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Abstract

Agent-based computing in Arti�cial Intelligence has given rise to a number of diverse and
competing proposals for agent programming languages. Agents, in the sense we are using
it, are complex mental entities consisting of beliefs, goals, and intentions. For several
reasons it has been di�cult to evaluate and compare the di�erent proposals for agent
languages. One of the main reasons, in our opinion, is the lack of a general semantic
framework which provides a suitable basis for language comparison. Our aim is to make
as much use as possible of formal methods from the area of programming semantics. In
this paper, we give a formal embedding of the agent language AgentSpeak(L) in our own
agent language 3APL. To this end we de�ne a notion of simulation based on the formal
operational semantics of the languages. The main result of the paper is a proof that 3APL
can simulate AgentSpeak(L). As a consequence, 3APL has at least the same expressive
power as AgentSpeak(L). The comparison yields some new insights into the features of the
agent languages. One of the results is that AgentSpeak(L) can be substantially simpli�ed.

1 Introduction

Agent-based computing in Arti�cial Intelligence has given rise to a number of diverse and
competing proposals for agent programming languages. Agents, in the sense we are using
it, are complex mental entities comprising the beliefs, goals, and intentions of agents. For
several reasons it has been di�cult to evaluate and compare the di�erent proposals for agent
languages.

One of the reasons for this, we think, is the lack of a general semantic framework which
provides a suitable basis for language comparison. Our aim is to make as much use as possible
of formal methods from more traditional computing science to deal with these issues. In [4]
we introduced the agent programming language 3APL (triple-a-p-l) and formally de�ned its
semantics. In that paper, we informally compared our programming language with several
other programming languages for agents proposed in the literature. The most important
characteristic of our language is that it is rule-based. This is a characteristic which it shares
with two other well-known agent languages, AgentSpeak(L) ([8]) and AGENT-0 ([11]).

A more detailed comparison of (rule-based) agent programming languages yields a better
understanding of these languages. It yields new insights into the features that are character-
istic of agent languages, and into the agent concept itself. In this paper, we give a formal
embedding of AgentSpeak(L) in 3APL based on the formal operational semantics of the lan-
guages. An embedding of a language in another language is a translation of agents of the
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source language, in our case AgentSpeak(L), into agents of the target language, 3APL, and a
proof that the latter can simulate the former. Since the semantics of AGENT-0 is only given
informally in [11], we cannot construct an embedding for AGENT-0 agents. However, the
language 3APL, which has a formal semantics, might be used to de�ne the formal semantics
of AGENT-0 or an abstraction of AGENT-0.

The structure of this paper is as follows. In section 2 we give an informal overview of
3APL and AgentSpeak(L). In section 3 we will give an outline of the proof that 3APL has
at least the same expressive power as AgentSpeak(L), i.e. that 3APL can simulate Agent-
Speak(L). We introduce the notion of translation bisimulation which is the formal concept
that makes our claims precise. In the next two sections we prove that 3APL can simulate
AgentSpeak(L). We proceed in two steps, and �rst de�ne a translation from AgentSpeak(L)
to a language called AgentSpeak(1). In the second step, a translation from AgentSpeak(L)
to a subset of 3APL is de�ned. In section 6 we end with some conclusions.

2 Overview of AgentSpeak(L) and 3APL

The languages AgentSpeak(L) and 3APL have many similarities. The most important of
these is that both languages are rule-based. In AgentSpeak(L) the rules embody the know-
how of the agent, and are used for planning. The informal reading of these rules reads: If the
agent wants to achieve goal G and believes that situation S is the case, then plan P might
be the right thing to do. The same type of rules for planning are available in 3APL. To avoid
confusion, we will call these rules plan rules and we will call the body P of such a rule a plan.
Other types of rules are conceivable, and are also included in 3APL. These second type of
rules are used for other purposes than planning what to do, for example, for goal revision (cf.
[4, 3]).

An agent of the programming language AgentSpeak(L) consists of beliefs, goals, plan rules,
intentions, and events which make up its mental state. An agent also has an associated set
of actions for changing its environment. To begin with the latter, actions are executed as
a result of executing adopted plans. Adopted plans are called intentions in AgentSpeak(L),
and actions are one of the constituents of intentions.

The beliefs represent the situation the agent thinks it is in. In AgentSpeak(L) two types of
goals are distinguished: achievement goals and test goals. A test goal is a check on the set of
beliefs of the agent to �nd out if something is believed to be the case or not. An achievement
goal is a state of a�airs desired by the agent. The means to achieve that state are provided
by plan rules. An attempt to accomplish an achievement goal is initiated by a search in the
plan library for a plan rule that provides the appropriate means to succeed. If such a plan
rule is found, the agent will begin acting upon the plan as speci�ed by the rule.

Plans are hierarchically structured, i.e. a plan may include new subgoals for achieving a
higher-level goal. For these subgoals the agent also needs to �nd suitable plans. The agent
keeps track of these plans which were adopted to achieve its (sub)goals by creating a stack of
plans which is called an intention. Each entry of such a stack is a plan for the �rst (sub)goal
in the plan of the next entry on the stack, except for the last entry.

An agent executes the plans which occur in its intentions. One of the plans is selected for
execution, and may specify either that the agent should execute an action or that the agent
should accomplish a subgoal. In the case that a an achievement goal is the next thing to
accomplish, a so-called event is triggered to signal that a suitable plan for the subgoal must
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be found. Events might also be triggered on other occasions. For example, an event might
be triggered to record that a change in the belief base of the agent has occurred. However,
the semantics of the latter type of events is not formally de�ned in AgentSpeak(L).

An agent of the programming language 3APL consists of beliefs, goals, and practical rea-
soning rules which make up its mental state and has a set of associated basic actions which
provide for the capabilities of the agent for changing its environment. Basic actions are one of
the constituents of plans as in AgentSpeak(L), and are formally de�ned as update operators
on the beliefs of the agent. A set of beliefs called a belief base is used by the agent to represent
the situation the agent thinks he is in.

Goals have more structure than in AgentSpeak(L). Goals in 3APL incorporate achievement
goals as well as the adopted plans to achieve goals of the agent. A goal is composed of
achievement goals, to achieve a desired state of a�airs, basic actions, tests. These constituents
of goals are composed by means of sequential, alternative, and parallel composition. Because
3APL goals have more structure than AgentSpeak(L) goals and are the adopted plans of the
agent, they are more like the intentions of AgentSpeak(L). In this paper, we formally show
that AgentSpeak(L) intentions correspond to goals in 3APL.

Practical reasoning rules serve several purposes. They provide the means to achieve
(sub)goals of the agent. This is similar to AgentSpeak(L). However, practical reasoning
rules have a more complex structure than the plan rules of AgentSpeak(L). A practical rea-
soning rule also provides the means for modifying complex goals of the agent, instead of just
providing the means for achievement goals. The latter type of rules can be used to express
things like: If the agent has adopted a plan P (to achieve a goal G), and believes S is the
case, then the agent should (consider) revising plan P and substitute it with a new plan P 0

or goal G0.
This concludes our short summary of AgentSpeak(L) and 3APL. For the details, the reader

is referred to [8] for AgentSpeak(L) and to [4, 3] for 3APL, and the discussion in the rest of this
paper. The operational semantics of AgentSpeak(L) as well as that of 3APL formally specify
the exact meaning of the informal concepts which were outlined in the previous paragraphs.

3 Comparing the Expressive Power of Programming Languages

The main contribution of this paper consists in a formal proof that the computational be-
haviour of AgentSpeak(L) agents can be simulated by 3APL agents in a natural way. It
follows from this result that 3APL has at least the same expressive power as AgentSpeak(L).

