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Abstract

The linear-width of a graph G is de�ned to be the smallest integer k such that the edges

of G can be arranged in a linear ordering (e1; : : : ; er) in such a way that for every i =

1; : : : ; r � 1, there are at most k vertices incident to edges that belong both to fe1; : : : ; eig

and to fei+1; : : : ; erg. In this paper, we give a set of 57 graphs and prove that it is the set

of the minimal forbidden minors for the class of graphs with linear-width at most two. Our

proof also gives a linear time algorithm that either reports that a given graph has linear-width

more than two or outputs an edge ordering of minimum linear-width. We further prove a

structural connection between linear-width and the mixed search number which enables us

to determine, for any k � 1, the set acyclic forbidden minors for the class of graphs with

linear-width � k. Moreover, due to this connection, our algorithm can be transfered to two

linear time algorithms that check whether a graph has mixed search or edge search number

at most two and, if so, construct the corresponding sequences of search moves.

1 Introduction

A graph parameter is a function which maps each graph to a positive integer. Given a graph

parameter f and a positive integer k, we denote as G[f; k] the class of graphs for which the value

of f does not exceed k.

Let G be a class of graphs. We say that G is closed under taking of minors if all the minors

of graphs in G belong also in G (we say that a graph H is a minor of a graph G if it can be

obtained by G after a number of vertex/edge removal or/and edge contractions { for the formal

de�nitions, see subsection 2.1). We also say that a graph parameter f is closed under taking of

minors if, for any k, G[f; k] is closed under taking of minors.
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The obstruction set of a graph class G { namely ob(G) { is de�ned to be the set of the minor

minimal graphs that do not belong in G. According to the result of Robertson and Seymour in

their Graphs Minors series of papers (see [28] for a survey), the minor minimal elements of any

graph class are �nite. It follows that if a graph class G is closed under taking of minors then, for

any graph G, G 2 G i� none of the graphs in ob(G) is a minor of G. In the same series of papers,

Robertson and Seymour prove that there exist a O(n3) time algorithm checking if a given n-

vertex graph G contains a �xed graph H as a minor [29, 31, 30]. A quite important consequence

of that is that for any graph class that is closed under taking of minors there exist an polynomial

time membership checking algorithm. Moreover, according to the result of Bodlaender in [4],

this membership check can be done in linear time if some of the excluded minors is planar (see

also [14, 6]).

Many interesting graph classes/parameters have been proved to be closed under taking of

minors. Unfortunately, the membership algorithm we mentioned above preassume the knowledge

of the obstruction set. As there exist no general method to �nd the obstruction set of a graph class

(see [16, 17]), the research on this topic has been oriented to the speci�cation of the obstruction

set of individual graph classes (see [2, 13, 15, 23, 26]). Clearly, given a graph parameter f

that is closed under taking of minors, each value of k corresponds to a di�erent obstruction set,

i.e. ob(G[f; k]). To our knowledge, obstruction sets have been found for the following graph

parameters: treewidth, for k � 3 (see [1, 18, 32]), branchwidth, for k � 3 (see [8]), node search

number, for k � 3 (see [10, 20]), and mixed search number, for k � 2 (see [34]).

The linear-width of a graph G is de�ned to be the least integer k such that the edges of G can

be arranged in a linear ordering (e1; : : : ; er) in such a way that for every i = 1; : : : ; r � 1, there

are at most k vertices incident to edges that belong both to fe1; : : : ; eig and to fei+1; : : : ; erg.

Linear-width was �rst mentioned by Thomas in [36] and is strongly connected with the notion

of crusades introduced by Bienstock and Seymour in [3]. In this paper we prove that several

variants of problems appearing on graph searching can be reduced to the problem of computing

linear-width.

In a graph searching game a graph represents a system of tunnels where an agile, fast, and

invisible fugitive is resorting. We desire to capture this fugitive by applying a search strategy

while using the fewest possible searchers. In short terms, the search number of a graph is the

minimum number of searchers a searching strategy requires in order to capture the fugitive.

Several variations on the way the fugitive can be captured during a search, de�ne the the

parameters of the edge, node, and mixed search number of a graph (namely, es(G), ns(G), and

ms(G)). The �rst graph searching game was introduced by Breisch [9] and Parsons [27] and

is the one of edge searching. Node searching appeared as a variant of edge searching and was

introduced by Kirousis and Papadimitriou in [22]. Finally, mixed searching was introduced in [35]

and [3] and is a natural generalisation of the two previous variants (for the formal de�nitions see

Subsection 5.1).
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The problem of computing es(G); ns(G);ms(G), or linear-width(G) is NP-complete (see [24,

22, 35] and Theorem 5.i of this paper). On the other hand, since all of these parameters is closed

under taking of minors, we know that there exist a linear algorithm checking membership in

G[f; k] where f is ms, es, ns, or linear-width. Such a linear time algorithm has been constructed

for the node search number [5] (actually, the result in [5] concerns the parameter of pathwidth

which is known to be equal to the node search number minus one { see [21, 19, 25]). Recently, a

linear algorithm, checking if a graph belongs to G[linear-width; k], was found (see [7]). Moreover,

the algorithm in [7] is constructive: for any �xed k, one can construct, if exists, an optimal edge

arrangement. On the other hand, the algorithm in [7] appears to be di�cult to be implemented

and rather impractical, even for small values of k, as the contribution of the �xed k on the

\hidden" part of their linear time complexity is heavily exponential.

In order to overcome the above problems one needs practical \tailor-made" algorithms for

speci�c (usually small) values of k. Mainly, such kind of algorithms are based to a complete

structural characterisation of the corresponding graph class. In this direction, an algorithm for

the class of graphs with node search number � 3 has been given in [11] (actually the algorithm

in [11] concerns graphs with pathwidth � 2 but can be easily transfered to the class of graphs

with node search number � 3). However, no \tailor-made" algorithms for the linear-width, the

mixed search number, or the edge search number are known.

In this paper we give a linear time algorithm checking if a graph has linear-width � 2 and, if

so, outputs an edge ordering with optimal linear-width. Moreover, we prove a structural connec-

tion between linear-width and the three search parameter we mentioned before (this connection

generalises the one proved in [3]). According to this result, our algorithm can be directly mod-

i�ed to one that checks whether the mixed or the edge search number of a graph is at most 2.

and, if so, outputs an optimal search.

Our algorithm is based on a complete structural characterisation of the class of graphs with

linear-width � 2. Using this characterisation, we prove that ob(G[linear-width; 2]) consists of

the 57 graphs depicted on Figures 6 and 7. Moreover, we prove that, for any k, there exists an

injection from ob(G[ms; k]) to ob(G[linear-width; k]). A direct consequence is that ob(G[ms; k])

can be easily determined if we know ob(G[linear-width; k]). Applying this result for the case that

k = 2 we can determine ob(G[ms; 2]) and, in that way, reproduce the result of [34].

Finally, for any k, we determine all the trees in ob(G[linear-width; k]). More speci�cally, we

prove that, for any k, there exist a bijection between the trees in ob(G[linear-width; k]) and the

trees in ob(G[ms; k]). Our results indicate that, for k > 2, a complete structural characterisation

of the class of graphs with linear-width � k is rather hard to be found even for small values of

k.

The paper is organised as follows. In Section 2 we give some basic de�nitions and results

concerning the structure of the graphs with linear-width � 2. In Section 3 we present the

main algorithm of this paper. In Section 4 we prove the correctness of the algorithm and the
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obstruction set. Section 5 is devoted to the relation between linear-width and the three variants

of the graph searching game. Finally, in Section 6 we end up with some conclusions and open

problems.

2 De�nitions and preliminary results

We consider �nite undirected graphs without loops or multiple edges unless otherwise is men-

tioned.

Let G be a graph. If S � V (G), we call the graph (S; ffv; ug 2 E(G) : v; u 2 Sg) the

subgraph of G induced by S and we denote it as G[S]. Given two graphs G1; G2 we set G1[G2 =

(V (G1) [ V (G2); E(G1) [E(G2)). Given a vertex v 2 V (G) we denote G� v = G[V (G)� fvg].

Also, if e 2 E(G) we set G � e = (V (G); E(G)� feg). A contraction of an edge fu; vg in G to

v is the operation that removes u and makes v adjacent to all the vertices that were adjacent

to u. We denote the result of the contraction of e as G
.
{ e. For any edge set E � E(G) we

denote as V (E) the set of vertices that are incident to edges of H (i.e. V (E) = [e2Ee). We

denote the degree of a vertex v with respect to some graph G as dG(v). We denote as A(G) the

set of articulation vertices of G (i.e. A(G) = fv 2 G j G� v is disconnectedg). We call a vertex

pendant if it has degree 1. We call an edge pendant if it contains a pendant vertex. We denote

by A�(G) the vertices of A(G) that are not adjacent with pendant vertices. We call a vertex v

almost pendant if v 2 A(G)�A�(G). Finally, we call an edge almost pendant if it is not pendant

and one of its endpoints is almost pendant.

2.1 Minors: proper and rooted

We say that H is a minor of G (denoted by H � G) if H can be obtained by a series of the

following operations: vertex deletions, edge deletions, and edge contractions. We say that H is a

proper minor of G (denoted by H � G) if H � G and H is not isomorphic to G. If H is a set of

graphs such that some of them is a minor of G, then we denote it as H v G. If no element of H

is a minor of G then we denote it as H 6v G. If in some graph G we distinguish some vertex v we

call this graph v-rooted or, simply, v-graph (we also call v a root of G). Any v-graph that can be

obtained by a v-rooted graph after a sequence of edge deletions or vertex/edge contractions that

do not remove v is called v-minor of G and we denote it as H �v G (from now on, whenever we

mention a contraction in a rooted graph we will assume that the removed vertex is di�erent than

its root). Analogously to the non-rooted case, we de�ne the relations \�v", \vv", and \ 6vv".

