
On an Integer Multicommodity Flow Problem from the

Airplane Industry�y

Bram Verweij1, Karen Aardal1, and Goos Kant2

1 Department of Computer Science, Utrecht University,

P.O. Box 80.089

3508 TB Utrecht, the Netherlands

fbram,aardalg@cs.ruu.nl
2 ORTEC Consultants bv,

Groningenweg 6-33

2803 PV Gouda, the Netherlands

gkant@ortec.nl

Abstract

Here we discuss a new integer multicommodity
ow problem in which the commodi-
ties can not be shipped independently. The problem emerges in the routing of airplane
parts from production sites to assembly sites. The parts are of such size that they have
to be carried on dedicated trailers. Each type of part has its own type of trailer. A
part is loaded on its trailer after it is produced, carried on its trailer to its assembly site,
and then the trailer has to be recycled. The transport of the parts is done with huge
specially built transportation aircrafts. For reasons of stability such aircrafts can only
carry some pre-speci�ed combinations of parts on trailers and empty trailers. We con-
sider the problem of �nding a feasible transportation plan that minimises the total
ying
time of the transportation aircrafts. For this purpose we develop both optimisation and
approximation algorithms.

1 Introduction

In this paper we discuss a routing problem from the airplane industry, where the production
and assemblage of airplane parts takes place at geographically distinct sites, and where the
parts are transported on dedicated trailers in special transportation aircrafts. The model we
discuss allows us to mathematically estimate the total cost involved in transporting airplane
parts from production sites to assembly sites. More precisely, we aim to calculate a minimum
cost integer circulation of transportation aircrafts that supports an integer circulation of
trailers, that in turn supports an integer
ow of the airplane parts that have to be transported,
subject to loading restrictions.

�This research was (partially) supported by ESPRIT Long Term Research Project 20244 (project ALCOM
IT: Algorithms and Complexity in Information Technology).

yThis work has been done in cooperation with ORTEC Consultants b.v., Gouda, The Netherlands.

1

Problem description. We start by introducing some notation (see Figure 1 for an illus-
tration). We are given a set K = fk0; : : : ; kd�1g of commodities and a set V of sites (with
n = jV j). The set K contains one special plane object (denoted by k0) representing the
transportation airplane, and parts and trailers representing the airplane parts that have to be
transported and the trailers on which these parts are shipped. The trailer type corresponding
to part k is denoted trailer(k). We will use parts(k) to denote the set of part types that can
be carried on a trailer of type k. A loading con�guration ` is a multiset with elements from
K such that for each part k 2 ` we have that trailer(k) occurs at least as often in ` as k does
(each part has to be supported by a trailer). We de�ne the characteristic vector of a loading
con�guration ` as �` 2 Nd : �`(k) = jfk 2 `gj;8k 2 K. So, �` has a component �`(k) for
each k 2 K indicating the number of times k occurs in `. For any loading con�guration `,
�`(k0) = 1. We are given a set L of loading con�gurations, and we say that loading con�gura-
tion ` is admissible if ` 2 L. The set of admissible loading con�gurations models the di�erent
possibilities of loading a transportation aircraft with large airplane parts. This has to be done
in such a way that the capacity restrictions are satis�ed, and such that the transportation
aircraft remains stable during the
ight. L is the complete set of loading con�gurations that
satisfy these constraints. Our algorithms require one more technical assumption on L, namely
that a special set of so-called preferred loading con�gurations is contained in L. Preferred
loading con�gurations are de�ned in Section 2.2. The production and demand of the sites
for each commodity is given in the matrix B 2 Zn�d. We denote element (i; k) of B by bik
and the ith row of B by bi. Element bik > 0 if site i produces commodity k, bik < 0 if site i
assembles commodity k, and bik = 0 otherwise.

We call A = V � V � L the set of (directed) arcs. With each directed arc (ij`) 2 A we
associate a variable xij` 2 R to indicate the number of times we
y using loading con�guration
` from site i to site j. We call a vector x 2 RjAj a transportation plan. For any set S � V we
use the notation �in(S) = f(ij`) j j 2 S; i 2 V nS; (ij`) 2 Ag to indicate the set of arcs entering
S, and �out(S) = f(ij`) j i 2 S; j 2 V n S; (ij`) 2 Ag to indicate the set of arcs leaving S. For
singleton sets fig we abbreviate this to �in(i) and �out(i). For any transportation plan x and
A0 � A, let x(A0) denote the total
ow over all arcs in A0, i.e. x(A0) =

P
(ij`)2A0 �`xij`. The

kth component of x(A0) is the total
ow of commodity k over the arcs in A0 and is denoted
by xk(A

0). A transportation plan x � 0 is feasible if all planes that enter site i also leave site
i, and if the di�erence between incoming and outgoing objects of each commodity at site i
equals the production at site i, i.e. if

x(�out(i))� x(�in(i)) = bi 8i 2 V: (1)

Referring to the instance in Figure 1, we note that the solution x01`0 = x12`1 = x20`2 = 2 is
feasible. The excess of a transportation plan x is de�ned as the matrix E(x) = [eik(x)ji 2
V; k 2 K], where row i of E(x) (the excess at site i given x) is given by ei(x) = bi+x(�

in(i))�
x(�out(i)).

We are given an asymmetric cost matrix C 2 Nn�n , where cij denotes the cost of
ying
one loading con�guration from i to j. In our case, cij is proportional to the time needed to

y a transportation aircraft from i to j. De�ne c 2 NjAj to be the cost vector associated with
the decision variables, where element (ij`) of c is denoted cij` and has value cij .

The Integer Airplane Problem (IPA) is to �nd a feasible transportation plan of minimum

2

b0 =

0
BBB@

0
0
0
4
0

1
CCCA

b1 =

0
BBB@

0
0
0
�4
2

1
CCCA b2 =

0
BBB@

0
0
0
0
�2

1
CCCA

2 2

2

V = f0; 1; 2g

K = fk0;

jigs
z }| {

k1; k2;

parts
z }| {

k3; k4g

L = f`0; `1; `2g;

`0 = fk0;
k3
k1
; k3
k1
; k2g;

`1 = fk0; k1; k1;
k4
k2
g;

`2 = fk0; k1; k1; k2g

Figure 1: Example Instance of IPA.

cost:

(IPA)
min z(x) = c

T
x

subject to x(�out(i))� x(�in(i)) = bi 8i 2 V;
x � 0; x integer.

We denote the linear programming (LP) relaxation of IPA by LPA. The size of the problem
formulation is not dominated by the number of sites or the number of commodities, which
are relatively small, but by the size of L, which causes the number of xij` variables to be very
large, and the fact that the xij` variables are general integer variables.

Problem IPA, as well as realistic data, were presented to us by ORTEC Consultants bv.
The data set consists of parts from four di�erent airplane types, and currently one basically
solves a transportation problem for each airplane type. The primary goal of this research is
to determine how much can be saved by combining the transport of the parts of the di�erent
airplane types. IPA di�ers from the operational problem that ORTEC solves for their client
as IPA ignores all timing aspects. Problem LPA is of interest to ORTEC because it can be
used to gain insight in the structure of low cost solutions.

