changing the théorather than the underlying reasoning
mode. For suppose that our reasoner would decide to stick to the skeptical minimal
model semantics, once having discovered that the intended semantics fails for the cur-
rent theoryP. Given the two minimal modelg, and /, then, he would not be able
to predictc anymore, whereas, for a stable reasonés,a desirable conclusion, since
the conflict betwee and—« seems to be independent from the reasons to expect
to be true: the fact that the world is behaving abnormalomerespect is, for normal
people, not a reason to assume that it is abnormealényrespect.



Summarizing, the backup semantics only serves to indicate the abnormalities that
we have to account for. This information is used to translate the original théiry
a theory7” such that/” has intended models. The models of the backup semantics
serve as a first approximation, or upperbound, for the recovered set of intended mod-
els of the theoryl" and will be used to select the intended models from. In this way,
exceptions to the expected are really treated as exceptional, rather than forcing them
to become predictable.

Position and overview of the paper

Comparing this recovery process with the recovery of classical theories, there are some
resemblances but also some differences. A classical theory has to be recovered if the
theory is not satisfiable. In the dominant AGM [3] framework for recovery of classical
theories, also a transformational approach is applied. A recovery of such an inconsis-
tent theoryl" always comes down to contractifigby deleting some statements from

it in such a way that the contractidhY is consistent: the intended models'bfare
obtained from the classical models©f In recovery of non-monotonic theories, it is

only the set of intended models of the the@ryhat is empty, while, viewed in a clas-

sical way,T" still might have classical models. With respect to the recovery process
this means that it is not clear at all which kind of recovered th&dryf 7' would be a

most suitable: in some cases it might be that an expansi@hhafs intended models,

in other cases it might be that a contractiori/ohas suitable intended models, while

in still other cases a recovered theory which is obtained by adding some statements to
T and deleting others, is a most suitable candidate for the recovered theory.

It comes as no surprise that in the literature different proposals for recovery of
nonmonotonic theories have been offered. Many of these approaches, however, seem
to work well for only a particular formalism, and for some ad hoc reasons. What
the field lacks is a formulation of the ideas underlying the recovery process in a clear
and unifying way. It is the purpose of this paper first of all to state some clear and
very generatationality postulatesuch a recovery process has to satisfy. Essentially,
these postulates describe which properties a suitable nonmonotonic recovery operation
R should have independently from the specific properties of the nonmonotonic logic
used. We introduce these postulates for recovery in Section 2, after we have identified
some crucial properties of nonmonotonic consequence operators. Then, in Section 3,
using those properties, we state some results pertaining ttypleef the recovery
operation that should be applied in order to satisfy the rationality postulates. Our
general conclusion is that for mainstream nonmonotonic semantics, contrary to what
one might expect on the basis of recovery of classical theories, theory-contraction is
not suitablefor recovery of nonmonotonic theories. Finally, in Section 4, we show
how the framework can be applied successfully in the recovery of logic programs.



2 The framework

2.1 Preliminaries

Given a languagé, atheory?' is any subset of.. We assume to have a way to assign
to eachl’ some (possibly empty) set of modélsod(7") in some specified class. For
any class of theorie§ a semanticsSem then is a way to associate consequenges
to someT € T, based onMod(T'). Such a semantics is calleeell-behavedw.r.t.

T, if Sem(T) is defined and is not equal tb* We often identify a semanticSem

with aconsequence operatian®*™ : 2 — 2, where, in this paper, we stipulate that
C5e™(T) = L in caseSem(T) is not defined. Generalizing the above, we say that a
consequence operatoris well-behaved w.r.t" if C(7') # L. We focus theories that
have more than one semantics, i.e. a backup semantics with associated consequence
operator(C, and a intended semantics that corresponds;to Slightly abusing ter-
minology, if 7 is a set of theories, we say thatwin semantics (fof7") is a tuple

S = (T, Cy, C;) with the following property obupra-inferentiality

ForallA C L, Cy(A) C Ci(A) (Supra.

A recovery operatois a computable functio® : 7 — 7. Given a twin seman-
tics S for 7 and a recovery operatdt on 7, we call the tupleR = (7,C,,C;, R) a
recovery framework

Properties of consequence operators

In this paper, we want to state some general results about the properties a suitable
recovery operator should have. These properties partly depend on some abstract prop-
erties of the consequence operatdrandC’;. Therefore we recall (see e.g. [9]) some
general properties along which one can classify consequence operators:

ACC(A) (Inclusion
C(A)=C(C(A)) (Idempotency
If AC BthenC(A) C C(B) (Monotony
If AC BC C(A)thenC(B) C C(A) (Cut)
If AC BC C(A)thenC(A) C C(B) (Cautious Monotony

A classicalinference operatio’ will also be denoted by'n. An inference op-
erationC' is called Tarskiart if it satisfiesInclusion Idempotencyand Monotony it
satisfiesCumulativityif both Cut and Cautious Monotonyold for C'. Finally, C is
called acumulativeinference operation, if it satisfigsclusionandCumulativity

INote that under this definition, if/ od(7") = (), both a credulous and a skeptilm determines
Sem(T') to be not well-behaved.
2In particular,C'n is a Tarskian consequence operator