2.2 Linear-width

We de�ne linear-width is as follows. Let G be a graph and l = (e1; : : : ; ejE(G)j) be a linear ordering

of E(G). We set �l(ei) = V (fe1; : : : ; eig)\ V (fei+1; : : : ; ejE(G)jg) (i.e. �l(ei) is the set of vertices

in V (G) that are incident to an edge in fe1; : : : ; eig and also to an edge in fei+1; : : : ; ejE(G)jg.
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We set linear-width(l) = max1�i�jE(G)j�1fj�l(ei)jg. The linear-width of a graph is the minimum

linear-width over all the orderings of E(G) (if jE(G)j � 1 then linear-width(G) = 0). If l =

(e1; : : : ; ejE(G)j), we set l�1 = (ejE(G)j; : : : ; e1). Clearly, linear-width(l) = linear-width(l�1).

Lemma 1 The class of graphs with bounded linear-width is closed under taking of minors.

Proof. Let G be a graph having an edge ordering l with linear-width equal to k. It is enough to

prove that for any v 2 V (G); e 2 E(G), graphs G� v;G� e; G
.
{ e have linear-width � k. Let l

be an edge ordering of G. It is easy to see that, if we remove from l all the edges not existing any

more in G� v or G� e, we have again an edge ordering of linear-width � k. Suppose now that

G0 = G
.
{ e. Let e = fv; ug and assume that the contraction removes u. We now remove edge

e from l and then replace u with v in any edge containing u (if during this operation appears

an edge that is already in the ordering, then we remove it). It is now easy to see that the

linear-width of the new ordering is no more than k. 2

We denote by L2 the set consisting of the graphs depicted in Figures 6 and 7. The following

lemma is a consequence of Lemma 1 and the fact that all the graphs in L2 have linear-width

more than two.

Lemma 2 Let G be a graph that L2 v G. Then, linear-width(G) > 2.

After a careful inspection, one can verify that set L2 is a minor minimal set, i.e. no graph in

L2 is a proper minor of an other member of L2. Therefore, we have the following.

Lemma 3 L2 � ob(G[linear-width; 2]).

In the next two sections, we will prove that every graph with linear-width more than two

contains a graph in L2 as a minor and therefore L2 is the obstruction set for the class of graphs

with linear-width � 2.

2.3 Small, long, and weak edges

A v-graph G is called a v-wing if D vv G (graphs in D are depicted in Figure 1). A v-hair is

a v-graph G that is isomorphic with A1 and dG(v) = 1 (graph A1 is depicted in Figure 1). Let

G be a graph. If fCv
1 ; : : : ; C

v
�g is the set of the connected components of G[V (G)� fvg], we set

D(G; v) = fDv
1; : : : ; D

v
�g where Dv

i = G[V (Cv
i ) [ fvg]; 1 � i � �. For any vertex v 2 A�(G), we

de�ne �(G; v) as the number of v-wings in G(G; v). We call a pendant edge e = fv; ug 2 E(G)

small if dG(v) � 3. We also call a pendant vertex small if it is incident to a small edge. We also

call e = fv; ug long if dG(v) = dG(u) = 2.

Lemma 4 Let H be a graph with linear-width � k. The following hold.
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A B C

A1 B1 C1 C2 C3

v v v v v v
D

D2 D3 D4

vv

D1

v

Figure 1: The classes of rooted graphs A;B; C;D.

i. Let v; v0 be vertices such that v 2 V (H); dG(v) � 2, and v0 62 V (H). If H 0 = (V (H) [

fv0g; E(H)[ ffv; v0gg), then linear-width(H 0) � k (notice that v0 is a small vertex of H 0).

ii. Let v be a vertex that is adjacent only with vertices w and u in H. Let also H 0 = (V (H) [

fu0g; E(H)[ ffu; u0g; fu0; vgg � ffv; ugg). Then, linear-width(H 0) � k.

Proof. Let l = (e1; : : : ; er) be an edge ordering of H where linear-width(l) = k.

i. Notice that, as dH(v) � 2, l contains at least one edge ei with v 2 �l(ei). It is now easy to see

that l0 = (e1; : : : ; ei; fv; v
0g; ei+1; : : : ; er) is an edge ordering of G0 with linear-width � k.

ii. W.l.o.g. we assume that fv; ug comes before fw; vg in l (if not, we choose l�1). Let also

ei = fv; ug; 1� i � r. Now observe that l0 = (e1; : : : ; ei�1; fu; u
0g; fu0; vg; ei+1; : : : ; er) is an edge

ordering of G0 with linear-width � k. 2

Lemma 5 Let G be a graph. Then, there exist a graph G0 such that G0 � G, G0 does not contain

any long or small hairs, and linear-width(G) � k , linear-width(G0) � k. Moreover, if l0 is

an edge ordering of G0 with linear-width � k, one can construct an edge ordering of G with

linear-width � k in O(jE(G)j) time.

Proof. Let G0 be the graph that is obtained if we apply the following operation on G as long

as it is possible:

� If e is a long edge or a small hair in G, then set G G
.
{ e.

Clearly, if we have an edge ordering of G0 with linear-width at most k, we can construct an edge

ordering of G with linear-width at most k undoing the above sequence of contractions. Since

we need O(1) time for each contraction, the rebuilding process needs O(jE(G)j) time. What

remains is to prove that linear-width(G) � k , linear-width(G0) � k. The \)" direction

follows immediately from Lemma 1. The \(" direction follows if we apply inductively Lemma 4

on the number of the edges contracted. 2

Let G be an outerplanar graph. In this paper, we will denote a face F of a planar embedding

of G as the graph induced by the vertices that are incident to F (certainly, such a graph is

always a cycle). We call the edges of the outer face of G outer edges and all the others inner.

We denote the set of the outer (inner) edges of an outerplanar graphs as out(G) (inn(G)). For

two vertices x; y, we say that x � y if fx; yg 2 out(G). We call a face F simplicial if it contains

at most one inner edge. Let F be a simplicial face. The edges F that belong in out(G) are called
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simplicial. The vertices of F that are not incident to the unique edge of F that is in inn(G)

are called simplicial. If an edge (vertex) of F is not simplicial then we call it critical. (if G is a

cycle or a single edge, all its edges are simplicial and outer). The set of simplicial faces of G is

denoted by S(G). We say that a biconnected component of an outerplanar graph G is a bolbe if

it is not a pendant or an almost pendant edge. We denote as B(G) the set of all the bolbes of

G. For an example of the given de�nitions see Figure 2.

a

c

b
d

e

f

F1

F2

G

Figure 2: B = G[fa; b; c; d; e; fg] is a bolbe of an outerplanar graph G. The outer edges of B are

fa; cg; fc; fg; ff; eg; fe; dg; fd; bg; fb; ag. The inner edges of B are fb; cg; fd; cg; fe; cg. B contains

two simplicial faces F1; F2 where F1 = B[fa; b; cg], F2 = B[fc; e; fg]. F1 (F2) contains only a

(f) as simplicial vertex and the simplicial edges of F1 (F2) are fa; bg; fa; cg (fc; fg; fe; fg). The

critical vertices of F1 (F2) are b; c (c; e) and the critical edge of F1 (F2) is fb; cg (fc; eg).

We call an outer edge fx; yg weak if fx; yg \ A(G) = ; and there exist a vertex z such that

if E = ffz; xg; fy; xgg then inn(G)\E 6= ; and out(G)\E = ; (i.e. one edge in E is inner and

z is not adjacent to x or x through an outer edge). Notice that the bolbe depicted in Figure 2

does not contain any weak edges.

Lemma 6 Let e be a weak edge of an outerplanar graph G. Then linear-width(G
.
{ e) � 2 )

linear-width(G) � 2.

Proof. Let e = fx; yg and suppose that fx; zg is an inner edge of G. Let H be the result of

the contraction of e to x. We observe that fx; zg is an inner edge of H and x 62 A(H). Let B

be the unique biconnected component of H that contains fx; zg. Clearly B[V (B) � fx; zg] has

exactly two connected components C1; C2. Let Bi = B[V (Ci)[fx; zg]�fx; zg; i= 1; 2. Suppose

that l0 = (e1; : : : ; ei; : : : ; er) is an edge ordering of H where ei = fx; zg and linear-width(l) = 2

(notice that it is impossible linear-width(G0) < 2). Let ej be the �rst edge of B appearing in l.