The proof of this claim is based on two concepts: that of a computation, and that of
observation. The concept of a computation is de�ned by the operational semantics of a
programming language. The concept of observation is a state-based concept, derived from
that of an agent. Agents are the entities of a programming language which are executed, and
give rise to computations.

An agent is able to simulate another agent if every legal (�nite or in�nite) computation of
the latter agent is matched by a legal computation of the �rst agent. The notion of matching
is derived from the notion of observation. The concept of simulation is used to compare the
expressive power of AgentSpeak(L) relative to 3APL. To compare the expressive power of
AgentSpeak(L) and 3APL we thus have to do two things: (i) we have to �nd a corresponding
3APL agent for each AgentSpeak(L) agent, and (ii) we have to show that the computations
of the AgentSpeak(L) agent are simulated by that of the 3APL agent.
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The operational semantics of all agent programming languages other than AgentSpeak(L)
in this paper are speci�ed by means of Plotkin-style transition systems ([7]). We have tried
to stay as close as possible to the original de�nition of the semantics of AgentSpeak(L) as
given in [8]. The semantics of AgentSpeak(L) is de�ned by a slightly di�erent and somewhat
weaker formalism. It is quite easy, however, to transform the semantics of AgentSpeak(L) into
a transition system, as we will show. Both semantic formalisms de�ne a transition relation
which formalises the computational behaviour of an agent. A transition relation �! is a
relation on agents that de�nes the legal computation steps of agents.

De�nition 3.1 (computation)
Let �! be a transition relation on agents. A �! A0 is called a computation step (of agent
A). A �nite or in�nite sequence of agents A1; A2; : : : such that Ai �! Ai+1 for all i is called
a computation.

The comparison of two agents we will use in this paper is based on a comparison of the
set of possible computation steps of the agents. The basic idea is that each computation step
of one of the agents is matched or simulated by a computation step of the other agent, and
vice versa. The comparison based on this idea is called (strong) bisimulation in the literature
(cf. [6, 5]). A bisimulation is a binary relation between agents, based on a transition relation
which de�nes the legal computation steps of agents.

To be able to compare computation steps of agents we need to make explicit when com-
putation steps match with each other. In action-based semantics, transitions are labelled by
actions, and it is easy to state such a condition: two computation steps match if they have
the same action labels (cf. [5]). In case a state-based, unlabelled transition semantics is used,
as is the case for the agent programming languages in this paper, the matching needs to be
based on a state-based concept. We use the state-based concept of an observable. For now,
we will assume that a function O : A ! 
, where A is a set of agents and 
 is the set of
observables, has been given and de�nes the notion of observable. The function O allows us
to observe changes in an agent during its execution.

De�nition 3.2 (strong bisimulation)
Let A and B be two sets of agents. A binary relation R � A�B over agents is a bisimulation
if (A;B) 2 R implies,

(i) Whenever A �! A0 then, for some B0, B �! B0, and (A0; B0) 2 R,

(ii) Whenever B �! B0 then, for some A0, A �! A0, and (A0; B0) 2 R, and

(iii) O(A) = O(B).

The notion of strong bisimulation is the basic tool we use for comparing agents. However,
we will make two changes to obtain a somewhat more suitable notion for our purposes. First
of all, the notion of strong bisimulation requires that each computation step of one agent is
matched by a computation step of the other agent. However, we might argue that computation
steps A �! A0 such that O(A) = O(A0) are not observable, and do not have to be simulated.
We call such steps internal or stuttering steps. The notion that we obtain by allowing that
internal steps of one agent are matched by zero or more internal steps of the other agent is
called weak bisimulation.
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De�nition 3.3 (derived transition relation ))
Let �! be a transition relation on agents from A, and �!� denote the re
exive, transitive
closure of �!.

� the internal step transition relation
i
�! is obtained by restricting �!:

A �!i A
0 i� A �! A0 and O(A) = O(A0),

� the derived transition relation ) is de�ned by: A ) A0 i� there are agents X;X 0 2 A
such that A �!�

i X , X �! X 0 or X = X 0, and X 0 �!�
i A

0.

Note that �!�
i�). Given that) is the derived transition relation of �!, we can de�ne

weak bisimulation. The de�nition of strong bisimulation 3.2 and that of weak bisimulation
3.4 are very similar. The di�erence is that a weak bisimulation allows that an internal step is
simulated by zero or more internal steps and allows that a non-internal step is simulated by
a number of internal steps and one non-internal step. Note that every strong bisimulation is
a weak bisimulation.

De�nition 3.4 (weak bisimulation)
Let A and B be two sets of agents. A binary relation R � A � B over agents is a weak
bisimulation if (A;B) 2 R implies,

(i) Whenever A �! A0 then, for some B0, B ) B0, and (A0; B0) 2 R,

(ii) Whenever B �! B0 then, for some A0, A) A0, and (A0; B0) 2 R, and

(iii) O(A) = O(B).

For our purposes, we make a second change to the de�nition of bisimulation to obtain
a specialised variant of (weak) bisimulation which relates two agents of (possibly) di�erent
languages. We assume that a method for mapping an agent from language L0 to an agent from
a language L is given. Such a method is called a translation function. If a translation function
� de�nes a (weak) bisimulation R, i.e. � = R, we obtain a special case of (weak) bisimulation
also called a p-morphism in the literature (cf. [10]). A p-morphism is a bisimulation such
that the bisimulation relation is a function. This specialised notion of bisimulation yields
a concept suitable to compare the expressive power of agent programming languages. In
general, however, the sets of observables of two di�erent languages are di�erent. Therefore,
we introduce a mapping called a decoder. A decoder maps observables from language L0 back
onto observables of L (we are assuming that L0 simulates L, but not necessarily vice versa).

De�nition 3.5 (translation bisimulation)
Let �!A, �!B be two transition relations de�ned on the sets of agents A and B, respectively.
Let � : A ! B be a (total) mapping from A to B. Furthermore, OA : A ! 
A and
OB : B ! 
B are two functions de�ning the observables of agents from the A and B.
Then: � is a translation bisimulation if B = �(A) implies,

� Whenever A �!A A0, then B )B B
0, where B0 = �(A0),

� Whenever B �!B B
0, then for some A0, A)A A0 such that B0 = �(A0), and

� There is a decoder � : 
B ! 
A such that �(OB(B)) = OA(A).

5



τ

τ

A’

L’

τ

A

(A’)(A) τ

δ

L

Figure 1: Translation Bisimulation

Figure 1 illustrates the concept of a translation bisimulation as de�ned in 3.5. Note
that, although not depicted in the �gure, the simulating agent may execute more than one
step on condition that these steps are internal steps. A translation function � maps an
agent A 2 A to an agent �(A) 2 B. For any agent A and a computation step A �!A A0

there must be a corresponding computation �(A) )B �(A0) which has the same observable
e�ects. This is de�ned formally in the �rst and third conditions in the de�nition of translation
bisimulation, and assures that the behaviour produced by an agent from A can be simulated
by the translated agent �(A). The third condition requires a decoder for proving that the
observables produced by an agent from A can be retrieved from the observable behaviour
of the corresponding agent from B. In the other direction, we have to make sure that only
the behaviour produced by the agent from A is generated and no other observable behaviour
is produced by the agent �(A) from B. This is formally captured by the second condition
in de�nition 3.5. It states that it must be possible to simulate any computation step of
the translated agent from B by the agent from A, with the same observable e�ects. Again,
we need the decoder to map the observables corresponding to the agents from B back onto
observables corresponding to agents from A. Note that in case the decoder � is the identity
function translation bisimulation just is a p-morphism.

