
An algorithm for solving a diophantine equation with

lower and upper bounds on the variables

Karen Aardal� Arjen K. Lenstray Cor Hurkensz

Abstract

We develop an algorithm for solving a diophantine equation with lower
and upper bounds on the variables. The algorithm is based on lattice basis
reduction, and �rst �nds short vectors satisfying the diophantine equation.
The next step is to branch on linear combinations of these vectors, which
either yields a vector that satis�es the bound constraints or provides a
proof that no such vector exists. The research was motivated by the need
for solving constrained diophantine equations as subproblems when de-
signing integrated circuits for video signal processing. Our algorithm is
tested with good result on real-life data.

Subject classi�cation: Primary: 90C10. Secondary: 45F05, 11Y50.

1 Introduction and problem description

We develop an algorithm for solving the following integer feasibility problem:

9 a vector x 2Zn such that ax = a0; 0 � x � u? (1)

We assume that a is an n-dimensional row vector, u is an n-dimensional column
vector, and that a0 is an integer scalar. This is an NP-complete problem; in
the absence of bound constraints, it can be solved in polynomial time. The
research was motivated by a need for solving such problems when designing
integrated circuits (ICs) for video signal processing, but several other problems
can be viewed as problem (1), or generalizations of (1). One such example is
the Frobenius problem that was recently considered by Cornu�ejols, Urbaniak,
Weismantel and Wolsey [3]. The instances related to video signal processing
were di�cult to tackle by linear programming (LP) based branch-and-bound
due to the characteristics of the input. In order to explain the structure of these

�aardal@cs.ruu.nl. Department of Computer Science, Utrecht University. Research par-
tially supported by ESPRIT Long Term Research Project No. 20244 (Project ALCOM-IT:
Algorithms and Complexity in Information Technology), and by NSF grant CCR-9307391
through David B. Shmoys, Cornell University.

yarjen.lenstra@citicorp.com. Emerging Technology, Citibank N.A. Research partially
supported by ESPRIT Long Term Research Project No. 20244 (Project ALCOM-IT: Algo-
rithms and Complexity in Information Technology).

zwscor@win.tue.nl. Department of Mathematics and Computing Science, Eindhoven Uni-
versity of Technology.

1

instances we briey explain the orgin of the problem below. We also tested our
algorithm with good results on the Frobenius instances of Cornu�ejols et al.

In one of the steps of the design of ICs for video signal processing one needs
to assign so-called data streams to processors. A data stream is a repetitive set
of arithmetic operations. The attributes of a data stream are the starting time
of the �rst execution, the number of repetitions, and the period of repetition.
One can view a data stream as a set of nested loops. The outer loop has an
iterator i0 : 0 � i0 � I0. The following loop has iterator i1 : 0 � i1 � I1, and so
forth. The periodicity corresponding to a loop is the time interval between two
consecutive iterations. When constructing an assignment of the streams to the
processors the following conict detection problem occurs: check whether there is
any point in time at which operations of two di�erent streams are carried out. If
such a point in time exists, then the streams should not be assigned to the same
processor. Consider an arbitrary data stream f . Let if = (if0; if1; : : : ; ifm)

T be
the iterator vector of the stream. The iterator vector satis�es upper and lower
bounds, 0 � if � If . Let pf denote the period vector and sf the starting time
of the stream. The point in time at which execution if of data stream f takes
place is expressed as t(if) = sf + pTf if : The conict detection problem can be
formulated mathematically as the following integer feasibility problem: Given
data streams f and g, 9 iterator vectors if and ig such that

sf + pTf if = sg + pTg ig; and such that 0 � if � If ; 0 � ig � Ig?

The Frobenius problem is de�ned as follows: given nonnegative integers
(a1; : : : ; an) with gcd(a1; : : : ; an) = 1, �nd the largest integer a0 that cannot be
expressed as a nonnegative integer combination of a1; : : : ; an. The number a0
is called the Frobenius number. The instances considered by Cornu�ejols et al.
[3] were also hard to solve using LP-based branch-and-bound. They developed
a test set approach that was successful on their instances.

When solving a feasibility problem such as (1) by LP-based branch-and-
bound, two di�culties may arise. First, the search tree may become large de-
pending on the magnitude of the upper bounds on the variables, and second,
round-o� errors may occur. The size of the branch-and-bound tree may also
be sensitive to the objective function that is used. For our problem (1) an ob-
jective function does not have any meaning since it is a feasibility problem; as
long as we either �nd a feasible vector, or are able to verify that no feasible
vector exists, the objective function as such does not matter. The problem is
that one objective function may give an answer faster than another, but which
one is best is hard to predict. An objective function also introduces an aspect
to the problem that is not natural. Round-o� errors occur quite frequently for
the instances related to the conict detection problem, since the coe�cients
of some of the variables are very large (� 107). The special characteristics of
these instances { some very large and some relatively small coe�cients and a
very large right-hand side value a0 { are due to the di�erence in periodicity of
the nested loops. This di�erence is explained by the composition of a television
screen image. Such an image consist of 625 lines, and each line is composed
of 720 pixels. Every second 25 pictures are shown on the screen, so the time

2

between two pictures is 40 ms. The time between two lines and between two
pixels are 64 �s and 74 ns respectively. Since the output rate of the signals has
to be equal to the input rate, we get large di�erences in periodicity when the
data stream corresponds to operations that have to be repeated for all screens,
lines and pixels. Due to the large di�erence in the magnitude of the coe�cients
we often observe that the LP-based branch-and-bound algorithm terminates
with a solution in which for instance variable xj takes value 4:999999, simply
because the hardware does not allow for greater precision. If one would round
xj to xj = 5:0, then one would obtain a vector x sucht that ax 6= d. It is
obviously a serious drawback that the algorithm terminates with an infeasible
solution.