Related literature. Problem IPA contains the NP-hard multicover problem [HH86] as
follows. For each cut (S; V n S), at least the parts that are produced in S and not consumed
in S have to be covered by sets associated with the admissible loading con�gurations going
from S to V n S. Furthermore, IPA is related to the NP-complete Integral Network Flow
problem with Homologous Arcs [GJ79] as follows. Let V := V [fs; tg. For each xij`,
make a set Hij` containing �`(k) arcs (i; j) for each commodity k. Let E =

S
ij`Hij` and

H =
S
ij`fHij`g. Furthermore connect the source node s to all nodes with production of some

commodity, and all nodes that have demand of some commodity to the sink node t, using
arcs that have capacity equal to the production/demand. Any solution to IPA gives an s� t

ow f in the graph (V;E) satisfying f(a) = f(a0) for each a; a0 2 H; H 2 H. So, IPA can be
seen as a problem that has multiple sets of homologous arcs, each set restricted to arcs that
have the same source and destination.

The observations in the previous paragraph make it quite unlikely to �nd e�cient polyno-
mial time algorithms for IPA. Therefore, we propose to use branch and bound for solving IPA

3

to optimality. For this approach to work, we will need to be able to calculate good lower and
upper bounds on the value of the solution in any node of the branch and bound tree. We will
use LPA to �nd lower bounds, and an heuristic to �nd upper bounds. The branch and bound
framework will impose lower- and upper bounds on the xij` variables. With these lower- and
upper bounds LPA can be seen as a generalisation of network
ow [AMO93]. Network
ow
optimality conditions, and some network transformations do generalise to LPA, but we have
been unable to generalise algorithms for network
ow to LPA. Instead we apply LP column
generation techniques. Although these techniques are well established they recently received
a lot of attention, see e.g. Vanderbeck [Van94], Barnarth et al. [BJN+96], Sol [Sol94], and
Desrochers et al. [DDS92]. The success of the column generation approach can be motivated
by the improvement in hardware and in the quality of the available LP solvers, which allow
much larger LP models to be solved. In order to get a fast and good primal approxima-
tion algorithm that can be used in each node of the branch and bound tree, we propose an
LP-based heuristic, that converts a fractional LP solution to an integer solution for IPA.
LP-based approximation algorithms have been quite successful in di�erent problem domains.
Examples of these are facility location problems [STA97] and scheduling with communication
delays [MK97].

This paper is organised as follows. In Section 2 we consider a straightforward heuristic
based on minimum cost
ow. We discuss solving and \repairing" LPA in Section 3. Next,
we describe how to combine these techniques in a branch and bound in order algorithm
to compute provably optimal solutions in Section 4. We discuss some of the problems we
encountered in trying to generalise network
ow algorithms to LPA in Section 5. Experimental
results are given in Section 6.

2 Constructing Solutions of IPA

In Section 2.1 we show how to construct solutions of IPA using a so-called implementable

order by calculating a minimum cost
ow for each commodity. An implementable order for
our ORTEC data is given in Section 2.2. In Section 2.3 we consider the quality of the solutions
returned by the construction introduced in Section 2.1.

2.1 Minimum Cost Flow

In this Section we present the Minimum Cost Flow (MCF) heuristic for IPA. We start by
de�ning our main tool in constructing feasible solutions, namely implementable orders. The
main di�culty in �nding feasible solutions for IPA lies in the fact that we can not inde-
pendently ship our commodities. An implementable order is an order in which to ship our
commodities such that we can ship any commodity independently of all earlier commodities.
More precisely, an implementable order consists of a precedence relation � over K and a
vector-valued function lv(k; q) with a component lv`(k; q) for each ` 2 L, that tells us how to
properly implement amount q of
ow of commodity k using admissible loading con�gurations:

De�nition 2.1 A tuple (�; lv), where � is a linear order on K and lv : K � N ! N jLj , is

an implementable order if and only if for all commodities k 2 K, and for all quantities q 2 N
the following holds: P

`2L lv`(k; q)�
`(k) = q; and (2a)P

`2L lv`(k; q)�
`(k0) = 0; 8k0 2 K : k0 � k: (2b)

4

procedure IPAbyMinCostFlow(B 2 Zn�d)
begin x = 0;

Let (�; lv) be an implementable order, and k(1) � k(2) � � � � � k(d);
for k := k(1) to k(d) do

begin Compute a minimum cost
ow f for e�k(x);
Calculate x0 = [x0ij`j(ij`) 2 A] with x0ij` := lv`(k; f(i; j));

Set x := x+ x0

end

return x

end

Algorithm 2: The Minimum Cost Flow Heuristic.

Equation (2a) expresses that precisely q units of commodity k are transported. Equation
(2b) enforces that this transportation is done independently of all commodities that precede k.
Problem speci�c knowledge has to be used to provide such an order. We give an implementable
order for our ORTEC datasets in Section 2.2.

By using an implementable order it is easy to construct a feasible solution x. Let
k(1); : : : ; k(d) be a permutation of K such that for 1 � i < j � d we have k(i) � k(j).
We construct a feasible solution in d stages, numbered from 1 to d. Initially, x = 0. The goal
of stage s is to transport all positive excess of commodity k(s) in x to the sites with negative
excess of k(s) in x. This is done as follows. First, a minimum cost
ow f is computed for
the production/demand vector e�k(s)(x) on the complete graph on V with cost matrix C.
This minimum cost
ow is implemented in a transportation plan x

0 = [x0ij`j(ij`) 2 A] where
x0ij` := lv`(k(s); f(i; j)). Stage s ends by setting x := x+x

0. Pseudo code can be found in Al-
gorithm 2. For the computation of the minimum cost
ows, we use the cost scaling algorithm
by Goldberg and Tarjan [GT90], which we implemented using LEDA graphs [MNU96].

Lemma 2.2 The MCF heuristic returns a feasible solution of IPA.

Proof. The lemma can be proved by induction on the stage number s, where stage 0 denotes
the initialisation. Let xs denote the value of x at the end of stage s. Our induction hypothesis
is that at the end of stage s we have

eik(x
s) = 0 8i 2 V; k 2 K : k � k(s):

For s = 0 the induction hypothesis is trivially true, so suppose that we have s > 0 and that
the lemma holds for stage s� 1. Let x0 be the vector added to xs�1 in stage s. Focus on any
site i. Pick k � k(s) arbitrarily. By (2b) we have x0k(�

in(i)) � x
0
k(�

out(i)) = 0. By induction
we have eik(x

s�1) = 0. Hence,

eik(x
s) = bik + x

s
k(�

in(i))� x
s
k(�

out(i))

= bik + x
s�1
k (�in(i)) � x

s�1
k (�out(i)) + x

0
k(�

in(i)) � x
0
k(�

out(i))

= eik(x
s�1) + 0 = 0:

As this holds for all possible choices of k 2 K : k � k(s), it remains to prove the induction for
commodity k(s).

