
On Applying Separator Decompositions to Path

Problems and Network Flow�

M.J.Jansen

Department of Computer Science, Utrecht University,

P.O. Box 80.089, 3508 TB Utrecht, The Netherlandsy.

Abstract

Separator decompositions have proven to be useful for e�cient parallel shortest-

path computation. In this paper the applicability of separator decompositions to

maximum
ow computation is explored. It is shown that e�cient parallel shortest-

path computation can be incorporated in the shortest augmenting path maximum

ow algorithm. A class of graphs is described for which the resulting algorithm

takes O(n2+� logn) time and O(n3) work, where 0 < � < 1
3 is a class-dependent

constant. For graphs with bounded treewidth an NC-algorithm is known for the

maximum
ow problem. In this paper we show that width-O(1) tree decompositions
and separator decompositions with separators, leaf vertex sets, and boundaries of

O(1) size are equivalent notions under NC computation. NC-algorithms are given

for converting one type of graph decomposition into the other. Furthermore, the

NC-max
ow algorithm is restated in the separator decomposition framework.

1 Introduction

Network
ow is a �eld with a rich history. It dates all the way back to the 19th-century,
when physicist Kirchho� studied the topic in the context of electrical circuits. In network

ow a central role is taken by path problems, both in theoretic and algorithmic respect.
Path algorithms are an essential building block in many
ow algorithms, and provide us
with a constructive understanding of network
ow.

One of the classical problems within the �eld of network
ow is the maximum
ow
problem. For sequential computing devices there is a long history of improvements on the
worst-case time of the best-known maximum
ow algorithm, starting with the pseudopoly-
nomial algorithm of Ford and Fulkerson [12]. Nowadays fast polynomial algorithms are
known.

� This research was partially supported by ESPRIT Long Term Research Project 20244 (project AL-
COM IT: Algorithms and Complexity in Information Technology).

y All correspondence should be sent to M.J. Jansen, 52 Pellamwood, Grand Island, NY 14072, USA.
Email: mjj@affsys.com

1

1. INTRODUCTION

See Ahuja et al. [1] for a good survey.
On the parallel front some fundamental di�culties surround the maximum
ow prob-

lem. Goldschlager et al. [14] showed that the problem is logspace complete for P, which
can be seen as evidence that the problem is not likely to be solved by an NC-algorithm.

Although in the general case e�cient parallelization is not likely, good results are known
for special cases.

In case the underlying graph is planar, Johnson [18] showed the existence of anO(log3 n)-
time algorithm using O(n4) processors, and an O(log2 n)-time algorithm using O(n6) pro-
cessors, both for the CREW PRAM. For outerplanar graphs a parallel algorithm is known
using O(logn) time and n processors [8]. If capacities are polynomial in the number of
edges m, the problem can be reduced in logspace to the maximum bipartite matching
problem, which is in RNC [19]. Furthermore, Hagerup et al. [15] showed for graphs with
treewidth � k, for constant k, the problem is in NC.

Here, we will restrict ourselves to families of networks for which a recursive decomposi-
tion exists using small separators. A separator of a graph G = (V;E) is a subset of vertices
S � V such that the subgraph induced by V nS is not connected. Informally, for a function
f : N ! R, an f(n)-separator decomposition of G is a recursive tree-shaped decomposition
of G into subgraphs using separators, where subgraphs of size k have separators of size
O(f(k)) [9]. We revisit this de�nition in section 2. Cohen showed that for graphs with
small enough separator decompositions, one can compute distances in a graph in O(logn)
parallel time by augmenting the graph in a preprocessing phase with a set of edges E+.
Section 3 contains an exposition of this approach.

In trying to apply Cohen's approach to an augmenting-path based maximum
ow al-
gorithm one encounters an extra di�culty, namely that of a slowly changing underlying
graph. It seems the only solution is to repeat the preprocessing phase after every aug-
mentation. At the end of section 3 the applicability of Cohen's algorithm to the shortest
augmenting-path max
ow algorithm is explored. For a speci�c class of graphs a parallel
algorithm is given that has the same work bound and a slightly better running time than
the sequential shortest augmenting-path max
ow algorithm.

We already mentioned the existence of aNC max
ow algorithm for graphs with treewidth
� k, for constant k. The treewidth framework is very similar to the separator decompos-
tion framework. Also in treewidth use is made of a tree shaped graph decomposition,
namely the tree decomposition. The relationship between separator decompositions and
tree decompositions is investigated in section 4. Here we will see that a tree decomposition
of O(1) width can be converted into a separator decomposition such that separators are of
O(1) size. Conversely, a separator decomposition of depth O(logn) and separators of O(1)
size, can be transformed into a tree decomposition of width O(logn).

The above mentioned NC max
ow algorithm will be treated in section 5. The expo-
sition in this section diverges from the original article in the respect that the algorithm
is presented with the aid of separator decompositions instead of tree decompositions. We
will look at the more general case of networks with arbitrary number of sources and sinks.
It is shown that a k-terminal
ow in a network, i.e.
ow in a network with k vertices that
are source or sink, can be characterised by a set of at most 2k equations in k variables, or

2

2. PRELIMINARIES

a mimicking network with at most 2(2
k) vertices. Separator decompositions facilitate the

recursive computation of these characterizations. A class of graphs is given for which this
implies that the maximum
ow problem can be solved in NC time.

1.1 Acknowledgements

Previously, this report appeared as a master's thesis at Utrecht University. From this
place I would like to direct some words of gratitude to the people that were involved in my
graduation.

My thanks go out to Edwin and Helga, with whom I shared an o�ce at the University.
Thanks to you working on this thesis was accompanied by a healthy daily dose of fun. I
would like to thank Jan van Leeuwen for being an assistant supervising professor during
my graduation, and for his help and advice concerning my future in the US. I would like
to thank Hans Bodlaender for being an assistant supervising professor, for the discussions
we had, and for his generosity as it comes to lending books, and giving away papers.
Especially, I would like to thank my supervising professor Marinus Veldhorst. Thank you
for sharing your wisdom, and helping me form my ideas. Our weekly meetings were of
incredible personal value. It is a wonderful thing to know that I can always walk into your
o�ce for advice.

2 Preliminaries

Unless explicitly speci�ed otherwise, G = (V;E) denotes a directed graph with n = jV j
nodes and m = jEj edges. We assume that G does not contain isolated vertices, and that
for all v; w 2 V only one of (v; w) and (w; v) can be in E.

De�nition 2.1 A network is a 4-tuple (G; c; s; t) where c : E ! R�0 assigns capacities to
the edges of G, and s; t 2 V are designated vertices called source and sink, respectively. A

ow f in network (G; c; s; t) is a function f : E ! R�0 for which:

1. for all edges e 2 E, 0 � f(e) � c(e), and

2. for all i 2 V nfs; tg, P
(i;j)2E

f(i; j)� P
(j;i)2E

f(j; i) = 0.

In other words, a
ow must respect capacities (clause 1), and must be balanced in all
vertices except the source and the sink (clause 2). The imbalance of a
ow f in a node i is
denoted by bf (i). The second clause of the above de�nition can therefore be reformulated
to demanding that bf (i) = 0 for all i 2 V nfs; tg. The value of a
ow f is de�ned as the
amount of imbalance bf (s) at the source. Given a network N , the maximum
ow problem
is the problem of �nding a
ow in N that has maximum value.

A cut in a network (G; c; s; t) is de�ned by specifying a subset S � V of vertices. Given
such a subset S, the corresponding cut is the set of edges that have their tails in S and

3

2. PRELIMINARIES

their heads in V nS. Each cut C has a certain capacity, which is de�ned as
P

(v;w)2C

c(v; w).

In the following, for subsets of vertices S � V , if not ambiguous we will speak about the
cut S instead of the cut with de�ning subset S. For subsets X; Y � V , a cut de�ned by
subset S � V is an X; Y -separating cut if X � S and Y � V nS. The famous Max-Flow
Min-Cut theorem states [12]:

Theorem 2.1 In a network (G; c; s; t) the value of any maximum
ow is equal to the value
of any s; t-separating cut of minimum capacity.

Very useful in
ow problems are residual networks. We will now give a de�nition for later
use.

De�nition 2.2 For a
ow f in network N = (G; c; s; t) de�ne the residual network N(f) =
(G(f); r; s; t), where

1. G(f) = (V;E(f)),

2. E(f) =
S

(v;w)2E

f(v; w); (w; v)g, and

3. r(v; w) =

�
c(v; w)� f(v; w) if (v; w) 2 E
f(w; v) otherwise

In this paper we restrict ourselves to networks for which the underlying graph has a
small separator decomposition. We now specify the separator decomposition concept.

De�nition 2.3 Given a graph G = (V;E) and subsets of vertices X; Y; Z � V , we say
that Y separates V into X and Z, if X; Y; Z form a partition of V , and X and Z are not
connected in G(V nY).
In the following, we assume that internal nodes of rooted binary trees have exactly two
children.

De�nition 2.4 A separator decomposition of a graph G = (V;E) is a triple (TG;S;V),
where TG is a rooted binary tree, and S;V are functions TG ! }(V) for which the following
three conditions hold:

1. for the root r of TG, V(r) = V

2. for leaves x of TG, S(x) = ;
3. for each internal node x with children x1 and x2, S(x) separates the induced subgraph

G(V(x)) into V1 and V2, where for i = 1; 2,
V(xi) = Vi [fv 2 S(x)j9w 2 Vi such that v and w incident in G(V(x))g.

4

2. PRELIMINARIES

The depth of a tree is the maximum number of edges on an acyclic path from the root
to a leaf. Throughout this paper the depth of separator tree TG is denoted with dG. For a
node x we denote with TG[x] the subtree of TG induced by x and all its descendants. The
maximum length of an acyclic path from node x to a leaf in TG[x] is denoted by height(x).
For a function f : N ! N , an f(k)-separator decomposition is a separator decomposition
with for all x 2 TG, jS(x)j = O(f(jV(x)j). Separator decompositions are independent of
the direction of edges in the underlying graph. It is not hard to prove the following.

Fact 2.1 S is a separator decomposition of a directed graph G if and only if S is a separator
decomposition of the undirected skeleton of G.

For x 2 TG, let G(x) denote the induced subgraph G(V(x)), and de�ne the boundary
B(x) as:

B(x) =
� ; if x is the root of TG

(B(y) [S(y)) \ V(x) otherwise, and where y is the parent of x in TG.

G(x) is `connected' to the remainder ofG by its boundary B(x). We can prove the following
proposition.

Proposition 2.1 For all x 2 TG,

1. B(x) separates G into V(x)nB(x) and V nV(x).
2. B(x) = V(x) \ S

y2Wx

S(y), where Wx is the set of all ancestors of x.

In 1. we see that boundaries indeed have the connection-type character we just mentioned.
Part 2. of the proposition is the iterative counterpart of our initial recursive boundary
de�nition.

In this report, we will use as a model of parallel computation the CRCW PRAM. In
case of a simultaneous write of the same memory location we assume that the minimum
value is written in that location. For the assessment of parallel algorithms we will use the
concepts of time and work. The time of a parallel algorithm A on P processors is the
number of parallel steps in which at most P operations can be performed simultaneously.
In case the number of processors is not speci�ed, the time of A is the time of A on an
arbitrarily large number of processors. The work of a parallel or sequential algorithm A is
the total number of operations performed, and is independent of the number of processors.
If p processors write the same memory location simultaneously this will give a contribution
of p to the work of A. The work of A may be strictly smaller than the processor-time
product because idle time is not included in it. For an explanation of these concepts we
refer to J�aJ�a [17]. Time and work are identical for sequential algorithms that have no idle
time.

An algorithm of time T (n) and workW (n) with n the length of the input, can be realized
on P (n) processors and the realization runs in time O(T (n) +W (n)=P (n)), provided the

5

3. AUGMENTING PATH MAXFLOW COMPUTATION

so-called Brent schedule [6, 17] can be applied.
In all CRCW PRAM algorithms in this paper the number of processors accessing the same
memory location in one computation step is bounded by a polynomial in n, even if the
total number of processors is much larger. This makes that in this paper any CRCW
PRAM algorithm running in time T (n) can be simulated on a EREW PRAM with the
same number of processors in time O(T (n) � log n).

3 Augmenting Path Max
ow Computation

The current state of the art allows for a distinction between two classes of maximum

ow algorithms. We have pre
ow-push algorithms on one hand, and augmenting-path
algorithms on the other. In this section our focus will solely be on an algorithm from the
latter category, namely the shortest augmenting path algorithm.

Cohen showed for graphs with small-sized separator decompositions that distances can
be computed in polylogarithmic time, and with polynomial work [9]. Given a graph G,
the idea is to extend G with a set of edges E+, without changing distances, and enabling
the Bellman-Ford algorithm to take shortcuts during the path search. For the class of
graphs considered, the work bound of Cohen's algorithm improves on the work bound of
the sequential Bellman-Ford algorithm.

Distance computation is closely related to shortest path computation. In this section
the applicability of Cohen's algorithm to the shortest augmenting path max
ow algorithm
will be investigated. We will show that with a few minor changes Cohen's algorithm
can be incorporated into this max
ow algorithm. For the class of graphs considered, the
resulting parallel algorithm improves slightly on the time bound of the sequential shortest
augmenting path max
ow algorithm. Furthermore, for a substantial subclass of graphs the
algorithm and its sequential counterpart perform an equal amount of work.

The rest of this section is organised as follows. Section 3.1 reviews the Bellman-Ford
algorithm and a straightforward parallelization for the CRCW PRAM. In section 3.2 this
algorithm will be modi�ed to function more e�ciently under the addition of the speci�c
set of edges E+. An algorithm for the computation of E+ is given in section 3.3. In
section 3.4 these results will be applied to the shortest augmenting path max
ow algorithm.
Section 3.5 contains an analysis of the complexity of the algorithms of this section for a
speci�c class of graphs. The algorithms of section 3.2 and 3.3 turn out to be in NC for
graphs with small-sized separator decompositions. Finally, in section 3.6 we end with a
short digresssion on
ow augmentation.

3.1 Parallel Bellman-Ford

Let G = (V;E) have weights w : E ! R on the edges. ReachG(v) is the set of vertices
w 2 V such that there is a path in G from v to w. The length of a path p in G is de�ned
as the number of edges in p, and the weight of p is de�ned as w(p) =

P
e2p

w(e). For vertices

v; w 2 V the distance �G(v; w) between v and w is the minimum weight of a path from v

6

3. AUGMENTING PATH MAXFLOW COMPUTATION

to w. If w 62 ReachG(v), then �G(v; w) =1. Given a speci�ed source vertex s, the single
source shortest path problem is the problem of calculating �G(s; v) for all vertices v 2 V .

In case no negative-weight cycles exist, the single source shortest path problem can be
solved by the Bellman-Ford algorithm [10]. The algorithm consists of n�1 phases. In each
phase, for each edge e = (v; w) 2 E the distance from s to w is updated as the minimum
of the current distance from s to w, and the sum of w(e) and the current distance of s to
v. This update operation is referred to as `relaxing edge e'. Let us specify the algorithm
in pseudocode. For each vertex v 2 V , the current distance from s to v is maintained in a
label d[v].

Procedure Relax(e = (v; w))
1. if d[w] > d[v] + w(e) then
2. d[w] := d[v] + w(e)

Procedure Bellman-Ford(G = (V;E))
1. d[s] := 0
2. for all v 2 V nfsg do
3. d[v] :=1
4. repeat n� 1 times:
5. for each edge e 2 E do
6. Relax(e)
7. for each edge e = (v; w) 2 E do
8. if d[w] > d[v] + w(e) then
9. error: minimum-weight cycle detected

At termination of the algorithm, either it will be detected that G has a negative-weight
cycle, or d[v] = �G(s; v) for all v 2 V . The algorithm runs in O(nm) time.

Parallelizing this algorithm for the CRCW PRAM can be done by turning the for-loops
in lines 2, 5 and 7 into parallel loops. In line 6 only the minimum update value is written.
On the CRCW PRAM the algorithm runs in O(n) time and performs O(nm) work.

3.2 Adapted Bellman-Ford

The CRCW PRAM algorithm of the previous section performs n � 1 relaxation phases,
which implies a factor n in its asymptotic running time. Actually, the necessary number of
relaxation phases equals the minimum length L of any minimum-weight path from s to v,
maximized over all v 2 ReachG(s). In order to reduce the running time of the algorithm,
we augment G with a set E+ of edges with weights that do not change distances between
vertices, and such that L is small for the extended graph. After this preprocessing of G
we can apply the parallel Bellman-Ford algorithm to the extended graph in a speci�c way,
and we need less phases.