To overcome the mentioned de�ciencies we have developed an algorithm
based on the L3 basis reduction algorithm as developed by Lenstra, Lenstra
and Lov�asz [9]. The motivation behind choosing basis reduction as a core of
our algorithm is twofold. First, basis reduction allows us to work directly with
integers, which avoids the round-o� problems. Second, basis reduction �nds
short, nearly orthogonal vectors belonging to the lattice described by the basis.
Given the lower and upper bounds on the variables, we can interpret problem
(1) as checking whether there exists a short vector satisfying a given diophantine
equation. It is easy to �nd an initial basis that describes the lattice containing
all vectors of interest to our problem. This initial basis is not \good" in the sense
that it contains very long vectors, but it is useful as we can prove structural
properties of the reduced basis obtained by applying the L3 algorithm to it.
It is important to note that basis reduction does not change the lattice, it
only derives an alternative way of spanning it. Furthermore, our algorithm is
designed for feasibility problems. Once we have obtained the vectors given by
the reduced basis, we use them as input to a heuristic that tries to �nd a feasible
vector fast or, in case the heuristic fails, we call an algorithm that branches on
linear combinations of vectors and yields either a vector satisfying the bound
constraints, or a proof that no such vector exists.

In Section 2 we give a short description of the L3 basis reduction algorithm
and a brief review of the use of basis reduction in integer programming. In
Section 3 we introduce a lattice that contains all interesting vectors for our
problem (1), and provide an initial basis spanning that lattice. We also derive
structural properties of the reduced basis. Our algorithm is outlined in Section
4. Some of our test problems are of the type 9 a vector x 2Zn such that:

Ax = b; 0 � x � u?

Here, A is a k � n matrix, k < n, and b a k-vector. In Section 5 we discuss
how our algorithm generalizes to this case. Our computational experience is
presented in Section 6.

3

2 Basis reduction and its use in integer program-

ming

We begin by giving the de�nition of a lattice and a reduced basis.

De�nition 1 A subset L � Rn is called a lattice if there exists a basis b1;b2; : : : ;bk
of Rn such that

L = f
kX

j=1

�jbj : �j 2Z; 1 � j � kg: (2)

Gram-Schmidt orthogonalization is an algorithm for deriving orthogonal vectors
b�j ; 1 � j � n from independent vectors bj ; 1 � j � n. The vectors b�j ; 1 �
j � n and the real numbers �jk ; 1 � k < j � n are de�ned inductively by:

b�j = bj �

j�1X
k=1

�jkb
�
k (3)

�jk = (bj)
Tb�k=(b

�
k)

Tb�k (4)

Lenstra, Lenstra and Lov�asz [9] used the following de�nition of a reduced basis:

De�nition 2 A basis b1;b2; : : : ;bn is reduced if

j�jkj �
1

2
for 1 � k < j � n (5)

and

jjb�j + �j;j�1b
�
j�1jj

2 �
3

4
jjb�j�1jj

2 for 1 < j � n: (6)

The vector b�j is the projection of bj on the orthogonal complement of
Pj�1

k=1Rbk,
and the vectors b�j + �j;j�1b

�
j�1 and b�j�1 are the projections of bj and bj�1

on the orthogonal complement of
Pj�2

k=1Rbk. The constant
3
4 in inequality (6)

is arbitrarily chosen and can be replaced by any �xed real number 1
4 < y < 1.

Lenstra et al. [9] developed a polynomial time algorithm for obtaining a reduced
basis for a lattice given an initial basis. The algorithm consists of a sequence of
size reductions and interchanges as described below. For the precise algorithm
we refer to [9].
Size reduction: If for any pair of indices i; j : 1 � k < j � n condition (5) is
violated, then replace bj by bj �d�jkcbk , where d�jkc is the integer nearest to
�jk .
Interchange: If condition (6) is violated for an index j; 1 < j � n, then inter-
change vectors bj�1 and bj .

Basis reduction was introduced in integer programming by H.W. Lenstra, Jr.
[10], who showed that the problem of determining if there exists a vector x 2Zn

such that Ax � d can be solved in polynomial time when n is �xed. Before this
result was published, only the cases n = 1; 2 were known to be polynomially
solvable. The idea behind Lenstra's algorithm can be explained considering a
two-dimensional convex body. Suppose that this body is \thin" as illustrated

4

in Figure 1. If it extends arbitrarily far in both directions, as indicated in the
�gure, then an LP-based branch-and-bound tree will become arbitrarily deep
before concluding that no feasible solution exists. It is easy to construct a
similar example in which a feasible vector does exist. So, even if n = 2, an LP-
based branch-and-bound algorithm may require exponentially many iterations
in terms of the dimension. What Lenstra observed was the following. Assume

Figure 1: A thin convex body in Z2.