5

Let f be the minimum cost
ow computed in stage s, and let k = k(s). By feasibility of
f , we have that

P
j2V f(i; j)�

P
j2V f(j; i) = eik(x

s�1). By (2a) we have that x0k(A(j; i)) =
f(j; i) and that x0k(A(i; j)) = f(i; j). Now observe that for all sites i

eik(x
s) = bik + x

s�1
k (�in(i)) � x

s�1
k (�out(i)) + x

0
k(�

in(i)) � x
0
k(�

out(i))

= eik(x
s�1) +

X
j2V

f(j; i) �
X
j2V

f(i; j)

= eik(x
s�1)� eik(x

s�1) = 0:

This proofs that the solution satis�es the
ow conservation constraints (1). Furthermore, as
the returned x is a sum of positive integer vectors, it also satis�es x � 0 and integrality. This
completes the proof of the lemma. �

Lemma 2.3 The MCF heuristic can be implemented to work in O(dn3 log �C) time, where
�C = maxi;j2V cij.

Proof. The complexity follows from the fact that the heuristic computes d minimum cost

ows, each of which can be computed in O(n3 log �C) time [GT90]. �

2.2 An Implementable Order

Let ck = max`2L �
`(k) be the maximal number of times an element of commodity k occurs

in any admissible loading con�guration. The preferred loading con�guration for transporting
q units of commodity k, denoted prefk(q), is de�ned as follows:

prefk(q) =

8><
>:

fk0g [
Smin(q;ck)

1 ftrailer(k); kg if k is a part,

fk0g [
Smin(q;ck)

1 fkg; if k is a trailer, and
fk0g; if k = k0.

The technical assumption referred to in Section 1 is that for our ORTEC datasets prefk(q)
is admissible for all k 2 K; q 2 N. Using these preferred loading con�gurations, our imple-
mentable order (�; lv) is given by k(1) � � � � � k(j�1) � k(j) � � � � � k(d�1) � k(d) = k0;
where fk(1); : : : ; k(j�1)g is the set of all parts, and fk(j); : : : ; k(d�1)g the set of all trailers.

Furthermore, lv : K � N ! N jLj is given by

8` 2 L : lv`(k; q) =

8<
:

bq=ckc if ` = prefk(q)
1 if ` = prefk(q mod ck) ^ q mod ck > 0
0 otherwise

Now we have
P

`2L lv`(k; q)�
`(k) = bq=ckc � ck + q mod ck = q. Because a preferred loading

con�guration for commodity k does not contain items of commodity k0 for any k; k0 2 K : k0 �
k, we also have

P
`2L lv`(k; q)�

`(k0) = 0. Hence, (�; lv) as above is indeed an implementable
order. This allows us to e�ciently construct feasible solutions for our ORTEC data sets.

6

2.3 Quality of the Minimum Cost Flow Solution

Let j`j =
P

k2K �`(k) denote the size of ` and let `max = max`2L j`j denote the maximum
size of any loading con�guration. In this section we prove that the MCF heuristic is an
O(`max)-approximation algorithm when used with the order of Section 2.2, assuming that
cij = O(cji).

We start by introducing some notation. Let ~x denote a feasible solution returned by the
MCF heuristic, and x

� an optimal solution to IPA. De�ne costk(x), the cost assigned to
commodity k in x, as

costk(x) =
X

(ij`)2A

cij�
`(k)xij`=j`j:

Using this expression we have
P

k2K costk(x) = z(x). For part k (and k = k0), let f�k
denote a minimum cost
ow for the production/demand vector b�k. For trailer k, let f�k =
f 0k +

P
k02parts(k) f

�
k0, where f 0k is a minimum cost
ow for the production/demand vector

b�k �
P

k02parts(k) b�k0 . For k 2 K, let v�k denote the value of f�k . De�ne A(i; j) as the set
of arcs going from i to j, i.e. A(i; j) = f(ij`) j (ij`) 2 Ag. Let fxk denote the
ow of
commodity k in x, the components of fxk are fxk (i; j) = xk(A(i; j)). We will �rst show that
z(x�) � 1=`max �

P
k2K v�k. Next we will show that z(~x) = O(

P
k2K v�k) assuming cij = O(cji).

Together this gives the desired result.

Lemma 2.4 z(x�) �
1

`max

X
k2K

v�k.

Proof. Observe that for any k, fx
�

k satis�es the same constraints as f�k , namely, the
ow
conservation constraints for all commodities together with the implied
ow for trailers. More-
over, since the f�k are the minimum cost structures satisfying these constraints, the cost of
fx

�

k is at least v�k. These observations imply that

costk(x
�) =

X
(ij`)2A

cij�
`(k)x�ij`
j`j

�
X
i;j2V

cijx
�
k(A(i; j))

`max
=

1

`max

X
i;j2V

cijf
x
�

k (i; j) � v�k=`
max:

We can now conclude that

z(x�) =
X
k2K

costk(x
�) �

1

`max

X
k2K

v�k:

�

Lemma 2.5 z(~x) = O(
X
k2K

v�k).

Proof. Observe that for parts k (trailers k) f ~x
k is constructed as (a combination of) minimum

cost
ows. This implies that the cost of f ~x
k ,
P

i;j2V cijf
~x
k (i; j), equals v

�
k. Therefore, we have

that for all k 2 K; k 6= k0 that

costk(~x) =
X

(ij`)2A

cij�
`(k)~xij`
j`j

�
X
i;j2V

cij ~xk(A(i; j)) =
X
i;j2V

cijf
~x
k (i; j) = v�k:

7

It remains to bound the value of costk0(~x). Recall from Lemma 2.2 that, by construction,
~x = x

d�1 + x
0. Hence costk0(~x) = costk0(x

d�1) + costk0(x
0). Clearly �`(k0) = 1 � �`(k) for

any k 2 ` implies that

costk0(x
d�1) �

X
k2K;k 6=k0

costk(x
d�1) =

X
k2K;k 6=k0

v�k:

Now observe that, given the transportation plan x
d�1, a feasible solution for IPA can be

constructed by adding one empty transportation plane xjifk0g for each unit xij`, together with
a minimum cost
ow of empty transportation planes for the production/demand vector b�k0 .
The cost of this feasible solution is an upper bound on the cost of x0. By our assumption
that cij = O(cji) we obtain:

costk0(x
0) �

X
k 6=k0

X
i;j2V

cjif
~x
k (i; j) + v�k0 = O(

X
k2K;k 6=k0

v�k) + v�k0 = O(
X
k2K

v�k):

Hence,

z(~x) =
X
k2K

costk(~x) = O(
X

k2K;k 6=k0

v�k) + O(
X
k2K

v�k) = O(
X
k2K

v�k);

which concludes the proof. �

Theorem 2.6 Assuming that cij = O(cji), the MCF heuristic is an O(`max)-approximation

algorithm for IPA that runs in O(dn3 log �C) time, where �C = maxi;j cij.