In the following text we assume that G does not contain negative-weight cycles. Fur-
thermore, we assume we have a separator decomposition of G and a constant l � 0 such

7

3. AUGMENTING PATH MAXFLOW COMPUTATION

that for each leaf x in the separator decomposition tree and all vertices v and w in G(x)
with w 2 ReachG(x)(v), there exists a path from v to w in G(x) with weight �G(x)(v; w)
that is of length at most l. E+ will be chosen such that for all vertices v in G and
w 2 ReachG(v) there is a path from v to w in the extended graph with weight �G(v; w)
and of length O(l + dG). Hence, the parallel Bellman-Ford algorithm can be implemented
on the extended graph to run in O(l + dG) relaxation phases.

De�nition 3.1 Given a separator decomposition (TG;S;V) of graph G, for each node
x 2 TG de�ne the set of edges

Ex = f(v; w)jv; w 2 B(x); v 6= w; and w 2 ReachG(x)(v)g[
f(v; w)jv; w 2 S(x); v 6= w; and w 2 ReachG(x)(v)g

where each edge e = (v; w) 2 Ex has weight w(e) = �G(x)(v; w). In addition, let E+(x) =S
x02TG[x]

Ex0.

In the above de�nition, we assume that if multiple edges would occur in E+(x), only
the one with minimum weight is included. For the root r of TG we denote E(r)+ by E+.
Distances in G do not change by the addition of edges (v; w) to E with weight �G(v; w).
In the following the operator] denotes multiset union.

Fact 3.1 Let (TG;S;V) be a separator decomposition of graph G. For each x 2 TG de�ne
the multigraph G+(x) = (V(x); E(V(x))] E+(x)), then for all v; w 2 V(x) it holds that
�G(x)(v; w) = �G+(x)(v; w).

As we already mentioned the addition of edges from E+ introduces paths of small length
and speci�c structure. The following two recursive de�nitions are a �rst step towards
describing this structure. Given a node x in TG, two types of paths are de�ned: x-entry
paths and x-exit paths. Roughly speaking, an x-entry path is a minimum-weight path in
G+(x) consisting of three, possibly empty, subpaths. The �rst subpath lies completely in
one of the G+-graphs associated with the children of x. The second subpath consists of
a single edge between two vertices in the separator S(x). The third subpath consists of a
single edge from a vertex in S(x) to a vertex in the boundary B(x). Denote the empty path
starting at a vertex v with �v, and let ++ denote the operator for concatenating paths. We
have the following de�nition.

De�nition 3.2 Let (TG;S;V) be a separator decomposition of G, and x a node in TG. A
path p from vertex v to vertex w in G+(x) is an x-entry path if the following four conditions
are satis�ed:

1. w 2 B(x)
2. w(p) = �G(x)(v; w)

3. if x is a leaf, then p is a sequence of at most l edges in G(x)

8

3. AUGMENTING PATH MAXFLOW COMPUTATION

4. if x is an internal node with children x1 and x2, then p = p1++p2++p3, where

(a) p1 = �v, or p1 is an xi-entry path for some i 2 f1; 2g,
(b) p2 = �v1 with v1 2 V(x), or p2 = (v1; v2) 2 Ex with v1; v2 2 S(x), and
(c) p3 = �w1 with w1 2 V(x), or for some j 2 f1; 2g, p3 = (w1; w2) 2 Exj with

w1; w2 2 B(xj).

De�nition 3.3 Let (TG;S;V) be a separator decomposition of G, and x a node in TG. A
path p from vertex v to vertex w in G+(x) is an x-exit path if the following four conditions
are satis�ed:

1. v 2 B(x)
2. w(p) = �G(x)(v; w)

3. if x is a leaf, then p is a sequence of at most l edges in G(x)

4. if x is an internal node with children x1 and x2, then p = p1++p2++p3, where

(a) p1 = �v, or for some i 2 f1; 2g, p1 = (v1; v2) 2 Exi with v1; v2 2 B(xi),
(b) p2 = �w1 with w1 2 V(x), or p2 = (w1; w2) 2 Ex with w1; w2 2 S(x), and
(c) p3 = �w, or p3 is an xj-exit path for some j 2 f1; 2g.

We have the following important fact about the lengths of entry paths and exit paths.

Lemma 3.1 For any graph G and separator decomposition (TG;S;V) of G, it holds that
each x-entry path and each x-exit path has length at most l + 2height(x), for all x 2 TG.

Proof: We use induction to prove the lemma for x-entry paths. For a leaf x, an x-entry
path trivially has length at most l+2height(x). Suppose x is not a leaf. Let x1 and x2 be the
children of x. The induction hypothesis states that each xi-entry path has length at most
l+2height(xi), for i = 1; 2. From de�nition 3.2 we see that an x-entry path consists of either
at most l+2height(x1)+2, or at most l+2height(x2)+2 edges. Therefore, an x-entry path
will certainly be of length at most l + 2maxfheight(x1); height(x2)g+ 2 = l + 2height(x).
The proof of the lemma for exit paths is similar. �

In the following two lemmas we will see that entry paths and exit paths occur in the
extended graph G+ in extensive amounts. The proofs of these lemmas are obtained by
applying induction in the separator decomposition tree.

Lemma 3.2 Let (TG;S;V) be a separator decomposition of graph G, and let x be a node
in TG. For any two vertices v; w 2 V(x) such that w 2 ReachG(x) \ B(x) there exists an
x-entry path from v to w in G+(x).

9

3. AUGMENTING PATH MAXFLOW COMPUTATION

Proof: Consider arbitrary vertices v; w 2 V(x) with w 2 ReachG(x) \ B(x). If x is a leaf,
an x-entry path from v to w exists in G(x) by de�nition of l.

Suppose x is not a leaf. Let x1 and x2 be the children of x. Since w is reachable from
v, there exists a path q from v to w in G(x) of weight �G(x)(v; w). We consider two cases.

Case 1. q \ S(x) = ;. Now q is a path in G(xi) for some i 2 f1; 2g. Observe that
w(q) = �G(xi)(v; w), and w 2 B(xi). The induction hypothesis tells us that an xi-entry path
p from v to w exists. Since w(p) = w(q) = �G(x)(v; w), we conclude that p is an x-entry
path from v to w.

Case 2. q\S(x) 6= ;. Let v1 and v2 be the �rst and the last vertex of q in S(x), respec-
tively. Note that possibly v1 = v2. We can look at q as being a concatenation q1++q2++q3,
where q1 is a path from v to v1, q2 is a path from v1 to v2, and q3 is a path from v2 to w.
The paths q1, q2, and q3 are possibly empty. We now construct an x-entry path p from v
to w.
If q1 = �v, then let p1 = �v. Otherwise, for some i 2 f1; 2g, q1 is a path in G(xi).
Observe that w(q1) = �G(xi)(v; v1). Since v1 2 B(xi), the induction hypothesis tells
us that an xi-entry path from v to v1 exists. Let p1 be this path, then p1 has weight
w(p1) = �G(xi)(v; v1) = w(q1).
If q2 = �v1 , let p2 = �v1 . Otherwise, let p2 be the path from v1 to v2 consisting of the single
edge (v1; v2) 2 Ex. Observe that in w(p2) = w(q2).
If q3 = �v2 , let p3 = �v2 . Otherwise, for some j 2 f1; 2g it must be that v2; w 2 B(xj),
and hence (v2; w) 2 Exj . Let p3 be the path from v2 to w consisting of the single edge
(v2; w) 2 Exj . Observe that w(p3) = w(q3).
Let p be the path from v to w de�ned by the concatenation p1++p2++p3, then w(p) =
w(p1)+w(p2)+w(p3) = w(q1)+w(q2)+w(q3) = w(q) = �G(x)(v; w). Hence p is an x-entry
path from v to w. �

In the same way the following lemma for exit paths can be proven.

Lemma 3.3 Let (TG;S;V) be a separator decomposition of graph G, and let x be a node
in TG. For any two vertices v; w 2 V(x) such that v 2 B(x) and w 2 ReachG(x)(v) there
exists an x-exit path from v to w in G+(x).

As we will see more precisely in the proof of theorem 3.1, for almost all vertices
v 2 ReachG(s) a minimum-weight path from s to v exists that is the concatenation of
an entry path, an edge from E+, and an exit path. If the edges of such a path are relaxed
in path order, we know that this results in a distance label d[v] = �G(s; v). Therefore the fol-
lowing two procedures are introduced. Given a node x 2 TG, the procedure EntryRelax(x)
performs relaxations in such a way that for each x0 2 TG[x] and each x0-entry path p,
the edges of p have been relaxed in path order. The notation k used in these procedures
indicates that the recursive calls are to be executed in parallel.

Procedure EntryRelax(x 2 TG)
1. if leaf(x) then
2. Perform l phases of parallel relaxation on the edges of G(x).

10

3. AUGMENTING PATH MAXFLOW COMPUTATION

3. else #Let x1 and x2 be the children of x.
EntryRelax(x1)k EntryRelax(x2)

4. Perform one phase of parallel relaxation on all
edges (v; w) 2 Ex \ E+ with v; w 2 S(x).

5. for i = 1; 2 do
6. Perform one phase of parallel relaxation on all

edges (v; w) 2 Exi \ E+ with v; w 2 B(xi).
Similar to EntryRelax the procedure ExitRelax traces down exit paths:

Procedure ExitRelax(x 2 TG)
1. if leaf(x) then
2. Perform l phases of parallel relaxation on the edges of G(x).
3. else #Let x1 and x2 be the children of x.

for i = 1; 2 do
4. Perform one phase of parallel relaxation on all

edges (v; w) 2 Exi \ E+ with v; w 2 B(xi).
5. Perform one phase of parallel relaxation on all

edges (v; w) 2 Ex \ E+ with v; w 2 S(x).
6. ExitRelax(x1)k ExitRelax(x2)

Using these procedures we get the following CRCW PRAM algorithm for computing
distances in G.

Procedure Bellman-Ford+(G, (TG;S;V))
Let r be the root of TG.
1. d[s] := 0
2. for all v 2 V nfsg do
3. d[v] :=1
4. if leaf(r) then
5. Perform l phases of parallel relaxation on the edges of G(r):
6. else #Let the children of r be r1 and r2.

EntryRelax(r1)k EntryRelax(r2)
7. Perform one phase of parallel relaxation on all

edges (v; w) 2 Er \ E+ with v; w 2 S(r).
8. ExitRelax(r1)k ExitRelax(r2)
9. Check for negative-weight cycles.

Let us now prove the correctness of this algorithm.

Theorem 3.1 Let (TG;S;V) be a separator decomposition of graph G. Let G have weight
w : E ! R on the edges such that no negative-weight cycle exists. At termination of
Bellman-Ford+ it holds that d[v] = �G(x)(s; v), for all v 2 V .

Proof: In the proof we will frequently use the following claim on the Bellman-Ford algo-
rithm given by Cormen et al. [10]:

11

3. AUGMENTING PATH MAXFLOW COMPUTATION

Claim 1 [10, Lemma 25.5]. After initialization, d[v] � �G(s; v) for all v 2 V , and this
invariant is maintained over any sequence of relaxation steps on the edges of G.
Moreover, once d[v] achieves its lower bound �G(s; v), it never changes.

Now assume no negative-weight cycle exists. Then �G(s; s) = 0, and d[s] is initialized to
�G(s; s). For a vertex v 62 ReachG(s), d[v] is initialized with �G(s; v) =1. By Claim 1 we
know that d[s] and d[v] keep their correct values during the algorithm.

For an arbitrary vertex v 2 ReachG(s), a minimum-weight path p from s to v exists in
G. We distinguish between two cases.

If p \ Sx2TG
S(x) = ;, then p is a path in G(x) for some leaf x 2 TG. Therefore, a

path p0 from s to v exists in G(x) such that w(p0) = w(p) and the length of p0 is at most l.
Unwinding the recursion of the calls in line 6, we see that we perform l relaxation phases
on the edges of p0. Since p0 is a minimum-weight path, at the end of these phases we have
d[v] = �G(s; v). Claim 1 tells us this is maintained thereafter.

Suppose p \Sx2TG
S(x) 6= ;. Let x be the highest node in TG for which p \ S(x) 6= ;.

Let x have children x1 and x2, and let v1 and v2 be the �rst and the last vertex on p in S(x),
respectively. Note that possibly v1 = v2. Consider p as a concatenation p = p1++p2++p3,
where p1 is a path from s to v1, p2 is a path from v1 to v2, and p3 is a path from v2 to w.
Possibly the paths p1, p2, and p3 are empty. If p1 = �v let p

0
1 = �v. Otherwise, for some

i 2 f1; 2g it holds that p1 lies completely in G(xi), and that v1 2 B(xi). By lemma 3.2 an
xi-entry path p01 from s to v1 must exist. In both cases we have that w(p01) = w(p1).
If p2 = �v1 let p

0
2 = �v1 . Otherwise, we have that v1 6= v2, so let p02 be the path consisting

of the single edge (v1; v2) 2 Ex. Trivially, we have that w(p
0
2) = w(p2).

If p3 = �v2 let p03 = �v2 . Otherwise, for some j 2 f1; 2g the path p3 lies completely in
G(xj) and v2 2 B(xj). By lemma 3.3 an xj-exit path p03 from v2 to v must exist. We have
that w(p03) = w(p3).
From the above we conclude that the path p0 = p01++p

0
2++p

0
3 is a minimum-weight path in

G+ from s to v. Therefore, if the edges of p0 are relaxed in path order during the execution
of Bellman-Ford+, we know that this results in distance label d[v] = �G(s; v).

In case x is the root of TG, we have that in line 6 the edges of p01 are relaxed in path
order. In line 7 the single-edge path p02 is relaxed, and in line 8 the edges of p03 are relaxed
in path order.

Suppose x is not the root of TG. Observe that the parallel calls in line 6 will at some
point cause the call EntryRelax(x) to be made. In this call, the recursive parallel calls
EntryRelax(x1) and EntryRelax(x2) make sure that the edges of p01 are relaxed in path
order. Furthermore, the execution of line 6 of the incarnation EntryRelax(x) relaxes the
single-edge path p02. Similarly the parallel calls in line 8 of algorithm Bellman-Ford+ and
the structure of ExitRelax(x) make sure that the edges of p03 are relaxed in path order.
We conclude that the edges of p0 are relaxed in path order during the execution of the
Bellman-Ford+ algorithm. �

Let us analyze the complexity of the algorithm. Unwinding the recursion of procedures
EntryRelax, and ExitRelax, we �nd that the algorithm Bellman-Ford+ relaxes each edge

12

3. AUGMENTING PATH MAXFLOW COMPUTATION

in E+ at most once, and each edge in E n E+ at most 2l times. Therefore, the amount of
work performed is O(jE+j + ljEj). Since edges are relaxed in parallel we �nd a running
time of O(l + dG).

Now consider the number of concurrent reads and writes the algorithm performs on a
distance label. Observe that at most O(n) incarnations of the procedures EntryRelax and
ExitRelax are active. Each such an incarnation relaxes O(n2) edges at the same time since
the graph associated with the node currently processed trivially contains O(n) vertices. We
conclude that the algorithm performs O(n3) concurrent memory operations on a distance
label. Therefore, the Bellman-Ford+ algorithm can be simulated on a EREW PRAM with
only an extra factor of O(logn3) = O(logn) in its running-time.

3.3 Computing E+

Computation of the set E+ can be done in a bottom-up fashion. Given a separator decom-
position (TG;S;V) of graph G, the sets Ex are computed �rst for all leaves x 2 TG. Next,
this information is used to compute the sets Ex for all internal nodes x that are just above
leaf-level. Processing on like this, the computations ends with computing the set of edges
associated with the root of TG.

For each leaf x the Floyd-Warshall algorithm [10, chapter 26] can be used on G(x) to
determine the weights on the edges in Ex. The computation at internal nodes takes some
more e�ort. Let us now go into the details of this.

Suppose for an internal node x with children x1 and x2 we want to compute Ex, given
the sets Ex1 and Ex2 . For each edge e = (v; w) 2 Ex we have that v; w 2 S(x), or
v; w 2 B(x).