that we start with the full-dimensional bounded convex body X 2 Rn and
that we consider the lattice Zn. The problem is to determine whether there
exists a vector x 2 (X \ Zn). We refer to this problem as problem P . We
use bj = ej ; 1 � j � n as a basis for the lattice Zn, where ej is the vector
where all elements of the vector are equal to zero, except element j that is
equal to one. To avoid having a convex body that is thin we apply a linear
transformation � to X to make it appear \regular". Problem P is equivalent
to the problem of determining whether there exists a vector x 2 (�X \ �Zn).
The new convex body �X has a regular shape but the basis vectors �ej are not
necessarily orthogonal any longer, so from the point of view of branching the
di�culty is still present. We can view this as having shifted the problem we had
from the convex body to the lattice. This is where basis reduction proves useful.
By applying the L3 algorithm to the basis vectors �ej , we obtain a new basis

b̂1; : : : ; b̂n spanning the same lattice, �Zn, but having short, nearly-orthogonal
vectors. In particular it is possible to show that the distance d between any two
consecutive hyperplanes H + kb̂n; H + (k + 1)b̂n, where H =

Pn�1
j=1 Rbj and

k 2 Z, is not too short, which means that if we branch on these hyperplanes,
then there cannot be too many of them. Each branch at a certain level of
the search tree corresponds to a subproblem with dimension one less than the
dimension of its predecessor. In Figure 2 we show how the distance between

5

hyperplanes H+kb̂n increases if we use a basis with orthogonal vectors instead
of a basis with long non-orthogonal ones.

�X

b1

b2

�X

(a) (b)

b1

b2

Figure 2: (a) Non-orthogonal basis. (b) Orthogonal basis.

Due to the special structure of our instances we do not use a transformation
� in our algorithm. We can simply write down an initial basis for a lattice that
contains all vectors of interest for our problem, and then apply the L3 algorithm
directly to this basis.

For the integer programming problem P , Lov�asz and Scarf [12] developed an
algorithm that, as Lenstra's algorithm, uses branching on hyperplanes. Instead
of using a transformation � to transform the convex body and the initial basis
vectors, and then applying a basis reduction algorithm, their algorithm pro-
duces a \Lov�asz-Scarf-reduced" basis by measuring the width of the considered
convex body in di�erent independent directions. Lov�asz and Scarf's de�nition
of a reduced basis is a generalization of the de�nition given by Lenstra et al [9].
Cook, Rutherford, Scarf and Shallcross [1] report on a successful implementa-
tion of the Lov�asz-Scarf algorithm. Cook et al. were able to solve some integer
programming problems arising in network design that could not be solved by
traditional LP-based branch-and-bound.

Integer programming is not the only application of lattice basis reduction.
A prominent application is factoring polynomials with rational coe�cients.
Lenstra et al. [9] developed a polynomial-time algorithm based on basis reduc-
tion for �nding a decomposition into irreducible factors of a non-zero polyno-
mial in one variable with rational coe�cients. In cryptography, basis reduction
has been used to solve subset sum problems arising in connection with certain
cryptosystems, see for instance [4], [8], [14], [15]. A recent application in crypto-
graphy is due to Coppersmith [2] who uses basis reduction to �nd small integer
solutions to a polynomial in a single variable modulo N , and to a polynomial in
two variables over the integers. This has applications to some RSA-based cryp-
tographic schemes. In extended g.c.d.-computations, basis reduction is used by
for instance Havas, Majewski and Matthews [7]. Here, the aim is to �nd a short
multiplier vector x such that ax = a0, where a0 = gcd(a1; a2; : : : ; an).

6

3 Structure of initial and reduced basis

Here we consider a lattice that contains all vectors of interest to our problem
(1):

9 a vector x 2Zn such that ax = a0; 0 � x � u?

Without loss of generality we assume that gcd(a1; a2; :::; an) = 1. We formulate
an initial basis B that generates this lattice and derive structural properties of
the reduced basis RB obtained after applying the L3 algorithm to B.

Let x0 denote the vector (x0; x1; : : : ; xn)
T . We refer to x0 as the extended

x-vector. Here, x0 is a variable that we associate with the right-hand side coef-
�cient a0. Given the bounds on the variables, we tackle problem (1) by trying
to �nd a short vector x satisfying ax = a0. This can be done by �nding short
vectors in the lattice Ls containing the vectors

(x0; x1; :::; xn; (�a0x0 + a1x1 + � � �+ anxn))
T ; (7)

where x0; x1; : : : ; xn 2 Z. In particular, we want to �nd integral extended x-
vectors lying in the null-space of a0 = (�a0; a1; :::; an), denoted by N(a0), i.e.,
vectors x0 2Z

n+1 that satisfy �a0x0 + ax = 0. Moreover, we want x to satisfy
the upper and lower bound constraints, and x0 to be equal to one. Below we
will show how we can use basis reduction to �nd such a vector.

The lattice L spanned by the basis B given by

B =

0
BBBBBBBB@

1 0 0 � � � 0
0 1 0 � � � 0
...

. . .
...

...
. . . 0

0 0 � � � � � � 1
�Na0 Na1 � � � � � � Nan

1
CCCCCCCCA

contains the vectors

(x0; h)
T = (x0; x1; :::; xn; N(�a0x0 + a1x1 + � � �+ anxn))

T ; (8)

where N is a large integral number. Note that the basis vectors are given
columnwise, and that the basis consists of n+1 vectors bj = (b0j; b1j; : : : ; bn+1;j)

T ;
0 � j � n. The vectors (7) in the lattice Ls that belong to N(a0) also belong to
the lattice L. Since basis reduction is used to derive a basis that describes the
given lattice using short basis vectors, we use the multiplier N to \force" the
basis reduction algorithm to �nd as many vectors x0 2 N(a0) as possible. This
will become clear in the proof of Theorem 2.