Proof. From Lemma 2.2 and Lemma 2.3 we know that the solution obtained by the MCF
heuristic is feasible and that the running time is according to the claim. By Lemma 2.4 and
lemma 2.5 we have that z(~x)=z(x�) = O(`max). Together this proves the theorem. �

3 The LP Relaxation of IPA

In Section 3.1 we show how to solve LPA by column generation, which yields a fractional
solution. We present a data structure to speed up the column generation in Section 3.2.
In Section 3.3 we discuss alternative optimality conditions for LPA and derive a more so-
phisticated column generation scheme based on these optimality conditions. To construct
an integer solution we �rst round the fractional solution and then use the MCF heuristic to
restore feasibility. This round and repair approach is described in Section 3.4. The quality of
the resulting integer solutions is signi�cantly better than the quality of the solutions obtained
after applying the MCF heuristic only. In this section, we impose without loss of generality
an upper bound u on the x-variables.

3.1 Solution by LP Column Generation

The basic column generation approach is described in [PS82, Chapter 4]. The idea behind LP
column generation is the following. Instead of using all decision variables, we use only a small
subset and calculate an optimal LP solution for this restricted formulation. The initial subset
should be chosen in such a way that the restricted problem is feasible (assuming the original

8

procedure LPAbyLPColumnGeneration(B 2 Zn�d)
begin Let x be an initial solution, A = f(ij`) : xij` > 0g;

repeat Solve the LP relaxation (3), giving � and x

forall i; j 2 V; k 2 K : i 6= j do

begin let `� = argmin`2L:k2`;(ij`)=2A c�ij`;

if c�ij`� < 0 then add (ij`�) to A

end

until no edges added to A;
return x

end

Algorithm 3: LP Relaxation of IPA by Column Generation.

problem is feasible). As the convex hull of feasible solutions to the restricted problem is fully
contained in that of the complete problem, the optimal solution to the restricted problem does
not give us an optimal solution to the complete problem in general. Therefore, LP optimality
conditions are checked for all the variables that were left out of the restricted problem, which
involves computing the reduced cost of these variables using an optimal solution to the dual of
the restricted problem. The variables having negative reduced cost violate the LP optimality
conditions. To avoid increasing the size of the formulation too much we add only a small
subset of them to the restricted problem. The process is repeated until all variables satisfy
the LP optimality conditions.

To represent a restricted set of variables, we de�ne the notion of a loading con�guration

graph D = (V;L;A), where V is a set representing the nodes of the graph (which in our
case are the sites of the problem), L a set of loading con�gurations, and A a set of arcs from
V �V �L. We use �inD(S) = �in(S)\A, and �outD (S) = �out(S)\A to denote the arcs entering
and leaving set S � V . The problem formulation restricted to loading con�guration graph D
is the following:

min c
T
x

subject to x(�outD (i)) � x(�inD(i)) = bi 8i 2 V
0 � x � u:

(3)

The complete problem LPA corresponds to taking A = V � V � L.
Given a primal feasible solution x to LPA, we choose our initial arc set as A = f(ij`) :

xij` > 0g. Solving the restricted LP relaxation (3) yields a dual variable � associated with
the
ow conservation constraints. De�ne the (LP) reduced cost c�ij` of arc (ij`) as cij �

(�i � �j)
T�`. We use the following heuristic to generate edges: for each triple (i; j; k) with

i; j 2 V; i 6= j; k 2 K add an arc (ij`) =2 A with k 2 ` to A that minimises c�ij`. See
Algorithm 3.

The proposed column generation scheme does not guarantee that the value of the solu-
tion to the restricted problem (3) decreases in each iteration. A column generation scheme
that achieves primal progress in each iteration without adding too much variables would be
preferable over the proposed one. Such a column generation scheme would involve �nding
augmenting subgraphs (i.e., satisfying
ow conservation and non-negativity constraints), sim-
ilar to �nding augmenting paths for network
ow problems. Di�culties that we encountered

9

in devising such a scheme are reported in Section 5.

3.2 The Pricing Problem Revisited: kd-Trees

In this section we present a data structure that can be used to �nd the set of variables to
be added to the restricted formulation more e�ciently in practice. Recall that, for each
commodity k 2 K, we want to �nd a loading con�guration ` that contains k and minimises
c�ij` (we call this the pricing problem). Let �(i; j) = �j � �i. Because cij is a constant, the
pricing problem for commodity k from i to j can be formulated as follows:

argmin
`2L:`3k;(ij`)=2A

�(i; j)T�`: (4)

In other words, we want to �nd loading con�gurations with characteristic vectors that are
minimal with respect to the vector �(i; j). The data structure allows a hierarchical way of
computing the prices of the individual loading con�gurations, and an ordering of all loading
con�gurations that allow for sharing of computational e�ort and pruning the set of con�gu-
rations for which the complete price has to be computed.

The data structure is an adapted version of the kd-tree [BKOS97]. Each node of the tree
corresponds to a set of loading con�gurations. The set associated with node p is denoted Lp.
In the root of the tree, we store the bounding box of all characteristic vectors. This involves
storing two d-dimensional vectors xmin(L) and x

max(L), where

xmin
k (L) = min

`2L
�`(k) xmax

k (L) = max
`2L

�`(k):

An internal node has either two or three children. The sets of loading con�gurations associated
with the children of an internal node p partition Lp. For some dimension dp in the a�ne hull
of the characteristic vectors of Lp, let bp be the median of the multi set f�

`(dp) j ` 2 Lpg. We
associate the set of loading con�gurations Lleft = f` 2 Lp j�

`(dp) < bpg with the left child of
p, the set of loading con�gurations Lmiddle = f` 2 Lp j�

`(dp) = bpg with the middle child of
p, and the set of loading con�gurations Lright = f` 2 Lp j�

`(dp) > bpg with the right child of
p. In node p we store dp, and pointers to the left, middle and right children of node p together
with tuples (�min

left ; �
max
left), (�

min
middle; �

max
middle), and (�min

right; �
max
right), where

�
min
left = x

min(Lleft)� x
min(Lp); �

max
left = x

max(Lp)� x
max(Lleft);

and where �min
middle; �

max
middle; �

min
right; �

max
right are de�ned similarly for the middle and right child of

node p. Using these de�nitions, the bounding box of a child of node p can be derived from
the bounding box of node p by adding the appropriate �min to xmin(Lp) and subtracting the
appropriate �max from x

max(Lp). A leaf node of the tree corresponds to a singleton set of
loading con�gurations and we only store this loading con�guration. Finally, we choose the
values of dp in such a way that on any path from the root of the tree to a leaf of the tree, the
dp values associated with the nodes on the path iterate over the dimensions of the a�ne hull
of characteristic vectors of the corresponding Lp. Pseudo code for building the tree is given
in Algorithm 4.