Clearly i > j because, otherwise, �l(ej+1) � 3. W.l.o.g. we assume that ej 2 E(B1). Let also eh

be the �rst edge of B2 appearing in l. We claim that h > i. Suppose in contrary that ei comes

after eh in l. Notice that �l(eh�1) � V (B1), and �l(eh�1) � 2. Moreover, as eh is the �rst edge

of B2 in l we have that �l(eh) = �l(ej�1) [ fxg; x 2 V (C2) and this means that �l(eh) � 3 a

contradiction. Let now eh0 be the last edge in B1 appearing in l. Applying the same arguments

on l�1 (eh0 is the �rst edge in B1 appearing in l�1), we can prove that h0 < i . We now have
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that h0 = i � 1, h = i + 1 and thus �l(ei�1) = �l(ei) = fx; zg. We now set l1 = (e1; : : : ; ei�1),

l2 = (fx; zg; fx; yg; fy; zg),and l3 = (ei+1; : : : ; er). It is now easy to see that l+ = l1 � l2 � l3 is

an edge ordering of G+ = (V (G); E(G)[ ffx; zg; fy; zgg) where linear-width = 2 (notice that

fy; zg is not necessarily an edge of G). Finally notice that G � G+. From Lemma 1, we have

that linear-width(G) = 2. 2

Lemma 7 Let G be an outerplanar graph. Then, there exist a graph G0 such that G0 � G, G0

does not not contain any weak edge, and linear-width(G) � 2, linear-width(G0) � 2. Moreover,

if l0 is an edge ordering of G0 with linear-width � 2, one can construct an edge ordering of G

with linear-width � 2 in O(jV (E)j) time.

Proof. The proof is similar to the one of Lemma 5 with the di�erence that we now apply

inductively Lemma 6 (G0 is constructed if we perform contractions of weak edges as long as this

is possible). 2

2.4 Smooth graphs and wings

We call a graph G smooth if each of the following conditions is satis�ed.

(sm{i) G does not contain small or long edges,

(sm{ii) G is outerplanar and does not contain weak edges,

(sm{iii) for any bolbe B of G, jS(B)j � 2,

(sm{iv) for any vertex v, �(G; v) � 2.

Lemma 8 Let G be a graph satisfying conditions (sm{i) and (sm{ii) above but not (sm{iii)

or (sm{iv). Then f4K3g [ L
1
2 v G.

Proof. Let B be a bolbe containing at least tree simplicial faces F1; F2; and F3. Then, if we

�rst contract all the edges not having both their endpoints in F1 [ F2 [ F3, and then contract

all the long edges, we obtain 4K3. Let now v 2 V (G) such that D(G; v) contains at least three

v-wings W1;W2;W3. This means that D vv Wi; i = 1; 2; 3. It is now enough to observe that

W1 [W2 [W3 is a subgraph of G containing one of the graphs in L12 as a minor. 2

In Figure 3 we show graphs Z0; Z
1
1 ; Z

2
1 .

Lemma 9 Let G be a smooth v-graph such that v 62 A(G). Then, either G is a v-wing or

G �v Z0.

Proof. Let D 6v G. We will prove that G � Z0. Clearly, we can assume that G is not a v-hair.

We distinguish the following cases. (The graphs Ci; i = 1; : : : ; 4 and Di; i = 1; : : : ; 4 that are used

in the case analysis below are depicted in Figure 1.)
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Case a. dG(v) = 1. Let u be the single neighbour of v. Notice that dG(u) � 3, otherwise, C1 �u

G� v and thus D1 �v G. Also, dG(u) � 3, otherwise, C2 �u G� v and thus D2 �v G. Moreover,

G� v must be a u-tree, otherwise, C3 �u G� v and thus D3 �v G. Let D(G� v; u) = fG1; G2g.

Clearly, both Gi; i = 1; 2 are u-hairs as, otherwise, fC2; C3g vu G � v and thus fD2;D3g vu G.

We conclude that G is isomorphic with C1 �v Z0.

3 4
5

7 6

1

9

2

8

32

54

1211

1413

861 10 15

9732

54

7

9

8

1211

1413

61 10 15

Z0 Z1
1 Z2

1

v

Figure 3: The graphs Z0; Z
1
1 ; Z

2
1 .

Case b. dG(v) � 2. As G is outerplanar, one can easily see that G contains exactly one

biconnected component B that is not a single edge and v 2 V (B) (otherwise v 2 A(G)). From

(sm{iii), B has two simplicial faces F1; F2. Notice now that if A = A(G) \ V (B) then jAj � 2

otherwise D1 �v G (contract all the edges in E(B)). Let now v1; v2 be the two vertices of V (B)

such that fv; v1g; fv; v2g 2 out(B). Notice that if x 2 A, then x 2 fv1; v2g otherwise, D4 �v G.

Moreover, jD(G; x)j = 2 (otherwise, D2 �v G) and the graph in D(G; x) not containing v as a

vertex must be a x-hair (otherwise, fD2;D3g vv G. Observe now that v is incident to all the

inner edges of B, otherwise, D4 �v G. Finally, notice that jV (B)�fv; v1; v2gj � 1 as G does not

contain long or weak edges. Summing up all the previous observations we can easily see that

G �v Z0. 2

Let l = (e1; : : : ; ejE(G)j) be an edge ordering of a v-rooted graph G. We call such an ordering

simple or v-simple if there exist an ordering l = (e1; : : : ; ejE(G)j) of its edges such that, 8i; 1 �

i � jE(G)j j�l(ei) [ fvgj � 2.

Lemma 10 Let G be a smooth graph where for some v 2 A(G) �(G; v) = 0. Then there exist a

v-simple edge ordering of G.

Proof. Clearly, any graph in D(G; v) is a minor of Z0. The numbering depicted in Figure 3

gives a v-simple ordering for Z0. Using this, it is not hard to �nd a v-simple ordering for any of

its minors. If now l1; : : : ; lr are v-simple orderings for the graphs in D(G; v), then l = l1�� � �� lr

is a v-simple ordering of G. 2

3 An algorithm for linear-width

It is easy to verify that ob(G[linear-width; 0]) = fA1g and ob(G[linear-width; 1]) = fC1; C3g

(graphs A1, C1 and C3 are depicted in Figure 1). Using this fact, one can easily construct
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an algorithm that decides whether linear-width(G) � 1 and, if so, outputs an edge ordering

of minimum linear-width. In this section we will present an algorithm, that, given a graph G,

decides whether linear-width(G) � 2 and, in such a case, outputs an edge ordering of linear-width

� 2. Before we present the algorithm we �rst need a series of de�nitions and lemmata about

the structure of the graphs with linear-width � 2. The main structural lemma, supporting the

correctness of the algorithm, is presented in the next section.

3.1 Doors and passages

Let B be a bolbe of a smooth graph G. We set R(B) = A(G) \ V (B). For any v 2 R(B)

we set EX(B; v) = fGv
i j G

v
i 2 D(G; v); V (Gv

i ) \ V (B) = fvgg, EX(B) = fH j 9v 2

R(B) such that H 2 EX(B; v)g, and Bv = [Gv

i
2EX(B;v)G

v
i . For example for the bolbe B =

G[fa; b; c; d; e; fg] depicted in Figure 4 we have thatR(B) = fa; b; e; fg,EX(B; a) = fA;C;D;Eg,

EX(B; b) = fFg,EX(B; e) = fHg,EX(B; f) = fI; J;Kg,EX(B) = fA;C;D;E; F;H; I; J;Kg,

Ba = A [ C [D [E, Bb = F , Be = H , and Bf = I [ J [K.

c

d

C

A

D

E

F H

I

J

G

K

a

eb

f

Figure 4: An example of a smooth graph G containing a bolbe B = G[fa; b; c; d; e; fg].

We denote the null graph as O (i.e. O = (;; ;)). Let Q = (R;H; I) be a triple consisting of a

vertex set R and two graphs H; I . We say that such a triple is a door of B if one of the following

hold.

a) R = ;, H = I = O. In such a case we call the door empty.

b) R = fvg � R(B), I = O, and H = [Gv

i
2EG

v
i where E is a subset of EX(v;G) that contains

at most one v-wing. We call v a passage of the door.

c) R = fv; ug � R(B), v � u, I is a u-hair in EX(G; u) and H = [Gv

i
2EG

v
i where E is a

subset of EX(v;G) that contains at most one v-wing. We call v a passage of the door.

10



As an example we mention that the triples (;;O;O), (fbg; F;O), (ff; eg; I; H), (ff; eg; K;H),

(ff; eg; I [ K;H), (fa; bg; F;D), (fa; bg; D; F ), (fe; fg; H; I), (fa; bg; A [ C [ D [ E; F ), and

(ff; eg; I [K;H) are some of the doors of the bolbe B depicted in Figure 4,

Let B be a bolbe of a smooth graph G Let F1; F2 be the simplicial faces of B (if B has

only one simplicial face, we have F1 = F2 { if jV (B)j = 2 we set F1 = F2 = V (B)). Let

Qi = (Ri; Hi; Ii); i = 1; 2 be two doors of B. We say that the pair P = (Q1; Q2) opens B if

(op{i). G = B [H1 [ I1 [H2 [ I2.

(op{ii). Ri � Fi; i = 1; 2,

(op{iii). jV (H1) \ V (H2)j � 1 (i.e. if both Hi; i = 1; 2 are nonempty then they are di�erent

members of EX(B)).

(op{iv). jV (I1) \ V (I2)j � 1 (i.e. if both Ii; i = 1; 2 are nonempty then they are di�erent

members of EX(B)).

(op{v). If Qi; i = 1; 2 have the same passage v, then �(Hi; v) = 1; i = 1; 2.

(op{vi). If B is not an edge and Ri; i = 1; 2 induce edges in B, then these edges are di�erent.

We call P = ((Ri; Hi; Ii); i = 1; 2) an opening pair of B. B is open when it is opened by some

pair of doors. We call a vertex v a passage of an opening pair if v is a passage of its doors. For

example, a pair opening the bolbe B depicted in Figure 4 is ((fa; bg;A[C[D[E;F ); (ff; eg; I[

J [K;H)) and the corresponding passages the are a and f . Notice that it is possible a bolbe to

be opened by more than one pairs. It is easy to see that, if we know whether each rooted graph

in EX(B) is a wing, or a hair, or none of them, we can assign to B an opening pair (if exist)

in O(jEX(B)j) time. This observation will appear to be useful for proving the linearity of the

algorithm LW2(G) that we will present in Theorem 1.