The following weaker forms of Cut and Cautious Monotony are also useful:
If AC BC C(A)andC(A) # LthenC(B) # L (Weak Cux
If AC BC C(A)andC(B) # LthenC(A) # L (Weak Monotony

To see thaCut impliesWeak Cutassume thatt C B C C'(A) andC(A) # L.
With Cut we infer thatC'(B) C C(A) and, since’(A) # L, we immediately have
C(B) # L, soWeak Cutholds. The same holds for the relation betwé&autious
MonotonyandWeak MonotonyWe say that” satisfiesMeak Cumulativityf ' satis-
fies bothWweak CutandWeak MonotonyFurthermoré& is calledweakly cumulative
it satisfiesinclusionandWeak Cumulativity

The role of the weak principles in nonmonotonic logics

Our main motivation to introduce the weak variants of Cut and Monotony, is that they
help us in distinguishing the mainstream nonmonotonic semantics from other (non-
classical) semantics. Let us, following [9] and others, make a distinction between a
skepticaland achoice mod&of using a consequence operator. It is well-known that
mainstream nonmonotonic logics as Reiter’s default logic, auto-epistemic logic and
the stable model semantics of logic programming do not safisiytious Monotony
neither in the skeptical, nor in the choice mode. With respeCutphowever, a distinc-

tion has to be made between these modes: while the skeptical modes of nonmonotonic
consequence operations in general do safiafiy their choice modes do not satisfy it
(see [9]). This means these principles fail to distinguish these logics uniformly, i.e.
independently from the mode in which they are used.

As we will show now, our weak principles are capable to characterize these main-
stream nonmonotonic logics uniformly. We show, using default logic as an example,
that irrespective of the mode (skeptical or choice) in which the nonmonotonic infer-
ence operator is used, these nonmonotonic operators all séfesfly Cut but fail to
satisfyWeak MonotonyBYy the correspondences between default logic and other non-
monotonic logics, this result also holds for auto-epistemic logic and the stable model
semantics of logic programming.

Proposition 2.1 Let D be an arbitrary set of default rules anddgs denote the infer-
ence operator usingy and based on Reiter’s default logic. Thép does not satisfy
Weak Monotonyut does satisfiyWeak Cutirrespective from the mode (skeptical or
choice) in which it is used.

PROOF We first show that in none of the inference motlésak Monotonis satisfied.
It suffices to present one counter example. Take the following set of defauls
{%=¢}. ConsiderCp(f) = L. Since{c} C L, we have) C {c} C L, butWeak
Monotonyfails, sinceCp({c}) = Cn({c}) # L, both in the skeptical and in the
choice mode.

3We do not consider the credulous mode for consequence operators since it behaves rather irregu-
larly. For example(”;(A) may contain botlp and—¢ without also havings A —¢.
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Next we show that Default Logic does satisfyeak Cutn both modes. Since it
satisfiesCut in the skeptical mode, we only have to show that it satisfleak Cuin
the choice mode. From [10], we know that Default Logic satisfie<Ciwefirmation of
Evidence(CE) principle, stating that for every default theaky= (W, D), the theory
A" = (W U W’ D) has at least one extensién whenever(W, D) has a consistent
extensiont andW’ C E. Now let A, B be sets of sentences such thaiC B C
Cp(A) and suppose thatp(A) # L. Hence, bothd and B are consistent sets of
sentences and there is some consistent extersjaf the default theory A, D) such
thatCp(A) = E4. SinceB C E4, B — A C F4, and hence, by the Confirmation of
Evidence principle, there is at least one consistent extedsidor (AU(B—A), D) =
(B, D). Select such an extensidiy. SinceFs is consistent('s(B) # L andWeak
Cutis satisfied.

Hence, Default Logic also satisfi®feak Cutif the choice mode of inference is
used. ]

With respect to the dominant semantics of other formalisms like Auto-epistemic
Logic and Logic Programming, we can easily show the same results. We conclude
that irrespective of the mode in which consequence operators based on mainstream
nonmonotonic semantics are used, they all satiddak Cutand none of them satisfies
Weak Monotony

Some first results about recovery frameworks
Using the abstract principles we can derive some properties that will turn out to be
useful when dealing with recovery.

Observation 2.2 Let R = (T, s, C;, R) be an arbitrary recovery framework, where
C, satisfies Inclusion and; satisfies Weak Cut. Then for eveéfye T, C;(R(T)) # L

PROOF LetT" € 7. Since the underlying twin semantiss= (7, C,, ;) satisfies
Supra andC), satisfies/ nclusion, we haveR(T) C C,(R(T)) C C; (R( )). By Weak
Cut, we haveC;(R(T")) # L impliesC;(Cy(R(T))) # L. n

Observation 2.3 Let R = (T, (s, C;, R) be an arbitrary recovery framework, where
(', satisfies Inclusion and; satisfies Weak Monotony.
Then for everyl' € T, C;(Cy(R(T))) # L impliesC;(R(T)) # L.