This data structure can be used for solving the pricing problem (4) from i to j as fol-
lows. Let �+(i; j) (and �

�(i; j)) be the vector with components �k(i; j) if �k(i; j) > 0 (and
�k(i; j) < 0, respectively) and 0 otherwise. The price of the cheapest corner of the bounding
box in any node p is a lower bound for the price of all the loading con�gurations in the subtree

10

procedure BuildTree(L)
begin if L = f`g then make a leaf node with corresponding loading con�guration `.

else begin

Calculate xmin(L) and x
max(L);

Choose dp with xmin
dp

(L) < xmax
dp

(L), calculate bp;

Recursively build the subtrees on Lleft, Lmiddle, and Lright;

Calculate and store �min
left ; �

max
left ; �

min
middle; �

max
middle; �

min
right; �

max
right

end

end

Algorithm 4: Building a kd-Tree on the Loading Configurations.

of p. We recursively visit the nodes of the tree starting in the root, and keep track of the
price of the cheapest corner of the bounding box of the current node p. This price equals

q = �
+(i; j)Txmin(Lp) + �

�(i; j)Txmax(Lp);

and can be calculated easily if p is the root node of the tree. If q is larger than the best price
for all k 2 K of all the loading con�gurations associated with the leaf nodes that were visited
before visiting the current node, we are done in the current node. If not, we still might �nd an
improvement for some k in the subtree of node p. Therefore, we recursively visit the children
of node p. If dp > 0, we �rst visit the left child of node p, then the middle one, and �nally the
right one. If dp � 0, we �rst visit the right child of node p, then the middle one, and �nally
the left one. The price of the cheapest corner of the bounding box of the left child of node p
is given by

qleft = q + �
+(i; j)T �min

left � �
�(i; j)T �max

left ;

and similar functions give the price of the cheapest corner of the bounding box of the middle
and right children of node p. The query procedure on the data structure is illustrated in
Algorithm 5.

The query time of the data structure can be guaranteed to be O(djLj), which is not worse
than enumerating all loading con�gurations. Actually, experimental evaluation suggests a
reduction of the number of loading con�gurations inspected and of the number of multipli-
cations needed to solve the pricing problem by a factor of approximately 0.1. Moreover, in
a careful implementation the overhead of building and traversing the search tree is small.
Finally, the memory requirements are of the same order as the memory needed for storing
the set of loading con�gurations.

3.3 Re�ned Column Generation

Observe that the constraints of LPA that are induced by a single commodity together form a
minimum cost
ow problem for this commodity, and that minimum cost
ow problems are easy
problems in the sense that we can solve them e�ciently using polynomial time algorithms.
The column generation scheme proposed in the previous subsection does not exploit this
structure. In this section we show how to decompose LPA into separate minimum cost
ow

11

var z 2 Rd (� zk is the price of the cheapest ` 3 k seen so far. �)

procedure query(� 2 Rd ; p 2 T; q 2 R)
begin if 8k : q � zk or p is leaf node and (ij`p) 2 A then return ;

if p is a leaf node then begin 8k 2 `p : zk := min(zk; q); return end

if �dp > 0 then

begin query(�; leftp; q + (�+)T �min
left � (��)T �max

left);

query(�;middlep; q + (�+)T �min
middle � (��)T �max

middle);

query(�; rightp; q + (�+)T �min
right � (��)T �max

right)
end else begin

query(�; rightp; q + (�+)T �min
right � (��)T �max

right)

query(�;middlep; q + (�+)T �min
middle � (��)T �max

middle);

query(�; leftp; q + (�+)T �min
left � (��)T �max

left);
end

end

procedure pricing(T;� 2 Rd)
begin Let p be the root of T and q the price of the cheapest corner of the bounding box;

forall k 2 K do zk := �cij ; (� We only want variables with c�ij` < 0. �)

query(�; p; q)
end

Algorithm 5: Solving the Pricing Problem from i to j.

problems with cost vectors that are derived from the LP reduced cost of the variables. We
proof that if we can not �nd negative cost circulations for these separate minimum cost
ow
problems, then we have an optimal solution to LPA. If we �nd negative cost circulations in
the separate minimum cost
ow problems, we also have found a set of variables of LPA with
negative LP reduced cost that can be added to the problem formulation. We call this column
generation strategy our re�ned column generation strategy. When compared to the column
generation scheme proposed in the previous subsection, the re�ned strategy results in smaller
LP formulations.

Suppose we are given a loading con�guration graph D, a vector x 2 RjAj , and a dual
vector � 2 Rn�d . We say that a transportation plan x

0 is feasible with respect to x if it
satis�es its production/demand constraints, and if �x � x

0 � u� x. The reduced value of a
transportation plan x

0 in D is given by z�(x0) =
P

a2A c
�
a x

0
a. We say a transportation plan

x
0 is a circulation if for all i 2 V we have �in(i) = �out(i).

Lemma 3.1 Let transportation plan x be a feasible solution to (3). Then x is an optimal
transportation plan if and only if z�(x0) � 0 for all circulations x0 that are feasible with

respect to x.

Proof. Suppose x is optimal, and let x0 be a circulation in D that is feasible with respect to
x. Observe that x+ x

0 is a feasible solution to (3). But then

z(x0) = z(x+ x
0 � x) = z(x+ x

0)� z(x) � 0:

12

Because x0 is a circulation, x0(�in(i))� x
0(�out(i)) = 0, so

z(x0) =
X

(ij`)2A

cij`x
0
ij` �

X
i2V

�
T
i x

0(�out(i)) +
X
i2V

�
T
i x

0(�in(i))

=
X

(ij`)2A

(cij` � �
T
i �

` + �
T
j �

`)x0ij` =
X

(ij`)2A

c�ij`x
0
ij` = z�(x0):

It follows that z�(x0) � 0.
On the other hand, suppose z�(x0) � 0 for all circulations x0 in D that are feasible

with respect to x. Let x00 be any feasible solution to (3), and let x0 = x
00 � x. Clearly,

�x � x
0 � u � x. Because x and x

00 were both feasible solutions to (3) we also have
x
0(�in(i))�x

0(�out(i)) = 0. So x0 is a circulation in D that is feasible with respect to x. But
then we have

z�(x00) = z�(x+ x
0) = z�(x) + z�(x0) � z�(x);

and x is optimal. �

Observe that any feasible solution to (3) satis�es the inequality

xk(�
out(i)) �

X
k02parts(k)

jbik0 j (5)

for any trailer type k. De�ne the level �(x) 2 Rn�d as �(x) = [�ik(x) j i 2 V; k 2 K] where
�ik(x) = xk(�

out(i)) �
P

k02parts(k) jbik0 j if k is a trailer, and �ik(x) = xk(�
out(i)) otherwise.

Let A0 = f(ij`) j i; j 2 V; ` 2 L; xij` < uij`g. We now derive d separate directed graphs
Dk = (V;Ak) from D, one for each commodity k 2 K, together with lower and upper bounds
l
k and uk, and a
ow x

k that is the projection of x onDk. For each uk(A(i; j))�xk(A(i; j)) >
0, include an arc a = (ij) of cost ck(a) = mina02A(i;j):x

a0<ua0
c�a0=j`j (we choose one a0 that

achieves the minimum and call this the associated arc of a), upper bound uk(a) = 1 and lower
bound lk(a) = 0, and set xk(a) = 0. For each (ij`) 2 A with k 2 ` and xij` > 0, include an
arc a = (ij) of cost ck(a) = c�ij`=j`j upper bound uk(a) = xij` and lower bound lk(a) = �xij`,

and set xk(a) = xij`.
For any trailer type k, if x0 is a circulation in D that is feasible with respect to x, then

(5) implies that

x
0
k(fa 2 �inD(i) jx

0
a > 0g) + x

0
k(fa 2 �outD (i) jx0a < 0g) � ��ik: (6)

Let cost�k (x) =
P

(ij`) c
�

ij`�
`(k)xij`=j`j.