The notion of translation bisimulation speci�es a number of requirements which must hold
for a language to have at least the same expressive power as another language. To compare
the expressive power of two programming languages L and L0, we need to �nd a translation
bisimulation relating all agents in the source language L to some suitable set of agents from the
target language L0. However, this notion is still not strong enough to de�ne expressive power.
The reason is that any reasonable programming language is Turing-complete, and for this
reason any programming language can simulate another programming language. Therefore,
we will impose one more constraint on the translation function � : A translation function
should also preserve the global structure of an agent (cf. [2]). Such a constraint seems both
intuitive and reasonable.

In general this constraint can be formalised by the requirement that the translation func-
tion � and the decoder � are compositional: Every operator op of the source language is
translated into a context C[X1; : : : ; Xn] (assuming that n is the arity of op) of the target
language such that a program op(A1; : : : ; An) is translated into C[�(A1); : : : ; �(An)]. In order
to account for the complex structure of an agent (that is, its various components comprising
its beliefs, goals, intentions, etc.) we will assume that an agent is a tuple A = hE1; : : : ; Eni,
where each of the Ei is a subset of the expressions of a programming language L, i.e. Ei � L.
Moreover we assume that the expressions in L are inductively de�ned, and we require that the
translation function � is de�ned compositionally as de�ned above. A mapping from agents
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hE1; : : : ; Eni from L to agents hF1; : : : ; Fmi is induced by � by means of a pre-speci�ed se-
lection criterion which determines for each expression e 2 Ei a corresponding target Fj such
that �(e) 2 Fj . In this manner we allow the simulation of the di�erent components of an
agent.

De�nition 3.6 (expressibility)
Let OA : A ! 
A and OB : B ! 
B be two functions from the set of all agents A from L
and some suitable set of agents B from L0 to the corresponding sets of observables.
Then we say that L0 has at least the same expressive power as L if there is a mapping � : A ! B
and a mapping � : 
B ! 
A which satisfy the following conditions:

E1 � and � are compositional,

E2 � is a translation bisimulation.

Let L � L0 be shorthand for L0 has at least the same expressive power as L. Then it
follows from de�nition 3.6 that � is transitive. So, if L0 has at least the expressive power
of L, and L00 has at least the expressive power of L0, then we also have that L00 has at least
the expressive power of L. (The result follows from the fact that the composition of two
compositional translation functions again is compositional and the fact that composing two
translation bisimulations again yields a translation bisimulation.)

A slightly stronger notion than that of expressive power is the notion of eliminability of
a programming operator. A programming operator is eliminable from a given programming
language if the operator can be expressed by other operators in the same language. A simple
example from imperative programming is the eliminability of the repeat : : : until operator
in the presence of the while operator.

De�nition 3.7 (eliminability)
Let OA : A ! 
A and OB : B ! 
B be two functions from the set of all agents A from L
and some set of agents B from L0 to the corresponding sets of observables.
Then we say that a programming operator F in the language L is eliminable if there is a
mapping � : A ! B and a mapping � : 
B ! 
A which satisfy the following conditions:

F1 � and � are compositional,

F2 � is a translation bisimulation, and

F3 L0 � L, in particular F is not a programming operator of L0.

F1 and F2 are equivalent to E1 and E2 in de�nition 3.6. As will become clear later
on, the de�nition allows that (minor) modi�cations are made to the semantics of the subset
of the original language to compensate for the lack of the eliminated operator. This will be
illustrated in this paper by the elimination of the notion of event from AgentSpeak(L).

3.1 Outline of the Proof

The proof of the claim that 3APL has at least the same expressive power as AgentSpeak(L)
consists of two steps. These steps correspond to the two main conceptual di�erences between
AgentSpeak(L) and 3APL. The concepts referred to are, respectively, the concept of event
and the concept of intention, which do not have an obvious counterpart in 3APL. In the
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�rst step (section 4), we construct an intermediate language called AgentSpeak(1) which is
a subset of AgentSpeak(L) that does not include events. We show that AgentSpeak(1) has
at least the same expressive power as AgentSpeak(L). As a consequence, we have that events
are eliminable in the formal sense of de�nition 3.7. This shows that the notion of event is
redundant in AgentSpeak(L).

In the second step of the proof (section 5), we show that AgentSpeak(L) intentions can
be transformed into 3APL goals. For this purpose, we use a subset of 3APL called Agent-
Speak(2). We show that AgentSpeak(2) has at least the same expressive power as Agent-
Speak(1). By transitivity, it then follows that 3APL has at least the same expressive power of
AgentSpeak(L), since each of the intermediate programming languages de�ned in the trans-
formation steps have at least the same expressive power as AgentSpeak(L).

4 The Eliminability of Events

In this section we de�ne a compositional translation function �1 of AgentSpeak(L) to a lan-
guage without events, called AgentSpeak(1), and show that AgentSpeak(1) has at least the
same expressive power as AgentSpeak(L). First, the syntax and semantics of the two languages
AgentSpeak(L) and AgentSpeak(1) are de�ned. The de�nition of the syntax and semantics
of AgentSpeak(L) is based on the description of AgentSpeak(L) in [8]. The semantic rules
have been changed at a number of places, however, to correct for some omissions in [8]. The
semantics of AgentSpeak(1) is given by means of a Plotkin-style transition system.

4.1 The Syntax of AgentSpeak(L)

The beliefs of AgentSpeak(L) agents are given by a fragment of �rst-order logic, namely the
set of literals. A signature for this language provides for the vocabulary to construct terms
and formulae in the usual way.

De�nition 4.1 (signature for AgentSpeak(L))
A signature for AgentSpeak(L) is a tuple hPred; Func;Cons;Actsi where

� Pred is a set of predicate symbols,

� Func is a set of function symbols,

� Cons is a set of constant symbols,

� Acts is a set of action symbols.

We assume that Pred, Func, Cons, and Acts are disjoint sets.

De�nition 4.2 (terms)
Let Var be a set of variables. The set of terms T is inductively de�ned by:

[Syn-1] Var � T,

[Syn-2] Cons � T,

[Syn-3] If f 2 Func of arity n and t1; : : : ; tn 2 T, then f(t1; : : : ; tn) 2 T.
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De�nition 4.3 (belief atoms, literals)
The set of atoms At and literals Lit are de�ned by:

[Syn-4] At = fP (t1; : : : ; tn) j P 2 Pred of arity n; t1; : : : ; tn 2 Tg,

[Syn-5] Lit = At [ :At.

A ground atom is also called a base belief. The set of literals are called belief literals.

De�nition 4.4 (actions)
The set of actions A is de�ned by:

[Syn-6] If a 2 Acts of arity n and t1; : : : ; tn 2 T, then a(t1; : : : ; tn) 2 A.

The actions of an agent are the basic means of the agent to change its environment. The
set of these actions can be viewed as specifying the capabilities of the agent.

De�nition 4.5 (goals)
The set of AgentSpeak(L) goals G is de�ned by:

[Syn-7] If � 2 At, then !� 2 G,

[Syn-8] If � 2 At, then ?� 2 G,

A goal !� is called an achievement goal. An achievement goal !� expresses that the agent
has a goal to achieve a state of a�airs where � is the case. A goal ?� is called a test goal. A
test goal is a test on the belief base to check if something is or is not believed to be the case.

De�nition 4.6 (triggering events)
The set of triggering events Et is de�ned by:

[Syn-9] If !� 2 G, then +!� 2 Et.