PrROOF LetT" € 7. Since the underlying twin semantiss= (7, C,, ;) satisfies
Supraand(, satisfiednclusion we haveR(T') C C,(R(T)) C C;(R(T)). By Weak
Monotonyit follows thatC;(Cy(R(T')) # L implies thatC;(R(T')) # L. n

Combining these observations, we have the following useful corollary:



Corollary 2.4 Let R = (T,C,,C;, R) be an arbitrary recovery framework, where
(', satisfies Inclusion and’; satisfies Weak Cumulativity. Then for evefy ¢ T,
Ci(Co(R(T))) £ Liff Ci(R(T)) # L.

The conclusion of this corollary is a weaker variant of the well-known stronger ab-
sorption principleC;C, = C; = C,C; that holds wher(; is cumulative and”; is
supra-inferential with respect to an operatgrsatisfyinginclusion(cf. [9]).

2.2 The postulates

In this section we introduce our postulates for recovery and use them to define a suc-
cessful recovery framework, of which we also give an example. We then derive some
simple but useful results about recovery frameworks and elaborate on the weak princi-
ples.

Postulates for recovery
Given a recovery frameworkR = (7,C%, C;, R) we formulate some postulates to
characterize a recovery approach oftheories, using a backup semantigs

R1. Success:
C:(R(T)) is well-behaved whenevér,(T') is well-behaved.
This means that the recovery should faeccessful if in the back-up seman-
tics, one can attach a meaningftothis postulate guarantees th&tr') is well-
behaved with respect to the intended semantics.

R2. Conservativity:
R(T) = T whenevel;(T') is well-behaved.
This postulate guarantees that recovery is doneonaervativevay: a recovery
only leads to a change @fif itis necessary to do so, i.e, if one is unable to assign
T a meaning under the intended semantics.

R3. Back-up preservation:
Co(T) C Co(R(T)).
Since the original theory is meaningful under the backup semantics, we do not
want to lose information obtainable from the original theory when using the
transformed theory(7').

R4. Back-up inclusion:
Cy(R(T)) C Cy(T)
This postulate constrains the recovetyby requiring that all backup conse-
quences of?(7") should be derivable frora,(7"). That is, we are not allowed
to add some new information when using the transformed theory.

The intention of a recovery framework is to characterize recovery operations that
are both intuitively acceptable alsdccessful
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Definition 2.5 We say that a recovery framewofk = (7, C,, C;, R) is successful if
for everyT € T such that”,(T') is well-behavedR(T') satisfies the postulates R1 to
R4.

This does not exclude recovery frameworks that are successftiuieh way, for
example ifCy(7T') is not well-behaved for an§’ € 7 or C;(T') is well-behaved for
everyT ¢ 7. Therefore, we define montrivially successful recovery framework as
follows:

Definition 2.6 Let R = (T, Cy, C;, R) be a successful recovery framework. We say
that’R is non-trivially successful if there exists at least dfiec 7 such thatC,(7') is
well-behaved and';(T") is not well-behaved.

Before we demonstrate that recovery frameworks exist that are non-trivially suc-
cessful, we first make the following observation about successful frameworks, say-
ing that the intended consequences of the recovered theory are bounded below by the
backup consequences of the original theory.

Observation 2.7 If R = (T, Cy, C;, R) is a successful recovery framework then
Cy(T') C Ci( R(T)).

ProOF By Postulate R3(,(7') C Cy(R(T')). Since the underlying twin semantics
S = (T,Cy, C;) satisfiesSupra Cy,(R(T')) C C;(R(T)). Hence,Cy(T') C Ci(R(T)).
|

Example 2.8 Let us relate the postulates to an example. Consider the following pro-
gram

P: —a <+ notb
a <

Let us take for”;, the minimal model semantics, and fof the stable semantics.
In this case, the conclusiem: of the first rule is attacked by an observatigwithout
giving direct evidence foi to be true. Using the stable semantics, we have to conclude
that the program is contradictory, since we expect battanda to be true. Hence,
there is no stable model for this program and we conclude that the associated (intended)
inference operatof’; applied to the progran® is not well-behaved. Still, we could
reason as follows: if the program represents all we know, then, from the apparent
contradiction that both and—« seem to hold we would derive that it is impossible to
assume thatis not true. Hence, we are forced to assume &hstrue. But combining
this information with the progran®, we conclude that this recovered program has an
intuitively acceptable stable model in which we expect ho#émds to hold.

It is not difficult to see that such a line of reasoning is sanctioned by using the
weaker minimal model semantics: there is exactly one minimal model éfand in
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this model both: andb are true. We use such information in the recovg(y’) of P,

since it gives us a clue about what abnormalities should be taken into (explicit) account.
Summarizing, when taking(P) = P U {b <}, we infer that for this particulaP this
approach gives rise to a successful recovery.

3 Successful and unsuccessful frameworks

The recovery postulates R1-R4 restrict the class of possible recovery operations to the
ones that are considered to deceptablei.e., well-behaved. They do not, however,
tell us whether, given some class of theories, the class of acceptable recovery functions
will be non-empty. That is, we do not know whether a recovery framework will be
(nontrivially) successful or not.