Lemma 3.2 For any feasible transportation plan x, if there exists a circulation x
0 that is

feasible with respect to x in D with z�(x0) < 0, then for some k 2 K there exists a circulation

fk that satis�es (6), that is feasible with respect to x
k in Dk, and has

P
a2Ak ck(a)fk(a) < 0.

Proof. Let x0 be any circulation inD that is feasible with respect to x. Observe that z�(x0) =P
k2K cost�k (x

0). But then z�(x0) < 0 implies there exists k 2 K such that cost�k (x
0) < 0.

Choose k such that cost�k (x
0) < 0.

For each x
0
k(fa 2 A(i; j) jx0a > 0g) > 0, let a = (i; j) 2 Ak be the (unique) arc with

lk(a) = 0 and uk(a) = 1 and let fk(a) = x
0
k(fa 2 A(i; j) jx0a > 0g). For each x

0
ij` < 0, choose

13

an unused arc a = (i; j) 2 Ak with cost ck(a) = c�ij` and lower bound lk(a) < 0, and set

fk(a) = x0ij`. Choose 0 < � � 1 such that �lk � �fk � u
k. Because x0 satis�es (6) and

this property is preserved by the construction of fk, �fk also satis�es (6). By construction
�fk is feasible in Dk with respect to xk. Moreover

P
a2Ak ck(a)fk(a) � cost�k (x

0) < 0, which
implies

P
a2Ak ck(a)�fk(a) < 0. This completes the proof. �

We are now able to describe our re�ned column generation strategy. For each part type
k and for k = k0 we calculate a minimum cost circulation fk in Dk. For each trailer type k
we calculate a minimum cost circulation fk in Dk satisfying (6). For (i; j; k) with fk(i; j) > 0
and ck(i; j) < 0 we add its associated arc to A. Furthermore, we can limit the number of
arcs that are added to the formulation as follows. In addition to the lower bounds (6) we can
also add an upper bound of 1 unit of
ow that passes a node. This way, only O(dn) arcs are
added to the problem formulation in each iteration of the column generation process. Lower
and upper bounds on the
ow that passes a node can be handled by an operation called node

splitting , see also the book on network
ows [AMO93].
We implemented and tested this re�ned column generation scheme. When compared to

the column generation scheme proposed in Section 3.1, the number of variables is reduced by
a factor of approximately 0.6 on our test instances. The number of LPs solved was about the
same. Unfortunately, the observed running times almost doubled due to the extra work that
is needed to maintain the graphs Dk and to calculate the minimum cost
ows.

3.4 Rounding and Repairing the LP Solution

After computing the LP solution x, it can be rounded (component-wise) to an integer solution
x1. In general, the rounded solution will have a nonzero excess matrix E(x1), and x1 will not
be a feasible solution to IPA. Fortunately, this can be repaired easily as follows. Calculate x2

by executing the MCF heuristic with production and demand matrix E(x1). Let x
0 = x1+x2.

It can be shown, similarly to the last part of the proof of Lemma 2.2, that x0 is feasible. We
call this strategy the \round and repair" approach to solving IPA.

Candidate rounding strategies are rounding to the closest integer vector, rounding up,
rounding down or rounding randomised (i.e., rounding each component up with probability
proportional to the fractional part and down otherwise). A good rounding strategy should
minimise the excess in the rounded solution. Here we use rounding to the closest integer
vector. For the instances in our datasets, it turned out that the solutions obtained this way
were good, as can be seen in the experimental results in Section 6.

4 Solving IPA by Branch and Bound

We implemented a branch and bound algorithm for IPA in the ABACUS framework provided
by Thienel [Thi95]. To obtain upper bounds on the value of the optimal solution, we apply
the round and repair algorithm from Section 3.4 to the solutions of the LP relaxations that are
computed in each node of the branch and bound tree. Using standard branching on variables
xij` was su�cient for �nding provably optimal solutions for the smaller datasets. To handle
the larger instances, we implemented and tested the following branching strategy: �rst make
sure that the total amount of commodity k leaving a set S (V is integral for each k, then
make sure the total amount of commodity k shipped from i to j over all loading con�gurations
is integral for all i; j; k, and only when this is achieved try to establish integrality of the

14

procedure �ndCut(k 2 K;S; T) (� Initially S = ? and T = V �)
begin if T = ? then return S;

Pick node i 2 T arbitrarily;
S1 := �ndCut(k; S; T n fig);
S2 := �ndCut(k; S [fig; T n fig);
if xk(�

out(S1)) is more fractional than xk(�
out(S2))

then return S1;
else return S2;

end

Algorithm 6: Finding a Most Fractional Cut for Commodity k.

individual xij` variables. This approach exploits the embedded hierarchy of the problem, and
results in an LP model that uses upper and lower bounds on sets of variables.

Let A(i; j) = f(ij`) j (ij`) 2 Ag. We �nd S � V such that xk(�
out(S)) is most fractional

over all k 2 K using the backtracking algorithm in Algorithm 6. If no fractional cut can
be found, we check all xk(A(i; j)) for all i; j; k. If xk(A(i; j)) is integer for all i; j; k we take
A0 = f(ij`)g for some fractional xij` and k = k0. We branch on the constraints xk(A

0) � bfc
and xk(A

0) � dfe. We maintain the tuples (A0; k) associated with lower (upper) bounds on
xk(A

0) in the set L (and U , respectively). In each node of the branch and bound tree, an LP
model of the following type has to be solved:

min c
T
x

subject to x(�outD (i)) � x(�inD(i)) = bi 8i 2 V
xk(A

0) � lA0k 8(A0; k) 2 L (7a)
�xk(A

0) � �uA0k 8(A0; k) 2 U (7b)
x � 0;

where lA0k and uA0k denote the lower and upper bounds on the value of xk(A
0). Let

�+A0k =

�
dual to (7a) if (A0; k) 2 L,
0; otherwise,

��A0k =

�
dual to (7b) if (A0; k) 2 U ,
0; otherwise,

and let � = �
+��

�. Denote the collection of arc sets A0 associated either with branching on
a cut (A0 = �out(S) for some S � V) or with branching on the total
ow of some commodity
(A0 = A(i; j) for some i; j 2 V) by A0. The reduced cost used in the column generation
process now becomes c�;�ij` = c�ij` � (

P
A02A0:A0(i;j)6=? �A0)T�`. The pricing problem in a node

of the branch and bound tree can be reformulated as �nding loading con�gurations with
characteristic vectors that are minimal with respect to �(i; j)�

P
A02A0:A0(i;j)6=?�A0 . Hence,

we can use the data structure of Section 3.2 to generate new variables. The branch and bound
algorithm is summarised in Algorithm 7.