In [8], four types of triggering events are de�ned. Besides the triggering event +!� in def-
inition 4.6, three other types of triggering events, �!�;+?�, and �?�, are de�ned. Triggering
events are triggered when an addition (+) or deletion (-) to the set of goals or beliefs occurs.
The formal semantics in [8], however, does not make any reference to the last three triggering
events. Therefore, we do not consider the latter type of triggering events in this paper. The
triggering event +!� is generated in case a plan for an achievement goal !� has to be found.
The triggering event is posted when the agent tries to execute a plan and encounters a subgoal
!�. It thus signals the need for a plan for !�.

De�nition 4.7 (plan rules)
The set of plan rules P is de�ned by:

[Syn-10] If e 2 Et, b1; : : : ; bm are belief literals, and h1; : : : ; hn 2 (G [ A), then
e : b1 ^ : : :^ bn  h1; : : : ; hn 2 P.

De�nition 4.8 (head, context, body)
Let e : b1 ^ : : :^ bn  h1; : : : ; hn be a plan rule.
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� e : b1 ^ : : :^ bn is called the head of the plan rule,

� h1; : : : ; hn is called the body of the plan rule, and

� b1 ^ : : :^ bn is called the context of the plan rule.

We will also call the body of a plan rule the plan speci�ed by the rule. Plan rules in
AgentSpeak(L) specify the means for achieving a goal, and can be viewed as recipes coding
the know-how of the agent. The triggering event in the head of the plan rule indicates the
achievement goal for which the body of the plan rule speci�es the means for accomplishing
it. (Recall that a triggering event signals the need to �nd a plan for the corresponding
achievement goal.) The context of the plan rule describes the circumstances which must hold
for the plan to be a suitable option. Empty bodies are allowed in plan rules. We use the
symbol � to denote an empty body. The reason for introducing this feature is that it serves
to simplify the proof rules of AgentSpeak(L).

De�nition 4.9 (intentions)
The set of intentions I is de�ned by:

[Syn-11] If p1; : : : ; pz 2 P, then [p1z : : :zpz ] 2 I.

Intentions are stacks of plans which keep track of the adopted plans to achieve goals of
the agent. A plan in a stack is supposed to specify the means for a (sub)goal in a plan at the
next entry in the stack (if there is such an entry). The stack thus keeps a record of all the
plans adopted for all the (sub)goals encountered so far in the plans on the stack. An intention
is constructed during execution. In case the agent encounters an achievement goal in a plan
in an intention that it is executing, an event is generated. A suitable (instance) of a plan is
searched for, and in case such a plan is found, it is added to the stack. Therefore, not all
intentions of the form as speci�ed in Syn-11 are legal, since the de�nition allows plans at an
entry in the stack which are unrelated to the next entry in the stack. Such intentions are not
allowed. Upon completion of the execution of a plan in an intention the plan rule is removed
again. The symbol T is used to denote the intention [+!true : true �] and is called the true
intention.

De�nition 4.10 (events)
The set of events E is de�ned by:

[Syn-12] If e 2 Et and i 2 I, then he; ii 2 E.

Events are pairs of triggering events and intentions. The intention part of an event indi-
cates which intention gave rise to the triggering event. An event of the form he; T i is called
an external event. All other events are called internal events. As we will see, external events
are never generated by the AgentSpeak(L) agent itself (the true intention T does not give rise
to triggering events). This may imply that they only have meaning in a multi-agent setting.

De�nition 4.11 (AgentSpeak(L) agents)
An agent is a tuple hE; B; P; Ii, where

� E � E is a set of events,
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� B � At is a set of base beliefs,

� P � P is a set of plans, and

� I � I is a set of intentions.

AgentSpeak(L) agents consist of beliefs, intentions, and plan rules. Agents also keep a
record of the events that are generated. However, not all agents allowed by de�nition 4.11
are legal. Some initialisation conditions from which execution is started need to be imposed.
The initialisation conditions are the following: (i) E = ;, and (ii) all i 2 I are of the form
[+!true : true !P (~t)]. The conditions (i) and (ii) do not constrain an agent in any essential
way and are natural to impose. Condition (i) expresses that no events have been generated
when execution begins. Condition (ii) expresses that an agent may only have adopted a
number of simple achievement goals when execution begins.

The de�nition of AgentSpeak(L) agents we have given di�ers in some respects from that
in [8]. One of the more important di�erences is that we do not put (basic) actions in a
set to keep record of which actions have to be executed. Instead, we formally de�ne the
semantics of actions as updates on the belief base. If the agent needs to keep track of actions
which are executed or need to be executed, it can store this information in the belief base.
Another di�erence is that we have not included the three selection functions from [8] for
selecting intentions and plans. We think this is an aspect which should not be included in
the de�nition of the operational semantics, but is better viewed as a feature of an interpreter
implementing the agent language. The selection functions can be looked upon as de�ning
part of the control structure for an interpreter for AgentSpeak(L) (cf. [3]).

4.2 Semantics of AgentSpeak(L)

The operational semantics of AgentSpeak(L) is given by a proof system. The proof system
allows the derivation of computation steps of agents. The proof system consists of a set
of proof rules which de�ne a derivability relation `. Each rule corresponds to a speci�c
type of computation step. The derivability relation is de�ned on so-called con�gurations,
which consist of the dynamically changing parts of the agent during execution, i.e. the set of
generated events, the beliefs, and the intentions of the agent.

De�nition 4.12 (BDI con�guration)
A BDI con�guration is a tuple hE; B; Ii, where

� E � E is a set of events,

� B � At is a base of beliefs, i.e. a set of base beliefs,

� I � I is a set of intentions.

In the remainder of this section, we assume that an agent hE; B; P; Ii has been �xed.
Furthermore, we assume that a function specifying the update semantics of the basic actions
T : A� }(At)! }(At) is given.

The �rst semantic rule, is a rule for dealing with internal events. An internal event is
generated to achieve a goal, denoted by the triggering event part of the event. A plan which
speci�es the means for achieving the goal is added to the intention which triggered the event,
and the event is dropped.
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De�nition 4.13 (proof rule IntendMeans)

hf: : : ; h+!P (~t); [p1z : : :zpz ]i; : : :g; B; Ii

hf: : :g; B; I[ f[p1z : : :zpzzp]�
gi

where

� pz = e : � !P (~t); g2; : : : ; gl,

� p = +!P (~s) :   h1; : : : ; hn 20 P, such that p has no occurrences of variables which
also occur in the event or intention set,

� � is a most general uni�er for +!P (~t) and +!P (~s), and

� B j= 8( �
), for a substitution 
 such that 
(X) is not a variable which also occurs in
the event or intention set.

The substitution � in the plan uni�es the triggering event +!P (~s) in the head of the plan
rule and the triggering event +!P (~t) in the event. Because of the match, plan h1; : : : ; hn is
a plan for achieving achievement goal !P (~t). The substitution 
 retrieves speci�c parameters
related to the current situation from the belief base by a derivation for the context  of the
plan rule. A new intention is constructed by pushing the plan on the intention part of the
event. The composition of the two substitutions �
 is used to instantiate variables in this new
intention (and thus variables in the plan). The rule IntendMeans deals with internal events.
We do not give a rule for external events. Such a rule is given in [8], but since an agent will
only generate internal events the rule is redundant.

There is one important di�erence between the rule IntendMeans as given here and the one
given in [8] which concerns the renaming of variables. We use p 20 P to denote that p is a
variant of a rule in P, i.e. a plan rule in which variables may have been renamed uniformly.
Such a renaming is necessary to avoid interference between variables which occur in the plan
rule with variables that occur in the intention. This issue is discussed in more detail in [4].
Furthermore, the values retrieved by substitutions should be applied to the whole intention
and not just to a part of it, as is done in [8]. Otherwise, value-passing would be of limited
use.