In this section we will study the interaction between the postulates R1-R4 and some
abstract properties of inference operations in order to to find out

1. inwhich cases the recovery framework cannot be applied, i.e. when the recovery
of a theory as we have proposed is not possible in a successful way;

2. which recovery functions can be excluded if the recovery framework can be
applied;

3. in which cases the recovery framework is guaranteed to be (nontrivially) suc-
cessful.

3.1 General failure for Weak Cumulative semantics

We show that there is no recovefy satisfying the postulates ® = (7, C,, C;, R)
is a recovery framework based on a twin semantics, where the intended semantics is
weakly cumulative and the back-up semantics satisfies Inclusion.

In fact, we prove a slightly stronger result showing that every recovery framework
satisfying the first three postulates R1-R3 cannot be non-trivially successful.

Theorem 3.1 Let R = (7,C,,C;, R) be a recovery framework, where, satisfies
Inclusion and”; is weakly cumulative. The® cannot be nontrivially successful with
respect to the recovery postulates R1-R3.

PROOF Assume, on the contrary, that there exists a recovery frameReek( 7, C;,
C;, R) that is nontrivially successful and whet¢ satisfiesweak Cumulativity By
Definition 2.6, there exists a theolly € 7 such thatC,(T') andC;(R(T')) are well-
behaved, but’;(T") is not.

Since(; satisfieaMeak CumulativitgndC, satisfiednclusion by Observation 2.4,
we have that”;(R(1)) # L implies C;(Cy(R(T')) # L. Since, by assumption,
Ci(R(T)) # L, it follows thatC;(Cy,(R(T')) # L.
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Since(, satisfiednclusionand R satisfies Postulate R3, we have
T C G(T) < Co(R(T)) D
By InclusionandSupra it follows that
Cy(R(T)) € Cy(Cy(R(T))) € Ci(Cy(R(T))) 2
Hence, combining these inclusions, we have
TCTcG(G(R(T)))

Since(; satisfiesweak MonotonyndC;(Cy(R(T')) # L, by Observation 2.5 it fol-
lows thatC,;(T') # L, contradicting the assumption thét(7') = L. So'R cannot be
nontrivially successful; a contradiction. ]

The following corollary is immediate:

Corollary 3.2 LetR = (7,C,,C;, R) be a recovery framework, whete, satisfies
Inclusion and”; satisfies Weak Cumulativity. Th&xcannot be nontrivially successful
with respect to the recovery postulates R1-R4.

This result shows that our framework cannot be used if the intended nonmonotonic
semantics is (weakly) cumulative. This is the case with such systems as the Closed
World Assumption (CWA), system C ([7]) and some reconstructions of Default Logic
as Brewka’s Cumulative Default Lodic

Note that our theorem also excludes such approaches if only the postulates R1-
R3 are used. It is easy to show that, for example Pereira’s Contradiction Removal
Semantics ([12]) using the classical consequence ope&ratas the backup semantics,
satisfies the postulates R1-R3 and hence cannot be successful if the intended semantics
is cumulative.

Although there are some weakly cumulative nonmonotonic logics, as we remarked
before, the mainstream semantics for nonmonotonic logics as Default Logic, Auto-
epistemic logic and nonmonotonic logic programming do not saii&fgk Cumulativ-
ity, but satisfy weaker principles. So let us now consider the cases where the intended
semantics is weaker and try to find out which types of recovery functions can or cannot
be used that satisfy the postulates.

3.2 Failure for specific recovery functions

To exclude specific types of recovery functions in successful recovery frameworks, in
this section we concentrate on two major types of recovery functions:

Definition 3.3 A recovery functionk is called arexpansionf for all 7' € 7 we have
T C R(T)andR is called aretractionif for all 7' € 7" we haveR(1) C T.

4and of course assuming a backup semantics that safisfiesion
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It turns out that the two principles making Wgeak Cumulativityicely discrimi-
nate between expansions and contractions:

Theorem 3.4 Let R = (7,C,,C;, R) be a recovery framework, where, satisfies
Inclusion, C; satisfies Weak Monotony ang& is an expansion. TheR cannot be
nontrivially successful w.r.t. the postulates R1-R4.

PROOF Suppose thak is nontrivially successful, then there is a the@iry 7 such
that C,(7') andC;(R(T')) are well-behaved but;(7") is not, i.e. C;(7') = L. This
implies thatR(7") # T. Hence, sincer is an expansiori]’ C R(T'). Therefore, since
C, satisfies Inclusion, we have C R(T') C Cy(R(T')). From this, by R4 and Supra,
it follows that?' C R(T') C C,(T") C C4(T'). Using Weak Monotony,;(R(1')) # L
implies thatC';(T') # L. By assumption(;(R(1')) # L, henceC;(T") # L; a contra-
diction. n

On the other hand, if we require to satisfyWeak Cuinstead oMeak Monotony
contractionis no longer applicable:

Theorem 3.5 Let R = (7,C,,C;, R) be a recovery framework, where, satisfies
Inclusion,(; satisfies Weak Cut andl is a contraction. The® cannot be nontrivially
successful w.r.t. the postulates R1-R3.