5 Problems in Generalising Network Flow Algorithms to LPA

Here, we explain the di�culties we encountered when trying to generalise network
ow algo-
rithms to LPA. We will �rst focus on the classical augmenting paths algorithm for network

15

procedure IPAbyBranch'nBound(B 2 Zn�d;L; U)
begin Let ~x be the best integer primal seen so far;

Solve the LP relaxation (7) by column generation giving x;
if LP feasible, x fractional, and c

T
x < c

T ~x then

begin Repair x, check result against ~x
if there exists S � V; k 2 K with fractional xk(�

out(S))
then Choose (A0; k) such that A0 = �out(S) and xk(A

0) most fractional
else if there exists i; j 2 V; k 2 K with fractional xk(A(i; j))
then Choose (A0; k) such that A0 = A(i; j) and xk(A

0) most fractional
else Choose most fractional xij` and let A0 := f(ij`)g and k := k0

Store lA0k; lA0k := dxk(A
0)e;

IPAbyBranch'nBound(b;L [f(A0; k)g;U); restore lA0k;
Store uA0k; uA0k := bxk(A

0)c;
IPAbyBranch'nBound(b;L;U [f(A0; k)g); restore uA0k

end

end

Algorithm 7: Branch and Bound Algorithm for IPA (by DFS).

ow, and then on pre
ow-push methods. Moreover, we concentrate on the problem of �nding
feasible
ows for LPA in a loading con�guration graphD = (V;L;A) instead of minimum cost
feasible
ows. We assume the reader is familiar with the augmenting path algorithm by Ford
and Fulkerson [FF62] and with the pre
ow-push algorithm by Goldberg and Tarjan [GT88].

Augmenting Paths. Let e+(x) denote the total positive excess in the current
ow x, i.e.
e+(x) = 1

2

P
i2V;k2K jeik(x)j. Consider the class of problems LPA for which d = 1 on a

loading con�guration graph D = (V;L;A). This class is equal to network
ow on D = (V;A)
if we ignore the loading con�gurations. Any augmenting path algorithm for network
ow
maintains a
ow x. Each iteration a path from a source node to a sink node in the residual
graph of x is found, and this path is added to x. Now observe that the value of e+(x) strictly
decreases over each iteration, a condition that eventually gives termination of the algorithm.

Such a construction is not possible for LPA if d � 3. For example, consider the problem
instance in Figure 8. Clearly, it contains only one augmenting path, which goes from node
0 to node 1 using arc (0; 1; `0). Increasing the
ow on this paths by � > 0 also increases
e+(x) by �. From this example we conclude that it is not possible to �nd a feasible
ow by
iteratively augmenting
ow along a path from a source node to a sink node in such a way
that the total positive excess strictly decreases.

Pre
ow-Push. One might argue that the above problem does not occur in the more sophis-
ticated pre
ow-push methods, where termination is not obtained directly from the decrease
in e+(x), but also from an upper bound on the maximal value of any node label. Informally,
termination of this kind of algorithm is derived in two steps, the �rst step is the convergence
of the node labels to some (node-speci�c) maximum value, the second is pushing
ow from
nodes with excess to nodes that have lower node labels, until all excess is zero. In the network

ow case, it is possible to show that at any stage during the execution of the algorithm and
for any node i with ei(x) > 0 there is a node j with ej(x) < 0 that is reachable from i

16

b0 =

0
@
0
0
1

1
A b1 =

0
@

0
0
�1

1
A`1

`0

`0

`1

K = fk0; k1; k2g
`0 = fk0; k1; k2g

`1 = fk0; k1g
L = f`0; `1g

Figure 8: Counter Example.

in the residual graph of the current pseudo
ow. Moreover node j has had ej(x) < 0 from
the beginning of the algorithm. So j has never been relabelled during the execution of the
algorithm and therefore still has its initial node label. For each arc (i; j) in the residual graph
of the pseudo
ow, the reduced cost of (i; j) (de�ned as cij ��i+�j, where �i and �j are the
node labels of i and j) is bounded by the construction of the algorithm at any time during
the execution. Consequently, the minimum path length to a node with negative excess in the
residual graph of the current pseudo
ow is a maximum on any node label.

Such a construction is di�cult to realise in LPA because of the inability to ship commodi-
ties independently. To see this, consider the example in Figure 8. Any push in this graph
introduces new negative excess. In principle, any node of the graph with a positive excess of
some commodity at a given iteration of the algorithm can have negative excess of the same
commodity at a later iteration, and vice versa. In the iterations that the excess of some
commodity at a node is positive, the corresponding node label can be increased, so no node
label quali�es as a node label that will not be increased during the execution. This in turn
destroys the proof of termination.

6 Experimental Results

Experimental study of the proposed algorithms can be found in Table 9. The LPs were
solved using the CPLEX LP solver version 4.0.9 [CPL90]. Computation times were observed
on a 200 MHz Sun Enterprise 2. As mentioned in the introduction, our ORTEC datasets
contained data describing the transportation problems for four di�erent airplane types, and
we are interested in the amount that can be saved if we combine transportation of parts for
the di�erent aircrafts. Therefore, we executed our algorithm for every combination of the four
di�erent airplane types. We compare the minimum cost of a solution for a given combination
of airplane types to the cost of transporting the individual types separately. This gives us the
amount of gain we are interested in. The Types column in Table 9 indicates which airplane
types are included in a speci�c problem. The problems are sorted according to increasing size
of the constraint matrix. For all problem instances, the number of sites was 6.

The remaining column headers are as follows: the LP solution gives us an upper bound
on the amount of gain that can be made by combining the transportation of di�erent types
of parts, whereas any feasible solution gives a lower bound. The LP column corresponds to
the column generation algorithm as in Section 3.1, MCF corresponds to MCF heuristic as in

17

Section 2.1, RRLP denotes the combination of the above as in Section 3.4, and Branch and
Bound gives information on the performance of the algorithm as explained in Section 4. The
Sec. columns give the computation time in seconds. For Branch and Bound, the Gap column
gives the size of the duality gap, and the #Nodes column gives the number of nodes in the
branch and bound tree that was created. An asterisk (�) indicates that a problem is solved
to optimality by the branch and bound algorithm.

The negative gain in the MCF column indicates that the solutions, as returned by the
MCF heuristic, are always worse the solutions obtained by combining the optimal solutions
to the transportation problem for the involved aircraft types. However, the MCF heuristic,
when applied on the excess of a rounded LP solution, gives a very good approximation, and
this is really what enables the branch and bound algorithm to produce good results. The
essential role of the heuristic is in restoring the feasibility of the solutions as obtained by
solving the more sophisticated LP relaxation.