The generation of an internal event is de�ned in the next rule. It is the only rule in the
system that creates events (cf. remark above). An internal event is generated if during the
execution of a plan from an intention an achievement goal is encountered. To achieve the
goal a plan has to be found, and an event recording the achievement goal and the intention
which gave rise to it is generated.

De�nition 4.14 (proof rule ExecAch)

hE; B; f: : : ; j; : : :gi

hE [ fh+!P (~t); jig; B; f: : :gi

where

� j = [p1z : : : zpz�1z(e : � !P (~t); h2; : : : ; hn)].
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The execution of an action in an intention means updating the belief base according to
the update semantics of the action, and removing the action from the intention. The belief
base is updated according to the semantic function T which speci�es the update semantics
of actions.

De�nition 4.15 (proof rule ExecAct)

hE; B; f: : : ; [p1z : : : z(e : � a(~t); h2; : : : ; hn)]; : : :gi

hE; B0; f: : : ; [p1z : : :z(e : � h2; : : : ; hn))]; : : :g; i

such that

� T (a(~t); B) = B
0.

The execution of a test is a check on the belief base. The test is removed from the
intention when it has been executed. Such a check may retrieve data from the belief base,
which is recorded in a substitution 
. The substitution 
 is applied to the remaining part of
the intention to instantiate variables with their corresponding parameters.

De�nition 4.16 (proof rule ExecTest)

hE; B; f: : : ; [p1z : : :z(e : � ?P (~t); h2; : : : ; hn)]; : : :gi

hE; B; f: : : ; [p1z : : :z(e : � h2; : : : ; hn)]
; : : :gi

where

� 
 is a substitution such that for all X in the domain of 
, 
(X) is not a variable which
also occurs in the event or intention set,

� B j= 8(P (~t)
).

The rule CleanStackEntry to be de�ned below was omitted in [8], as also noted in [1]. The
rule implements the notion of an intention being executed in de�nition 16 in [8]. It is used for
the removal of a plan that has been completely executed. The entry occupied by this plan is
popped from the intention so that execution may continue with the remainder of the intention
(which triggered the completed plan). Besides removing the plan, the achievement goal which
gave rise to the plan at the next entry in the intention must also be removed (completed plan
execution indicates that the goal has been achieved). An empty body � in a plan rule in an
intention indicates that the plan has been executed completely.

De�nition 4.17 (proof rule CleanStackEntry)

hE; B; f: : : ; [p1z : : :zpzz(+!P (~t) : � �)]; : : :gi

hE; B; f: : : ; [p1z : : :zp0z ]; : : :gi

where

� pz = e :   !P (~t); h2; : : : ; hn,

� p0z = e :   h2; : : : ; hn.
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In case that a plan has been executed completely but there is no remaining part of the
intention consisting of plans still to be executed, the intention itself may be removed from
the intention set. The rule CleanIntSet is used for this purpose. It was not given in [8], as was
also noted in [1]. However, from a formal point of view the rule may be considered redundant
because it does not change the observable behaviour of an agent.

De�nition 4.18 (clean rule CleanIntSet)

hE; B; f: : : ; [+!P (~t) : � �]; : : :gi

hE; B; f: : :gi

The set of semantic rules given in this section de�nes the operational semantics of Agent-
Speak(L). Although we have based our description of the proof rules of AgentSpeak(L) on
[8], we have made a number of changes to the rules as they are presented in [8]. The rules
we give do not modify the language in any essential way ([9]). Apart from minor di�erences,
the more important issue of renaming variables has already been discussed.

4.2.1 Computations and Observables

The proof system for AgentSpeak(L) de�nes a derivation relation ` on BDI con�gurations.
A proof rule allows to derive from (an instantiation) of the con�guration C in the premise of
that rule the con�guration C0 in the conclusion of that same rule. This relation is written as
C ` C0. A derivation de�nes the legal computations of an agent.

De�nition 4.19 (BDI derivation)
A BDI derivation is a �nite or in�nite sequence of BDI con�gurations, i.e. C0; : : : ; Cn; : : :,
where each Ci+1 is derivable from Ci according to a proof rule, i.e. Ci ` Ci+1.

The language is goal- or intention-driven, i.e. by executing its intentions the agent com-
putes results which are stored in the belief base of the agent. Thus, the agent can be viewed
upon as computing a series of updates on the beliefs of the agent. This suggests that taking
the belief base of the agent as the observables of the system is a good choice.

De�nition 4.20 (observables)
Let CL be the set of all (legal) BDI con�gurations, and let hE; B; Ii 2 CL be such a con�gura-
tion. The function OL : CL ! }(At) is de�ned by OL(hE; B; Ii) = B. OL yields the observable
of a given con�guration.

For our purpose, this means that if we can show that two agent languages are capable of
producing the same sequences of (observable) belief bases and there exists a natural transla-
tion of the agents in one of the languages to agents in the other language, the latter has at
least the same expressive power as the former.

4.3 The syntax of AgentSpeak(1)

The de�nition of the language AgentSpeak(1) is given by the set of syntactic rules Syn-1
to Syn-11. I.e., AgentSpeak(1) is a proper subset of AgentSpeak(L) equivalent to Agent-
Speak(L) without events. To show that AgentSpeak(1) has at least the same expressive power
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as AgentSpeak(L) we �rst have to de�ne a compositional translation function for mapping
AgentSpeak(L) agents onto AgentSpeak(1) agents.

A natural candidate for this function is the function that maps all syntactic expressions of
AgentSpeak(L) on the same expressions in AgentSpeak(1), except for AgentSpeak(L) events,
which are mapped onto AgentSpeak(1) intentions. I.e., we de�ne the translation function to
be the identity function, except for events, which need to be mapped on some other notion
since events do not occur in AgentSpeak(1).

The choice to map events onto intentions is explained as follows. Events are only used
to indicate that a plan to achieve some achievement goal has to be found. The creation of
events thus forms an intermediate step in the process of creating a new intention by pushing
a suitable plan onto that intention. By incorporating the stack building into the semantic
rule which generates the event in AgentSpeak(L) we may skip this intermediate step and we
can do without events in AgentSpeak(1).

De�nition 4.21 (translation function �1)
The translation function �1 translating AgentSpeak(L) into AgentSpeak(1) is de�ned as the
identity, except for events, for which it is de�ned by:

� �1(he; ji) = j.

It is easy to see that �1 is compositional.

De�nition 4.22 (AgentSpeak(1) agent)
An AgentSpeak(1) agent is a tuple hB; P; Ii where

� B � At is a set of base beliefs,

� P � P is a set of plans, and

� I � I is a set of intentions.

The set of legal AgentSpeak(1) agents is a restriction on the set of agents from de�nition
4.22. The same restriction on the initial intention set of an AgentSpeak(L) agent is imposed
on an AgentSpeak(1) agent: all i 2 I should be of the form [+!true : true  !P (~t)]. The
condition expresses that an agent may only have adopted a number of simple achievement
goals when execution begins. By de�nition, an AgentSpeak(L) agent hE; B; P; Ii is mapped
onto an AgentSpeak(1) agent by �1 as follows: �1(hE; B; P;Ii) = hB; P; I[ �1(E)i. �1 is lifted to
sets of expressions point-wise, i.e. �1(S) = f�1(s) j s 2 Sg.