Lemma 11 Any open bolbe B of a smooth graph G is a proper minor of one of the graphs Z1
1 ; Z

2
1

depicted in Figure 3.

Proof. Let Ri; i = 1; 2 be the vertex sets of the opening pair of B. The case where Fs(B) � 1

is simple as in such a case G is either an edge or a cycle of at most 6 edges (notice that, since B

is open, jR(B)j � 4). Suppose now that F1; F2 are the simplicial faces of B and assume w.l.o.g.

that Ri � Fi; i = 1; 2. Since Fi; i = 1; 2 does not contain long edges, it is a cycle containing

at most 6 vertices. Taking now in mind that the critical edge of Fi has at most one vertex in

common with Ri, one can easily see that B is always a proper minor of Z1
1 or Z2

1 . 2

Lemma 12 Let ((Ri; Hi; Ii); i = 1; 2) be the pair of doors opening a bolbe B of a smooth graph.

Then, there exist an edge ordering of B with linear-width � 2 and with the property that R1

(R2) is a subset of its �rst (last) edge.

Proof. From Lemma 11 we have that B � Z1
1 or B � Z2

1 . Using now the orderings depicted in

Figure 3 for Z1
1 and Z2

1 as a starting point, one can easily construct a suitable edge ordering for

any of their minors. 2

11



Actually, the forms that open bolbes of smooth graphs can have are not many. Using

Lemma 11 as a starting point, one can easily determine all of them. A back up of these graphs

and the corresponding orderings (according to Lemma 12) can be useful for the implementation

of the algorithm LW2(G) that we present in Theorem 1. The same remark holds for the graphs

mentioned in Lemma 9.

3.2 Finding a starting bolbe

We plan to prove that any open smooth graph G has an edge ordering with linear-width � 2

(Theorem 15). In this direction, Lemmata 10 and 12 show how to construct two di�erent types

of edge ordering for the graphs that are consisting G. What we now need is to merge all these

orderings into an edge ordering of the hole graph. For this purpose we need to distinguish which

parts of an open smooth graph require each type of ordering.

Given a v-graph G where v 62 A(G), we de�ne the v-bolbe of G as the unique bolbe of G

containing v as a vertex. Let P be a pair opening a bolbe B. If the two doors in P are non

empty and have the same passage, then we call P marginal.

Notice that if a bolbe is opened by a (non)-marginal pair then all the pairs opening it are

(non)-marginal. Using this remark we can de�ne that a bolbe B is marginal if it is opened by a

marginal pair, otherwise we call it non-marginal.

Lemma 13 Let G be a graph containing a marginal bolbe B. Let v be the unique passage of

a marginal pair P opening B and G0 be the graph in D(G; v) whose v-bolbe is B. Then then

following hold.

i. G0 is not a v-wing,

ii. D(G; v) contains two v-graphs whose v-bolbes are non-marginal.

Proof. From (op{v) we have that D(G; v) contains two v-wings G1; G2 that are di�erent from

G0.

i. As, from (sm{iv), �(G; v) � 2, G0 cannot be a v-wing.

ii. Let now Bi be the v-bolbe of Gi; i = 1; 2. Then Bi; i = 1; 2 is non-marginal, otherwise,

applying 13.i on Bi we have that Gi is not a wing, a contradiction. 2

Lemma 14 Let G be a connected open smooth graph. Then one of the following holds.

(a) There exist a vertex v 2 A�(G) such that �(G; v) = 0.

(b) G has a non-marginal bolbe B opened by a non-marginal pair P where P has either an

empty door or a passage v 2 V (B) such that �(G; v) = 1. We call such a bolbe starting bolbe.

Proof. From (sm{iv) we have 8v 2 A(G) �(G; v) � 2. Assume now that that (a) does not

hold. Then, 8v 2 A(G) �(G; v) = 1 or 2. We also assume that G contains at least one bolbe,

otherwise, (a) holds. Finally, we can assume that for any bolbe of G the pairs opening it contain

12



only non-empty doors as otherwise such a pair is clearly non-marginal and (b) holds. Let W be

the set of the non-marginal bolbes of G. From Lemma 13.ii, we have that W 6= ;.

In what follows, we will prove that there exist a bolbe B 2 W opened by a non-marginal pair

P that contains a passage v where �(G; v) = 1. IfW contains only one bolbe B, then it is trivial

to see that for any passage v of a pair opening B, �(G; v) = 1. We now assume that jWj � 2.

Suppose, towards a contradiction, that any pair opening a bolbe B 2 W contains two passages

v1; v2 such that �(G; v1) = �(G; v2) = 2. Notice that, in such a case, if (Q1; Q2) is a pair opening

a bolbe B 2 W then, apart from (Q2; Q1), there exist no other pair opening B. As (Q1; Q2)

and (Q2; Q1) has the same passages we can call them passages of B. Let A be the vertices of

A�(G) that are also passages of bolbes in W . Clearly, any bolbe of W contains two vertices of

A as passages. Let now v 2 A. Let also G1
v; G

2
v be the two v-wings in D(G; v) and B1; B2 be

the v-bolbes of G1
v and G2

v respectively. Clearly, B1; B2 2 W and therefore, each vertex in A is

the common vertex of two di�erent bolbes in W . We construct now G0 as follows: �rst remove

from G all the vertices not belonging to graphs in W and then, for each bolbe B 2 W , contract

all the edges in E(B) except from one (in case jWj = 2, we allow multiple edges in G0). It is

not hard to see that V (G0) = A and E(G0) consists of the edges that where excepted. Moreover,

notice that each vertex in G0 has degree exactly 2 and therefore G0 is a cycle, a contradiction as

the vertices in A should be articulation vertices of G0 as well. 2

3.3 Constructing an edge ordering

In this subsection we present the way to merge the edge orderings of the trivial bolbes, the

non-trivial bolbes, and the hairs of an open smooth graph. The non-trivial bolbes will form the

main axis of the hole ordering.

Lemma 15 Let G be an graph that is smooth and open. Then, there exist an edge ordering of

G with linear-width at most 2.

Proof. We can assume that G is connected, (otherwise we apply the proof on each of the

connected components of G). Using Lemma 14, we can assume that 14.(b) holds as, otherwise,

the result follows immediately from Lemma 10.

We apply the following procedure on G. For an example see Figure 5.

1. Let B1 be a starting bolbe of G and (Q1; Q2) = (R1
j ; H

1
j ; I

1
j ); j = 1; 2 be the non-marginal

pair opening B1. If both Q1; Q2 are non-empty we can assume that their passages are v11 and

v12 respectively. (Notice that, since (Q1; Q2) is non-marginal, v11 6= v12 .) If only one, say Q2, of

Q1; Q2 has a passage, then we consider that v12 is the passage of Q2 and v11 is some simplicial

vertex of the simplicial face of B corresponding to Q1 (if B is a cycle or a single edge, then we

can choose as v11 any vertex of B that is not v12). (If none of Q1; Q2 has a passage then G = B1

and the required edge ordering can be constructed according to Lemma 12.)

2. Let G1 be the unique v-wing in D(G; v) (in case �(G; v) = 0 the result follows immediately
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from Lemma 10).

3. Set H0 = fH1
1g (clearly, as �(G; v11) = 1, H0 is not a v11-wing).

4. Set i = 1.

5. If Ri
2 = ;, then set Hi = O, � = i, and stop.

6. If H i
2 is not a vi2-wing, then we set Hi = H i

2, � = i and stop.

7. If H i
2 is a vi2-wing, then let Gi+1 be the unique member of D(H i

2; v
i
2) that is a vi2-wing.

8. Set Hi = [H2D(Hi

2
;vi
2
)�fGi+1g

H (i.e. Hi contains all the others). Notice also that �(Hi) = 0.

9. Set i = i+ 1.

10. Let Bi be the vi�12 -bolbe of Gi. Let also (Qi
1; Q

i
2) = ((Ri

j; H
i
j; I

i
j); j = 1; 2) be a pair opening

Bi. Let also vi1; v
i
2 be the corresponding passages. Clearly, vi�12 is one, say vi1, of vi1; v

i
2. Recall

that Gi is a vi1-wing. Therefore, from Lemma 13.i, (Qi
1; Q

i
2) is a non-marginal pair and thus,

vi1 6= vi2.

11. Goto to step 5.
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2
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4
2

: edges of the graphs in B = fB1;B2;B3;B4g.
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1 [R

1
2 [ R

2
1 [R

2
2 [R
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1 [R

3
2 [R

4
1 [R

4
2.

Figure 5: An example of an edge ordering with linear-width � 2.

Clearly in each repetition of loop 5{10 the graph Gi+1 produced has always less vertices

than Gi. Therefore, the procedure will stop after producing the sequence of graph sequences

H = fH0; : : : ; H�g, I = fI11 ; I
1
2 ; : : : ; I

�
1 ; I

�
2g and B = fB1; : : : ; B�g. As any member of Bi 2 B

is a bolbe, we can apply Lemma 12 to get, for any i = 1; : : : ; �, an edge ordering lBi of Bi with

linear-width(l) � 2 and with the property that if ei1 and eijBij
are the �rst and last edges of f lBi ,

then Ri
1 � ei1 and Ri

2 � eijE(Bi)j
. Notice now that any non null member I ij of I; 1 � i � �; j = 1; 2

is a uij-hair (fuij; x
i
j ; y

i
jg; ffu

i
j; x

i
jg; fx

i
j; y

i
jgg) where uij is the unique element of Ri

j � fv
i
1g. For

i = 1; : : :� and j = 1; 2 we de�ne lIj;i = (fuij; x
i
jg; fx

i
j; y

i
jg). Let now Hi be a member of
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H; 0 � i � �. Recall that Hi is not a vi2-wing. From Lemma 10, we have that there exist a

vi2-weak edge ordering lHi of E(Hi).