For the purpose of handling the case that v; w 2 S(x) we de�ne the graph Ix =
(S(x);S(x) � S(x)). Let e = (v; w) be an edge in Ix. In case e =2 E take in the following
w(e) =1. The weight on edge e in Ix is de�ned as:

wIx(e) =

8>><
>>:

minf�G(x1)(v; w); �G(x2)(v; w)g if v; w 2 B(x1) \ B(x2)
�G(x1)(v; w) if v; w 2 B(x1)� B(x2)
�G(x2)(v; w) if v; w 2 B(x2)� B(x1)
w(e) otherwise

Note that �G(x1)(v; w) or �G(x2)(v; w) is known in the �rst three cases since Ex1 and Ex2

already have been computed. The following lemma tells us that in order to determine the
weights on edges e 2 Ex with e 2 S(x) � S(x), it su�ces to compute distances in Ix.

Lemma 3.4 Let x be an internal node in TG. Then �Ix(v; w) = �G(x)(v; w) for arbitrary
vertices v and w in S(x).
Proof: First consider the case that w 62 ReachG(x)(v). In other words �G(x)(v; w) = 1.
Suppose that �Ix(v; w) 6= 1. In this case there must be a path p from v to w in Ix, for
which all the edges have �nite weight. Consider an arbitrary edge e = (v1; v2) on p. Since
wIx(e) is �nite, we have that (v1; v2) is an edge in G(x) of �nite weight, or �G(x1)(v1; v2) is

13

3. AUGMENTING PATH MAXFLOW COMPUTATION

�nite, or �G(x2)(v1; v2) is �nite. Therefore, there exists a path in G(x) from v1 to v2. Since
e was an arbitrary edge on p, a path from v to w exists in G(x). This is a contradiction.
Hence, �Ix(v; w) =1.

Now consider the case that w 2 ReachG(x)(v). Let p be a minimum-weight path from
v to w in G(x). In case p is empty, we have �G(x)(v; w) = 0, and trivially, �Ix(v; w) �
�G(x)(v; w). In case p is not an empty path, consider any edge e = (v1; v2) on p for
which v1; v2 2 S(x). Since p is a minimum-weight path we have that w(e) = �G(x)(v1; v2).
Observe that wIx(e) = w(e). Now consider any subpath (u1; : : : ; u2) of p of length at
least 2, for which u1; u2 2 S(x), and the vertices in between are not in S(x). Observe
that u1; u2 2 B(xi) for some i 2 f1; 2g, and that �G(xi)(u1; u2) = �G(x)(u1; u2). Hence,
wIx((u1; u2)) = �G(x)(u1; u2). Since p is the concatenation of edges (v1; v2) and subpaths
(u1; : : : ; u2) as above, we conclude that there exists a path from v to w in Ix of weight
w(p), and thus �Ix(v; w) � �G(x)(v; w).

Let us now show that �Ix(v; w) � �G(x)(v; w) for vertices v; w 2 S(x). Suppose
that �Ix(v; w) < �G(x)(v; w), for some vertices v; w 2 S(x), and is �nite. Let p be
a minimum-weight path from v to w in Ix, such that p has minimum length. If p
has length 0, trivially �Ix(v; w) = 0 = �G(x)(v; w). If p has length 1, wIx(p) equals
�G(xi)(v; w) for some i 2 f1; 2g or equals the weight of this edge in G. In all cases we
have a contradiction. So suppose p has length at least 2. By choice of p each edge
e = (u1; u2) 2 p satis�es wIx(e) � �G(x)(u1; u2). By de�nition of distance we get that
�G(x)(v; w) �

Pf�G(x)(u1; u2) : (u1; u2) 2 pg � �Ix(v; w). This is a contradiction. �

For the purpose of handling the case that v; w 2 B(x) we de�ne the auxiliary graph
Hx = (V 0; E 0), where V 0 = B(x)[S(x), and E 0 = B(x)�S(x)[S(x)�B(x)[S(x)�S(x).
Each edge e = (v; w) 2 E 0 has weight wHx(e), where

wHx(e) =

8>><
>>:

�Ix(v; w) if e 2 S(x)� S(x)
�G(x1)(v; w) if e =2 S(x)� S(x), and v; w 2 B(x1)
�G(x2)(v; w) if e =2 S(x)� S(x), and v; w 2 B(x2)
1 otherwise

Observe that wHx is correctly de�ned, since for any internal node x with children x1 and
x2 it holds that B(x1) \ B(x2) � S(x). In the following, we de�ne �G(xi)(v; w) =1 if v or
w is not in G(xi).

Lemma 3.5 Let x be an internal node with children x1 and x2. Given arbitrary vertices
v and w in B(x), the following two conditions hold:

1. minf�Hx(v; w); �G(x1)(v; w); �G(x2)(v; w)g = �G(x)(v; w)

2. if w is reachable from v in Hx, then there exists a minimum-weight path from v to
w in Hx of length at most 3.

Proof: Let x be an internal node with children x1 and x2. Consider arbitrary vertices v
and w in B(x). Let us start with the �rst condition. In case w 62 ReachG(x)(v), we have

14

3. AUGMENTING PATH MAXFLOW COMPUTATION

�G(x)(v; w) = �G(x1)(v; w) = �G(x2)(v; w) = 1. Then �Hx(v; w) cannot be �nite, because
otherwise there would be a path from v to w in G(x). Hence, in this case, condition 1 is
satis�ed.

Suppose w 2 ReachG(x)(v). Let p be a minimum-weight path from v to w in G(x). We
consider the following two cases.

If p \ S(x) = ;, then for precisely one i 2 f1; 2g, p lies completely in G(xi), and
v; w 2 B(xi). In this case wHx((v; w)) = �G(xi)(v; w). Therefore �Hx(v; w) � �G(xi)(v; w) =
�G(x)(v; w).

Suppose that p\ S(x) 6= ;. Let v1 and v2 be the �rst and the last vertex on p in S(x),
respectively. The path p is the concatenation of paths p1, p2, and p3, where p1 is a path
from v to v1, p2 is a path from v1 to v2, and p3 is a path from v2 to w. Now we construct
a path in Hx with the same weight as p.

If p1 6= �v, then v =2 S(x). We have that p1 lies entirely in G(xi) and v; v1 2 B(xi) for
exactly one i 2 f1; 2g. Therefore, wHx((v; v1)) = �G(xi)(v; v1) = w(p1). If p2 6= �v1 then
v1 6= v2. Since v1; v2 2 S(x), we have wHx((v1; v2)) = �Ix(v1; v2) = �G(x)(v1; v2) = w(p2).
If p3 6= �v2 , then w =2 S(x). For exactly one j 2 f1; 2g it holds that p3 lies in G(xj), and
v2; w 2 B(xj). Therefore, wHx((v2; w)) = �G(xj)(v2; w) = w(p3). We conclude that there
exists a path in Hx from v to w with the same weight as p. Hence �Hx(v; w) � �G(x)(v; w).

The proof that �Hx(v; w) � �G(x)(v; w) is similar to the proof of the corresponding result
on �Ix(v; w) in the previous lemma. It is left to the reader as an exercise.

In order to establish the second condition, suppose w 2 ReachHx(v). Let p be a
minimum-weight path in Hx from v to w that consists of more than three edges. Let v1
and v2 be the second and the one but last vertex in p, respectively, then v1; v2 2 S(x).
Therefore, the edge e = (v1; v2) in Hx has weight �Ix(v1; v2) = �G(x)(v1; v2). Condition 1
implies that �Hx(v1; v2) � �G(x)(v1; v2), therefore replacing in p the subpath from v1 to v2
with edge e results in a minimum-weight path from v to w in Hx with length at most 3. �

Lemma 3.4 and lemma 3.5 lead to the following algorithm for computing the weights
on edges from Ex for each internal node x 2 TG.

Procedure H-distance(v)
1. Perform parallel relaxation on the edges fvg � S(x) in Hx.
2. Perform parallel relaxation on the edges S(x)� S(x) in Hx.
3. Perform parallel relaxation on the edges S(x)� B(x) in Hx.

Procedure ComputeWeights(x)
Let x1 and x2 be the children of x.
1. Construct the graph Ix.
2. Perform all-pairs shortest-paths computation on Ix,

for every edge e = (v; w) 2 S(x)� S(x) output �Ix(v; w).
3. Construct the graph Hx.
4. For every vertex v 2 B(x) call H-distance(v).
5. For every edge e = (v; w) 2 B(x)� B(x)� S(x)� S(x)

15

3. AUGMENTING PATH MAXFLOW COMPUTATION

output minf�Hx(v; w); �G(x1)(v; w); �G(x2)(v; w)g.

Let us analyze the complexity of the procedure ComputeWeights for the EREW PRAM,
in case graphs are represented with adjacency matrices. Line 1 can be done with O(jS(x)j2)
work, in O(1) time. Using an algorithm of Han et al. [16], line 2 can be performed
with O(jS(x)j3) work, in O(log2 n) time. Line 3 takes O(jB(x)jjS(x)j + jS(x)j2) work,
in O(1) time. Line 4 can be performed with O(jB(x)j2jS(x)j + jB(x)jjS(x)j2) work in
O(log(jB(x)j + jS(x)j)) time. Line 5 can be done with O(jB(x)j2) work in O(1) time. We
conclude that the algorithm Computeweights requires O(jS(x)j3+ jB(x)j2jS(x)j) work, and
runs in O(log2 n) time.

3.4 Extension to Flow Augmentation

The algorithm Bellman-Ford+ can be adapted to function as a path�nding routine in the
shortest augmenting path max
ow algorithm. Suppose we want to compute a maximum

ow in a network (G; c; s; t). The shortest augmenting path max
ow algorithm proceeds
as follows [10].

Procedure Shortest-Augmenting-Path (G; c; s; t)
1. Initialize f as zero-
ow.
2. Construct residual network G(f).
3. while there exists a path from s to t in G(f) do
4. Find a minimum-length path p from s to t in G(f).
5. Compute the minimum residual capacity rmin of edges in p.
6. For each edge (v; w) 2 p do
7. if (v; w) 2 E then
8. f(v; w) := f(v; w) + rmin

9. else f(w; v) := f(w; v)� rmin

10. Reconstruct residual network G(f).

Let us give a brief overview of how the Bellman-Ford+ algorithm is incorporated in the
shortest augmenting path max
ow algorithm. Assume we have a separator decomposition
(TG;S;V) of G. Assign to each edge in G(f) the weight w(e) = 1. Since (TG;S;V) is
also a separator decomposition of the residual graph G(f), we augment G(f) with a set of
edges E(f)+, as described in the previous section. Denote the resulting graph by G(f)+.
Observe that for each edge e = (v; w) in G(f)+ there exists a path from v to w in G(f)
of weight w(e). In this section we will show how with a little extra administration we
can associate with each edge in E(f)+ a path in G(f). The algorithm ComputeWeights
is modi�ed for this purpose. Once each edge in E(f)+ has been assigned a path in G(f),
we attach to each edge in E(f)+ a capacity equal to the minimum capacity found among
edges on its associated path. As a next step, the Bellman-Ford+ algorithm is extended to
keep information in order to traverse paths e�ciently. Given a shortest path p from s to
t in G(f)+, the data structure is used to compute the minimum residual capacity rmin(p)

16

3. AUGMENTING PATH MAXFLOW COMPUTATION

of p. Once rmin(p) has been calculated, p is to be traversed, and along each encountered
edge the
ow f should be augmented with rmin(p)
ow. In order to do this the procedure
Augment recursively augments
ow along edges in G(f)+. At the base of the recursion
ow
is augmented along associated paths in G(f). During the course of algorithm Shortest-
Augmenting-Path the residual graph changes, and hence distances change. Therefore, a
new set of edges E(f)+ is computed after each augmentation.

3.4.1 Associated Paths

Let us show how for each edge e = (v; w) in E(f)+, we can recursively associate with e a
path from v to w in G(f) of weight w(e). First consider the case e = (v; w) 2 E(f)x, where
x is an internal node with children x1 and x2. If v; w 2 S(x), then there exists a path from
v to w in Ix of weight w(e). In order to associate unambiguously with e a single path in Ix,
we keep all-pairs shortest-path information between vertices in Ix in a predecessor matrix
�Ix. (See Cormen et al. [10] for details). �Ix can be computed in line 2 of procedure
ComputeWeights using the Floyd-Warshall algorithm. Note that this does not incur any
increase in asymptotic time and work bounds of the algorithm ComputeWeights. Now
consider an arbitrary �nite-weight edge e0 = (v0; w0) in Ix. We know that (v0; w0) 2 E(f)
with weight wIx(e

0), or (v0; w0) 2 E(f)x1 with weight wIx(e
0), or (v0; w0) 2 E(f)x2 with

weight wIx(e
0). Therefore, for each edge e0 in Ix we have a label sub(e0) pointing to one of

these three possible edges.
Let us now consider the case that v; w 2 B(x). We know a path from v to w exists

in Hx and has weight w(e). Therefore, for each v0 2 B(x) we keep a predecessor vector
�v

0

Hx containing single-source shortest-path information in Hx with respect to source v0.
The procedure H-distance can be modi�ed to compute these vectors, without change in
the asymptotic behavior of its running time. Now consider an arbitrary �nite-weight edge
e0 = (v0; w0) from Hx. If v0; w0 2 S(x), then (v0; w0) 2 E(f)x with weight wHx(e0). If v0 and
w0 not both in S(x), then (v0; w0) 2 E(f)x1 with weight wHx(e0), or (v0; w0) 2 E(f)x2 with
weight wHx(e0). We have for each edge e0 in Hx a label sub(e0) pointing to one of these
three possible edges.

Consider the case that e 2 E(f)x for a leaf x in TG. Then a path from v to w
exists in G(f)(x) with weight w(e). Therefore, with leaf x we have a predecessor matrix
�G(f)(x), containing all-pairs shortest-path information of the graph G(f)(x). Recall from
the previous section, that the Floyd-Warshall was called to compute the weights on edges
in E(f)x. We can adapt this call to compute �G(f)(x) without any increase in asymptotic
costs.

For clarity let us explicitly give the de�nition of the sub-labels, and the modi�ed pseu-
docode of algorithm ComputeWeights. Note that sub-labels are only de�ned for �nite-
weight edges. No problem occurs here since in the algorithms that follow only �nite-weight
edges are processed. In the following an edge (v; w) 2 E(f)x is denoted by (v; w)x. For

17

3. AUGMENTING PATH MAXFLOW COMPUTATION

each internal node x 2 TG, and each �nite-weight edge e = (v; w) in Ix de�ne:

sub(e) =

8>><
>>:

sub0(e) if v; w 2 B(x1) \ B(x2)
(v; w)x1 if v; w 2 B(x1)� B(x2)
(v; w)x2 if v; w 2 B(x2)� B(x1)
(v; w) otherwise

where

sub0(e) =

�
(v; w)x1 if wIx(e) = �G(f)(x1)(v; w)
(v; w)x2 otherwise

For �nite-weight edge e = (v; w) 2 Hx de�ne:

sub(e) =

8<
:

(v; w)x if e 2 S(x) � S(x)
(v; w)x1 if e =2 S(x) � S(x), and v; w 2 B(x1)
(v; w)x2 if e =2 S(x) � S(x), and v; w 2 B(x2)

These de�nitions form a data structure that attaches to each edge e = (v; w) in E(f)+

a path from v to w in G(f) of weight w(e). In later sections we will use this datastructure
to compute e�ciently minimum capacities of paths, and to implement
ow augmentation.

Let us now specify the procedure ComputeWeights to compute weights, sub-labels, the
predecessor matrix �Ix, and predecessor vectors �v

0

Hx at an internal node x. Assume the
relaxation in the procedure H-distance is extended to compute predecessor vectors.

Procedure ComputeWeights(x)
Let x1 and x2 be the children of x.
1. Construct the graph Ix, including sub-labels.
2. Perform an all-pairs shortest-paths computation on Ix

to obtain distances �Ix and the predecessor matrix �Ix.
For every edge e = (v; w) 2 S(x)� S(x) output �Ix(v; w).

3. Construct the graph Hx, including sub-labels.
4. For every vertex v 2 B(x) call H-distance(v) to obtain

distances in Hx and a predecessor vector �vHx with respect to source v.
5. For every edge e = (v; w) 2 B(x)� B(x)� S(x)� S(x)

output minf�Hx(v; w); �G(f)(x1)(v; w); �G(f)(x2)(v; w)g.

3.4.2 Capacitating edges from E(f)+

The capacity of an edge from E(f)+ is set equal to the minimum capacity of edges on its
associated path. For a leaf x and edge e = (v; w) 2 E(f)x this capacity can be computed
by traversing the path from v to w backwards using predecessor matrix �G(f)(x). For an
internal node x with children x1 and x2 we have the following procedure. Assume that the
capacities of edges in E(f)x1 and E(f)x2 have already been computed.