PROOF Supposer is nontrivially successful, then there is a the@ry= 7 such that
Co(T) andC;(R(T')) are well-behaved but;(7") is not. This implies thal” # R(T').
Hence, sinceR is a contractionk(7') C T. Therefore, sinc€’, satisfiesinclusion
we haveR(T) C T C C,(T). By R3 and Supra, we havk(T) C T C Cy(T) C
Cy(R(T)) C Cy(R(T)). UsingWeak CutC;(R(1')) # L implies thatC;(T') # L. =

This shows thatMeak Monotonyand Weak Cutnicely discriminate between two

types of recoveries. Since we have seen that the dominant nonmonotonic logics satisfy

Weak Cutbut notWeak Monotonywe conclude that

in general, retractions are not useful in non-monotonic theory recovery.

Example 3.6 We all know that, normally, adults do not read research reports; on the
other hand, normally, researchers do. But normally, researchers are not prototypical

adults. So suppose you meet a resear¢heOf course, you will expeck to read

reports and you also expect him not to behave like a normal adult. But suppose that you
learn thatr is not reading research reports. Wouldn’t you guess that he is an abnormal
researcher? Let us model this example with Reiter’s default theory and consider the

following set of defaults:

researcher; mabResearcher (; mabResearcher — (); —abAdult

D =
{ abAdult ’ readReports ~ —readReports

12



If Wy = {researcher}, i.e., we know that someone is a researcher, the default theory
Ay = (Wy, D) has exactly one (intuitively correct) extension

FE = Cn({researcher,abAdult,read Reports}).

If we learn that this person does not read research reportéyj.es {rescarcher,
—readReports}, Ay = (W, D) does not have a Reiter-extension, although it seems
intuitively right to expect thatb Researcher will hold.

Let us look at a weaker default semantics, such as the minimal extension seman-
tics®, for which A, has an extension. Under this semantics, the unique minimal exten-
sion is

Erin = Cn({researcher, ~readReports, abResearcher}).

Taking this semantics as our backup semantics, we guds) = E,,;,.

Since we know that the consequence operatobased on the Reiter semantics
satisfiesWeak Cutand the minimal extension semantics is cumulative, according to
Theorem 3.5 we cannot retract information fré# to obtain a Reiter extension for
A,.

We decide to apply an expansioR{W,) = W, U {abResearcher} and, indeed,
we observe that',(W) = C,(R(W)) while C;(R(W)) has a unique extension equal
to £,..,, so for this theory, the recovery operator satisfies the postulates.

3.3 Intermediate Conclusions

The results just obtained show that, first of all, our recovery framework for nonmono-
tonic theories contrasts with recovery frameworks for classical theories. To recover a
classical theory from inconsistency, one is almost forced to apply a contraction opera-
tor to the inconsistent theory in order to rescue its intended meaning. Such a retraction,
however, is not suitable for recovery of theories using a nonmonotonic semantics that
satisfies both the weak principles we have introduced.

These results, however does not apply to this framework, but also to less restric-
tive frameworks as e.g. the Contradiction Removal framework of Pereira et al. (see
[1]). Using the language of logic programming, the main idea behind this approach is
that logic programs that do not have acceptable models can be revised adequately by
removing assumptions. These assumptions are literals of therf@rrh Removal of
such an assumptiomot [ can be accomplished by adding a rule- to the program
and taking the acceptable models of this expanded program as the intended models
of the original program. It turns out that, taking a classical semantics as the back-
up semantics, the Contradiction Removal Semantics is a special recovery framework
in which the postulates R1-R3 are satisfied. This means that (i) it cannot be applied
if the intended semantics satisfid®eak Cumulativityand (ii) since the Contradiction

SA minimal extension of a default theory = (W, D) is a minimal set’ containingi?” and closed
under classical consequences and application of default rules.
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Removal Semantics aims at adding a minimal set of revisions, the expansion approach
can be justified by pointing out that retraction never can be an option, as we will show
in the next section.

At second look, one observes that the results we have obtainecgaéve they
do not tell us which conditions had to be satisfied in ordeyuaranteethat a revision
framework would be successful. Since we want to concentrate on recovery methods
for mainstream nonmonotonic logics, in the next sections we will first of all show that,
whenever the recovery framework can be applied but retraction is not possible, we can
always rely orexpansioras a successful recovery method.

Next, we will investigate which conditions have to be satisfied in order to apply an
expansion successfully.

3.4 Applying Expansions

In this subsection we will concentrate on the use of expansions as useful recovery
functions.

First we show that expansions can be used to represent more general recovery func-
tions whenever these are successfully applicable. That is, expansions can be used as
indicators (whenever contractions are not applicable) to check whether or not there ex-
ist successful recovery functions. It turns out that we can construct such an expansion
in a uniform way. Next we show, that whenever one wants to recover a ttiebyy
changing it in a minimal way, one has to use expansions. So in casmiohal-change
recovery, expansions are the only successful recovery functions.

Our first result shows that expansion frameworks are able to represent all successful
recovery frameworks, whenever the backup semantics is cumulative and the intended
semantics is a nonmonotonic one, satisfyWigak Cut

Theorem 3.7 Let (7T, Cy, C;) be a twin semantics wherg is cumulative and’; satis-
fies Weak Cut. Then there exists a successful recovery framewetK 7, C,, C;, R)
satisfying the postulates R1-R4 iff there exists a successful recovery fram@verk
(T,Cy, C:, R"), whereR' is an expansion.