4.4 Semantics of AgentSpeak(1)

The proof system used to specify the semantics of AgentSpeak(L) is replaced by a transition
system giving the semantics for AgentSpeak(1). Transition systems are a means to de�ne
the operational semantics of programming languages ([7]). Formally, a transition system is
a deductive system which allows to derive the transitions of an agent. A transition system
consists of a set of transition rules which specify the meaning of the programming constructs
in a language. Transition rules transform con�gurations. In AgentSpeak(1) a con�guration
is the same as a mental state, i.e. a pair hB; Ii of beliefs and intentions.
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De�nition 4.23 (AgentSpeak(1) con�guration)
An AgentSpeak(1) con�guration is a tuple hB; Ii, where

� B � At is belief base,

� I � I is a set of intentions.

By de�nition, an AgentSpeak(L) con�guration is mapped onto an AgentSpeak(1) con�g-
uration by �1 as follows: �1(hE; B; Ii) = hB; I[ �1(E)i.

The �rst transition rule, for plan application, corresponds to the proof rule IntendMeans of
AgentSpeak(L). The rule, however, does circumvent the notion of event, and directly pushes
a plan for achieving the achievement goal in the intention on the intention. Thus, the Agent-
Speak(1) rule integrates the rules IntendMeans and ExecAch into one rule.

De�nition 4.24 (plan application rule)
Let � be a most general uni�er for !P (~t) and !P (~s), and 
 a substitution.

+!P (~s) : � h1; : : : ; hn 20 P and B j= 8(��
)

hB; f: : : ; [p1z : : :zpz ]; : : :gi �!1 hB; f: : : ; [p1z : : :zpzzp]�
; : : :gi

where

� pz = e : � !P (~t); g2; : : : ; gl,

� p = +!P (~s) : b1^ : : :^ bm  h1; : : : ; hn has no occurrences of variables which also occur
in the intention set, and

� 
(X) is not a variable also occurring in the intention set.

The other four rules of AgentSpeak(1) are the transition rule variants of the rules ExecAct,
ExecTest, CleanStackEntry, and CleanIntSet respectively. In these rules, the set of events is
dropped from the con�gurations.

De�nition 4.25 (execution rule for actions)

T (a(~t); B) = B
0

hB; f:::; [p1z:::z(e : � a(~t); h2; :::; hn)]; :::gi �!1 hB0; f:::; [p1z:::z(e : � h2; :::; hn))]; :::gi

De�nition 4.26 (execution rule for �rst-order tests)
Let 
 be a substitution such that 
(X) is not a variable which also occurs in the intention
set.

B j= 8(P (~t)
)

hB; f:::; [p1z:::z(e : � ?P (~t); h2; :::; hn)]; :::gi �!1 hB; f:::; [p1z:::z(e : � h2; :::; hn)]
; :::gi

De�nition 4.27 (clean stack entry rule)

hB; f: : : ; [p1z : : :zpzz(+!P (~t) : � �)]; : : :gi �!1 hB; f: : : ; [p1z : : :zp0z ]; : : :gi

where
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� pz = e :   !P (~t); h2; : : : ; hn,

� p0z = e :   h2; : : : ; hn.

De�nition 4.28 (clean rule for intention set)

hB; f: : : ; [+!P (~t) : � �]; : : :gi �!1 hB; f: : :gi

4.4.1 Computations and Observables

The transition system for AgentSpeak(1) de�nes a transition relation �!1 on con�gurations.
A transition rule allows the derivation of (an instantiation) of such a transition in case the
conditions in the premise of the rule are satis�ed.

The transition relation �!1 is the counterpart of AgentSpeak(1) for the derivation relation
` of AgentSpeak(L). The choice of observables for AgentSpeak(1) is the same as that for
AgentSpeak(L), the belief base of an AgentSpeak(1) con�guration. Therefore, we can use the
identity function as decoder � to map observables from AgentSpeak(1) to AgentSpeak(L). As
a consequence, � is compositional.

De�nition 4.29 (observables)
Let C1 be the set of all (legal) AgentSpeak(1) con�gurations. The function O1 : C1 ! }(At)
is de�ned by O1(hB; Ii) = B for all hB; Ii 2 C1. O1 yields the observable of an AgentSpeak(1)
con�guration.

4.5 AgentSpeak(1) simulates AgentSpeak(L)

To show that �1 is a translation bisimulation and that AgentSpeak(1) simulates Agent-
Speak(L), we have to show that every computation step of an AgentSpeak(L) agent can
be simulated by the translated AgentSpeak(1) agent, and vice versa. Because all but one
rule for AgentSpeak(1) are just notational variants of the rules for AgentSpeak(L) this is not
too di�cult. Therefore, it su�ces to show that the computation steps de�ned by the rules
IntendMeans and ExecAch can be simulated in AgentSpeak(1), and that the plan application
rule of AgentSpeak(L) can be simulated by AgentSpeak(L).

Theorem 4.30 The proof rule ExecAch of AgentSpeak(L) can be simulated by AgentSpeak(1).

Proof: By inspection of the proof rule ExecAch and the de�nition of �1, it is easy to see
that the AgentSpeak(L) con�guration in the premise of the rule and the con�guration of
the conclusion of the rule are mapped onto the same AgentSpeak(1) con�guration. The rule
ExecAch thus de�nes an internal step, and the computation step corresponding to this rule is
simulated by performing no AgentSpeak(1) step at all.

Theorem 4.31 The proof rule IntendMeans of AgentSpeak(L) can be simulated by the plan
application rule for AgentSpeak(1).
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Proof: Let A = hE[fh+!P (~t); [p1z : : :zpz ]ig; B; Ii and A0 = hE; B; I[f[p1z : : :zpzzp]�
gi such
that A ` A0 by means of the rule IntendMeans. Translation function �1 maps A onto B =
�(A) = hB; I[�1(E)f[p1z : : :zpz ]gi. By applying the rule for plan application of AgentSpeak(1)
we get: B0 = hB; I[ �1(E)f[p1z : : : zpzzp]�
gi. It is easy to see that �1(A

0) = B0. (�1(i�
) =
�1(i)�
 for an intention i.) Note that the plan application rule is applicable since proof rule
IntendMeans is applicable.

Note that although rule IntendMeans de�nes an internal step, it can not be simulated by
not performing any step at all. The reason for this is that �(C) 6= �(C0) if C ` C0 by the rule
IntendMeans.

Theorem 4.32 The plan application rule of AgentSpeak(1) can be simulated by Agent-
Speak(L).

Proof: To simulate the plan application rule, we need the proof rule IntendMeans as well
as the proof rule ExecAch. Note that since both steps are internal steps, it is allowed to use
both rules to prove weak bisimulation. Suppose A is an AgentSpeak(L) con�guration, and
B �!1 B

0 by means of the plan application rule, where B = �(A) and B0 is an AgentSpeak(1)
con�guration. The con�gurations must be of the form: B = �(A) = hB; I [ f[p1z : : :zpz]gi,
and B0 = hB; I [ f[p1z : : : zpzzp]�
gi. By inspection of the translation function, and by rule
ExecAch we get a con�guration A ` A0 of the form A0 = hfE [ fh+!P (~t); [p1z : : :zpz ]ig; B; Ii.
And, �nally, by rule IntendMeans we get A00 = hE; B; I[ f[p1z : : :zpzzp]�
gi. It is easy to see
that �(A00) = B0.

We summarise the results of this section. AgentSpeak(1) syntactically is a proper subset
of AgentSpeak(L). This corresponds to the condition F3 in the de�nition of eliminability 3.7.
The translation function �1 and the decoder � both are compositional, which corresponds to
condition F1 in de�nition 3.7. And, �nally, by the proofs given above �1 is a translation
bisimulation. This corresponds to condition F2 in de�nition 3.7. Taken together, this con-
cludes the proof that events are eliminable from AgentSpeak(L). As a consequence, we also
have that AgentSpeak(1) has at least the same expressive power as AgentSpeak(L).