18

3. AUGMENTING PATH MAXFLOW COMPUTATION

Procedure SetCap(x)
1. for all edges e = (v; w) 2 Ex \ (S(x) � S(x)) pardo
2. if w(e) is �nite then
3. Traverse the path p from v to w in Ix using �Ix

to calculate r(p) = minfc(sub(e0))je0 2 pg.
4. c(e) := r(p).
5. for all edges e = (v; w) 2 Ex \ (B(x)� B(x)� S(x) � S(x)) pardo
6. if w(e) is �nite then
7. Traverse the path p from v to w in Hx using �vHx

to calculate r(p) = minfc(sub(e0))je0 2 pg.
8. c(e) := r(p)

Because the capacities of edges in E(f)x1 and E(f)x2 have already been computed, each
value c(sub(e0)) can be determined in O(1) time. Each path in line 3 has length O(jS(x)j),
hence lines 1 to 4 run in O(jS(x)j) time and O(jS(x)j3) work. By lemma 3.5 each path p
in line 7 has length at most 3. Hence lines 5 to 8 run in O(1) time and O(jB(x)j2) work.
Overall, algorithm SetCap runs in O(jS(x)j) time, and performs O(jS(x)j3+ jB(x)j2) work
on a CREW PRAM.
The overall process of capacitating edges from E(f)+ comes down to a straightforward
bottom-up computation of capacities using the procedure SetCap. In section 3.5 the overall
complexity of calculating capacities will be evaluated for a speci�c class of graphs.

3.4.3 Shortest Augmenting Path Maximum Flow Computation

In order to use the Bellman-Ford+ algorithm as a path�nding routine, its output must
not only consist of distance labels, but also generate minimum-weight paths. Therefore,
for each vertex v 2 V we maintain a label edge(v), which points to the last edge on
a minimum-weight path from the source to v. Following a number of edge-labels, one
traverses a minimum-weight path backward. The Bellman-Ford+ algorithm will correctly
compute these labels, if we modify its relaxation procedure into:

Procedure Relax(e = (v; w))
1. if d[w] > d[v] + w(e) then
2. d[w] := d[v] + w(e)
3. edge(w) := e

Suppose we have applied Bellman-Ford+ to G(f)+. If d[t] =1, then f is a maximum

ow. Suppose d[t] 6=1. We can use the edge-labels to traverse backwards over a shortest
path p from s to t inG(f)+, and compute the minimum-capacity rmin(p) of edges on p. From
the way we have set capacities on edges in E(f)+, we conclude there exists a path p0 from
s to t in G(f) of capacity rmin(p). The following procedure Augment recursively augments

ow along an E(f)+-edge, actually resulting in an augmentation along the associated path
of this edge. We augment p with rmin(p)
ow by calling Augment(e,rmin(p)) for each edge
e 2 p. For each edge in G(f)+ a label type(e) is kept in order to distinguish between

19

3. AUGMENTING PATH MAXFLOW COMPUTATION

di�erent kinds of edges from G(f)+. For edges e 2 E(f), type(e) = normal. For edges
e 2 E(f)x, type(e) = added x.

Procedure Augment(e = (v; w), val)
1. if type(e) = normal then
2. if (v; w) 2 E then
3. f(v; w) := f(v; w) + val
4. else f(w; v) := f(w; v)� val
5. else# Let x 2 TG be such that type(e) = added x
6. if v; w 2 S(x) then
7. Use �Ix to traverse the path from v to w in Ix.

For each encountered edge e0 call Augment(sub(e0), val).
8. else Use �vHx to traverse the path from v to w in Hx.

For each encountered edge e0 call Augment(sub(e0), val).

Observe that in general distances change in the residual network due to augmentation.
In other words after each augmentation we have to recalulate the set E(f)+, together
with the administration that keeps track of associated paths. Let us specify the max
ow
algorithm in pseudocode.

Procedure Shortest-Augmenting-Path+(G; c; s; t)
1. Initialize f to zero-
ow.
2. repeat
3. Construct residual network (G(f); r; s; t).
4. Compute E(f)+ for G(f), including the associated-paths

administration.
5. Compute capacities for E(f)+-edges.
6. perform Bellman-Ford+ in G(f)+ w.r.t. source s.
7. if d[t] 6=1 then
8. Traverse the shortest path p from s to t to �nd

the minimum-capacity rmin of edges on p.
9. Traverse the shortest path p again, and call for each

encountered edge e the procedure Augment(e, rmin).
10. until d[t] =1

3.5 Graphs with n
�-separator decompositions

Let us analyze the algorithms of this section in case there exist constants 0 < � < 1 and
1
2
< � < 1 such that the separator decomposition (TG;S;V) of G satis�es the following

�ve conditions:

1. For all x 2 TG, jS(x)j = O(jV(x)j�).
2. For all x; x0 2 TG such that x0 is a child of x, jV(x0)j � �jV(x)j.

20

3. AUGMENTING PATH MAXFLOW COMPUTATION

3. For leaves x 2 TG, jV(x)j = O(1).

4. If jV(x)j = ;, then x is a leaf.

5. For any internal node x with children x1 and x2, S(x) � B(x1) [B(x2).
Under these restrictions the depth dG of the tree TG is at most log1=� n, and l = O(1).

For 0 � i � blog1=(1��) nc, denote by Ti � TG the set of all nodes x 2 TG such that
(1� �)i+1n < jV(x)j � (1 � �)in. We have that each Ti is a forest consisting of subtrees
of height at most dlog�(1� �)e. Consider a node x with children x1 and x2, then x 2 Tk
for some 0 � k � blog1=(1��) nc. Conditions 2 and 5 imply that jV(x1)j � �jV(x)j,
jV(x2)j � �jV(x)j, and jV(x1)j + jV(x2)j � jV(x)j. Therefore for i = 1; 2, jV(xi)j �
(1 � �)jV(x)j > (1 � �)k+2n. We conclude that x1 and x2 are in Tk or Tk+1. Denote
sk =

P
x2Tk

jS(x)j. We have the following proposition.

Proposition 3.1 sk = O(n�(1� �)k(��1)).

Proof: Denote by Pk � Tk the set of roots of all trees in Tk. Let nk =
P
x2Pk

jV(x)j. Each
tree in Tk has constant height, therefore

P
x2Tk

jV(x)j = O(nk). Since for each node x 2 Tk,

jV(x)j > (1� �)k+1n, there are O(nk
(1��)k+1n

) = O(nk
(1��)kn

) nodes in Tk. Hence,

sk = O(
nk

(1� �)kn
(1� �)k�n�)

Observe that n0 = n, and nk+1 � nk + sk. Therefore we have that

nk+1 � nk(1 +O(((1� �)kn)��1))

Hence,

nk+1 � n
kY
i=0

(1 +O((
1

n
� (1

1� �
)i)1��)) � n

kY
i=0

(1 +O((
1

n
� (1

1� �
)k�i)1��))

With k � log(1��)�1 n we have (1� �)�k � n. Hence

nk+1 � n
kY
i=0

(1 +O((1� �)i(1��))) � n
Y
i�0

(1 +O((1� �)i(1��)))

Taking logarithms we get

lognk+1 � log n+
X
i�0

O((1� �)i(1��)) � logn +O(
X
i�0

(1� �)i(1��)) � log n+O(1)

Thus nk+1 = O(n). We conclude that sk = O(n�(1� �)k(��1)). �

Proposition 3.1 can be used to bound
P
x2TG

jS(x)j! for constant ! � 1.

21

3. AUGMENTING PATH MAXFLOW COMPUTATION

Lemma 3.6 For ! � 1 we have that

X
x2TG

jS(x)j! =

8<
:

O(n!�) if !� > 1
O(n logn) if !� = 1
O(n) otherwise

Proof: Tk contains at least
sk

(1��)k�n�
nodes because jS(x)j � (1� �)k�n� for each x 2 Tk.

Hence for ! � 1 X
x2Tk

jS(x)j! � sk
(1� �)k�n�

((1� �)k�n�)!:

Using proposition 3.1, we getX
x2Tk

jS(x)j! � O(n!�(1� �)k(!��1))

We use this to get a bound on
P

x2TG
jS(x)j!:

X
x2TG

jS(x)j! =

blog1=(1��) ncX
k=0

X
x2Tk

jS(x)j! = n!� �O
0
@blog1=(1��) ncX

k=0

(1� �)k(!��1)

1
A :

From this the lemma follows easily for the cases !� = 1 and !� > 1. In case !� < 1 we
have

blog1=(1��) ncX
k=0

(1� �)k(!��1) =
n1�!�(1� �)!��1 � 1

(1� �)!��1 � 1

and the lemma follows. �

Lemma 3.7 For ! � 1, and 0 � k � blog1=(1��) nc, we have that

X
x2Tk

jB(x)j! =

8<
:

O(n!�) if !� > 1
O(kn) if !� = 1
O(n!�(1� �)k(!��1)) otherwise

Proof: For a node x 2 TG the set B(x) consists of separator vertices from ancestors of
x. Furthermore, each occurence of a vertex v in S(x) contributes to the boundaries of at
most two descendants at each level. For 0 � i � blog1=(1��) nc, we have that

P
x2Ti

jV(x)j =
O(ni) = O(n). Each node in Ti contains at least (1� �)i+1n vertices, so there are O((1�
�)�i�1) = O((1� �)�i) nodes in Ti. Hence,X

x2Tk

jB(x)j! =

22

3. AUGMENTING PATH MAXFLOW COMPUTATION

X
i�k

O((1� �)�i(1� �)!�in!�) =

O

n!�

X
i�k

(1� �)i(!��1)

!
=

8<
:

O(n!�) if !� > 1
O(kn) if !� = 1
O(n!�(1� �)k(!��1)) otherwise

This completes the proof. �

We can use the previous two lemmas to bound the amount of work needed to compute
the set E+. Since for each leaf x, jV(x)j = O(1), processing the leaves takes O(n) work.
Recall that the algorithm ComputeWeight performs O(jS(x)j3 + jB(x)j2jS(x)j) work at
each internal node x. We have that

X
x2TG

O(jB(x)j2jS(x)j) =

blog1=(1��) ncX
k=0

O

((1� �)kn)�

X
x2Tk

jB(x)j2
!

From lemma 3.7 we get that for 0 � k � blog1=(1��) nc,

O

((1� �)kn)�

X
x2Tk

jB(x)j2
!

=

8<
:

O(n3�(1� �)k�) if 2� > 1
O(kn1:5(1� �)0:5k) if 2� = 1
O(n3�(1� �)k(3��1)) otherwise

Using lemma 3.6 to bound
P
x2TG

O(jS(x)j3j), we conclude that the work involved with

computing E+ is: 8<
:

O(n3�) if 3� > 1
O(n logn) if 3� = 1
O(n) otherwise

Since dG = O(logn), this can be done in O(log3 n) time.
Let us now consider the Bellman-Ford+ algorithm. The running time of this algorithm is

O((l+dG) logn) = O(log2 n) on a EREW PRAM. The algorithm performs O(ljEj+jE+j) =
O(jEj+ jE+j) work. We can evaluate this further as follows.

The set E+ was protected from containing multiple edges by including only the edge
of minimum-weight in case a multiple occurrence would arise. As a consequence of this

jE+j �
X
x2TG

jS(x)j2 + jF j;

where F is the set [
x2TG

B(x)� B(x)�
[
x2TG

S(x)� S(x)

23

3. AUGMENTING PATH MAXFLOW COMPUTATION

Let us bound the size of F . Observe that if an edge (v; w) 2 F , then there exists a node x
with v; w 2 B(x). Furthermore, there exist distinct nodes x0; x00 2 TG with v 2 S(x0) and
w 2 S(x00), such that x0 and x00 are either equal to x or an ancestor of x. Without loss of
generality we assume that x0 is an ancestor of x00. Observe we can also assume that v is
not contained in any separator from a node that is on the path from x0 to x00. Hence,

jF j = O

0
@blog1=(1��) ncX

k=0

sk

0
@blog1=(1��) ncX

j=k

((1� �)jn)�

1
A
1
A

= O

0
@n2�

blog1=(1��) ncX
k=0

(1� �)k(2��1)

1
A

=

8<
:

O(n2�) if 2� > 1
O(n logn) if 2� = 1
O(n) otherwise

Using lemma 3.6 we conclude that

jE+j =

8<
:

O(n2�) if 2� > 1
O(n logn) if 2� = 1
O(n) otherwise

Let us now bound the size of E. Observe that each edge in E is in S(x) � S(x) for
some x, or is in V(x0)� V(x0) for some leaf x0. We conclude that

jEj =

8<
:

O(n2�) if 2� > 1
O(n logn) if 2� = 1
O(n) otherwise

From the above we conclude that the work performed by the Bellman-Ford+ algorithm is8<
:

O(n2�) if 2� > 1
O(n logn) if 2� = 1
O(n) otherwise

In the overal computation of distances, the work performed in computing the set E+

is the main bottleneck. However, the O(nm) work bound of the sequential Bellman-Ford
algorithm evaluates for the considered class of graphs to:8<

:
O(n2�+1) if 2� > 1
O(n2 logn) if 2� = 1
O(n2) otherwise

We conclude that the work performed by the parallel algorithm is in all cases less than the
work performed by its sequential counterpart.

24

3. AUGMENTING PATH MAXFLOW COMPUTATION

We will now analyze the maximum
ow algorithm of section 3.4. Recall our observation
that the altered algorithm ComputeWeights has the same asymptotic behavior as the
original. The previous analysis therefore also applies to the computation of E(f)+. Since
separator sizes are O(n�), computing the capacities for edges from E(f)+ takes O(n� log n)
time. Furthermore, the work involved with this is

P
x2TG

jS(x)j3+jB(x)j2. This falls within
the work bound of computing E(f)+. In line 8 a shortest path from s to t in G(f)+ is
traversed. The length of this path is O(logn), so this takes O(logn) sequential time. The
augmentation performed in line 9 can be done in O(n� logn) time with

P
x2TG

O(1+jS(x)j)
work. We �nd that one iteration of the max
ow algorithm takes O(n� logn) time and work8<

:
O(n3�) if 3� > 1
O(n logn) if 3� = 1
O(n) otherwise

The number of iterations of the shortest augmenting path max
ow algorithm is O(nm)[10].
The previous analyses together with our observations about the size of E imply a running
time of 8<

:
O(n3�+1 log n) if 2� > 1
O(n2

p
n log2 n) if 2� = 1

O(n�+2 logn) otherwise

and work bound 8>>>><
>>>>:

O(n3) if 0 < � < 1
3

O(n3 logn) if � = 1
3

O(n3�+2) if 1
3
< � < 1

2

O(n3
p
n logn) if � = 1

2

O(n5�+1) otherwise

The sequential shortest augmenting path max
ow algorithm has time bound O(nm2),
which is in this case equal to 8<

:
O(n4�+1) if 2� > 1
O(n3 log2 n) if 2� = 1
O(n3) otherwise

In all cases the parallel version improves on this computation time. Observe that for
0 < � < 1

3
the work bound of the parallel algorithm is even equal to the work bound of

the sequential version. For larger � the parallel algorithm performs more work.

3.6 Digression

During the shortest augmenting path max
ow algorithm the distance �G(f)(s; v) does not
decrease for vertices v 2 V . As a result of this, one can prove that the total number of
augmentations is bounded by O(nm). For speci�c graph classes separator decompositions
can assist in lowering this bound analytically. For the class of graphs considered in section
3.5 it was shown that m was bounded by O(n2� + n), if 2� 6= 1, and O(n logn) otherwise.

25

3. AUGMENTING PATH MAXFLOW COMPUTATION

In this section we introduce for paths in a graph the concept of order. We will prove
that the minimum order of an acyclic s; t-path in the residual network does not decrease
if
ow is augmented over acyclic s; t-paths of minimum order. The next step might be to
apply this in a separator decomposition embedded max
ow algorithm. However, it is left
as an open problem whether any such an approach is at all bene�cial.

De�nition 3.4 Given graph G = (V;E) and subset X � V , the order �XG (p) of a path p
in G is the number of edges from p in the cut de�ned by X.

If in above de�nition the graph G is directed, only edges from p with their origin in
X and head not in X will contribute to the order of p. Therefore, the order denotes the
number of times p exits from X. If the graph G is undirected the order also counts the
number times the path p enters X. In this case the order indicates the number of times the
path p crosses between X and V nX. Let us now present the promised lemma concerning
order of paths and
ow augmentation.

Lemma 3.8 Let f be a
ow in network N = (G = (V;E); c; s; t), and let a subset X � V
be given. If there does not exist an acyclic s; t-path p in G(f) with non-zero residual capacity
and of order �XG(f)(p) � i, for some i � 0, then there does not exist an acyclic s; t-path in

G(faug) with non-zero residual capacity and of order �XG(faug)
(p) � i, where faug is a
ow in

N resulting from augmenting f with a positive amount of
ow over some acyclic s; t-path
in G(f) of order i+ 1.