Lemma 1 (Lenstra, Lenstra, Lov�asz [9]) Let � � Rn be a lattice with reduced
basis b1;b2; : : : ;bn 2 R

n. Let y1;y2; : : : ;yt 2 � be linearly independent. Then
we have

jjbjjj
2 � 2n�1maxfjjy1jj

2; jjy2jj
2; :::; jjytjj

2g for 1 � j � t: (9)

7

Let b̂j = (b̂0j; b̂1j; : : : ; b̂n+1;j)
T ; 0 � j � n, denote the vectors of the reduced

basis, RB, obtained by applying L3 to B.

Theorem 2 There exists a number N0 such that if N > N0, then the vectors
b̂j 2Z

n+2; 0 � j � n�1, of the reduced basisRB have the following properties:

1. b̂j 2 N(a0; 0) for 0 � j � n� 1, i.e., b̂n+1;j = 0 for 0 � j � n � 1.

2. gcd(b̂00; b̂01; :::; b̂0;n�1) = 1:

Proof: We �rst determine N0. Apply Gram-Schmidt orthogonalization to the
vectors aT0 ; e1; : : : ; en+1. This gives rational vectors a

T
0 ;v1; : : : ;vn+1, where one

of the vectors v1; : : : ;vn+1 consists of zeros only. Permute the v-vectors such
that vn+1 is the zero-vector. The vectors v1; : : : ;vn are orthogonal to aT0 , and
hence vj 2 N(a0); 1 � j � n. Next, multiply the vectors v1; : : : ;vn by a large
enough integral number such that we obtain integral vectors z1; : : : ; zn. We have
zj 2 N(a0); 1 � j � n. Select N0 such that N2

0 > 2n+1maxfjjz1jj
2; : : : ; jjznjj

2g.

Property 1. Let yj = (zj ; 0)T for 1 � j � n. The vectors yj ; 1 � j � n are in the
lattice L spanned by B, and jjyjjj = jjzj jj; 1 � j � n. According to Lemma 1 we

have jjb̂j jj2 � 2n+1maxfjjy1jj2; : : : ; jjynjj2g < N2
0 for 0 � j � n � 1: Suppose

that b̂n+1;j 6= 0 for some 0 � j � n � 1. Then jjb̂j jj2 � b̂n+1;j � N2 as N

divides b̂n+1;j . As a consequence, jjb̂j jj
2 > N0, which contradicts the outcome

of Lemma 1. We therefore have that b̂n+1;j = 0 for 0 � j � n � 1.

Property 2. Recall that gcd(a1; a2; :::; an) = 1. The equation ax = a0 has an inte-
gral solution x̂. This is true since a0 is an integral multiple of gcd(a1; a2; :::; an).
The vector (x0; h)T = (1; x̂1; x̂2; :::; x̂n; 0)T belongs to the lattice L spanned by
B. By applying L3 to B we do not change the lattice L, we only change the way
of representing L. Suppose that gcd(b̂00; b̂01; :::; b̂0;n�1) > 1. This would imply
that the vector (1; x̂1; x̂2; :::; x̂n; 0)

T cannot be obtained by taking a linear inte-
ger combination of the basis vectors b̂1; b̂2; :::; b̂n�1 of RB, which contradicts
that we do not change the lattice.

Example 1 Consider the following instance of problem (1). Does there exist a
vector x 2Z5 such that:

3; 000; 000x1+ 2; 999; 870x2+ 6; 722x3+ 6; 720x4+ 15x5 = 103; 329; 757; (10)

0 � x1 � 34; 0 � x2 � 34; 0 � x3 � 349; 0 � x4 � 199; 0 � x5 � 440?

Let N = 10; 000. The initial basis B looks as follows:

B =

0
BBBBBBBB@

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

�1; 033; 297; 570;000 30; 000; 000;000 29; 998; 700;000 67; 220; 000 67; 200; 000 150; 000

1
CCCCCCCCA

8

After applying L3 to B we obtain:

RB =

0
BBBBBBBB@

0 0 2 0 3 0
1 �1 34 �51 61 �1
�1 1 35 51 42 1
�5 �10 �28 0 78 �2
5 10 �22 1 70 2
�8 10 8 �6 1 9
0 0 0 0 0 10; 000

1
CCCCCCCCA

Notice that the last elements of the �rst �ve basis vectors of RB are all equal
to zero, and that the g.c.d. of the �rst elements of the �rst �ve vectors is equal
to one. We also note that the �rst �ve vectors of RB are short relative to the
vectors of B.

4 The algorithm

Here we discuss how we can use the properties stated in Theorem 2 to design
an algorithm for solving the feasibility problem (1). Since we are only interested
in the columns of the reduced basis that lie in the null-space N(a0; 0), we will
consider only the �rst n + 1 elements of the �rst n vectors of RB. The set of
vectors �bj = (b̂0j; : : : ; b̂nj)

T , 0 � j � n�1, forms a basis Bnull forZ
n+1\N(a0).

If the �rst element of a basis vector �bj is equal to one (corresponding to x0 =
1), then xi = �bij ; 1 � i � n, constitutes a solution to the equation �a01+ax = 0
or, equivalently, to ax = a0. Due to Property 2 of Theorem 2, we know that
gcd(�b00;�b01; :::;�b0;n�1) = 1. Hence, we can apply the operations corresponding
to repeated calls to Euclid's algorithm for g.c.d. computations, see Algorithm 1,
to the full columns of Bnull in order to obtain gcd(�b00;�b01; :::;�b0;n�1) = 1, and
thereby a basis vector �bj as described above. The basis obtained after this step
is called B0

null
and consists of vectors �b0j = (�b00j;

�b01j; : : : ;
�b0nj)

T ; 0 � j � n � 1.