Notice now that G = ([i=1;:::;�Bi)
S

([i=0;:::;�Hi)
S

([i=1;:::;�I
i
1)
S

([i=1;:::;�I
i
2) and that if l =

lH0 � (lI1;1)
�1 � lB1 � lI2;1 � l

H
1 � (lI1;2)

�1 � lB2 � lI2;2 � lH2 � � � � � (lI1;�)
�1 � lB� � lI2;� � l

H
� , then l is

an edge ordering of G with linear-width � 2. 2

3.4 The algorithm

Algorithm LW2(G)

Input: A graph G

Output: If linear-width(G) � 2, the algorithm outputs an edge ordering of G with linear-width

� 2. If not the algorithm reports \linear-width(G) > 2".

1. Let G1 be a graph such that G1 � G, linear-width(G1) = linear-width(G), and G1 does not

have small or long edges.

2. If G1 is not outerplanar, then Return \linear-width(G) > 2" and stop.

3. Let G2 be a graph such that G2 � G1, linear-width (G1) � 2 , linear-width(G2), and G2

does not have weak edges.

4. If 9B2B(G2) jS(B)j � 3 then Return \linear-width(G) > 2" and stop.

5. If 9v2A(G2) �(G2; v) � 3 then stop. (Notice that if the algorithm does not stop, then G is

smooth.)

6. If 9B2B(G2) B is not open, then Return \linear-width(G) > 2" and stop. (Notice that if the

algorithm does not stop, then G2 is smooth and open.)

7. If 9v2A�(G) �(G; v) = 0 then construct an ordering l of G2 according to Lemma 10 and goto

step 10.

8. Find a starting bolbe of each of the connected components of G2 (these bolbes exist because

of Lemma 14).

9. For each connected component of G2, construct an edge ordering l2 with linear-width � 2,

using the procedure of the proof of Lemma 15. Finally, merge the edge orderings found to an

edge ordering of G2.

10. Construct an edge ordering l1 of G1 with linear-width � 2.

11. Construct an edge ordering l of G with linear-width � 2.

12. Return l and stop.

Theorem 1 Algorithm LW2(G) is linear on jV (G)j and outputs, if it exists, an edge ordering

of G with linear-width � 2.

Proof. We �rst prove that LW2(G) needs O(jV (G)j) time. Steps 1 and 3 can be done in linear

time because of Lemmata 5 and 7 (take in mind that any outerplanar graph G has O(jV (G)j)

edges). Clearly, step 2 can be done in linear time. Moreover, it is possible in linear time to
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compute all the biconnected components of G2 and, thus, step 4 needs O(jV (G2)j) time. Notice

that it is possible to check in constant time whether a graph is v-minor of a graph with constant

size. Therefore, according to Lemma 9 checking whether a graph is a v-wing or not requires

constant time. Moreover, it is not hard to see that for any outerplanar graph
P

v2V (G) jD(G; v)j =

O(jV (G)j) and
P

B2B(G) jEX(B)j = O(jV (G)j). Using the above observations and Lemma 11,

one can easily verify that each of steps 5{9 can be done in O(jV (G2)j) time. Finally, the fact

that steps 10 and 11 can be performed in linear time, follows directly from Lemmata 7 and 5.

What remains now is to prove that algorithm LW2(G) is correct. Notice that, if for some input

G the algorithm enters step 7, then G2 is smooth and open. Therefore, linear-width(G2) � 2

and thus the required ordering can be correctly constructed according to Lemma 15. Sup-

pose now that for some input G the algorithm never enters at step 7. We claim that, then,

linear-width(G) > 2. In what follows we prove that L2 v G. The claim then will be a direct

consequence of Lemma 2.

Suppose �rst that LW2(G) stops at step 2. Then G1 is not outerplanar and L2 v fK2;3; K4g v

G1 � G (it is known that any non outerplanar contains either K2;3 or K4 as a minor). If now

LW2(G) stops at steps 4 or 5, the result follows directly from the fact that G2 � G1 � G and

from Lemma 8. Finally, if the algorithm stops at step 6, this means that G is smooth and

contains a bolbe B that is not open. The result now follows from the fact that G2 � G1 � G

and Lemma 16 (Lemma 16 will be presented in the next section). 2

We remark that the main algorithm of this section can be easily parallelised. A parallel

version of LW2(G) would require O(log jV (G)j log� jV (G)j) time and O(jV (G)j) operations on an

EREW PRAM and O(log jV (G)j) time and O(jV (G)j) operations on a CRCW PRAM. We do

not proceed with a detailed elaboration of the parallel case as it is easy and based on standard

techniques.

4 Computing the obstruction set

In this section we will prove the basic structural lemma of this paper. Moreover, we will examine

the case where multiple edges are considered.

4.1 The main lemma

The proof of the main lemma is based in an exhaustive case analysis of all the possible ways the

graphs in G[V (G)�V (B)] can be attached on B. We will show that either an opening pair exist

or some graph in L32 [ � � � [ L
9
2 is a minor of G.

Lemma 16 Let B be a bolbe of a smooth graph G. Then, either B is open or L32[ � � �[L
9
2 v G.

Proof. We assume that L32[� � �[L
9
2 6v G. We will construct a pair of doors P = ((Ri; Hi; Ii); i =

1; 2) opening B. We examine �rst the case where there exists a vertex v 2 R(B) such that
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D(Bv ; v) contains two v-wings G1; G2. Let G3 be the graph in D(G; v) whose v-bolbe is B.

Clearly, as �(G; v)� 2 (recall that G is smooth), this v-graph is not a v-wing and using Lemma 9

we can see that G3 is a biconnected v-minor of Z0. Notice that R(B) � 3 and if x 2 R(G)�fvg,

then x � v. Let H1 = [(EX(B; v) � fG2g) and H2 = G2. If R(B) � fvg = ;, then set

Ri = ;; Ii = O; i = 1; 2. If R(B)�fvg = fxg and G3 is isomorphic to C2 (graph C2 is depicted in

Figure 1) we set R1 = R2 = fv; xg, I1 is the one of the two x-hairs of D(G3; x) and I2 the other.

If R(B) � fvg = fxg and G3 is isomorphic to C2 we set R1 = fv; xg; I1 = Bx; R2 = fvg; I2 = O.

Finally, if R(B) � fvg = fx1; x2g, then set Ri = fv; xig; Ii = Bxi ; i = 1; 2. It is now easy to

observe that ((Ri; Hi; Ii); i = 1; 2) opens B.

We assume now that 8v 2 R(B) EX(B; v) contains at most one v-wing. We de�ne a function

� : R(B)! f0; 1; 2g where for any v 2 R(B), �(v) = 0 if Bv is a v-hair, �(v) = 1 if Bv consists

of two u-hairs (i.e. is isomorphic to graph B1 depicted in Figure 1), and �(v) = 2 in any other

case (i.e. contains some graph in C as a v-minor { C is depicted in Figure 1). We call the value

of �(v) strength of v. Notice now the following.

(e{i) Any vertex in R(B) belongs in some simplicial face, otherwise, A+
1 � B.

(e{ii) jR(B)j � 4 otherwise, 5A1 � G.

(e{iii) R(B) contains at most two vertices with strength 2, otherwise, L32 v G.

(e{iv) If jR(B)j = 3 then 9v; u 2 R(B) v � u, otherwise 3A+
1 � G.

(e{v) If jR(B)j = 4 then 9v; u; w; x 2 R(B) v � u and w � x, otherwise 3A+
1 � G.

Suppose now that R(G) � 2. If R(B) = ; then set Ri = ;; Hi = Ii = O; i = 1; 2. If R(B) = fvg

then set R1 = fvg; H1 = Bv; R2 = ;; H2 = I1 = I2 = O. If R(B) = fv1; v2g then set Ri =

fvig; Hi = Bvi ; Ii = ;; i = 1; 2. Since in any of the above cases ((Ri; Hi; Ii); i = 1; 2) opens B,

we may assume that R(B) � 3 (and thus S(B) � 1). From the smoothness of G we have that

S(G) � 2. The proof proceeds with the following case analysis.