Not all problem instances could be solved to optimality. To �nd optimal solutions for
the remaining cases, we may want to add cutting planes to the LP models. It remains
an interesting research topic to develop strong valid inequalities for IPA. Beside this, we
considered the problem of �nding feasible
ows in loading con�guration graphs. In Section 5
we explained why it is not easy to generalise combinatorial algorithms for network
ow to
such a model. It is an interesting topic to �nd out whether there exist such algorithms, as
alternative for solving problems on loading con�guration graphs by LP.

18

A
ir
p
la
n
e

P
ro
b
le
m

U
p
p
er
b
o
u
n
d

L
ow
er
b
o
u
n
d

ty
p
es

si
ze

L
P

M
C
F

R
R
L
P

B
ra
n
ch
a
n
d
B
o
u
n
d

1
2
3
4

jL
j

d

G
a
in

S
ec
.

G
a
in

S
ec
.

G
a
in

S
ec
.

G
a
in

S
ec
.

G
a
p

#
N
o
d
es

X

1
7
6

1
0

0
:0
%

0
:1

�
2
0
:0
%

0
:0

0
:0
%

0
:2

0
:0
%
�

0
:2

1

X

3
4
0

1
0

0
:0
%

0
:2

�
2
9
:0
%

0
:0

0
:0
%

0
:2

0
:0
%
�

0
:3

1

X

1
9
8

1
8

0
:0
%

0
:3

�
5
8
:1
%

0
:0

0
:0
%

0
:3

0
:0
%
�

0
:6

1

X

2
4
5

1
6

0
:0
%

0
:1

�
1
7
:5
%

0
:0

0
:0
%

0
:1

0
:0
%
�

0
:2

1

X
X

5
1
0

1
4

8
:8
%

0
:4

�
2
3
:8
%

0
:0

7
:4
%

0
:5

8
:5
%

3
0
7
:5

0
:3
6
9
%

2
4
2
3

X

X

1
1
9
0

3
1

0
:8
%

1
:1

�
2
8
:1
%

0
:1

0
:8
%

1
:2

0
:8
%
�

5
8
:1

1
9
9

X

X

1
4
7
8

2
8

3
:4
%

1
:9

�
3
3
:9
%

0
:2

2
:6
%

2
:0

3
:4
%
�

7
4
:9

2
2
1

X
X

1
6
2
6

2
6

5
:9
%

2
:3

�
1
8
:5
%

0
:2

5
:0
%

2
:3

5
:7
%

3
0
6
:0

0
:2
1
0
%

9
0
7

X

X

2
3
0
6

2
8

5
:0
%

4
:0

�
3
4
:7
%

0
:2

2
:9
%

4
:2

4
:3
%

3
0
4
:6

0
:8
0
8
%

5
3
1

X

X

2
4
8
6

2
6

1
0
:4
%

3
:5

�
1
7
:5
%

0
:3

1
0
:2
%

3
:4

1
0
:4
%
�

6
:3

5

X
X

X

2
7
3
8

3
2

1
0
:0
%

4
:7

�
2
8
:8
%

0
:4

9
:1
%

4
:8

9
:7
%

3
0
4
:4

0
:2
5
3
%

2
9
5

X
X
X

3
0
0
7

3
0

1
4
:2
%

4
:4

�
1
8
:2
%

0
:4

1
2
:8
%

4
:5

1
4
:2
%

3
0
5
:3

0
:0
1
3
%

4
4
3

X
X

X

4
6
8
8

4
1

6
:5
%

7
:5

�
2
5
:6
%

0
:6

5
:9
%

7
:6

6
:0
%

3
0
4
:8

0
:2
6
8
%

3
0
9

X

X

X

6
6
0
9

4
1

1
0
:0
%

1
2
:4

�
2
5
:0
%

0
:9

9
:1
%

1
2
:5

9
:4
%

3
0
3
:8

0
:6
4
1
%

2
4
7

X
X
X

X

7
5
2
0

4
5

1
3
:1
%

1
9
:1

�
2
3
:8
%

1
:0

1
2
:0
%

1
9
:2

1
2
:8
%

3
0
4
:3

0
:1
4
5
%

1
9
9

T
a
b
le
9
:
C
o
m
p
u
t
a
t
io
n
a
l
R
e
su
lt
s
f
o
r
IP
A
.

19

References

[AMO93] Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. Network Flows. Prentice Hall, Inc.,
1993.

[BJN+96] Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P., and

Vance, P. H. Branch-and-price: Column generation for solving huge integer programs.
Opns. Res. (1996).

[BKOS97] Berg, M. de, Kreveld, M. van, Overmars, M., and Schwarzkopf, O. Computa-

tional Geometry: Algorithms and Applications. Springer-Verlag, 1997.

[CPL90] CPLEX Optimization, Inc. Using the CPLEX Callable Library, 1990.

[DDS92] Desrochers, M., Desrosiers, J., and Solomon, M. A new optimization algorithm for
the vehicle routing problem with time windows. Opns. Res. 40, 2 (1992), 342{354.

[FF62] Ford, Jr., L. R. and Fulkerson, D. R. Flows in Networks. Princeton University Press,
1962.

[GJ79] Garey, M. R. and Johnson, D. S. Computers and Intractability, A Guide to the Theory

of NP-Completeness. W.H. Freeman and Company, 1979.

[GT88] Goldberg, A. V. and Tarjan, R. E. A new approach to the maximum
ow problem.
J. Assoc. Comput. Mach. 35 (1988), 921{940. Also in Proc. 18th ACM Symp. on Theory of

Comp., pages 136{146, 1986.

[GT90] Goldberg, A. V. and Tarjan, R. E. Solving minimum cost
ow problem by successive
approximation. Mathematics of Opns. Res. 15 (1990), 430{466.

[HH86] Hall, N. G. and Hochbaum, D. S. A fast approximation algorithm for the multicovering
problem. Discr. Appl. Mathematics 15 (1986), 35{40.

[MK97] Munier, A. and K�onig, J.-C. A heuristic for a scheduling problem with communication
delays. Opns. Res. 45, 1 (1997), 145{147.

[MNU96] Mehlhorn, K., N�aher, S., and Uhrig, C. The LEDA User Manual Version R 3.4.1.
Max-Planck-Institut f�ur Informatik, Saarbr�ucken, 1996.

[PS82] Papadimitriou, C. H. and Steiglitz, K. Combinatorial Optimization. Prentice Hall,
Inc., 1982.

[Sol94] Sol, M. Column generation techniques for pickup and delivery problems. Ph.D. thesis,
Technische Universiteit Eindhoven, 1994.

[STA97] Shmoys, D. B., Tardos, �E., and Aardal, K. Approximation algorithms for facility
location problems (extended abstract). In Proc. Proceedings of the Twenty-Ninth Annual

ACM Symposium on Theory of Computing (El Paso, Texas, 1997), pp. 265{274.

[Thi95] Thienel, S. Abacus|a branch-and-cut system. Ph.D. thesis, Universit�at zu K�oln, 1995.

[Van94] Vanderbeck, F. Decomposition and column generation for integer programs. Ph.D. thesis,
Universit�e Catholique de Louvain, 1994.

20