We now have a vector j such that �b00j = 1. All other vectors k 6= j of B0
null

have
�b00k = 0. The vectors (�b01k; : : : ;

�b0nk)
T all lie in the null-space of a = (a1; : : : ; an),

denoted by N(a).
To simplify the search for a feasible solution we re-index the basis vectors

of B0
null

such that the vector having �b00j = 1 becomes the leftmost column i.e.,
j 0, and such that the remaining columns of B0

null
are indexed in order of

increasing length. If the vector xd = (�b010; : : : ;
�b0n0)

T does not satisfy the upper
and lower bound constraints, we can add an integer linear combination of the
vectors xk = (�b01k; : : : ;

�b0nk)
T , 1 � k � n � 1, to xd, to try to obtain a feasible

vector. The resulting vector still satis�es the diophantine equation ax = a0
since the vectors xk, 1 � k � n� 1, all belong to N(a). Hence, in order to solve
our feasibility problem (1) we can branch on linear integer combinations of xk,
1 � k � n� 1.

9

Given two non-negative integers a and b, compute gcd(a; b).

procedure gcd(a; b)
begin

while (b 6= 0) do
begin

r a mod b;
a b;
b r;

end
return a;

end

Algorithm 1: Euclid's algorithm

Example 1 (continued). After applying Euclid's algorithm as described above
to Bnull, and after re-indexing the columns of B0

null
we obtain:

B0
null

=

0
BBBBBB@

1 0 0 0 0
27 1 �1 �20 �51
7 �1 1 21 51

106 �5 �10 �240 0
92 5 10 �206 1
�7 �8 10 22 �6

1
CCCCCCA

The vector
xd = (�b010; : : : ;�b

0
50)

T = (27; 7; 106; 92;�7)T (11)

satis�es equation (10), but the last element violates the lower bound constraint.
The vectors xk = (�b01k; : : : ;

�b0nk)
T , 1 � k � 4, all lie in N(a), i.e., they sat-

isfy 3; 000; 000x1 + 2; 999; 870x2 + 6; 722x3 + 6; 720x4 + 15x5 = 0: Subtract-
ing the vector (�b011; : : : ;

�b051)
T = (1;�1;�5; 5;�8)T from xd yields the vector

x = (26; 8; 111; 87; 1)T that satis�es both (10) and the lower and upper bounds.

For the feasible instances that we considered in our computational study,
either the vector xd = (b̂10; : : : ; b̂n0)

T satis�es the bound constraints, or it is
enough to add or subtract one or two vectors in the null-space N(a) in or-
der to obtain a vector satisfying the bound constraints. In order to speed up
our algorithm we �rst call a heuristic that performs a simple search on linear
combinations of the columns �b0j ; 1 � j � n. The heuristic works as follows.
Suppose that we are at iteration t of the heuristic and that an integer linear
combination of t0 � t vectors of N(a) has been added to vector xd. The vector
obtained in this way is called the \current vector". For simplicity we assume
that only variable xk of the current vector violates one of its bound constraints.
At iteration t we add or subtract an integer multiple �t of (b

0
1t; : : : ; b

0
nt)

T if the
violation of variable xk's bound constraint is reduced and if no other bound
constraints becomes violated. As soon as the value of xk satis�es its bounds,
we do not consider any larger values of �t. If the heuristic does not �nd any

10

procedure main(a; a0;u)
begin

store initial basis B;
RB = L3(B);
extract Bnull from RB;
compute the basis B0

null
from Bnull using repeated calls to Euclid's algorithm;

re-index B0

null
;

xd = (�b0

10
; : : : ;�b0

n0)
T ;

if 0 � xd � u then return xd;
heuristic(B0

null
);

if heuristic fails then
branch on linear combinations of vectors j = 1; : : : ; n� 1 of B0

null
;

return feasible vector x, or a proof that no such vector exists;
end

Algorithm 2: A summary of the complete algorithm

feasible solution, we call an exact branching algorithm that branches on linear
combinations of vectors in N(a). A summary of the complete algorithm is given
as Algorithm 2.

5 The case of k diophantine equations

Some of the test problems that we received from Philips Research Labs are of
the type:

9 a vector x 2Zn such that Ax = d; 0 � x � u? (12)

Here A is a k�n integral matrix, where k < n, and d an integral k-vector. The
ith row of the matrix A is denoted by ai. In this section we show how our algo-
rithm can be generalized to deal with this case. We assume that gcd(ai1; : : : ; ain) =
1 for 1 � i � k, and that A has full row rank.

The lattice L that we consider in this case contains the vectors

(x0; h1; : : : ; hk)
T = (y;x; h1; : : : ; hk)

T= (13)

(y1; : : : ; yk; x1; : : : ; xn; N(�d1y1 + a1x); : : : ; N(�dkyk + akx))T .

Here we introduce one variable yi for each right-hand side coe�cient di, which
gives an extended x-vector x0 = (y1; : : : ; yk; x1; : : : ; xn)

T . The lattice L is
spanned by the following basis B:

B =

0
@ I(k) 0(k�n)

0(n�k) I(n)

�Ndiag(d) NA

1
A (14)

where I(j) denotes the j-dimensional identity matrix, 0(p�q) denotes the p� q-
matrix consisting of zeros, and diag(d) denotes the matrix where the right-hand
side coe�cients di occur along the main diagonal and where all other elements

11

are equal to zero. Again, N is a su�ciently large integral number, cf. Section
3. The basis B consists of k + n vectors bj = (b1j; : : : ; bn+2k;j)

T . The null-
space N(A0) is de�ned as the set of vectors fx0 : �diag(d)y+Ax = 0g. After
applying the L3 basis reduction algorithm to B we obtain a reduced basis RB,
where

RB =

0
@ C(k�n) D(k�k)

E(n�(n+k))

F(k�n) G(k�k)

1
A (15)

In the following theorem we present a result analogous to Theorem 2.