We examine �rst the case where S(B) = 1 (Notice that, in this case B is a cycle).

a. R(B) = fv; u; wg. From (e{iv) we assume that v � u.

a.I. For at least one, say u, of v; u, �(u) = 0. Then, P = ((fv; ug; Bv; Bu); (fwg; Bw;O).

a.II. �(v) = �(u) = 1. Then, for one of v; u, say v, v � w (otherwise A12B1 � G). We set

P = ((fu; vg; Bu; I1); (fw; vg; Bw; I2)) where I1 is the one of the two v-hairs of Bv and I2 is the

other.

a.III. �(v) = 2; �(u) = 1. If �(w) = 0, then for one of v; u, say v, v � w (otherwise

fA12B1; A1B1C3g v G) and we set P = ((fug; Bu;O); (fv; wg;Bv; Bw)). If �(w) � 1, then

w � u, otherwise, either L82 v G or L92 v G. We set P = ((fw; ug; Bw; I1); (fv; ug;Bv; I2)) where

I1 is one of the two u-hairs of Bu and I2 the other.

a.IV. �(v) = �(u) = 2. Then, �(w) = 0 and for one of v; u, say v, w � v, otherwise, either

L82 v G or L32 v G or L92 v G. We set P = ((fug; Bu;O); (fv; wg;Bv; Bw)).

b. R(B) = fv; u; w; xg. From (e{v) we assume that v � u and w � x. Let N be the set of

neighbours of v and u in B.
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Figure 6: The sets L12;L
2
2; and L32.

b.I. jN \ fw; xgj � 1. Notice that for at least one of v; u, say u, �(u) = 0 (otherwise,

L82 v G) and for at least one of w; x, say x, �(x) = 0 (otherwise, L82 v G). We set P =

((fv; ug; Bv; Bu); (fw; xg;Bw; Bx)).

b.II. N \ fw; xg = fw; xg. If at least two vertices, say u; w, in fv; u; x; wg, have strength 0, then

we set P = (fv; ug; Bv; Bu); (fv; wg;Bx; Bw). If at least 3 vertices in fv; u; x; wg have strength

� 1, then it is easy to see that, either L62 v G or L32 v G.

It remains to examine the case where S(B) = 2. We set fF1; F2g = S(B). Clearly, jF1\F2j �

2. We call a vertex crucial if it is a critical vertex of both simplicial faces of B (i.e. belongs in

F1 \ F2). We notice �rst the following fact.

(e{vi) Any face can contain at most 2 non crucial vertices v; u that belong in R(B) (other-

wise, 2A1 � G). Moreover v � u (otherwise, 2A1 � G) and for one of them, say u, �(u) = 0

(otherwise, L52 v G).

Case 1. F1 \ F2 = ;. Notice that all vertices in R(B) are non crucial.
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1.a. R(B) = fv; u; wg. From (e{vi) we may assume that v; u 2 F1; w 2 F2; v � u; �(u) = 0 and

we set P = ((fv; ug; Bv; Bu); (fwg; Bw;O)).

1.b. R(B) = fv1; u1; v2; u2g. From (e{vi) we may assume that vi; ui 2 Fi; vi � ui; �(ui) = 0; i =

1; 2 and we set P = ((fvi; uig; Bvi ; Bui); i = 1; 2).

Case 2. F1 \ F2 = fvg. We assume that v 2 R(B) (i.e. v is crucial) as, otherwise, Case 2 is

reduced to Case 1.

2.i. �(v) = 0.

2.i.a. R(B) = fv; u; wg. There are two cases.

2.i.a.I. u; w belong to the same simplicial face, say F1. As u; w are non crucial, from (e{vi), we

can assume that u � w and �(w) = 0. We set P = ((fvg; Bv;O); (fu; wg;Bu; Bw)).

2.i.a.II. u; w belong to di�erent simplicial faces. Then, for at least one of u; w, say u, we have

that u � v (otherwise f3A1; 3A
+
1 g v G) and we set P = ((fu; vg; Bu; Bv); (fwg; Bw;O)).

2.i.b. R(B) = fv; u; w; xg. As all the vertices u; w; x are non crucial, from (e{vi), we can

assume that u; w 2 F1, x 2 F2, u � w, and �(u) = 0. Notice also that x � v, otherwise,

f3A+
1 ; 3A1g v G. We set P = ((fw; ug; Bw; Bu); (fx; vg;Bx; Bv)).

2.ii. �(v) = 1.

2.ii.a. R(B) = fv; u; wg. There are two cases.

2.ii.a.I. u; w belong to the same simplicial face. Similar to Case 2.i.a.I.

2.ii.a.II. u; w belong to di�erent simplicial faces. Then, for at least one of u; w, say u, we have

that u � v (otherwise f3A1; 3A
+
1 g v G). If �(u) = 0, we set P = ((fv; ug;Bv; Bu); (fwg; Bw;O)).

If �(u) > 0, then w � v (otherwise fA12B1A1B1C3g v G). We can now set P = ((fu; vg; Bu; I1);

(fw; vg; Bw; I2)) where I1 is one of the two v-hairs of Bv and I2 is the other.

2.ii.b. R(B) = fv; u; w; xg. Using (e{vi), we can assume that w; x 2 F1, y 2 F2, w �

x, and �(x) = 0. We also notice that y � v (otherwise, 3A+
1 ) and �(y) = 0 (otherwise,

fA1B1C3; A12B1g v G). We set P = ((fw; xg; Bw; Bx); (fv; yg;Bv; By)).

2.iii. �(v) = 2.

2.iii.a. R(B) = fv; u; wg. There are two cases.

2.iii.a.I. u; w belong to the same simplicial face. Similar to Case 2.i.a.I.

2.iii.a.II. u; w belong to di�erent simplicial faces. Then, for at least one of u; w, say u, we have

that u � v (otherwise, f3A1; 3A
+
1 g v G). If �(u) = 0, set P = ((fv; ug;Bv; Bu); (fwg; Bw;O)).

If �(u) > 0, then w � v (otherwise, L82 v G) and �(w) = 0 (otherwise L92 v G). We set

P = ((fug; Bu;O); (fv; wg;Bv; Bw)).

2.iii.b. R(B) = fv; u; w; xg. From (e{vi) we can assume that u; w 2 F1; u � w, and �(w) = 0.

We also notice that x � v (otherwise, 3A+
1 � G) and that �(x) = 0 (otherwise, L82 v G). We

set P = ((fu; wg; Bu; Bw); (fv; xg;Bv; Bx)).

Case 3. F1\F2 = fv; ug. Notice that if jR(B)\F1\F2j = 0 then Case 3 is reduced to Case 1.

Also, if jR(B) \ F1 \ F2j = 1 then Case 3 is mainly the same with Case 2 (the only di�erence is

that set f3A1; 3A
+
1 g could be replaced by f3A+

1 g). We now assume that jR(B)\ F1 \ F2j = 2.
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2, and L92.

3.i. �(v) = 0 and �(u) = 0.

3.i.a. R(B) = fv; u; wg. From (e{iv), we can assume that w � v and set P = ((fw; vg; Bw; Bv);

(fug; Bu;O)).

3.i.b. R(B) = fv; u; w; xg. From (e{v), we can assume that w � v and x � u. Also, w

and x must belong into di�erent simplicial faces, otherwise 4A1 � G. We can now set P =

((fv; wg; Bw; Bv); (fu; xg; Bx; Bu)).

3.ii. �(v) = 0 and �(u) > 0.

3.ii.a. R(B) = fv; u; wg. If �(w) > 0, then w � v (otherwise, f3A+
1 g [ L

8
2 � G) and we

set P = ((fw; vg;Bw; Bv); (fug; Bu;O)). If �(w) = 0 then either w � v or w � u, otherwise,

3A+
1 � G. We may assume that w � v and set P = ((fv; wg; Bv; Bw); (fug; Bu;O)).

3.ii.b. R(B) = fv; u; w; xg. We distinguish the following cases.

3.ii.b.I. �(w) = �(x) = 0. From (e{v) we may assume that w � v, and x � u. Also

w; x must belong to di�erent simplicial faces (otherwise 4A1 � G). We can now set P =

((fv; wg; Bv; Bw); (fu; xg; Bu; Bx)).

3.ii.b.II. �(w) = 0 and �(x) > 0. In this case, v � x, u � w, and w and x must be-

long into di�erent simplicial faces (in any other case f4A1; 3A
+
1 g v G). We can now set

P = ((fx; vg; Bx; Bv); (fu; wg;Bu; Bw)).

3.ii.b.III. If both �(w); �(x) � 1 then f4A1g [ L
6
2 v G.
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3.iii. �(v) > 0 and �(u) > 0.

3.iii.a. R(B) = fv; u; wg. Clearly �(w) = 0, otherwise L72 v G. Also, either v � w or w � u

(otherwise 3A+
1 � G). We can assume that v � w and set P = ((fv; wg; Bv; Bw); (fug; Bu;O)).

3.iii.b. R(B) = fv; u; w; xg. From (e{v) we may assume that w � v, �(w) = 0, x � u, and

�(x) = 0. Also w and x belong to di�erent simplicial faces (otherwise, 4A1 � G. We set

P = ((fv; wg; Bv; Bw); (fu; xg; Bu; Bx)). 2

Following the case analysis of the above the proof one can easily modify algorithm LW2

so that, in case linear-width(G) > 2, it outputs the forbidden minor G contains. Notice that

LW2(G) is based only on the structural characterisation of G(linear-width; 2) given in Lemma 15

and does not involve at all the case analysis of the proof of Lemma 16 above. The following

theorem gives a complete structural characterisation of the class of graphs with linear-width � 2.

Theorem 2 L2 is the obstruction set for the class of graphs with linear-width � 2 i.e. L2 =

ob(G[linear-width; 2]) .