In the other direction, although we did not give a formal proof for it, we claim that Agent-
Speak(L) also has at least the same expressive power as AgentSpeak(1). The proof is easily
derived from the proofs in this section. The translation function needed for the bisimulation
is the identity function. As a consequence, AgentSpeak(L) and AgentSpeak(1) have the same
expressive power.

5 The Transformation of Intentions to Goals

In this section we de�ne a translation of AgentSpeak(1) to a language called AgentSpeak(2).
In AgentSpeak(2) intentions have been replaced by complex goals of 3APL. We de�ne a
compositional translation function �2. Apart from the replacement of intentions by complex
goals, there have been made a number of minor other syntactic changes to the language
AgentSpeak(1). AgentSpeak(2) is a proper subset of 3APL.
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5.1 Syntax of AgentSpeak(2)

The main di�erence between the syntax of AgentSpeak(1) and AgentSpeak(2) is that the latter
does not have intentions. Also, a number of other changes in the syntax of AgentSpeak(1)
goals and plan rules have been made to compensate for minor di�erences between the syntax
of AgentSpeak(L) and 3APL. The symbol ! marking that a goal is an achievement goal in !�
is simply dropped. ?� is written as �?. And �nally, a plan +!P (~t) : � h1; : : : ; hn is written
as P (~t) � j h1; : : : ; hn. Because of the change in the syntax of plan rules, we no longer have
any need for triggering events. Therefore, triggering events are dropped from the language.

De�nition 5.1 (syntax)
The syntax of AgentSpeak(2) is given by the syntactic rules Syn-1 to Syn-6, and the three
rules Syn-7a,Syn-8a, and Syn-10a which replace the rules Syn-7 for achievement goals, Syn-8
for test goals, and Syn-10 for plan rules of AgentSpeak(L). One other rule is added, namely
Syn-9a, which de�nes complex goals, i.e. sequential compositions of simple goals.

[Syn-7a] If � 2 At, then � 2 G,

[Syn-8a] If � 2 At, then �? 2 G,

[Syn-9a] If h1; : : : ; hn 2 (G [ A), then h1; : : : ; hn 2 G,

[Syn-10a] If � 2 At, b1; : : : ; bn are belief literals, and h1; : : : ; hn 2 (G[A), then � b1^ : : :^
bn j h1; : : : ; hn 2 P.

Because of the syntactic changes made to AgentSpeak(1) the translation function �2 is
more complicated than �1. �2 maps intentions to the complex goals as de�ned by rule Syn-9a.
To do this, the stack of plans (intention) needs to be unravelled into a sequence of actions,
tests, and achievement goals. For this purpose, we de�ne an auxiliary function � 02, and use
a function body to obtain the body of a plan rule. � 02 removes the achievement goals at the
head of the plans in an intention, since these goals are implemented by plans at the next
lower entry in the stack except for the �rst entry (legal intentions have this feature). The
remainder of the plans is transformed into a sequential goal. Recall that a plan rule p in an
intention [: : :zp] is the one executed �rst (cf. semantic rules for AgentSpeak(1)). Therefore,
the plan speci�ed by p is added to the front of the complex goal which is constructed by � 02.

De�nition 5.2 (translation function �2)
The translation function �2 translating AgentSpeak(1) into AgentSpeak(2) is de�ned as the
identity, except for the following cases:

� �2(!�) = �,

� �2(?�) = �?,

� �2(+!P (~t) : � h1; : : : ; hn) = P (~t) � j h1; : : : ; hn,

� � 0
2
([p1z : : : z(+!P (~t) : � h1; h2; : : : ; hn)]) = h2; : : : ; hn; � 02([p1z : : :zpz�1]),

� � 02([]) = �,

� �2([p1z : : : zpz ]) = body(�2(pz)); � 02([p1z : : :zpz�1]).
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As before, it is easy to see that �2 is compositional, and therefore satis�es condition E1 of
de�nition 3.6. Also, note that the composition �1 � �2 translates AgentSpeak(L) expressions
to AgentSpeak(2) expressions.

AgentSpeak(2) agents consist of a belief base, a goal base, and a plan base. The goal base
of an AgentSpeak(2) agent replaces the intention set of an AgentSpeak(1) agent.

De�nition 5.3 (AgentSpeak(2) agent)
An AgentSpeak(2) agent is a tuple hB; P; Gi where

� B � At is a set of base beliefs,

� P � P is a set of plans, and

� G � G is a set of goals.

By de�nition, an AgentSpeak(1) agent hB; P; Gi is mapped onto an AgentSpeak(2) agent
by �2 as follows: �2(hB; P; Ii) = hB; �2(P); �2(I)i. �2 is lifted point-wise to sets.

5.2 Semantics of AgentSpeak(2)

Since intentions have been dropped from the language, the transition system for Agent-
Speak(1) has to be modi�ed such that the transition rules apply to goals instead of intentions.
The con�gurations transformed by AgentSpeak(2) agents are now pairs hB; Gi of belief and
goal bases.

De�nition 5.4 (con�guration)
An AgentSpeak(2) con�guration is a pair hB; Gi, where B is a belief base, and G is a set of
AgentSpeak(2) goals, either simple or complex.

By de�nition, an AgentSpeak(1) con�guration is mapped onto an AgentSpeak(2) con�g-
uration by �2 as follows: �2(hB; Ii) = hB; �2(I)i.

The main di�erence between the transition rules of AgentSpeak(1) and those of Agent-
Speak(2) is that the transition rules of AgentSpeak(2) exploit the recursive capabilities of
transition systems. That is, the transition rules of AgentSpeak(2) are de�ned on the syntactic
structure of agents and goals. The rules decompose a complex goal to its elementary parts,
and the semantics of a complex goal is derived in this way from the rules for the elementary
parts. For example, the rule for sequential composition decomposes a sequential goal, and
transformation of the sequential goal is derived from the transformation of the �rst part of
the sequential goal.

The rule for goal bases selects a goal which is executable, or a goal which can be used in
the plan application rule. This is the only rule for de�ning the transition relation �!2 on
con�gurations hB; Gi. The transition relation �!2 is derived from the more basic relation �!
which operates on a pair hB; �i of belief base and goal.

De�nition 5.5 (goal base)

hB; �iV �!� hB0; �0i

hB; f: : : ; �; : : :gi �!2 hB0; f: : : ; �0; : : :gi

where V is the set of variables in f: : : ; �; : : :g.
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In case the (complex) goal that is selected turns out to be(gin with) an achievement goal,
a plan must be found which will achieve the goal. The transition rule for plan application of
AgentSpeak(2) thus corresponds to the rule IntendMeans of AgentSpeak(L).

De�nition 5.6 (rule application)
Let � be a most general uni�er for P (~t) and P (~s), and 
 a substitution.

P (~s) � j h1; : : : ; hn 2
0
P and B j= 8(��
)

hB; P (~t)iV �!�
 hB; (h1; : : : ; hn)�
i

where

� P (~s) : b1 ^ : : : ^ bm  h1; : : : ; hn has no occurrences of variables which are also in V
(the set of variables occurring in the goal base), and

� 
(X) 62 V for all X in the domain of 
.

The execution of a basic action consists in an update on the belief base. ; denotes the
empty substitution and the symbol E denotes termination of a goal.

De�nition 5.7 (execution rule for actions)

T (a(~t); B) = B
0

hB; a(~t)iV �!; hB0; Ei

A test is a check on the belief base.