Theorem 3 There exists a number N0 such that if N > N0, then the submatrix
F of the reduced basis RB (15) consists of zeros only.

We skip the proof since it is similar to the proof of Property 1 of Theorem 2.

Example 2 Consider the following instance of problem (12). Determine whether
there exists a vector x 2Z6 such that

6x1 + x2 + 3x3 + 3x4 = 17
2x5 + x6 = 11

4x3 + 1x4 + 2x6 = 27

0 � x1 � 2; 0 � x2 � 3; 0 � x3 � 5; 0 � x4 � 2; 0 � x5 � 5; 0 � x6 � 14

Let N = 103. The initial basis B for the lattice L for this instance is:

B =

0
BBBBBBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

�17000 0 0 6000 1000 3000 3000 0 0
0 �11000 0 0 0 0 0 2000 1000
0 0 �27000 0 0 4000 1000 0 2000

1
CCCCCCCCCCCCCCCCCCCA

12

After applying L3 to this basis we obtain:

RB =

0
BBBBBBBBBBBBBBBBBBB@

�1 1 0 �1 0 �1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 �1 0 0 0

�3 2 0 �1 1 1 0 0 �1
1 2 �3 �2 0 1 1 0 0
0 1 1 1 0 �5 0 �1 0
0 0 0 �4 �2 �3 0 1 2
0 1 1 0 5 1 0 �1 0
0 �2 �2 0 1 �2 0 2 �1

0 0 0 0 0 0 103 0 0
0 0 0 0 0 0 0 0 �103

0 0 0 0 0 0 0 103 0

1
CCCCCCCCCCCCCCCCCCCA

Note that we have partitioned B and RB in submatrices according to (14) and
(15). We observe that the 3� 6-submatrix F of RB consists of zeros only.

Let b̂j = (b̂1j; : : : ; b̂n+2k;j)
T ; 1 � j � n + k be the vectors of the reduced basis

RB. As in the case where k = 1, we only consider the basis vectors belonging
to the null space N(A0; 0

(k�k)) for our further computations. The basis Bnull

that spans the lattice Zk+n \N(A0) consists of vectors �bj = (b̂1j; : : : ; b̂k+n;j)
T ;

1 � j � n, so Bnull is obtained from RB by deleting the last k rows, and the
last k columns.

Bnull =

�
C(k�n)

E0(n�n)

�

where E0(n�n) is the submatrix consisting of the �rst n columns of E(n�(n+k)).
Next, we want to derive a vector xd satisfying Axd = d, which means that

we need to �nd a vector (y;x)T = (1; : : : ; 1;xd)
T 2Zk+n\N(A0). If 0 � xd �

u, then we are done. Otherwise we have to check whether there exists an integer
linear combination of integral vectors belonging to the null-space N(A), x�, such
that 0 � xd + x� � u. To �nd the vector xd and integral vectors belonging
to N(A), we perform the following algorithm, see Algorithm 3. Let �b0ij be the

current values of the elements of the basis for the lattice Zk+n\N(A0), and let
B0
null

= (�b0ij) for 1 � i � k + n; 1 � j � n. At the beginning of the algorithm

we have B0
null

= Bnull. For all 1 � i � k determine gcd(�b0ii; : : : ;
�b0in). The

operations de�ned by Euclid's algorithm to perform the g.c.d.-computations
are performed on all elements of the relevant columns �b0i; : : : ;

�b0n. At the end of
each iteration there exists an index j : i � j � n such that �b0ij 6= 0. All other

elements �biq = 0 for i � q � n; q 6= j. This nonzero element is precisely equal
to gcd(�b0ii; : : : ;

�b0in). Permute the columns of B0
null

such that column j is moved
to position i, i.e., j i, and l l + 1 for i � l < j. We have now obtained a
basis B0

null
for Zk+n \N(A0) having the following structure:

B0
null

=

C
0(k�k)
1 C

0(k�(n�k))
2

E
0(n�k)
1 E

0(n�(n�k))
2

!
(16)

where C0
1 is a lower triangular matrix.

13

procedure triangulize(Bnull)
begin

B0

null
= Bnull;

for i = 1; : : : ; k do
begin

Determine gcd(�b0

ii; : : : ;
�b0

in) and apply the operations de�ned by
Euclid's algorithm to all elements of the relevant columns �bi; : : : ; �bn;
/*
* For some j : i � j � n we have �b0

ij 6= 0. All other
* elements �b0

iq = 0 for i � q � n.
*/
Move column j of the current basis B0

null
to position i;

for l = i; : : : ; j � 1 do
begin

Move column l moved to position l + 1;
end

end
return B0

null
;

end

Algorithm 3: Determine B0
null

Theorem 4 Suppose that there exists an integral vector x satisfying Ax = d.
Let w1 be the solution to the system C0

1w1 = 1. The vector xd = E0
1w1 is

integral and satis�es Axd = d.

Proof: We �rst show that the solution w1 to C0
1w1 = 1 is unique. A column

of B0
null

with k leading zeros belongs to N(0(k�k);A). The columns of B0
null

are linearly independent. Hence there are at most n� k columns in B0
null

with
k leading zeros. From the g.c.d. computations of Algorithm 3 it follows that we
have at least n� k such columns. Hence we have precisely n� k such columns,
and these are the last n� k columns of B0

null
.