PROOF The if-direction is obvious: tak& = R’. To prove the only-if direction, sup-
pose thaik = (T, Cy, C;, R) is a successful recovery framework. Define the function
R asR'(T)= R(T)uUT. Note thatR' is an expansion.

We show that the frameworR’ = (T, Cy, C;, R') is a successful recovery frame-
work. So let]" € 7 and assume that,(7") # L.

e To show that postulate R1 is satisfied, it satisfies to showthd®'(7")) # L.

Since(, is cumulative, it satisfietnclusion hencel’" C Cy(T) and R(T") C
Cy(R(T)). SinceR'(T) = R(T)u T, it follows that B'(T") C Cy(R(T)) U
C,(T). Moreover, sinceR satisfies R3 and R4,,(R(T)) = C,(T). Hence,
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we haveR'(T') C Cy(R(T)). By Supraand the definition ofk’(7'), we have
R(T) C R(T) C Cy(R(T)) C Ci(R(T)). Remember that satisfies the
recovery postulates, sG;(R(7")) # L. Now applyingWeak Cutmmediately
implies thatC;( R'(T')) # L. SoR' satisfies R1.

e Postulate P2 is satisfied, sincg(7') # L implies thatR(T) = 1, sinceR
satisfies Postulate R2. Heng§T') = T' and i’ satisfies R2.

¢ To show that R3 and R4 are satisfied By we show that’,(7') = C,(R'(T)).
We havel' C R(T') U T'. By Inclusionand the fact thaf? satisfies R3 and R4 it
follows that?' C R'(1T') = R(T)UT C Co(R(T))UC,T) = Co(T)U Cy(T') =
Cy(T). Cy is cumulative, so we have,(R'(T')) = Cy(Cy(T)) = C4(T), since
cumulativity of C';, impliesldempotency

Theorem 3.7 shows that using a mainstream nonmonotonic logic and a cumula-
tive back-up semantics expansions are able to characterize successful recovery frame-
works.

In some cases, however, we are able to prove a much stronger result. Let us define
a recovery framework minimal changeecovery framework if the recovery operator
R minimizes the difference betweé&hand R(7'):

Definition 3.8 Let (7, C,, C;) be a twin semantics. We caR = (7,C,,C;, R) a
successful minimal change recovery framework based aohfor every successful
recovery frameworkR’ = (7, C,, C;, R') based orS and everyl' € 7 it holds that
R(TYeT C R(T)eT.HereXsY = (X -Y)U(Y — X), the symmetric difference
betweenX andY'.

It is not difficult to see that the only recovery operators that can be used in a suc-
cessful minimal change recovery framework are expansions if we use a cumulative
backup semantics and an intended semantics satisiyaak Cut

Theorem 3.9 Let R = (T, C,, C;, R) be a nontrivial successful minimal change re-
covery framework wher€’, is cumulative and’; satisfiesWeak Cut Then R has to
be an expansion.

PROOF LetR = (T, C,, C;, R) be a nontrivial successful recovery framework where
C, is cumulative and’; satisfieswWeak Cut Assume that? is not an expansion. By
Theorem 3.5k cannot be a contraction. Hence, there is a théorg 7 such that
R(T)=T'"UN whereT" CT,T"#T,N # pandN NnT = {). By (the proof of)
Theorem 3.7, if we define a recovery operatoby R'(1') = R(1')UT', the framework
R =(T,C,,C;, R') is also a successful recovery framework. SIRe€l’) = R(1T) U
T=(T"UN)UT =TU N, we have

R(TYoT=NC(I-T)UN=RT)&T
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But that implies thaR = (7, Cy, C;, R) cannot be a minimal change recovery frame-
work; contradiction. Therefor& has to be an expansion. ]

It might be difficult to find a successful expansion framework. If, however, we can
assume that the backup semantics is cumulative, there is an easy way to tell whether
or not there is a successful recovery framework:

Theorem 3.10 Let (7, (s, C;) be a twin semantics wherg, is cumulative and’; sat-
isfies Weak Cut. Then there exists a successful expansion fram@&werky, C,, C;, R)
satisfying the postulates R1-R4 iff the recovery framew®tk= (7, C;, C;, R') is suc-
cessful, where?' is the full expansio?'(1') = C,(T) iff C;(T) = LandR'(T') =T
else.

PROOF

(=). Suppose thakR = (7,(%, C;, R) is a successful expansion framework. We
show thatR’ = (7,Cs, C;, R'), is successful, too. So assurg(7') # L. Since

R is an expansion, by Postulate RA,C R(T) C Cy(1'), By cumulativity of Cy,
this impliesCy(R(T')) = Cy(T) = C(Cy(T)) = Cy(R'(T)). Hence, it is im-
mediate thatRk’ satisfies R3 and R4. By definitior?’ satisfies R2. Finally, we
have to show thaf?’ satisfies R1, i.e. that;(R'(T)) # L. But that is easy, since
T C Cy(T) = Co(R(T)) C C(R(T)). SinceC;(R(T)) # L, by Weak Cuit follows
thatCi(Cb(T)) = CZ(R/(T)) 75 L.