De�nition 5.8 (execution rule for �rst-order tests)
Let 
 be a substitution such that 
(X) 62 V for all X in the domain of 
.

B j= 8(P (~t)
)

hB; P (~t)?iV �!
 hB; Ei

The rule for sequential composition �rst decomposes a complex goal into its simpler con-
stituents, executes the �rst part of the goal, and composes the remaining part sequentially
with the second half of the goal. Substitutions created during execution are also applied to
the second half of the goal.

De�nition 5.9 (execution rule for sequential composition)
Let � be a substitution.

hB; �1i �!� hB
0; �01i

hB; �1; �2iV �!� hB0; �01; �2�i

5.3 Computations and Observables

An AgentSpeak(2) computation is a �nite or in�nite sequence of AgentSpeak(2) con�gurations
where each consecutive pair is related by the transition relation �!2. As for AgentSpeak(1),
we de�ne the notion of observables for AgentSpeak(2) to be the belief base and the decoder
� to be the identity function.

De�nition 5.10 (observables)
Let C2 be the set of all AgentSpeak(2) con�gurations, and let hB; Gi 2 C2 denote such a
con�guration. The function O2 : C2 ! }(At) is de�ned by O2(hB; Gi) = B. O2 yields the
observable of a given AgentSpeak(2) con�guration.
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5.4 AgentSpeak(2) simulates AgentSpeak(1)

To show that �2 is a translation bisimulation and that AgentSpeak(2) simulates Agent-
Speak(1), we have to show that every computation step of an AgentSpeak(1) agent can
be simulated by the corresponding translated AgentSpeak(2) agent, and vice versa. Since the
transition rules of AgentSpeak(1) de�ne the legal computation steps, it su�ces to show that
every transition rule of AgentSpeak(1) can be simulated by the derived transition relation
)2 of AgentSpeak(2), and vice versa. We show this for the most complex case, namely the
case that a plan rule is applied in the computation step.

Also note that the rules for cleaning the intention stacks CleanStackEntry and CleanIntSet

do not have to be simulated (the rules are simulated by performing no step at all) since the
translation function �2 maps the con�guration of the premise of these rules onto the same
AgentSpeak(2) con�guration as the conclusion of the rules.

Theorem 5.11 The plan application rule for AgentSpeak(1) can be simulated by the plan
application rule for AgentSpeak(2).

Proof: We use P1 to denote the set of plans of the AgentSpeak(1) agent, and P2 to denote
the set of plans of the AgentSpeak(2) agent.

� ():) Suppose that A �!1 A
0 by the plan application rule of AgentSpeak(1). In that

case, A = hB; I[f[p1z : : : zpz ]gi and A0 = hB; I[f[p1z : : :zpzzp]�
gi, where pz = e : � 
!P (~t); g2; : : : ; gl, and p = +!P (~s) :   h1; : : : ; hn 2

0
P1. The achievement goal !P (~t) in

plan pz is translated by �2 to P (~t), and the plan p to P (~s)   j h1; : : : ; hn 20 P2. By
an application of the plan application rule for AgentSpeak(2) we get:

hB; P (~t)iV �!�
 hB; (h1; : : : ; hn)�
i

Using the de�nition of �2, �
0
2 and this transition as a premise for the rule for sequential

composition, we then get:

hB; P (~t); � 02([p1z : : :zpz])i �!�
 hB; �2([p1z : : :zpzzp])�
i

And �nally, by an application of the transition rule for goal bases, we have:
�2(A) �!2 �2(A

0).

� ((:) Suppose that �(A) �!2 B
0 by using the rule for plan application of AgentSpeak(2).

This means that goal P (~t); � 2 G for some � (possibly empty). By inspection of the
translation function �2, this goal must have originated from an intention in the con�gu-
ration A. But in that case, we can apply the plan application rule of AgentSpeak(1) to
transform the intention and add the plan used in the AgentSpeak(2) computation step
to the stack of plans, yielding a con�guration A0. The translation function �2 maps this
con�guration to B0, �(A0) = B0.

We summarise the results of this section. Both the translation function �2 and the decoder
� are compositional. This corresponds to condition E1 in the de�nition of relative expressive
power 3.6. Theorem 5.11 proves that �2 is a translation bisimulation, which corresponds to
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condition E2 in de�nition 3.6. Taken together, this concludes the proof that AgentSpeak(2)
has at least the same expressive power as AgentSpeak(1). Since AgentSpeak(2) is a proper
subset of 3APL (cf. [4]), this also shows by transitivity of the expressiveness relation that
3APL has at least the same expressive power as AgentSpeak(2). The main di�erence between
AgentSpeak(2) and 3APL resides in the set of (plan) rules, since 3APL allows rules with more
general heads. These rules make a more general type of goal revision possible (cf. [4, 3]).

6 Conclusion

The conclusion which can be drawn from the results concerning the expressive power is
that every agent which can be programmed in AgentSpeak(L) can also be programmed in
3APL. On the other hand, a number of features of 3APL which are discussed in [4] were not
needed to simulate AgentSpeak(L). These features include more (imperative) programming
constructs like parallel composition and non-deterministic choice, and a more general goal
revision mechanism. Although the lack of regular programming constructs may not be con-
sidered as too great a di�erence, the lack of a more general revision mechanism is of more
interest. Since AgentSpeak(L) lacks this more general revision mechanism in AgentSpeak(L),
we believe that it is impossible to simulate, in the sense outlined in this paper, this mechanism
in AgentSpeak(L). Therefore, we conjecture that 3APL has strictly more expressive power
than AgentSpeak(L).

Another conclusion which can be drawn from the expressiveness results is that the notions
of events and intentions can be identi�ed. This conclusion is based on the fact that events and
intentions are simulated by goals (they are mapped onto goals by the composed translation
function �1 � �2). Similarly, one may conclude that there is no need to maintain a complete
stack of plans as is done in AgentSpeak(L). The same reason applies: No such thing is needed
in the simulation of AgentSpeak(L) agents by 3APL agents. The bookkeeping for which
events and intentions are used, therefore, only complicates the proof system. Since there
is no loss of expressiveness, stacks and (triggering) events might be viewed as one possible
implementation of the agent language, but should not be incorporated into the semantics of
the agent language.

There might be, however, one intuitive use of intentions which is not incorporated in
AgentSpeak(L). One could argue that it is of use to an agent that it keeps track of the goals
it is pursuing and the plans it is trying to use to achieve these goals as is done in an intention.
For example, if a plan fails to achieve a goal, this plan could be dropped, the old goal could
be retrieved (from the next entry in the intention structure) and a new plan could be tried.
However, the complexity both from a theoretical and practical perspective of this kind of
'backtracking' should not be underestimated. First of all, new types of rules should have to
be introduced which could change intention structures in this way. These rules would make
the semantics considerably more complex. Furthermore, it is not (yet) clear when and how
to use this kind of `backtracking'. Research into integrating these kinds of possibilities into a
formal semantics is still to be done, as far as we know.

Besides the operational semantics for AgentSpeak(L), in [8] also an algorithm for an
interpreter for AgentSpeak(L), or a control structure as we would like to call it, is de�ned.
This control structure speci�es to some extent in which order the proof rules should be used
to execute AgentSpeak(L) agents. For example, in every cycle of the interpreter �rst an event
is processed and then an intention is processed (achieve goal, execute action or test). We
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have looked in more detail at specifying the semantic structure imposed on AgentSpeak(L),
and also for 3APL, by an interpreter in [3], using the results obtained in the present paper
that events and intentions can be transformed into goals.
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