Proof: Let i be such that there exists an acyclic s; t-path p in G(f) with non-zero residual
capacity of order i + 1, but not of order less than i + 1. Let faug be the
ow in N
resulting from augmenting f with some positive amount of
ow over p. In order to derive a
contradiction assume there exists an acyclic s; t-path p0 in G(faug) with non-zero capacity
of order �XG(faug)

� i. Observe there must be at least one edge (v; w) in p0 such that:

1. the edge (w; v) is in p, and

2. the residual capacity of edge (v; w) in G(f) is zero.

For k � 1, let (v1; w1); : : : ; (vk; wk) be the complete sequence of these kind of edges in the
same order as they appear on p0. De�ne w0 = s, and vk+1 = t. For 1 � i � k + 1, let p0i be
the subpath of p0 between vertices wi�1 and vi. Furthermore, let (w0

1; v
0
1); : : : ; (w

0
k; v

0
k) be

the complete sequence of mirror-edges of the above sequence as they appear on p. De�ne
v00 = s, and w0

k+1 = t. For 1 � i � k + 1, let pi be the subpath of p between vertices v0i�1

and w0
i. Since all subpaths p

0
i are mutually edge-disjoint we have that

k+1X
j=1

�XG(f)(p
0
j) � �XG(f)(p

0) � i

26

3. AUGMENTING PATH MAXFLOW COMPUTATION

Similarly it holds that
k+1X
j=1

�XG(f)(pj) � �XG(f)(p) = i+ 1

Hence,

k+1X
j=1

�XG(f)(p
0
j) + �XG(f)(pj) � 2i+ 1 (1)

Observe that each subpath pi either ends in t, or at a vertex where a subpath p0j begins.
Conversely, each subpath p0i either ends in t, or at a vertex where a subpath pj begins.
This suggest one can walk from s to t by alternatingly walking subpaths of p and p0. As
we will see this is indeed the case.

Consider the case one starts in s and �rst traverses the subpath p1. This brings us
further down both paths p and p0. Consecutively, one can traverse a subpath p0j1 for some
1 � j1 � k+1. Trivially this brings us further down path p0, but since p is acyclic this also
brings us further down p. In case we are not in t we can traverse a subpath pj2, for some
1 � j2 � k + 1. This brings us further down p, but also further down p0 since p0 is acyclic.
Reasoning on like this we conclude there exists an s; t-path q1 that is the concatenation of
alternatingly subpaths from p and p0 starting with p1.

Similarly we can argue there exists an s; t-path q2 that is the concatenation of alternat-
ingly subpaths from p and p0 starting with p01. Since in the above the traversal of subpaths
always brings us further down both p0 and p it can be concluded that each subpath from p
and p0 can be traversed in only one of q1 and q2. Therefore, �

X
G(x)(q1) + �XG(x)(q2) is less or

equal to the left-hand side of (1). Therefore the order of one of q1 and q2 must be less than
i + 1. Discarding cycles on this path, we have shown the existence of an acyclic s; t-path
in G(f) of order less than i + 1. This is a contradiction. �

In case we have a separator decomposition (TG;S;V) of a graph G, a thing that might
come to mind is to apply the lemma to the graph G(f), and choosing the set X equal to
S(r), where r is the root of TG. Augmenting over acyclic paths the maximum order of an
s; t-path is bounded by the size ofX. An idea could therefore be to consecutively cancel the
existence of paths of minimum order. Important in this is to �nd a good upper bound for
the number of times one augments over the same order. In case the algorithm works with
integeral values, this is at most equal to value of the cut de�ned by S(r). However, this does
not seem to be helpful. Also an important problem one encounters with the above idea,
is the embedding of the elimination procedure in the recursive separator decomposition
framework. One thing that absolutely needs to be avoided, is that the eventual algorithm
iterates a substantial number of times at an internal node, with each iteration involving a
recursive computation. Algorithms with this kind of structure su�er from an asymptotic
explosion in their running time. However, the above mentioned idea seems to lead in this
kind of direction.

27

4. THE CONNECTION TO TREEWIDTH

4 The Connection to treewidth

As we saw in previous sections, the tree shaped structure of a separator decomposition
opens the way to "Divide and Conquer"-strategies in the design of graph algorithms.
Working on a speci�c graph problem, it is upon the algorithm designer to �t the problem
into the separator decomposition framework. In this activity,
exibility is provided in
terms of the properties of separator decompositions. Using these properties as parameters,
one can control the generality of graphs for which one is devising an algorithm.

Closely related to the separator decomposition framework is the treewidth approach.
In treewidth, we also have a tree containing information about separators, namely the tree
decomposition. Each tree decomposition has a width, which is roughly the size of the
largest separator in the tree. The treewidth of a graph G is de�ned as the minimum width
over all possible tree decompositions of G. Just as with separator decompositions, the
treewidth approach opens up possibilities for applying "Divide and Conquer"-strategies in
graph algorithms.

The above suggests a close relationship between tree decompositions and separator
decompositions. In this section, we give a mathematical exposition of this relation. It
is shown that an arbitrary width-k tree decomposition can be converted into a separator
decomposition with separators, leaf vertex sets, and boundaries of size at most 3k + 3 in
O(log2 n) time with O(n logn) work.

In order to transform a separator decomposition into a tree decomposition, it is not
always su�cient to do the inverse of the above mentioned conversion. However, a slight
modi�cation of this inverse results in a correct converse transformation algorithm. Given
a separator decomposition of depth O(logn) with attribute sets of constant size, the algo-
rithm returns a width-O(logn) tree decomposition of G. The computation takes O(logn)
time and O(n log2 n) work.

4.1 Treewidth

The concept of treewidth plays an important role in the design of graph algorithms. Many
classes of graphs are known that have uniform constant bounded treewidth. For such a
class there exists a constant that bounds the treewidth of all graphs in the class. Many
NP-complete problems become polynomially solvable when restricted to graphs classes
that have uniform constant bounded treewidth. The following notions were introduced by
Robertson and Seymour [20].

De�nition 4.1 Let G = (V;E) be a graph. A tree decomposition for G is a pair (TG;XG),
where TG = (VT ; ET) is a tree, and XG is a function VT ! }(V) satisfying the following
conditions:

1. For every (v; w) 2 E there is an x 2 VT such that v; w 2 XG(x), and

2. For x; y; z 2 VT , if y is on the path from x to z in TG then XG(x) \ XG(z) � XG(y).

28

4. THE CONNECTION TO TREEWIDTH

The width of a tree decomposition (TG;XG) is maxfjXG(x)j � 1jx 2 VTg, and the
treewidth of G is the minimum width over all its tree decompositions.

The graph G in the de�nition above can either be directed or undirected. Just as
separator decompositions, tree decompositions are independent of the direction of edges in
the underlying graph. As analogy to fact 2.1 we have:

Fact 4.1 T is a tree decomposition of directed graph G if and only if T is a tree decom-
position of the undirected skeleton of G.

As already was made explicit, many classes of graphs are known which have uniform
constant bounded treewidth. To mention a few, we have trees, forests, Halin graphs,
series-parallel graphs, and outerplanar graphs. For an overview see Bodlaender [4].

For the problem of computing a tree decomposition of a graph NC-algorithms are
known. Bodlaender and Hagerup [5] gave an O(log2 n) time algorithm using O(n) op-
erations on the EREW PRAM for the case the graph is undirected. Given a graph of
treewidth k, their algorithm constructs a width-k tree decomposition.

4.2 From Tree Decomposition to Separator Decomposition

Converting a tree decomposition into a separator decomposition is a three phase process.
Separator decompositions consist of rooted binary trees, therefore in the �rst phase the
tree decomposition is made into a rooted binary tree decomposition. Here an algorithm of
Bodlaender is used, which takes a width-k tree decomposition and converts it into a rooted
binary tree decomposition of logarithmic depth and of width 3k+2 [3]. For constant k � 0,
the algorithm runs in O(logn) time, and uses O(n) processors. Recall our assumption that
in a binary tree internal nodes have exactly two children. Bodlaender's algorithm may
result in a binary tree where internal nodes have only one child. Therefore, after this
algorithm has been applied, for all internal nodes with only one child, a child x is added
with XG(x) = ;. Let it be obvious that this does not a�ect the two tree decomposition
properties.

As will become clear later, the XG-sets of a tree decomposition may contain super
uous
vertices, prohibiting the tree decomposition from being directly converted into a separator
decomposition. This will be handled in the second phase. By removing vertices from XG-
sets, the tree decomposition is turned into what is called a clean tree decomposition. Given
an O(logn) depth rooted binary tree decomposition of constant width the algorithm runs
in O(log2 n) time, performing O(n logn) work.

After the tree decomposition has been made binary and clean, the actual conversion
into a separator decomposition takes place. The conversion is a straightforward method,
which takes O(logn) time and O(n logn) work for tree decompositions of constant width.
The overall process of converting a tree decomposition of constant width into a separator
decomposition takes O(log2 n) time and O(n logn) work. Given a width-k tree decomposi-
tion the resulting separator decomposition has separators, boundaries, and leaf vertex sets
of size at most 3k + 3, and is of logarithmic depth.

29

4. THE CONNECTION TO TREEWIDTH

4.3 Clean Tree Decompositions

As was already mentioned, the XG-sets of a tree decomposition sometimes contain super-

uous vertices, which makes direct transformation into a separator decomposition di�cult.
Therefore, tree decompositions will be skimmed down in a preprocessing phase. A tree
decomposition that has been processed this way is called clean. The following de�nition
speci�es the desired minimality requirement exactly.

De�nition 4.2 Given a rooted tree decomposition (TG;XG) of graph G and node x 2 TG,
a vertex v 2 XG(x) is called clean with respect to x if for all children y of x it holds that,
if v is not incident to any vertex in

S
y02TG[y]

XG(y
0)nXG(x), then v =2 S

y02TG[y]

XG(y
0).

In the following a tree decomposition (TG;XG) will be called clean, when for all x 2 TG,
all vertices in XG(x) are clean with respect to x. Note that for leaves x 2 TG, all vertices
in XG(x) are clean. The following lemma and its corollary indicate that individual vertices
can be cleaned by removing their occurrences in the subtree that make them dirty.

Lemma 4.1 If we have a rooted tree decomposition (TG;XG) of graph G, internal node
x 2 TG, child y of x, and vertex v 2 XG(x) that is not incident to any vertex inS
y02TG[y]

XG(y
0)nXG(x), then after removing v from all XG(y

0) for y0 2 TG[y] that contain it,

the resulting (TG;XG) is still a tree decomposition of G.

Proof: Let (v; w) 2 E be given, and let z 2 TG be a node in the original tree with
v; w 2 XG(z). Now suppose that v was removed from this set, because for an ancestor x of
z we had that v 2 XG(x), and v was not incident to any vertex in

S
y02TG[y]

XG(y
0)nXG(x), for

child y of x. Since z 2 TG[y], we have that w 2 XG(x). Apparently, for each node z in the
tree with v; w 2 XG(z), if v is removed from XG(z) during cleaning, there is an ancestor
z0 of z with v; w 2 XG(z

0). Since vertices are never removed from the XG-set of the root,
there must be a node x in TG for which v; w 2 XG(x).

Consider nodes x0; y0; z0 in TG with y0 on the path from x0 to z0. Originally, the condi-
tion XG(x

0) \ XG(z
0) � XG(y

0) was satis�ed. Consider the case that y0 is an ancestor of
both x0 and z0. It is easy to see that the condition still holds after deleting a vertex v,
since if it is deleted from XG(y

0), it is also deleted from XG(x
0) and XG(z

0), if contained
at all. Now consider the case that x0 is an ancestor of y0, and y0 is an ancestor of z0. If a
vertex is removed from XG(y

0), it is also removed from XG(z
0), if contained at all, so again

the condition holds afterwards. The case z0 is an ancestor of y0, and y0 is ancestor of x0 is
symmetric. �

Corollary 4.1 Given a rooted tree decomposition (TG;XG) of graph G, node x 2 TG, and
a dirty vertex v 2 XG(x) with respect to x, there exists a rooted tree decomposition (TG;X 0

G)
of graph G with:

30

4. THE CONNECTION TO TREEWIDTH

1. for all y 2 TG, X 0
G(y) � XG(y).

2. v 2 X 0
G(x), and v is clean with respect to x.

Proof: Simply repeat the procedure of lemma 4.1 for all children y of x. �

Knowing how we can clean individual vertices, the question is how this can be used in
cleaning up a whole tree. One might worry that cleaning one vertex could make another
dirty. The following lemma indicates that this is not the case, if the cleaning is done in a
top-down approach, cleaning vertices at nodes one-by-one.

Proposition 4.1 Given rooted tree decomposition (TG;XG) of graph G, node x 2 TG, and
node z 2 TG[x], if we clean a dirty vertex in XG(z), then all clean vertices in XG(x) stay
clean.

Proof: Let v 2 XG(z) be a dirty vertex about to be cleaned, and let w be a clean vertex
in XG(x). We have for all children y of x that w 2 S

y02TG[y]

XG(y
0) only if w is incident to

a vertex u 2 S
y02TG[y]

XG(y
0)nXG(x). Observe that w can only become dirty if v = u. First

note that, if z = x then u 6= v, so w cannot get dirty.
Secondly, in case z is a descendant of x, cleaning v will not remove v from XG(z). So

after cleaning still u 2 S
y02TG[y]

XG(y
0)nXG(x), and thus w is still clean. �

For clarity reasons we summarize the above mentioned ideas in a straightforward pseu-
docode cleaning algorithm. See table 1. In order to clean a tree decomposition (TG;XG)
simply call the procedure CleanTree with the root of TG as argument. Let us analyse
the performance of the algorithm in case a rooted binary tree decomposition of depth
dG = O(logn) and constant width is given.

To start with the procedure Incident, since the width of the tree is constant, the check
in line 1 takes O(1) time. Let the height of node c be h, then the procedure takes O(h)
time and O(2h) work. Similarly, we can conclude that procedure Remove takes O(h) time
and O(2h) work, if called for a node with height h. Moving up in the procedure hierarchy,
we �nd that also CleanNode takes O(h) time and O(2h) work, if called for nodes of height
h. The procedure CleanTree called for the root of TG therefore has running time:

dGX
i=0

O(i) = O(d2G) = O(log2 n)

The number of nodes with height h is O(2dG�h), The amount of work performed by
CleanTree is:

dGX
i=0

O(2i)O(2dG�i) =

dGX
i=0

O(2dG) =

dGX
i=0

O(n) = O(n logn)

Summarizing these result for future reference:

31

4. THE CONNECTION TO TREEWIDTH

Procedure CleanTree (x 2 TG)
1. CleanNode (x)
2. for all children c of x pardo
3. CleanTree(c)

Procedure CleanNode (x 2 TG)
1. if internal(x) then
2. for all v 2 XG(x) do
3. for all children c of x do
4. if not Incident(v, x, c) then
5. Remove (v, c)

Procedure Incident (v 2 V ; x; c 2 TG)
1. if v incident to vertex in XG(c)nXG(x) then
2. return TRUE
3. else if leaf(c) then
4. return FALSE
5. else for all children c0 of c pardo
6. rc0 := Incident(v, x, c0)
7. return

W
c0
rc0

Procedure Remove(v 2 V , x 2 TG)
1. Remove v from XG(x).
2. if internal(x) then
3. for all children c of x pardo
4. Remove(v, c)

Table 1: The Cleaning Algorithm

32

4. THE CONNECTION TO TREEWIDTH

Lemma 4.2 Any rooted binary constant-width tree decomposition of depth O(logn) can
be cleaned in O(log2 n) time with O(n logn) work.

4.4 The Conversion

In order to tranform a tree decomposition (TG;XG) into a separator decomposition we
exploit the fact that XG-sets are separators. The following lemma shows how the conversion
can be done.

Lemma 4.3 Given a graph G with a rooted binary clean tree decomposition (TG;XG) of
width k � 0, let S : TG ! V and V : TG ! V be de�ned as

S(x) =

� XG(x) if x internal,
; otherwise

V(x) =
[

y2TG[x]

XG(y)

then (TG;S;V) is a separator decomposition of G. Furthermore, for all nodes x 2 TG it
holds that jS(x)j; jB(x)j � k + 1, and if x is a leaf then jV(x)j � k + 1.