C0
1 has full rank due to the following argument. Suppose there exists a vector

q 6= 0 with C0
1q = 0. Then e = E0

1q 6= 0 since the column rank of B0
null

is
equal to n. For the same reason, vector e is linearly independent of the columns
of E0

2. This implies that e, together with the columns in E0
2, belongs to N(A),

which contradicts that the dimension of N(A) is equal to n � k. Hence, the
solution w1 to C0

1w1 = 1 is unique.
Next, we show that the for any vector x that satis�es Ax = d there ex-

ists an integer vector (w1;w2)T such that B0
null

(w1;w2)T = (1(k�1);x)T , or
equivalently, that C0

1w1 = 1.
The reduced basis is obtained by applying a series of elementary column

operations to B. The elementary column operations can be described by a
(n+ k)� (n+ k) unimodular matrix Q with determinant det(Q) = �1. Hence
RB = B Q. Take any vector x such that Ax = d. We then have,

(y;x; h1; : : : ; hk)
T = (1; : : : ; 1;x; 0; : : : ; 0)T = B(1; : : : ; 1;x)T = (17)

B Q Q�1(1; : : : ; 1;x)T � RB z:

14

The vector z is integral since Q�1 is integral. Notice that the rank of the last
k rows of B is equal to k since we assume that A has full row rank. The rank
of the last k rows of RB is therefore equal to k as well. From Theorem 3 we
know that the �rst n columns of the last k rows ofRB (submatrix F) consists of
zeros only. Therefore, the lower right k�k submatrix (submatrixG) has rank k.
From (17) we can now conclude that the last k components of z: zn+1; : : : ; zn+k

are all equal to zero.
The matrix B0

null
is obtained by applying elementary column operations to

RB, i.e., we can write B0
null

as

B0
null

= ([I(n+k) 0(n+k�k)]RB[I(n) 0(n�k)]T)S;

where S is the unimodular matrix describing the g.c.d. computations of Algo-
rithm 3. We now have

B0
null

(w1; : : : ; wn)
T � B0

null
S�1(z1; : : : ; zn)

T = (18)

([I(n+k) 0(n+k�k)]RB[I(n) 0(n�k)]T)(z1; : : : ; zn)
T = [I(n+k) 0(n+k�k)]RB z =

[I(n+k) 0(n+k�k)](1; : : : ; 1;x; 0; : : : ; 0)T = (1; : : : ; 1;x)T .

To summarize, we have

B0
null

(w1; : : : ; wn)
T = (1; : : : ; 1;x)T ;

where the vector (w1; : : : ; wn)T is integral since S�1 and (z1; : : : ; zn)T are inte-
gral. Using (16) we obtain

B0
null

(w1; : : : ; wn)
T =

�
C0

1w1

E0
1w1 +E0

2w2

�
= (1; : : : ; 1;x)T :

From the �rst part of the proof we know that (w1; : : : ; wk)
T is unique, and from

the second part that (w1; : : : ; wk)T is integral. This completes the proof.

Remarks: The matrix C0
2 consists of zeros only. This implies that vectors

formed by the columns of E0
2 all belong to N(A). We can check, in polynomial

time, whether the systemAx = d has a feasible solution by deriving the Hermite
normal form of A, see for instance Schrijver [16], Chapter 5.3.

Once we have obtained the vector xd as described in Theorem 4, we can
check if it satis�es the bound constraints. If xd violates the bound constraints
we branch on linear combinations of vectors in N(A), i.e., on the columns of
E0
2.

15

Example 2 (continued). In our example we obtain the basis B0
null

as given
below.

B0
null

=

0
BBBBBBBBBBBB@

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

2 1 �3 �1 0 1
2 0 �3 3 �3 0
1 0 4 1 1 2
0 �2 3 0 0 �4
1 5 �2 1 1 1
�2 1 4 �2 �2 �2

1
CCCCCCCCCCCCA

We have partitioned the matrix according to (16). Here w1 = 1. The vec-
tor xd = E0

1w1 = (0;�1; 5; 1; 4; 3)T. If we subtract the second column of E0
2:

(0;�3; 1; 0; 1;�2)T , from xd we obtain a vector

x = (0; 2; 4; 1; 3; 5)T

that satis�es all bound constraints.

6 Computational experience

We solved thirteen instances of problem (1). Eight of the instances were feasible
and �ve infeasible. The instances starting with \P" in Table 1 were obtained
from Philips Research Labs. The instances starting with \F" are the Frobenius
instances of Cornu�ejols et al. [3]. Here we used the Frobenius number as right-
hand side a0. The two other instances, starting with \E", were derived from
F3 and F4. The information in Table 1 is interpreted as follows. In the �rst
two columns, \Instance" and \n", the instance names and the dimension of
the instances are given. An \F" in column \Type" means that the instance is
feasible, and an \N" that it is not feasible. In the two columns of LP-based
branch-and-bound, \LP B&B", the number of nodes and the computing time
are given. In the \# Nodes" column, 500; 000� means that we terminated the
search after 500,000 nodes without reaching a result. Two asterisks after the
number of nodes indicate that a rounding error occurred, i.e., that the rounded
solution given by the algorithm did not satisfy the diophantine equation. In both
cases we do not report on the computing times since no result was obtained.
In the three columns corresponding to our algorithm, \Algorithm", the column
\Heur." gives the number of vectors belonging to N(a) that was used in the
integer linear combination of vectors added to the vector xd by the heuristic in
order to obtain a feasible solution. A zero in this column therefore means that
the vector xd was feasible. For the infeasible instances the heuristic obviously
failed, and therefore the sign \{" is given in the column. In that case we turn to
the branching phase. Here, a one in the column \# Nodes" means that we solved
the problem in the root node by using logical implications. The computing times
are given in seconds on a 144MHz Sun Ultra-1. For the LP-based branch-and-
bound we used CPLEX version 4.0.9 [5], and in our algorithm we used LiDIA, a
library for computational number theory [11], for computing the reduced basis.