(«<). Trivial, sinceR'(T') by definition is an expansion. ]

As a consequence, we can easily show now that the framework cannot be applied to
the CWA with classical logic as the backup semantics: Take for example[p V ¢}.
Now Cn(T') # L, butCWA(T) = L. SinceCWA(T) = CWA(Cn(T)) = L, there
exists no successful recovery framework satisfying the postulates R1-R4 for the closed
world assumption semantics.

4 Recovery of Logic programs

The main goal of this section is to show that our recovery framework can be applied
successfully to logic programming, especially to the stable model semantics of ex-
tended logic programs.

We assume to reader to be acquainted with the basic concepts and notations used
in logic programming (cf. [5, 8]). We consider the class of finite, propositional
normal logic programs with explicit negation and we will call such programs sim-
ply logic programs Such a program consists of a finite set of rules of the form
lo< li,...l,notl,yq,...,notl, 1., m,n > 0, where eacl; is a literal Given some
fixed set of propositional symbol$.,, denotes the set of all normal programs with
explicit negation.
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As usual, an interpretation of a prografmis denoted by the set of literals true in
that interpretation. An interpretatiavi is called a model of if M satisfies every rule
of P. Given a model/ of P, G(P, M) denotes the Gelfond-Lifschitz reduction Bf
with M. Rules(Bp) denotes the set of all possible rules that can be formed by using
atoms occurring irP.

We useM od( P) to denote the set of classical modelsFtof M in M od( P) denotes
the set of minimal models anttable( P) the set of stable models &f. These sets are
related byStable(P) C MinMod(P) C Mod(P).

Given such a semanticsem € {Mod, MinMod, Stable} and a progran®, we
define the associated inference operatioh™ as

C3(P) = {6 € Rules(Bp) | Sem(P) = ¢}

It is not difficult to show that for every’ and every such a semantiésm, C'5°™
satisfiedMeak Cut

We will now prove a very general result for recovery of logic programs, showing
that if the stable model semantics is used as the intended model semantics, we can
use as our backup semantics every cumulative semattiessuch thatSem(P) # ()
and Stable(P) C Sem(P) C MinMod(P), i.e. every semantics weaker than the
stable semantics and consisting of minimal modeM/e will call such a semantics a
potential back-ugemantics (w.r.t. the stable semantics):

Definition 4.1 Let Sem be a semantics faP.;,. Sem is called a potential back-up
semantics if for every’, Stable(P) C Sem(P) C MinMod(P).

The following proposition is very helpful in proving properties of a potential back-
up semantics'em:

Proposition 4.2 Let Sem be a potential back-up semantics oy, and P a program
such thatSem(P) # 0. ThenSem(P) = ¢sem,p Wher€gse, p = Varesempy A M.

PROOF Note that¢s.,, p is just the disjunction of all (finite) model¥/ in Sem(P)
expressed as (finite) conjunctions of literals truén

We will need the following lemma pertaining to properties of stable models:

Lemma 4.3 (Marek & Truszczynski [10]) Let M/ be a model of a programi and let
Mepmy be the least model (P, M). ThenMepan € M.

The following lemma shows that a potential back-up semantics can be used as a
back-up semantics in a successful recovery framework with the stable semantics as the
intended semantics.

6An example of such a semantics is the positivist semantics (see [4]).
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Lemma 4.4 Let Sem be a potential back-up semantics fy,. Then, for everyP
such thatSem(P) # (), there is a progran®’ containing?, such that”"(P) =
Coem( Py andStable(P') # ().

PROOF Since Sem(P) # 0, we also haveMinMod(P) # (. Hence, accord-
ing to Proposition 4.25em(P) = ésem,p Where s, p = Viresempy AM. Let
C N F(¢sem,p) be the conjunctive normal form efs.,, p. For every disjunctios =
1V V.. .2, occurfing inC' N F(¢sen p), let PS™ be the program

PP = {x; - notxy,...N0Otx;_y,N0tz;4y,...,N0tz,, | i =1,...,m}

and, finally, letP5¢™ be the union of all such prograni¥’=™, § being a disjunction
occurring iNCN F(¢s. p). We show that” = P U P satisfies the conditions.
First of all, we prove the following claims:

e Claim1.P C P’ C C%™(P).
The first inclusion is by definition of’. SinceC'**™ is cumulative it satisfies
Inclusion henceP C C°"(P). Furthermore, sinc8em(P) |= ¢p it follows
thatSem(P) | P°“". Hence,P5em C C'%°"(P). Therefore P’ = PUP%™ C
Coem(P).

e Claim 2.For everyM € Sem(P) and everyl € M, P°*™ contains at least one
rule ! + a such thatVl = landM [ «a.
Let M € Sem(P) such that € M. By definition, M = [. SinceSem(P) C
MinMod(P), M is a minimal model of’ N F'(¢s.,, p). Consider the set of dis-
junctionsé occurring inC'N F'(¢p) such that occurs ind. SinceM minimally
satisfies” N F/(¢sem p), there is at least one disjunction= [V z; V...V z; con-
taining/, such that\/ minimally satisfies),, i.e. fori = 1,... &k, M [~ z;. Now
ng@m contains the rulé «+ not z;,...,not z; andM = notz; A ... A not z.
Hence, there exists at least one rute o € P> such thatM = [ A «.