Proof: Let r be the root of TG. The �rst condition of the separator decomposition
de�nition states that V(r) = V . Since G has no isolated vertices, and for all (v; w) 2 E,
there exists a node x 2 TG with v; w 2 XG(x), we have that V(r) =

S
y2TG[r]

XG(y) =S
y2TG

XG(y) = V . The second condition is satis�ed trivially, since it is explicitly stated that

S(x) = ; for leaves x 2 TG.
The third condition needs some more work. Let x be a node in TG with children x1

and x2. De�ne for i 2 f1; 2g, Vi =
S

y2TG[xi]

XG(y)nXG(x).

Claim 1: S(x) separates the induced subgraph G(V(x)) into V1 and V2.

Proof: Let us �rst show that fV1; V2;S(x)g is a partition of V(x). Trivially, V1[V2[S(x) =
V(x). It is also easy to see that S(x) \ V1 = ;, and S(x) \ V2 = ;. Furthermore, since for
all y 2 TG[x1]; y

0 2 TG[x2], XG(y) \ XG(y
0) � XG(x), we have that

V1 \ V2 =
[

y2TG[x1]

XG(y)nXG(x) \
[

y2TG[x2]

XG(y)nXG(x)

=

0
@ [

y2TG[x1]

XG(y) \
[

y2TG[x2]

XG(y)

1
A nXG(x) = ;

In order to complete the proof of claim 1, let us now show that V1 and V2 are separated by
S(x). For the purpose of contradiction, assume there exist incident vertices v and w in G,
with v 2 V1, and w 2 V2. Condition 2 of de�nition 4.1 states that there must be a y 2 TG

33

4. THE CONNECTION TO TREEWIDTH

for which v; w 2 XG(y). Observe that the only candidates for y are the ancestors of x. In
case x is the root, we have a contradiction. Otherwise let y be an ancestor of x for which
v; w 2 XG(y). Since v 2 V1, there must be a descendant y0 of x with v 2 XG(y

0). We thus
have a contradiction, since fvg � XG(y) \ XG(y

0) � XG(x).

Claim 2: For i = 1; 2 it holds that:

V(xi) = Vi [fv 2 S(x)j9w 2 Vi such that v and w are incident in G(V(x))g
Proof: Let i 2 f1; 2g be given, then

V(xi) =
[

y2TG[xi]

XG(y)

=

0
@ [

y2TG[xi]

XG(y)nXG(x)

1
A [

0
@ [

y2TG[xi]

XG(y) \ XG(x)

1
A

= Vi [
0
@ [

y2TG[xi]

XG(y) \ XG(x)

1
A (2)

In the following, denote with W the set:

fv 2 XG(x)j9w 2 Vi such that v and w are incident in G(V(x))g
Since (TG;XG) is clean, each vertex v 2 XG(x) with v 2 S

y2TG[xi]

XG(y) is incident to some

vertices in
S

y2TG[xi]

XG(y)nXG(x) = Vi. Therefore,
S

y2TG[xi]

XG(y)\XG(x) � W . We will now

prove that W � S
y2TG[xi]

XG(y) \ XG(x).

Let a vertex v 2 XG(x) be given that is incident to a vertex w 2 Vi. Since (TG;XG) is a
tree decomposition there must be a node z in TG with v; w 2 XG(z). Since w =2 XG(x) we
have that z 6= x. Suppose that z is an ancestor of x. Since w 2 XG(z

0) for an z0 2 TG[xi],
we would have that w 2 XG(x). Therefore, z must be a descendant of x. Since V1 and V2
are disjoint, and w 2 Vi we �nd that z 2 TG[xi], and thus that v 2 S

y2TG[xi]

XG(y) \ XG(x).

It can be concluded that W =
S

y2TG[xi]

XG(y) \ XG(x). Substituting this in (2) proves the

claim.
We conclude from claims 1 and 2 that (TG;S;V) also satis�es the third condition of the

separator decomposition de�nition, and it is thus established that (TG;S;V) is a separator
decomposition of G. Furthermore, we have for leaves x 2 TG that jV(x)j � k + 1, and for
all x 2 TG that jS(x)j � k + 1 and jB(x)j � k + 1. The last inequality follows from the
fact that for x 2 TG,

B(x) = V(x) \
[
y2Wx

S(y) =
[

y2TG[x]

XG(y) \
[
y2Wx

XG(y) � XG(x);

34

4. THE CONNECTION TO TREEWIDTH

where Wx is the set of all ancestors of x. �

Observe that in the proof of claim 2 we really need to know that the tree decomposition
is clean. The necessity for cleanness is simply a consequence of the fact that in separator
decompositions we only take separator vertices down the tree if they are adjacent to the
separated parts.

Lemma 4.3 contains the logical sense in which tree decompositions can be transformed
into separator decompositions. In practice, the need for actually performing the conversion
does not seem very substantial since a tree decomposition can easily be used as a cleancut
representation of a separator decomposition.

Let us now consider the case where we have a tree decomposition of depth dG = O(logn)
and constant width. In actually performing the transformation indicated by lemma 4.3, the
main bottleneck is the computation of the V-sets. Assuming that these sets are represented
as linked lists, we can make a copy, and concatenate these copies of two lists of length l1 and
l2, in O(1) time with O(l1+l2) work. Calculating all V-sets can be done in a straightforward
bottom-up copying and uniting of V-sets. A slight problem here is that a concatenated list
might contain multiple occurrences of the same vertex. This can be handled as follows.

First for each node x a copy X 0
G(x) is made of XG(x). This takes O(1) time, and O(n)

work. The X 0
G-sets will be used to compute the V-sets. For each internal node x 2 TG,

vertices from X 0
G(x) are removed from X 0

G(x
0) for all descendants x0 of x. On the CREW

PRAM this can be done as follows. For each node x0, remove a vertex from X 0
G(x

0) if it is
contained in a X 0

G-set of an ancestor of x0. Processing all nodes x0 in parallel, this takes
O(logn) time and O(n logn) work. The X 0

G-sets obtained this way can be used just as
before to compute the V-sets. Consider an arbitrary internal node x with children x1 and
x2. From the second part of de�nition 4.1 it can be concluded that V(x1)\V(x2) = ;. The
concatenation of the lists representing these sets will not contain multiple occurrences of
the same vertex.

Let us analyze the overall complexity of calculating the V-sets. Assume lists are
concatenated in parallel for all nodes at height h. Processing nodes at height h takes
O(2h)O(2dG�h) = O(2dG) = O(n) work, since there are O(2dG�h) nodes at height h, and
the V-sets at these nodes contain O(2h) vertices. We conclude that the whole conversion
can be done in O(logn) time with O(n logn) work. Summarizing the results of this section:

Theorem 4.1 Given an arbitrary width-k tree decomposition (TG;XG) of a graph G for
constant k � 0, a separator decomposition (TG;S;V) of G can be computed in O(log2 n)
time with O(n logn) work. Furthermore, for all nodes x 2 TG jS(x)j; jB(x)j � 3k + 3, and
for leaves x 2 TG, jV(x)j � 3k + 3.

4.5 From Separator Decomposition to Tree Decomposition

In order to convert a separator decomposition into a tree decomposition a natural �rst
attempt is to try the inverse of the transformation mentioned in the previous section.
Given a graph G = (V;E), binary tree TG, and function XG : TG ! }(V), we had a

35

4. THE CONNECTION TO TREEWIDTH

transformation � on pairs (TG;XG) de�ned as:

�((TG;XG)) = (TG;S;V);where

S(x) =

� XG(x) if x internal,
; otherwise

V(x) =
[

y2TG[x]

XG(y)

Let S 0 and V 0 both be functions of type TG ! }(V). Assume that for all leaves x it holds
that S 0(x) = ;. A simple check shows that � de�ned for tuples (TG;S 0;V 0) as

�((TG;S 0;V 0)) = (TG;XG);where

XG(x) =

� S 0(x) if x internal,
V 0(x) otherwise

is the inverse of the transformation � . Let a pair (TG;XG) of appropriate type be given,
then

�(�((TG;XG))) = �((TG;S;V)); where

S(x) =

� XG(x) if x internal,
; otherwise

V(x) =
[

y2TG[x]

XG(y)

Working this out further, we get that

�((TG;S;V)) = (TG;X 0
G); where

X 0
G(x) =

� S(x) if x internal,
V(x) otherwise

From this it can be deduced that for all x in TG it holds that XG(x) = X 0
G(x). Therefore,

�(�((TG;XG))) = (TG;XG).
Conversely, let (TG;S 0;V 0) be an arbitrary tuple of appropriate type, then

�(�((TG;S 0;V 0))) = �((TG;XG)); where

XG(x) =

� S 0(x) if x internal,
V 0(x) otherwise

Working this out further we get that

�((TG;XG)) = (TG;S;V); where

36

4. THE CONNECTION TO TREEWIDTH

S(x) =

� XG(x) if x internal,
; otherwise

V(x) =
[

y2TG[x]

XG(y)

Hence, S 0(x) = S(x), for all x in TG. Furthermore,

V(x) =
[

y2TG[x]

XG(y)

=
[

internal y2TG[x]

S 0(y) [
[

leaves y2TG[x]

V(y0)

= V 0(x)

The last equality follows almost directly from the separator decomposition de�nition. The
above calculations establish that, for all separator decompositions S, and for all tree de-
compositions T :

1. �(�(S)) = S,
2. �(�(T)) = T

Thus it can be concluded that � and � are each other's inverse. Unfortunately it cannot
be guaranteed that � applied to an arbitrary separator decomposition always results in a
tree decomposition, as the following example will show.

Figure 4.5 depicts a fragment of a separator decomposition tree. Separator sets and
vertex sets are indicated with dotted lines around the contained vertices. Transformation
� translates separator sets directly into XG-sets. We get that �; �;
 2 XG(x), � 2 XG(y),
and
 2 XG(z). The node y lies on a path from x to z, and
 2 XG(z) \ XG(x). However
it is not the case that
 2 XG(y). In this example the second condition of de�nition 4.1 is
therefore not being obeyed.

Looking closer at the previous example one could suspect that adding boundaries to
the XG-sets would result in the general satisfaction of condition 2 of the tree decomposition
de�nition. Lemma 4.5 shows that this is indeed the case. In the proof of lemma 4.5 the
following lemma is used.

Lemma 4.4 Let (TG;S;V) be a separator decomposition of a graph G, and let z be a node
in TG. If a vertex v 2 S(z) [B(z), then for all descendants y of z, if v =2 B(y) then
v =2 V(y).

Proof: Let y be a descendant of z. In the following, for a node x 2 TG denote with
Wx the set containing x and all ancestors of x. Proposition 2.1(2) states that B(y) =
V(y) \ S

y02Wy

S(y). Hence, B(y) � V(y) \ S
y02Wz

S(y) � V(y) \ [S(z) [B(z)]. Therefore,

if a vertex v =2 B(y), we know that v =2 V(y), or v =2 S(z) [B(z). The assumption

37

4. THE CONNECTION TO TREEWIDTH

γ

X

Y

Z

α

α

β

β

β

γ

γ

Figure 1: Fragment of a separator decomposition.

38

4. THE CONNECTION TO TREEWIDTH

v 2 S(z) [B(z) implies that v =2 V(y). �

In addition to the above lemma, note that in a separator decomposition (TG;S;V), for
a node x with children x1 and x2, if for i = 1; 2, Vi = V(xi)nS(x) then

1. fS(x); V1; V2g is a partition of V(x)
2. V1 and V2 are separated by S(x)
3. V(xi) = Vi [fv 2 S(x)j9w 2 Vi such that v and w incident in G(V(x))g

These facts follow directly from the separator decomposition de�nition.

Lemma 4.5 Let (TG;S;V) be a separator decomposition of graph G, then (TG;XG) with

XG(x) =

� S(x) [B(x) if x internal,
V(x) otherwise

is a tree decomposition of G.

Proof: Let us �rst show that for every (v; w) 2 E there is an x in TG such that
v; w 2 XG(x). Assume the converse, i.e. for an edge (v; w) 2 E, for all x 2 TG, v =2 XG(x),
or w =2 XG(x).

Claim: For internal nodes x with children x1 and x2, and v; w 2 V(x), it holds that
v; w 2 V(xi) for an i 2 f1; 2g.
Proof: Since v; w are not both in XG(x) = S(x)[B(x), they are not both in S(x). There
are two cases to consider.
Case v; w =2 S(x)
Without loss of generality assume that v 2 V(x1), and w 2 V(x2). In this case v 2
V(x1)nS(x), and w 2 V(x2)nS(x), which is a contradiction, since V(x1)nS(x), and V(x2)nS(x)
are separated by S(x).
Case one of v; w is in S(x)
Without loss of generality assume that v 2 S(x). We have for an i 2 f1; 2g, w 2 Vi =
V(xi)nS(x). Since

V(xi) = Vi [fv 2 S(x)j9w 2 Vi : v and w incident in G(V(x))g
we conclude that v 2 V(xi). This proves the claim.

For the root r of TG, V(r) = V . Together with the claim this implies that v; w 2 XG(x)
for a leaf x 2 TG, which contradicts our original assumption.

To complete the proof, we show that for x; y; z in TG with y on the path from x to z,
XG(x) \ XG(z) � XG(y). There are two cases to be considered.

In case x and z are both descendants of y, a vertex v =2 S(y) is not in both V(y1) and
V(y2), for children y1 and y2 of y. Therefore, v is not in both V(x) and V(z). Hence,

39

4. THE CONNECTION TO TREEWIDTH

V(x) \ V(z) � S(y), and thus XG(x) \ XG(z) � V(x) \ V(z) � S(y) � S(y) [B(y) =
XG(y).

In case y is a descendant of one of x and z, say z, we have that XG(x) \ XG(z) �
V(x) \ XG(z) = V(x) \ [S(z) [B(z)] � S(y) [B(y) = XG(y). In order to prove this
last subset relation, let v 2 V(x), and v 2 S(z) [B(z). Assume that v =2 S(y) [B(y).
Therefore, v =2 B(y). Lemma 4.4 states that v =2 V(y), which implies that v =2 V(x). This
is a contradiction. �

Of course, adding the boundaries leads to an increase in the width of the resulting tree
decomposition. For example, suppose all separators, and leaf vertex sets of a separator
decomposition are of size at most k, for constant k. In case the separator decomposition is of
depth O(logn), proposition 2.1(2) implies that boundaries are of size O(logn). Therefore,
the resulting tree decomposition would have O(logn) width. Comparing this with the
performance of the inverse transformation �, the result would be a pair (TG;XG) of width
k+1. Unfortunately, it cannot be guaranteed that (TG;XG) obtained this way is always a
tree decomposition.

Let us consider the case that the depth dG of TG is O(logn), S(x) is of constant size for
all nodes x 2 TG, and V(x) is of constant size for all leaves x 2 TG. The main bottleneck
in performing the above conversion is obviously the calculation of the boundaries. Let us
sketch a two-phase CREW PRAM algorithm to perform this computation.

In the �rst phase, for each node x 2 TG, for each vertex v 2 V(x), it is checked whether
v 2 S(x0) for an ancestor x0 of x. If the height of node x is h, then there are O(2h) vertices
to consider, and there are O(dG�h) ancestors. Since there are O(2dG�h) nodes at height h,
we �nd that we have to perform O(2dG�h)O(2h)O(dG � h) = O(2dG(dG � h)) = O(n logn)
work to handle all nodes at height h. Taking care of nodes at all heights in the tree
therefore takes O(n log2 n) work.

Having established for each node x, for each v 2 V(x) whether it is in the boundary or
not, the second phases entered, which consists of constructing the boundary sets. Assuming
these sets are represented by linked lists, constructing an individual boundary set B(x),
takes work linear in the number of vertices in B(x), which is O(logn). Therefore, the
second phase takes O(n logn) work.

Let us consider the running time of the algorithm. If in the �rst phase the check is
performed both for all nodes x, as for all vertices v 2 V(x) in parallel, phase one will take
O(logn) time, since there are at most O(logn) ancestors to consider, and each ancestor
can be handled in constant time. Furthermore, in the second phase the boundary sets can
be constructed for each node in parallel, therefore the second phase also takes O(logn)
time. To summarize we mention the following theorem.

Theorem 4.2 Given a separator decomposition (TG;S;V) of graph G of O(logn) depth
for which jS(x)j � k for all x 2 TG, jV(x)j � k for all leaves x 2 TG, and constant k � 0,
a tree decomposition of width O(logn) can be computed in O(logn) time with O(n log2 n)
work.