16

Our results indicate that the instances are rather trivial once they are rep-
resented in a good way. Using the basis ej and branching on variables as in
LP-based branch-and-bound is clearly not a good approach here, but it is the
standard way of tackling integer programs. Using basis reduction seems to give
a more natural representation of the problem. For our instances the computing
times were very short, and, contrary to LP-based branch-and-bound, we avoid
round-o� errors. It is also worth noticing that the infeasibility of instances F1{
F5 was particularly quickly veri�ed using our algorithm.

LP B&B Algorithm

Instance n Type # Nodes Time (s) Heur. # Nodes Time (s)

P1 5 F 420�� { 1 < 10�5

P2 5 F 327 0.09 1 < 10�5

P3 4 F 75 0.05 0 0:01
P4 5 F 313�� { 1 < 10�5

P5 5 F 231 0.11 2 < 10�5

P6 5 F 313�� { 1 0.01
E1 6 F 3,271 0.97 0 < 10�5

E2 7 F 500; 000� { 0 < 10�5

F1 5 N 500; 000� { { 1 < 10�3

F2 6 N 500; 000� { { 2 0:01
F3 6 N 500; 000� { { 1 < 10�3

F4 7 N 500; 000� { { 1 0:01
F5 8 N 500; 000� { { 5 0:01

Table 1: Results of the computational experiments.

References

[1] W. Cook, T. Rutherford, H.E. Scarf, D. Shallcross (1993). An implementa-
tion of the generalized basis reduction algorithm for integer programming.
ORSA Journal on Computing 5, 206{212.

[2] D. Coppersmith (1997). Small solutions to polynomial equations, and low
exponent RSA vulnerability. Journal of Cryptology 10, 233{260.

[3] G. Cornu�ejols, R. Urbaniak, R. Weismantel, L. Wolsey (1997). Decomposi-
tion of integer programs and of generating sets. In: R. Burkard, G. Woeg-
inger (eds.), Algorithms { ESA '97. Lecture Notes in Computer Science
1284, pp 92{103, Springer-Verlag.

17

[4] M.J. Coster, A. Joux, B.A. LaMacchia, A.M. Odlyzko, C.P. Schnorr (1992).
Improved low-density subset sum algorithms. Computational Complexity 2,
111{128.

[5] CPLEX Optimization Inc. (1989). Using the CPLEX Callable Library.

[6] B. de Fluiter (1993).A Complexity Catalogue of High-Level Synthesis Prob-
lems. Master's Thesis, Department of Mathematics and Computing Sci-
ence, Eindhoven University of Technology.

[7] G. Havas, B.S. Majewski, K.R. Matthews (1996). Extended gcd and Her-
mite normal form algorithms via lattice basis reduction. Working paper,
Department of Mathematics, The University of Queensland, Australia.

[8] J.C. Lagarias, A.M. Odlyzko (1985). Solving low-density subset sum prob-
lems. Journal of the Association for Computing Machinery 32, 229{246.

[9] A.K. Lenstra, H.W. Lenstra, Jr., L. Lov�asz (1982). Factoring polynomials
with rational coe�cients. Mathematische Annalen 261, 515{534.

[10] H.W. Lenstra, Jr. (1983). Integer programming with a �xed number of
variables. Mathematics of Operations Research 8, 538{548.

[11] LiDIA { A library for computational number theory. TH Darmstadt / Uni-
versit�at des Saarlandes, Fachbereich Informatik, Institut f�ur Theoretische
Informatik.
http://www.informatik.th-darmstadt.de/pub/TI/LiDIA

[12] L. Lov�asz, H.E. Scarf (1992). The generalized basis reduction algorithm.
Mathematics of Operations Research 17, 751{764.

[13] M.C. McFarland, A.C. Parker, R. Camposano (1990). The high-level syn-
thesis of digital systems. Proceedings of the IEEE 78, 301{318.

[14] C.P. Schnorr, M. Euchner (1994). Lattice basis reduction: improved prac-
tical algorithms and solving subset sum problems. Mathematical Program-
ming 66, 181{199.

[15] C.P. Schnorr, H.H. H�orner (1995). Attacking the Chor-Rivest Cryptosys-
tem by improved lattice reduction. In: L.C. Guillou, J.-J Quisquater (eds.),
Advances in Cryptology { EUROCRYPT '95. Lecture Notes in Computer
Science 921, pp 1{12, Springer Verlag.

[16] A. Schrijver (1986). Theory of Integer and Linear Programming. Wiley,
Chichester.

[17] W.F.J. Verhaegh, P.E.R. Lippens, E.H.L. Aarts, J.H.M. Korst, J.L. van
Meerbergen, A. van der Werf (1992). Modeling periodicity by PHIDEO
steams. Proceedings of the Sixth International Workshop on High-Level
Synthesis, ACM/SIGDA, IEEE/DATC, 256{266.

18