Proof. By Lemma 3, it is enough to prove that any graph with linear-width more than 2

contains at least one of the graphs in L2 as a minor. Suppose now that linear-width(G) > 2. It

is easy to see that, if G is not smooth, then L12 [ L
2
2 v G (use Lemma 8). If now G is smooth

then it cannot be open otherwise, from Lemma 15, linear-width � 2. Therefore, it contains a

bolbe that is not open. From Lemma 16 we have that L32 [ � � � [ L
9
2 v G. 2

4.2 The case of multiple edges

During the presentation of the proof and the algorithm of sections 3 and 4, we assumed that

the graphs cannot contain loops or multiple edges. We have to mention that it is possible to

obtain the same results without this restriction. The only essential di�erence is that that graphs

C3 and D3 should be replaced with graphs C03 and D03 depicted in Figure 8. This would result

to a di�erent obstruction set. This obstruction set can be constructed from L2 if for any graph

G 2 L2 we apply the following two operations as long as it is possible:

GG0G G0

v

D0
3C03

v

Figure 8: The graphs C03 and D03 and the transformations for the case of multiple edges.

a. If G has a biconnected component that is a triangle, replace this triangle by C03
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b. If G has a simplicial face F containing only one simplicial vertex that is not an articulation

vertex, remove this vertex (along with the two edges containing it) and introduce a new edge

connecting the critical vertices of F .

We avoid examining the case of multiple edges in detail as it would be a tedious resumption

of what we have already presented.

5 Linear-width and search parameters

In this section we give the de�nitions of edge searching, node searching, and mixed searching and

we prove that the problem of computing the corresponding graph parameters can be reduced to

the one of linear-width.

5.1 Mixed search and other variants

A mixed searching game is de�ned in terms of a graph representing a system of tunnels where an

agile and omniscient fugitive with unbounded speed is hidden (alternatively, we can formulate

the same problem considering that the tunnels are contaminated by some poisonous gas). The

object of the game is to clear all edges, using one or more searchers. An edge of the graph is

cleared if one of the following cases occur.

A: both of its endpoints are occupied by a searcher,

B: a searcher slides along it, i.e., a searcher is moved from one endpoint of the edge to the

other endpoint.

A search is a sequence containing some of the following moves. a(v): placing a new searcher on

v, b(v): deleting a searcher from v, c(v; u): sliding a searcher on v along fv; ug and placing it on

u.

The object of a mixed search is to clear all edges using a search. The search number of a

search is the maximum number of searchers on the graph during any move. The mixed search

number, ms(G), of a graph G is the minimum search number over all the possible searches of it.

A move causes recontamination of an edge if it causes the appearance of a path from an uncleared

edge to this edge not containing any searchers on its vertices or its edges. (Recontaminated edges

must be cleared again.) A search without recontamination is called monotone.

The node (edge) search number, ns(G) (es(G)) is de�ned similarly to the mixed search number

with the di�erence that an edge can be cleared only if A (B) happens.

The following results were proved by Bienstock and Seymour in [3] (see also [35]).

Theorem 3 For any graph G the following hold:

i. If ms(G) � k then there exist a monotone mixed search in G using � k searchers.

ii. linear-width(G) � ms(G).

iii. If G does not contain pendant vertices, then linear-width(G) = ms(G).
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iv. If Ge is the graph occurring from G after subdividing each of it edges, then es(G) = ms(Ge).

vi. If Gn is the graph occurring if we replace every edge in G with two edges in parallel, then

ns(G) = ms(Gn).

We mention that the mixed search number is equivalent with the parameter of proper-

pathwidth de�ned by Takahashi, Ueno, and Kajitani in [33, 35]. It is also known that the

node search number is equal to the pathwidth, the interval thickness, and the vertex separation

number (see [21, 22, 25, 19, 12]).

5.2 The relation between linear-width and mixed search

A pendant vertex is called fully pendant when it is adjacent with an almost pendant vertex. Any

edge containing a fully pendant vertex is called fully pendant. Clearly, a pendant edge is fully

pendant i� it is not small. Let G be a graph. We denote as �G the graph obtained from G if

for any pendant vertex we introduce one new vertex and an edge connecting them (formally, if

P = fp1; : : : ; prg, is the set of pendant vertices of G, then �G = (V (G) [ fp01; : : : ; p
0
rg; E(G)[

ffp1; p
0
1g; : : : ; fpr; p

0
rgg where fp01; : : : ; p

0
rg \ V (G) = ;). We denote as ��1G the graph obtained

if we remove all the pendant vertices. Observe that if a graph does not contain small edges,

the graphs ���1G, ��1�G, and G are isomorphic. For an example of operations � and ��1

see Figure 9.

��1K1;3 K1;3 ��K1;3�K1;3

Fully pendant

Almost pendant

Small

Figure 9: The graphs ��1K1;3; K1;3;�K1;3 and ��K1;3.

Clearly, any pendant edge of G becomes almost pendant in �G and any almost pendant edge

in G becomes pendant in ��1G.

We will need the following easy result (for the proofs see e.g. in [35]).

Lemma 17 For any graph G the following hold.

i. If v is a fully pendant vertex v in G then ms(G) = ms(G� v).

ii. If e is a long edge in G then ms(G) = ms(G
.
{ e).

Theorem 4 Let G be a graph. Then, ms(G) = linear-width(�G) and linear-width(G) =

ms(��1G).

Proof. We prove �rst that the �rst equality implies the second. We denote as Gs the graph

obtained from G if we remove all the small vertices. Applying inductively Lemma 4.i on the
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number of small vertices of G we can prove that linear-width(G) = linear-width(Gs). Since Gs

has not small edges Gs is isomorphic with ���1Gs and �nally, we have that linear-width(Gs) =

linear-width(���1Gs). The �rst equality now implies that linear-width(���1Gs) = ms(��1Gs).

Observe now that ��1Gs is isomorphic to ��1G and therefore linear-width(G) = ms(��1G) as

required. What remains now is to prove the �rst equality.

Let E = fg1; : : : ; gng be the set of pendant edges of G and let gi = fxi; yig; 1 � i � n where

dG(yi) = 1, 1 � i � n. Let also E0 = (g1; g
0
1; : : : ; gn; g

0
n) � E(�G) where gi = fyi; y

0
ig is an

almost pendant edge of �G and g0i = fyi; y0ig is a fully pendant edge of �G for i = 1; : : : ; n. Let

l = (e1; : : : ; er) be an edge ordering of �G with linear-width = k.

For any i = 1; : : : ; n we apply the following operation: if gi = ej and g0i = eh in l we replace

l by the sequence (e1; : : : ; eminfj;hg�1; gi; g
0
i; eminfj;hg+1, : : : ; emaxfj;hg�1; emaxfj;hg+1; : : : ; er) (i.e.,

we remove gi and g0i and place �rst gi and then g0i in the position where one of them appears for

the �rst time). Notice that the above reordering operation does not increase the linear width

of the ordering. Therefore, we end up with an edge ordering l� that has linear-width � k and

where every edge fyi; y
0
ig appears always immediately after fxi; yig.

Let l0 be an ordering of E(G), obtained from l� by replacing every occurrence of successively

an edge fxi; yig and the edge fyi; y0ig by an occurrence of the edge fxi; yig. We claim that there

exist a monotone mixed-search of G using � k searchers, such that the edges of G are cleared

in the order of l0. We prove the claim with induction. Suppose that we there exist a sequence

of search moves that clears the the �rst i edges of l0 (and not any other) in the order that they

appear in l0. We denote this edge set as Ei. Let also ej be the ith edge of l0. If ej+1 is missing

from l0 then set h = j + 1 otherwise set h = j. Notice that no vertex in fy1; : : : ; yn; y
0
1; : : : ; y

0
ng

belongs to �l�(eh). Moreover, all the vertices of �l�(eh) are occupied by a searcher in G as

they are incident both to a clear edge (an edge in Ei) and to a contaminated edge (an edge in

E(G)� Ei). Clearly, if we now remove all the other searchers, no recontamination will occurs.

In case jeh+1 [ �l�(eh)j � k, we place new searchers on the endpoints of eh+1 and clear it. We

can now assume that jeh+1 [ �l�(eh)j > k and, as �l�(eh) � k, not both of the endpoints of eh+1

are guarded (i.e. they are occupied by some searcher).

Let v be an unguarded endpoint of eh+1 in G. As v is unguarded either it is incident only

with contaminated edges or only with clear edges in G. The second case is impossible as eh+1 is

contaminated. If v is incident only to eh+1 in G, this means that v has degree 1 in G and therefore

has degree 2 in �G. It is now clear that, in any case, v has degree � 2 in �G and therefore

v 2 �l�(eh+1). If both of the endpoints of eh+1 are unguarded then we have ei 2 �l�(eh+1)��l�(eh)

which means that j�l�(eh)j � k � 2, a contradiction to the assumption that jeh+1 [ �l�(eh)j > k.

Therefore, one of the endpoints of eh+1, say u is guarded and one, say v is unguarded.

Suppose now that u is incident to a contaminated edge di�erent from eh+1. This means that

�l�(eh+1) = �l�(eh) [ fvg and as, �l�(eh) [ fvg = �l�(eh) [ fv; ug, we have that k � j�l�(eh+1)j =

j�l�(eh) [ fv; ugj � k + 1 a contradiction. Therefore, u is incident only with clear edges in G
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and thus, we can clear eh+1 by sliding the searcher guarding u along eh+1 to v (i.e. applying

c(u; v)), without causing any recontamination. This completes the proof of the fact that ms(G) �

linear-width(�G).

Suppose now that there exist a mixed search for G that uses k searchers. From Theorem 3.ii

we have that linear-width(�G) � ms(�G). Therefore, it is enough to prove that ms(�G) =

ms(G). This fact follows from Lemma 17.i by induction on the number of fully pendant vertices

of �G. 2

Notice that Theorem 4 is an extension of Theorem 3.iii. We summarise the consequences of

Theorem 4 into the following theorem.