40

5. AN NC-FLOW ALGORITHM

5 An NC-
ow algorithm

In section 3 an e�cient parallel algorithm was given for the shortest path problem in case a
suitable separator decomposition of the underlying graph was available. The algorithm can
be used in the shortest augmenting path max
ow algorithm, introducing some parallelism
into max
ow computation. However, the amount of parallelism in this algorithm is not
satisfactory. The di�culty is that the augmentations are still done one after another. Since
the total number of augmentations with the shortest augmenting path max
ow algorithm
is O(nm), we already have a factor of O(nm) in the running time of the algorithm.

In this section we will see a more successful approach. It uses separator decompositions
to solve the max
ow problem in a "Divide and Conquer" manner. It is shown that
ow in
a k-terminal network, that is a network for which the number of sources plus the number
of sinks is k, can be characterized by a set of at most 2k equations, or equivalently by
a mimicking network of at most 2(2

k) vertices. More precisely, the possible patterns of
imbalance at the terminals, which will be referred to as feasible external
ow patterns,
are characterized. The NC-max
ow algorithm makes use of these characterizations in the
following way.

Suppose we want to compute the maximum
ow in network (G; c; s; t). Given a separa-
tor decomposition (TG;S;V) of G, we associate with each node x in TG a network N(x). In
addition to that, we associate with each internal node x a network Ns(x). In the algorithm
the external
ow characterizations of these networks will be computed in a bottom-up
fashion. It is shown that for an internal node x with children x1 and x2 the characteriza-
tions of the child networks N(x1) and N(x2), together with the characterization of network
Ns(x) can be `melt' into a characterization of the associated network N(x). If the number
of terminals in the merged networks N(x1); N(x2) and Ns(x) is O(1) this can be done is
O(1) time. Since the network N(r) associated with the root r of TG is equal to the orig-
inal network (G; c; s; t) the �nal result of this procedure is a characterization of external

ow in the network (G; c; s; t). Once this characterization is computed, a corresponding

ow can be e�ciently calculated for each external
ow pattern. For the special case that
the separator decomposition of the underlying graph has separators, boundaries, and leaf
vertex sets of constant size, this results in an NC-max
ow algorithm. From theorems 4.1
and 4.2 we know that these conditions are satis�ed if and only if the graph G has bounded
treewidth.

5.1 Characterizing external
ow

In the
ow algorithm that follows later, networks can have more than one source and sink.
We therefore generalize our network de�nition as follows.

De�nition 5.1 A k-terminal network is a triple (G; c;Q), where G = (V;E) is a digraph
with capacities on the edges speci�ed by c : E ! R�0 , and Q is an ordered set fq1; : : : ; qkg �
V of distinguished vertices called terminals. A
ow in a k-terminal network (G; c;Q) is a
function f : E ! R�0 for which:

41

5. AN NC-FLOW ALGORITHM

1. 0 � f(e) � c(e) for all edges e 2 E

2. bf (i) =
P

(i;j)2E

f(i; j)� P
(j;i)2E

f(j; i) = 0 for all i 2 V nQ.

In other words, a
ow in a k-terminal network is a
ow which is balanced everywhere,
except possibly at the terminals. For a
ow f in a k-terminal network we call the imbalances
at the terminals the external
ow pattern of f . External
ow patterns can be considered
to be abstractions of
ow that hide away the internal structure. In a network external
ow
patterns are either realisable or not:

De�nition 5.2 A realizable external
ow in a k-terminal network N is a k-tuple (x1; : : : ; xk)
of real numbers associated with the terminals q1; : : : ; qk for which there exists a
ow f in
N such that bf (qi) = xi for i = 1; : : : ; k.

Considering the terminals to be the places of in
ow and out
ow in the network, one
would expect a
ow to have its total input and output balanced. The following lemma
shows that this is indeed the case. We use induction to the size of the network to prove
the lemma.

Lemma 5.1 If (x1; : : : ; xk) is a realizable external
ow in some k-terminal network for

some k � 0, then
kP
i=1

xi = 0.

Proof: For networks containing no vertices the conditions holds trivially. Let (x1; : : : ; xk)
be the external
ow tuple of
ow f in a k-terminal network (G = (V;E); c; Q). Assume the
graph G contains n + 1 vertices. Consider the network N 0 = (G0 = (V 0; E 0); c0; Q0), where
V 0 = V nQ, E 0 = E(V nQ), c0 equals c restricted to E 0, and Q0 = fv 2 V nQjv connected to
terminal in Gg. Observe that f is a
ow in this network. Let (x01; : : : ; x

0
k) be the external

ow tuple of f in N 0 corresponding to terminals q01; : : : ; q
0
k0. We have that

kX
i=1

xi =
kX
i=1

0
@ X

(qi;v)2E

f(qi; v)�
X

(v;qi)2E

f(v; qi)

1
A =

kX
i=1

0
@ X

(qi;v)2E;v=2Q

f(qi; v)�
X

(v;qi)2E;v=2Q

f(v; qi)

1
A =

k0X
i=1

0
@ X

(w;q0i)2E;w2Q

f(w; q0i)�
X

(q0i;w)2E;w2Q

f(q0i; w)

1
A =

k0X
i=1

0
@ X

(w;q0i)2E

f(w; q0i)�
X

(q0i;w)2E

f(q0i; w)

1
A�

42

5. AN NC-FLOW ALGORITHM

k0X
i=1

0
@ X

(w;q0i)2E;w=2Q

f(w; q0i)�
X

(q0i;w)2E;w=2Q

f(q0i; w)

1
A =

k0X
i=1

0
@ X

(q0i;w)2E;w=2Q

f(q0i; w)�
X

(w;q0i)2E;w=2Q

f(w; q0i)

1
A =

k0X
i=1

0
@ X

(q0i;w)2E
0

f(q0i; w)�
X

(w;q0i)2E
0

f(w; q0i)

1
A =

k0X
i=1

x0i = 0

This proves the lemma. �

We will refer to the condition of lemma 5.1 as the network balance constraint. Recall
that in the conventional situation of having one source s and one sink t we have that
the amount of
ow that
ows from s to t is at most equal to the value of the minimum
s; t-separating cut. Considering an arbitrary subset S � Q of terminals, lemma 5.1 implies
that

P
qi2S

xi = � P
qi =2S

xi, which is a hint towards looking at
P
qi2S

xi as the amount of
ow that

goes from S to QnS. In the light of the previous remark one would expect this amount of

ow to be bounded by the value of any minimum S;QnS-separating cut. It is possible to
prove this.

Lemma 5.2 For a realizable external
ow (x1; : : : ; xk) in a k-terminal network (G; c;Q)
we have for all subsets S � Q that

P
qi2S

xi � bS, where bS is the value of a minimum

S;QnS-separating cut.

Proof: Let f be a
ow in a k-terminal network (G; c;Q) with external
ow pattern
(x1; : : : ; xk). Consider an arbitrary subset S � Q. Let X be an S;QnS-separating cut. We
have that

kX
qi2S

xi =

X
v2X

0
@ X

(v;w)2E

f(v; w)�
X

(w;v)2E

f(w; v)

1
A =

X
(v;w)2E

v2X;w=2X

f(v; w)�
X

(w;v)2E

w=2X;v2X

f(w; v) �

X
(v;w)2E

v2X;w=2X

f(v; w) �
X

(v;w)2E

v2X;w=2X

c(v; w) � bS

this proves the lemma. �

43

5. AN NC-FLOW ALGORITHM

Lemma 5.1 and 5.2 show us two important properties of realizable external
ows. It
would be interesting to see whether, if these properties hold for a k-tuple x, this would
imply that x is a realizable external
ow. If this is the case we have found a complete
characterization of realizable external
ows. The following is a reformulation of a theorem
proposed by Hagerup et al. [15]. They derived this result by a slight modi�cation and
extension of a result due to Gale [13].

Theorem 5.1 In a k-terminal network (G; c;Q), a k-tuple (x1; : : : ; xk) is a realizable ex-
ternal
ow if and only if the following two relations are satis�ed:

1.
kP
i=1

xi = 0

2. For all subsets S � Q,
P
qi2S

xi � bS, where bS is the value of any minimum S;QnS-
separating cut.

Proof: Let (G; c;Q) be an arbitrary k-terminal network, and let (x1; : : : ; xk) be such that
conditions 1 and 2 hold. Let us show that (x1; : : : ; xk) is a realizable external
ow in
(G; c;Q). The converse follows from lemma 5.1 and lemma 5.2.

We augment the network with two new vertices s and t. Furthermore, for each i such
that xi > 0 an edge (s; qi) with capacity xi is added, and for each i such that xi < 0 an
edge (qi; t) with capacity �xi is added. Let us show that in this network the cut de�ned
by fsg is a minimum s; t-separating cut. In this case we deduce with the max-
ow min-cut
theorem that there exists a
ow f such that all edges (s; qi) are saturated. Condition 1
implies that in this case also all edges (qi; t) are saturated. Restricting f to the original
network then gives us a
ow with external
ow pattern (x1; : : : ; xk).

Consider an arbitrary subset X � V . The cut de�ned by the set fsg [X consists of
edges from s to QnX, edges from X to V nX, and edges from Q \X to t. The capacity of
this cut is X

qi2QnX;xi>0

xi +
X

(v;w)2E

v2X;w2V nX

c(v; w)�
X

qi2Q\X;xi<0

xi =

X
xi>0

xi �
X

qi2Q\X;xi>0

xi +
X

(v;w)2E

v2X;w2V nX

c(v; w)�
X

qi2Q\X;xi<0

xi =

X
xi>0

xi +
X

(v;w)2E

v2X;w2V nX

c(v; w)�
X

qi2Q\X

xi

The �rst term in the last line is the capacity of the cut de�ned by fsg. The sum of the
last two terms is non-negative, since the tuple satis�es the second condition of the the-
orem, which implies that

P
qi2Q\X

xi � bQ\X . Therefore, the value of the cut de�ned by

fsg is less than or equal to the value of the cut de�ned by fsg [X. We conclude that

44

5. AN NC-FLOW ALGORITHM

the cut de�ned by fsg has value less than or equal to the value of any s; t-separating cut. �

The theorem establishes that feasible external
ow in a k-terminal network can be
characterized by a set of 2k inequalities. In the following, this set of inequalities will be
referred to as the external
ow inequalities. The right-hand side of each inequality can be
found as follows.

In order to �nd bS for each subset S � Q, new vertices s and t are added to the original
graph G. For all v 2 S and w 2 QnS we add to G edges (s; v) and (w; t), respectively, of
in�nite capacity. In the resulting network G0 we �nd the value r of the maximum s; t-
ow.
The following lemma shows that this is the value bS we are looking for.

Lemma 5.3 In the above described procedure r equals bS, the value of any minimum
S;QnS-separating cut.

Proof: The max-
ow min-cut theorem implies that the value of any minimum s0; t0-
separating cut X in G0 is r. We will establish that for any such minimum s0; t0-separating
cut X, the set Xnfs0g is a minimum S;QnS-separating cut in G with value equal to r.

Let a mininum s0; t0-separating cut X in G0 be given. The capacities of edges in G
are �nite. Therefore cuts in G0 which contain no added edges all have smaller value than
cuts that do contain added edges. Since X is a minimum s0; t0-separating cut we �nd that
X \Q = S. Therefore, we have that the set Xnfs0g is a S;QnS-separating cut.

Suppose there exist an S;QnS-separating cut X 0 in G, which has smaller value than
X. In this case X 0 [fs0g would be an s0; t0-separating cut in G0 with smaller value than
X, which contradicts the minimality of X.

Observe that cut X and cut Xnfs0g contain the same edges, therefore the value of
Xnfs0g is r. �

It can be concluded that the procedure described above is correct. Note that for any
k-terminal network one can therefore �nd a characterization of its realizable external
ow
in time polynomial in the size of the network, and exponential in the number of terminals.

5.2 Merging external
ow characterizations

In the following unifying two vertices v and w of a graph G will refer to the procedure
of making v and w into one vertex u. In this procedure the edges incident to v and w
become incident to the uni�ed vertex u, multiple edges are merged into one, and loops
are eliminated. Note that the uni�cation of incident vertices v and w is equivalent to
contracting all edges between v and w. Given two vertex disjoint k-terminal networks
N1 = (G1 = (V1; E1); c1; Q1) and N2 = (G2 = (V2; E2); c2; Q2), the union of N1 and N2 is
the network (G0; c0; Q0) de�ned as:

1. G0 = (V1 [V2; E1 [E2)

2. c0(e) =

�
c1(e) if e 2 E1

c2(e) otherwise

45

5. AN NC-FLOW ALGORITHM

3. Q0 = Q1 [Q2

Having de�ned uni�cation and union as above, consider the following problem.
Suppose for vertex disjoint k-terminal networks N1 = (G1; c1; Q1) and N2 = (G2; c2; Q2)

realizable external
ow is characterized by sets of inequalities C1 and C2. We assume that
these sets are represented in a way that makes them suitable objects for the computations
performed in subsequent text. Let I � Q1�Q2 be a given matching of terminals. Since in
the following we do not want the di�culty of having to deal with multiple edges, assume
that there are no edges between terminals that occur in the matching. If N 0 = (G0; c0; Q0)
is the network resulting from uniting networks N1 and N2, and unifying all matched pairs
of terminals in I, how do we derive the external
ow inequalities of N 0 from the sets C1
and C2? For clarity, uni�cation of two terminals results in one uni�ed vertex which is a
terminal.

In order to describe the external
ow in uni�ed terminals we introduce for each uni�ed
terminal q a new variable xq. Since C1 and C2 characterize the external
ow in the subnet-
works N1 and N2 of N

0 we get a characterization C 0 of the external
ow in N 0 by adding
to C1 [C2 the equalities that correspond to the process of unifying terminals as follows.

Initially, C 0 is set equal to C1 [C2. If terminals q1 and q2 have external
ow (xq1 ; xq2),
and get uni�ed into terminal q, the external
ow of q is xq1 +xq2. Therefore, for all uni�ed
terminals q1 and q2 the equation xq = xq1+xq2 is added to C 0. Note that a terminal q in N 0

can be made into a non-terminal by substituting 0 for the variable xq in C 0. The resulting
set of equations and inequalities C 0 characterizes the external
ow of network N 0.

There is a slight problem with the set C 0, namely it is not in the form of theorem 5.1.
However, we can obtain an equivalent set of inequalities C 00 in desired format by considering
the constraints one-by-one. For each subset S � Q0 we simply have to compute bS, the
capacity of any minimum S;Q0nS-separating cut, and add the inequality

P
qi2S

xi � bS to

C 00. The value bS is computed by maximizing
P
qi2S

xi with respect to constraints C 0 and the

network balancing constraint with an algorithm for linear programming in �xed dimensions
discovered by Chazelle and Matou�sek [7]. In our case this will take O(1) time. Assume
we �nd a value r this way. We have that r = bS, since if r < bS theorem 5.1 tells that
there are external
ow tuples for which

P
qi2S

xi > r, which contradicts the maximality of r.

Conversely, if r > bS then we would have found a realizable external
ow tuple for whichP
qi2S

xi > bS, which contradicts theorem 5.1.

Once for all subset of terminals S � Q0 the value bS has been computed, the set C 00
characterizes feasible external
ow in network N 0. Just as long as the total number of
terminals jQ1j+ jQ2j is constant, this characterization can be computed in O(1) time.

5.3 The NC max
ow algorithm

The merging of
ow inequalities as described in previous section can be used to implement
a "Divide and Conquer" max
ow algorithm. However, the way networks are merged here

46

5. AN NC-FLOW ALGORITHM

is slightly di�erent. Instead of merging two networks, we now merge three networks in one
step. In this merging, possibly three terminals are uni�ed into one. In the following we
will see that this does not really impose any extra di�culty.

Suppose for a network (G; c; s; t) a separator decomposition (TG;S;V) of G is available.
We associate a network N(x) = (G0(x); c0; Q(x)) to all nodes x in TG, where Q(x) =
(V(x) \ fs; tg) [B(x), G0(x) = (V(x); E(V(x))nf(v; w)jv; w 2 B(x)g), and c0 is equal to c
restricted to edges of G0(x). Intuitively, one can look at this as follows. The vertices in the
boundary B(x) are taken as terminals since network N(x) is merged with other networks
by identi�cation of boundary vertices. Therefore G0(x) does not contain edges between
boundary vertices, since we do not want the complication of having to eliminate multiple
edges. Observe that the network N(r) associated with the root r of TG is equal to the
original network (G; c; s; t).

In addition to the network N(x), for all internal nodes we have a network Ns(x) =
(G00(x); c;S(x)), where G00(x) = (S(x); E(S(x))nf(v; w)jv; w 2 B(x)g). In the following we
describe how for internal nodes x the external
ow inequalities of N(x) can be computed
from the external
ow inequalities of the networks associated with its children and the
connecting network Ns(x).