From Claim 1 and the fact that®*™ satisfies cumulativity, we immediately derive
that C*(P) = CX(P'), i.e. the semanticX is invariant under the transformation
from P to P'.

Using Claim 2, it is easy to show that every modéle X (P) is also stable model
of P': we only have to prove tha¥/ is the minimal model of the reductiai( ', M)
of P w.rt. M. So letAM € X(P). From Claim 2 above, it follows that, for every
literal / occurring inM, there is at least one rule— «; in P such thatM = [ A «.
Hence, sincev contains only default-negated literals, by definitionafP’, M), for
everyl € M, the rulel « occurs inGG(P’, M ). Therefore] occurs in the least model
Mepr oy of G(P', M). This implies thatM¢pr yy 2 M. Hence, by Lemma 4.3,
M = Mg pr ) and thereforeM € Stable(FP'). [

Note that, since Sincée*'**'c satisfiesCut, it also satisfieaVeak Cut However,
C5teble(P) does not satisfyWeak Monotonys can be seen from the progrdm=
{=a < notb; a +}: AlthoughC5"*¢(P) = L, we haveC>™*'¢(P U {b < }) # L.
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Hence, using the results obtained in the previous sections and the previous lemma,
we can state the following main results:

Theorem 4.5 LetR = (P, CX, C5#e R) be a recovery framework for elp-programs,
where X is a potential back-up semantics and for evétye P, R(P) = P if
Stable(P) # ) andR(P) = PUP* else. TherR is a successful recovery framework.

PROOF First of all, we note that'X(P) C C*%e(p), by definition of the conse-

quence operator for logic programs and the fact fva/e(P) C X (P). We show
that R1-R4 are satisfied whenevef (P) is well-behaved:

R1 If C¥*(P)is well-behavedX (P) # (. By Lemma 4.4 and the definition &t it
follows immediately thatStable( R(P)) = Stable(P U PX) # ( and therefore
Cstable( B(P)) is well-behaved.

R2 By definition of R
R3+R4 Again by Lemma 4.4.

Theorem 4.6 LetR = (P, Cy, C¥'**¢ | R) be a non-trivially successful minimal-change
recovery framework for elp-programs, whetg is cumulative. Then? has to be an
expansion.

PrROOF Immediately from Theorem 4.5 and Theorem 3.9 ]

Remark. Since we do not require the intended semantics to be two-valued, it is
also possible to revise logic programs with explicit negation using the Well-Founded
(WF) semantics (see [14]) as the intended semantics and, for example, the standard
three-valued Kleene semantics as the backup semantics. A program like:

P :a +
¢ ¢ a,notb
e
does not have an acceptable WF-modglf'( P) = {a, ¢, ~¢, —b} is contradictory. Its
least three-valued model (under the knowledge-ordering of truth-values), however, is
M = {a,—c}. So the following program
Pia «
¢ ¢ a,notbh

—C
b <+ notb
has an acceptable well-founded motéF'( P’) = {a, —c} identical toM. n
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5 Conclusions

We have presented a framework and some postulates for recovery of nonmonotonic
theories. We have shown that in case the intended semantics is a mainstream nonmono-
tonic semantics, under very general conditions set for the back-up semantics, recovery
cannot be accomplished by retraction operations. This distinguishes nonmonotonic
recovery from the AGM framework for recovery of classical theories.

This leaves only room for recovery operations in which either a part of the theory
is retracted and at the same time information is added to the resulting theory as well
(pure) expansion operators in which a theory is recovered by adding information to
it. As a special case, the Contradiction Removal framework developed by Pereira
and Alferes (see [1]), satisfies our first three rationality postulates and makes use of
expansions as recovery operators.

Our results show that, whenevgris a mixed recovery that satisfies the postulates
R1-R4, it can always be replaced by a successful expansion that does not produce
more changes. In particular, we have shown that whenever the backup semantics is
cumulative, syntactically minimal recovery operators for nonmonotonic theories have
to be expansions in order to be successful.

This result can be related to the approach to theory recovery of Inoue and Sakama
(see [6]), where they propose to revise a théblyy means of a minimal set of addi-
tions / and removal®) such thatk(7') = 1"+ I — O has an acceptable model. Their
proposal thus comes down to advocatingiaed recovenapproach. Our results show
that, whenever: is a mixed recovery that satisfies the postulates R1-R4, it can always
be replaced by a successful expansion that does not produce more changes.

Finally, in a case study of recovery in nonmonotonic logic programming, we have
shown that a stable model for a classical consistent program always can be approxi-
mated using a weaker cumulative (backup) semantics. The evidential semantics pre-
sented by Seipel ([13]) can be seen as a special case of our framework, taking (partial)
minimal model semantics as the backup semantics and (partial) stable model semantics
as the intended semantics.
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