Theorem 5 i. The problem of computing linear-width is NP-complete.

ii. There exist an algorithm that given a tree T computes linear-width(T ) in O(jV (T )j) time.

iii. One can construct an algorithm that, given a graph G, checks whether G has mixed (edge)

search number at most 2 and, if so, outputs a mixed (edge) search strategy that uses the minimum

number of searchers.

Proof. i. The NP-completeness of linear-width follows directly from Theorem 4 and the fact

that computing ms(G) is an NP-hard problem [35].

ii. The existence of an algorihtm computing linear-width of trees is a consequence of Theorem 4

and the fact that there exist an algorithm that given a tree T computes ms(T ) in O(jV (T )j)

time (see [35]).

iii. The result is trivial in case ms(G) � 1 (es(G) � 1). Using now Theorems 4 and 3.iv we

have that, in order to check whether ms(G) � 2 (es(G) � 2), it is enough to apply LW2(�G)

(LW2(�Ge)). If this is the case, LW2(�G) (LW2(�Ge)) will output an edge ordering of �G (�Ge).

It is not hard to see that, following the machinery of the proof of Theorem 4, this edge ordering

can be transformed to a mixed (edge) search in linear time. 2

5.3 The acyclic minor minimal graphs with linear-width > k

It is easy to verify that ob(G[ms; 1]) = fK3; K1;3g. ob(G[ms; 2]) has been determined by Taka-

hashi, Ueno, and Kajitani in [34] and consists of 36 graphs.

The following lemma is an immediate corollary of Lemmata 4 and 17.

Lemma 18 i. No graph in ob(G[ms; k]) contains edges that are fully pendant or long.

ii. No graph in ob(G[linear-width; k]) contains edges that are small or long.

Lemma 19 Let k � 1. Then, G 2 ob(G[ms; k])) �G 2 ob(G[linear-width; k]).

Proof. Suppose that G is a graph in ob(G[ms; k]). Clearly ms(G) > k and, as G is minor

minimal, 8H�G ms(H) � k. From Theorem 4, linear-width(�G) > k. Suppose, towards a
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contradiction, that �G 62 ob(G[linear-width; k]) and thus, there exist some edge e 2 E(�G) such

that either linear-width(�G� e) > k or linear-width(�G
.
{ e) > k. In any case, we will �nd a

proper minor of G that has linear-width > k. Notice that �G does not contain small or long

edges. We examine three cases:

Case 1. e = fu; u0g is a fully pendant edge of �G. We observe that one of u; u0, say u0 is a fully

pendant vertex in G. Notice also that �G�fu; u0g and �G
.
{ fu; u0g are isomorphic. For reasons

of simplicity, we will denote both of them as �G�fu; u0g. Let v be the, unique, neighbour of u in

�G�fu; u0g. As �G does not contain long edges, fv; ug is the unique small edge in �G�fu; u0g

and from Lemma 4.i we have that linear-width((�G� fu; u0g)� fv; ug) > k. Notice that, From

Theorem 4, ms(��1((�G� fu; u0g)�fv; ug)) > k. As ��1((�G� fu; u0g)� fv; ug)� G, we have

a contradiction.

Case 2. e = fv; ug is an almost pendant edge of �G. The case where lw(G
.
{ fv; ug) > k is

similar to Case 1. We assume that lw(�G � fv; ug) > k. Let u be the almost pendant vertex

of fv; ug and u0 be the fully pendant vertex of �G that is adjacent to u. Clearly, vertices u0; u

induce one, of the two connected components of �G�fv; ug. We denote the other as H . Clearly,

linear-width(H) > k and, from Theorem 4, we have that ms(��1H) > k. As ��1H � G, we have

a contradiction.

Case 3. e = fx; yg is not a fully or an almost pendant edge of �G. Moreover, if linear-width(�G�

e) > k or linear-width(�G
.
{ e) > k then, from Theorem 4 we have that either ms(�G� e) > k

or ms(�G
.
{ e) > k . Using now the fact that e is not a fully or an almost pendant edge of �G,

one can easily see that ��1(�G� e) (��1(�G
.
{ e)) is isomorphic to a minor of G � e (G

.
{ e), a

contradiction. 2

According to Lemma 19, � is an injection from ob(G[ms; k]) to ob(G[linear-width; k]). Using

this fact, it is easy to determine ob(G[ms; k]) if we know ob(G[linear-width; k]). Indeed, if we

apply ��1 on all the graphs in ob(G[linear-width; k]), we will obtain a setM of graphs containing

ob(G[ms; k]) as a subset. We can now obtain ob(G[ms; k]) from M by discarding all the graphs

having proper minors in M (i.e. we keep only the minor minimal elements).

Using the above methodology, we can directly verify the result of [34]. One can easily see that

ob(G[ms; k]) can be obtained if we apply ��1 on the 36 underlined graphs depicted in Figures 6

and 7.

We now denote as aob(G[linear-width; k]) (aob(G[ms; k])) the set consisting of the acyclic

graphs in ob(G[linear-width; k]) (ob(G[ms; k])). Let (Gi; i = 1; 2; 3) be a triple of vi-graphs and

let v be a vertex such that v 62 V (G1) [ V (G2) [ V (G3). We call the graph G1 [ G2 [ G3 [

(fv; v1; v2; v3g; ffv; v1g; fv; v2g; fv; v3gg) star-composition of Gi; i = 1; 2; 3.

The following has been proved in [33].

Theorem 6 Let k � 2. A tree T is in aob(G[ms; k]) i� T is a star decomposition of three graphs

in aob(G[ms; k � 1]).
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Notice that, as aob(G[ms; 1]) = fK1;3g, Theorem 6 explicitly de�nes Pa
k for any k � 1. The

following theorem shows that aob(G[ms; k�1]) and aob(G[linear-width; k]) are not very di�erent.

Theorem 7 Let T be tree and k � 1. Then, T 2 aob(G[ms; k]), �T 2 aob(G[linear-width; k]).

Proof. The \)" direction follows from Lemma 19. Let now T 2 aob(G[linear-width; k]). From

Theorem 4 we have that ms(��1T ) > k. Let e 2 E(��1T ). We will prove that ms(��1T � e) � k

and ms(��1T
.
{ e) � k. Suppose in contrary, that for some edge e 2 E(��1T ) either ms(��1T �

e) > k or ms(��1T
.
{ e) > k. We examine �rst the case where e = fv; ug is a pendant edge of

��1T . W.l.o.g we assume that d��1T (u) = 1. From Lemma 18.ii we have that, in T , u is an almost

pendant vertex adjacent to some pendant vertex u0. Moreover, fv; ug is a small edge in ��1(T )

and the removal or the contraction of it does not result to the appearance of a new pendant edge.

One can now see that �(��1T � fu; vg) is isomorphic to (T � fv; ug)� fu; u0g � T , which is a

contradiction, as, from Theorem 4, linear-width(�(��1T �fu; vg)) > k or linear-width(�(��1T
.
{

fu; vg)) > k. Suppose now that e = fv; ug is not a pendant edge of ��1T . We examine two

cases.

Case 1. ms(��1T � e) > k. We notice �rst that ��1T � e consists of two connected com-

ponents T1; T2. W.l.o.g. we may assume that ms(T1) > k. From Theorem 4, we have that

linear-width(�T1) > k. It is now easy to see that that �T1 � T , a contradiction.

Case 2. ms(��1T
.
{ e) > k. We �rst claim that after the contraction of e no new pendant edge

appears. Notice that the only case where the contraction of a non pendant edge e results to the

appearance of a new pendant edge is the case where exist a vertex adjacent with both of the

endpoints of e. As T is a tree, this case must be excluded and the claim holds. Using this claim,

it is easy to see that �(��1T
.
{ e) is isomorphic with T

.
{ e � T . We now have a contradiction

as, from Theorem 4, linear-width(�(��1T
.
{ e)) > k. 2

From Theorem 7, we have that � is an bijection from aob(G[ms; k]) to aob(G[linear-width; k]).

Using this fact and Theorem 6, we can determine all the acyclic graphs in ob(G[linear-width; k])

for any k � 1. We can easily conclude to the following result.

Lemma 20 If T 2 aob(G[linear-width; k]), then jV (T )j = (3k+1 + 2 � 3k � 1)=2. Moreover,

jaob(G[linear-width; k]) � (k!)2.

We mention that, according to [33], the cardinality of aob(G[linear-width; k]), for k = 1; 2; 3;

and 4 is 1, 4, 1,330, and 2,875,919,312,080 respectively.

6 Conclusions

Lemma 20 suggests that a complete structural characterisation of G[linear-width; k] is not easy

to be found for k > 2. However, we believe that a more general version of the distinction
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between marginal and non marginal bolbes, that we followed in this paper, can be applied in

the more general cases. Using Lemma 20, one can see that no graph in ob[linear-width; k] has

more than f(k) = (3k+1 + 2 � 3k � 1)=2. Therefore, if we enumerate all the graphs having

at most f(k) vertices, and detect those that are minor minimal graphs that do not belong in

G[linear-width; k], we will end up with ob(G[linear-width; k]). Clearly, such a procedure is rather

impractical because of the immense number of graphs that have to be checked. Clearly, one can

make it more e�cient by applying further restrictions on the graphs enumerated (for example,

graphs in ob(G[linear-width; 3]) cannot have small or long vertices). These restrictions can be

based on some partial characterisation of G[linear-width; k] (for the case where k = 2, such a

partial characterisation could be the one of smoothness that we de�ned in Subsection 2.4).
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