First observe that for internal node x with children x1 and x2 we have that G0(x) =
G0(x1) [G0(x2) [G00(x). Also observe that V(x1) \ V(x2) � S(x). Therefore the graph
G0(x) can be constructed by �rst taking the disjoint union of graphs G0(x1), G

0(x2) and
G00(x), and then unifying:

1. for all vertices in V(xi) \ S(x) which are not in V(x3�i), the occurrences in disjoint
subgraphs G0(xi) and G00(x), for i = 1; 2.

2. for all vertices in V(x1)\V(x2)\S(x), the occurrences in disjoint subgraphs G0(x1),
G0(x2), and G00(x).

Note that G0(x1), G
0(x2), and G00(x) are edge disjoint. Therefore, G0(x) as obtained

above does not contain multiple edges. Furthermore, observe that the vertices that fall
under 1 appear in N(xi) and Ns(x) as terminals. Similarly, vertices that fall under case
2, appear in N(x1), N(x2), and Ns(x) as terminals. We are therefore assured that we
only unify terminals. Furthermore, since B(x) � B(x1) [B(x2) [S(x) we are assured
that all terminals in N(x) are terminals in N(x1), N(x2) and Ns(x), which is necessary
for the merging of external
ow inequalities of the networks N(x1), N(x2) and Ns(x) to
result in a complete characterization of the external
ow in N(x). Possibly two terminals
get merged into a non-terminal. In this case the same substitution trick is applied as in
previous section.

Let C1, C2, and C3 be the external
ow inequalities of networks N(x1), N(x2), and
Ns(x), respectively. Assuming these external
ow inequalities all use di�erent variables,
we make the following notational convention. For a vertex q 2 V that occurs as terminal
in Ci for i 2 f1; 2; 3g, denote with xiq the variable refering to q in Ci. The external
ow of
network N(x) can be characterized by the extending the set of inequalities C 0 = C1[C2[C3
as follows.

47

5. AN NC-FLOW ALGORITHM

For each vertex q that falls in one of the categories mentioned above, a new variable xq
is introduced. In case vertex q falls under 1, we add the equality xq = xiq+x3q to C 0. In case
it falls under category 2, the equation xq = x1q + x2q + x3q is added to C 0. At the completion
of these additions the set C 0 will characterize the external
ow of network N(x). In order
to get C 0 in the form of theorem 5.1 the same linear programming procedure is followed as
in the previous section.

Having seen how for an internal node x we can compute the external
ow inequalities of
N(x) by merging the inequalities of the networks associated with its children and network
Ns(x), an algorithm for computing the external
ow inequalities for (G; c; s; t) is obvious.
As a �rst step, we calculate the external
ow inequalities for the networks associated with
leaf nodes, for all leaf nodes in parallel as in section 5.1. In consecutive steps we work up
the tree, merging
ow inequalities in parallel for all nodes for which the networks associated
with its children are already characterized. The characterization of networks Ns(x) will be
computed at the time of this merging.

We will now analyze the algorithm for the case that we have a constant k such that for
all x 2 TG, jS(x)j; jB(x)j � k, if x is a leaf then jV(x)j � k, and TG has depth O(logn). If G
has bounded treewidth we can compute such a separator decomposition in O(log2 n)-time
with O(n logn) work, as we saw in previous section.

Since the leaf vertex sets have size at most k, the characterization of the networks as-
sociated with the leaves can be computed in O(1) time. After this has been done O(logn)
merging phases follow. Each parallel merging at a node consists of characterizing the
network induced by the separator, and performing the linear programming in �xed dimen-
sions. The �rst can be done in O(1) time, since separators have size at most k. The second
can be done in O(dO(d)n) time, in case of d variables, and n constraints [7]. In our case
the number of variables and constraints are bounded by a constant since boundaries are
bounded by a constant. Therefore the application of the linear programming algorithm
takes O(1) time. We conclude that the algorithm runs in O(logn) time. At each node
O(1) work is performed, therefore the algorithm performs a total of O(n) work.

Once the external
ow inequalities of (G; c; fs; tg) are calculated, for any realizable
external
ow pattern (vs; vt) we can calculate a corresponding
ow as follows. If C 0 is the
extended set of inequalities characterizing (G; c; fs; tg), we substitute the values vs and vt in
C 0 for variables xs and xt. With linear programming we then �nd values for the remaining
variables that �t the inequalities. The values found this way make up feasible external
ow
patterns in the networks associated with the children of the root, and the Ns-network of
the root. For the networks associated with the children we can now recursively apply this
procedure. For node x in TG, we compute a
ow in network Ns(x) as follows. The same
technique is used for calculation of
ow in networks associated with leaves.

First augment Ns(x) with vertices s0 and t0. Secondly, for each terminal q with xq > 0,
add an edge (s0; q) to Ns(x), and set its capacity to xq. For each terminal q with xq < 0,
we add an edge (q; t0) to Ns(x), and set its capacity to �xq. Once this is done, a maximum
s0; t0-
ow f is computed in the augmented network. The
ow f restricted to network Ns(x)
has the required external
ow pattern.

It is obvious that the two
ows determined recursively together with the
ow determined

48

5. AN NC-FLOW ALGORITHM

in the Ns-network make up a
ow in the original network corresponding to the requested
external
ow pattern. Unwinding recursion we �nd that the networks associated with the
leaves, and the Ns-networks piece together a
ow in original network. Summarizing the
results of this section:

Theorem 5.2 Given network N = (G; c; s; t) and separator decomposition (TG;S;V) of G
for which separators, boundaries, and leaf vertex sets have size O(1), and TG has O(logn)
depth, computing a maximum
ow in N can be done in O(logn) time with O(n) work.

5.4 Mimicking Networks

Characterizing external
ow with sets of inequalities, and the implied use of linear pro-
gramming algorithms, is a practice that one might want to refrain from. Fortunately, there
exists an alternative way to go about. In this section we will see that for each k-terminal
network N we can construct a network N 0, in which precicely the same set of external
ow
tuples is realizable as in N . The network N 0 is referred to as being a mimicking network
of N . It has size dependent on only the number of terminals in N , namely at most 2(2

k)

vertices. In the following text we will see that we can use mimicking networks in the
ow
algorithm of the previous section for the characterization of external
ow. Although this
is less time-e�cient than the use of external
ow inequalities, the resulting algorithm is
still in NC if separators, boundaries, and leaf vertex sets are of constant size. Let us get
more detailed.

De�nition 5.3 Given k-terminal network (G; c;Q) with for each subset S � Q a certain
minimum S;QnS-separating cut with de�ning subset CS, two vertices v and w are equiva-
lent, denoted v � w, if and only if for all S � Q it holds that v; w 2 CS or v; w =2 CS.

It is easy to see that � is an equivalence relation. For each vertex v 2 V let Ev be the
equivalence class that contains it.

De�nition 5.4 Given k-terminal network N = (G; c;Q) with equivalence relation � on
its vertices, the mimicking network of N is the network (G0 = (V 0; E 0); c0; Q0) for which:

1. V 0 = fEvjv 2 V g,
2. for U;W 2 V 0, (U;W) 2 E 0 i� there exist u 2 U and w 2 W with (u; w) 2 E,

3. each edge e = (U;W) 2 E 0 has capacity c0(e) =
P

u2U;w2W

(u;w)2E

c(u; w),and

4. Q0 = fEqjq 2 Qg.

In order to construct a mimicking network in the above situation, �rst for each subset
S � Q the set CS has to be calculated. Secondly, the equivalence classes of � have to be
determined. An approach could be to determine for each vertex v 2 V a binary vector ~rv

49

5. AN NC-FLOW ALGORITHM

of length 2k, that contains the information about the containment of v in all sets CS. The
mimicking network then gets a vertex for each di�erent vector we encounter. Initializing
capacities in the mimicking network with zero, we would then have to consider all edges
e 2 E and add c(e) to the appropriate edge capacity in the mimicking network. Observe
that computing mimicking networks in this fashion takes time polynomial in the number
of vertices in G, and exponential in the number of terminals k.

Knowing how we can construct a mimicking network, we are still left with the important
issue whether this network actually has the mimicking character its name re
ects. The
following theorem establishes that our construction indeed leads to a network that mimicks
the original network as far as external
ow is concerned.

Theorem 5.3 Let N 0 = (G0; c0; Q0) be a mimicking network of k-terminal network N =
(G; c;Q = fq1; : : : ; qkg), then any tuple of reals (x1; : : : ; xk) associated with terminals
q1; : : : ; qk is a realizable external
ow pattern in N if and only if (x1; : : : ; xk) associated
with terminals Eq1; : : : ; Eqk is a realizable external
ow pattern in N 0.

Proof: From theorem 5.1 we see that a tuple (x1; : : : ; xk) associated with terminals
q1; : : : ; qk is realizable in N if and only if the following two conditions hold:

1.
kP
i=1

xi = 0

2. For all subsets S � Q,
P
qi2S

xi � bS, where bS is the value of any minimum S;QnS-
separating cut.

Also from theorem 5.1 we see that a tuple (x1; : : : ; xk) associated with terminals Eq1 ; : : : ; Eqk

is realisable in N 0 if and only if the following two conditions hold:

1.
kP
i=1

xi = 0

2. For all subsets S 0 � Q0,
P

Eqi2S
0

xi � bS0, where bS0 is the value of any minimum

S 0; Q0nS 0-separating cut.

Since an equivalence class can not contain two or more terminals, the second condition
of the above is equivalent to stating that for all subsets S � Q,

P
qi2S

xi � bS0, where

S 0 = fEqjq 2 Sg, and bS0 is the value of any minimum S 0; Q0nS 0-separating cut. Let us
prove the theorem by showing that for all subsets S � Q it holds that bS = bS0 . Consider
an arbitrary subset S � Q. Let X be the de�ning subset of an S 0; Q0nS 0-separating cut.
Observe that the cut de�ned by X 0 =

S
U2X U is an S;QnS-separating cut, and that the

capacity of X and X 0 is the same. Therefore, it must be that bS � bS0. Conversely, let

50

5. AN NC-FLOW ALGORITHM

CS be the minimum S 0; Q0nS 0-separating cut used in the construction of the mimicking
network. Consider the cut in N 0 de�ned by subset C 0

S = fEvjv 2 CSg. We have that

C 0
S \Q0 = fEvjv 2 CSg \ fEqjq 2 Qg =

fEqjq 2 CS \Qg = fEqjq 2 Sg = S 0:

Since each equivalence class in C 0
S is completely contained in CS we have that the capacity

of C 0
S is at most equal to the capacity of CS. Therefore, it holds that b

0
S � bS. �

We now show that a mimicking network has size independent of the size of the original
network.

Theorem 5.4 A mimicking network of a k-terminal network (G; c;Q) has at most 2(2
k)

vertices.

Proof: The number of cuts CS used in de�nition 5.3 is at most 2k. For a vertex v 2 V
the equivalence class Ev can be speci�ed by a binary vector of length 2k, containing infor-
mation in which of the 2k cuts v is contained. We conclude that there are at most 2(2

k)

equivalence classes. �

Let us now brie
y address to the issue of using mimicking networks in the
ow algorithm
of previous section. Recall we had here, for each node x an associated network N(x), and
for each internal node x a network Ns(x). For internal nodes x with children x1 and x2
we argued that the network N(x) could be formed by �rst taking the disjoint union of
the networks N(x1), N(x2), and Ns(x), and then unifying certain vertices in this disjoint
union. Let us assume the mimicking network of the networks N(x1), N(x2), and Ns(x)
are already calculated. In order to calculate the mimicking network of N(x), we �rst take
the disjoint union of these three mimicking networks. Theorem 5.3 gives us a one-to-one
correspondence between the terminals in the networks N(x1), N(x2), and Ns(x), and the
terminals in their mimicking networks. Therefore, for each uni�cation of vertices in the
original networks, we simply unify the corresponding vertices in the mimicking network.
The network obtained this way features the same external
ow behavior as the network
N(x). However, it might not be in the form of de�nition 5.4 anymore. Therefore, as a �nal
step we apply the mimicking network construction procedure on this network, obtaining
the mimicking network of N(x).

Let us consider the resources involved in case we have a constant k such that for all
x 2 TG, jS(x)j; jB(x)j � k, if x is a leaf then jV(x)j � k, and TG has depth O(logn).
Observe that in this case the mimicking networks of the networks associated with the
leaves of TG, and the Ns-networks can be computed in O(1) time. Furthermore, since
boundaries are bounded by k we have that the number of terminals of the associated
networks is at most k. Therefore, we �nd that mimicking network construction applied
in the merging of networks takes time polynomial in the sum of the sizes of the merged
networks. From theorem 5.4 we see that the mimicking networks we produce have at most

51

REFERENCES

2(2
k) = O(1) vertices. As a consequence, for each node computing the mimicking network

of the associated network takes O(1) time. We conclude that computing the mimicking
network of the original network can be done in O(logn) time with O(n) work.

Computing an actual
ow in network N can be done by processing down the tree. At
an internal node x with children x1 and x2, the procedure is to calculate a
ow in the
network that was formed by merging N(x1), N(x2), and Ns(x), of desired external
ow
pattern. From this
ow external
ow patterns in the constituent networks Ns(x), N(x1)
and N(x2) can be determined recursively. We conclude that in above situation computing
an actual
ow in network N can be done in O(logn) time with O(n) work.

References

[1] R.K. Ahuha, T.L. Magnanti, and J.B. Orlin. Some recent advances in network
ows.
SIAM Review, 33(2):175{219, 1991.

[2] R. Bellman. On a routing problem. Quarterly of Applied Mathematics, 16(1):87{90,
1958.

[3] H.L. Bodlaender. NC-algorithms for graphs with small treewidth. In Proceedings of
the 14th International Workshop on Graph-Theoretic Concepts in Computer Science.
Springer Lecture Notes in Computer Science, 344:1{10, 1988.

[4] H.L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Technical
Report UU-CS-1996-02, Department of Computer Science, Utrecht University.

[5] H.L. Bodlaender and T. Hagerup. Parallel algorithms with optimal speedup for
bounded treewidth. Preprint, 1996.

[6] R.P. Brent. The parallel evaluation of general arithmetic expressions. Journal of the
ACM, 21:201{208, 1974.

[7] B. Chazelle and J. Matoe�sek. On linear-time deterministic algorithms for optimization
problems in �xed dimensions. Proceedings of the Fourth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, 281{290, 1993.

[8] M. Chrobak and K. Diks. Network
ows in outerplanar graphs, 1987.

[9] E. Cohen. E�cient parallel shortest-paths in digraphs with a separator decomposition.
Journal of Algorithms, 21:331{357, 1996.

[10] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. McGraw-Hill,
New York, 1990.

[11] J. Edmonds and R.M. Karp. Theoretical improvements in the algorithmic e�ciency
for network
ow problems. Journal of the ACM, 19:248{264, 1972.

52

REFERENCES

[12] L.R. Ford, Jr., and D.R. Fulkerson. Flows in Networks. Princeton University Press,
1962.

[13] D. Gale. A theorem on
ows in networks. Paci�c Journal of Mathematics, 7:1073{
1082, 1957.

[14] L.M. Goldschlager, R.A. Shaw, and J. Staples. The maximum
ow problem is log
space complete for P. Theoretical Computer Science, 21:105{111, 1982. North-Holland
Publishing Company.

[15] T. Hagerup, N. Nishimura, J. Katajainen, and P. Ragde. Characterisations of k-
terminal
ow networks and computing network
ows in partial k-trees. Proceedings of
the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, 641{649, 1995.

[16] Y. Han, V. Pan, and J. Reif. E�cient parallel algorithms for computing all-pairs
shortest-paths in directed graphs. In Proceedings 4th Annual ACM Symposium on
Parallel Algorithms and Architectures pp.353{362 Assoc. Comput. Mach., New York
1992.

[17] J. J�aJ�a, An Introduction to Parallel Algorithms, Addison-Wesley Publ. Co., 1992.

[18] D.B. Johnson. Parallel algorithms for minimum cuts and maximum
ow in planar
networks. Journal of the ACM, 34(4):950{967, 1987.

[19] R. M. Karp, E. Upfal, and A. Wigderson. Constructing a perfect matching is in random
NC. Combinatorica, 6:35{48, 1986.

[20] N. Robertson and P. D. Seymour. Graph Minor. II. Algorithmic aspects of treewidth.
Journal of Algorithms, 7:309{322, 1986.

53

