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Abstract

We present a formal system to reason about and specify the behavior of multiple

intelligent arti�cial agents. Essentially, each agent can perform certain actions, and it may

possess a variety of information in order to reason about its and other agent's actions.

Thus, our KARO-framework tries to deal formallywith the notion ofKnowledge, possessed

by the agents, and their possible execution of actions. In particular, each agent may reason

about its |or, alternatively, other's| Abilities to perform certain actions, the possible

Results of such an execution and the availability of the Opportunities to take a particular

action. Formally, we combine dynamic and epistemic logic into one modal system, and

add the notion of ability to it. We demonstrate that there are several options to de�ne

the ability to perform a sequentially composed action, and we outline several properties

under two alternative choices. Also, the agents' views on the correctness and feasibility of

their plans are highlighted. Finally, the complications in the completeness proof for both

systems indicate that the presence of abilities in the logic makes the use of in�nite proof

rules useful, if not inevitable.

1 Introduction

The last ten years have witnessed an intense 
owering of interest in arti�cial agents, both on a
theoretical and on a practical level. The ACM devoted a special issue of its `Communications'
to intelligent agents [6], and Scienti�c American ranked intelligent software agents among the
key technologies for the 21st century [35]. Also various conferences and workshops were initi-
ated that speci�cally address agents, their theories, languages, architectures and applications
[8, 28, 49, 50]. Consequently, terms like agent-based computing, agent-based software engi-
neering and agent-oriented programming have become widely used in research on AI. Despite
its wide use, there is no agreement on what the term `agent' means. Riecken remarks that
`at best, there appears to be a rich set of emerging views' and that `the terminology is a bit
messy' [42]. Existing de�nitions range from `any entity whose state is viewed as consisting
of mental objects ' [46] and `autonomous objects with the capacity to learn, memorize and
communicate' [9], to `systems whose behavior is neither casual nor strictly causal, but teleo-
nomic, goal-oriented toward a certain state of the world' [3]. Other authors, and truly not
the least, use the term `robot' instead of agent [27], or take the common-sense de�nition of
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agents for granted [40]. In practical applications agents are `personal assistant[s] who [are]
collaborating with the user in the same work environment' [34], or `computer programs that
simulate a human relationship, by doing something that another person could otherwise do
for you' [45].

The informal description of an (arti�cial) agent in its most primitive form, which we distill
from the de�nitions given above and which the reader is advised to keep at the back of his/her
mind throughout reading this paper, is that of an entity which has the possibility to execute
certain actions, and is in the possession of certain information, which allows it to reason
about its own and other agents' actions. In general, these agents will also have motives that
explain why they act the way they do. The treatment of these motives is however not the
subject of this paper (but see [32]). Moreover, although we borrow a lot of terminology and
notions from philosophy, the reader should keep in mind that it is our main goal to describe
arti�cial agents, rather than humans.

Currently several applications of agent-technology are in use. Among those listed by
Wooldridge & Jennings [48] are air-tra�c control systems, spacecraft control, telecommuni-
cations network management and particle acceleration control. Furthermore, interface agents
are used that for instance take care of email administration, as well as information agents
that deal with information management and retrieval. In all probability, these implemented
agents will be rather complex. In addition, life-critical implementations like air-tra�c control
systems and spacecraft control systems need to be highly reliable. To guarantee reliability it
is probably necessary to use formal methods in the development of these agent systems, since
such a guarantee can never be given by just performing tests on the systems. Besides this
general reason for using formal techniques in any branch of AI and computer science, there
is another reason when dealing with agents. These agents will in general be equipped with
features representing common-sense concepts as knowledge, belief and ability. Since most
people do have their own conception of these concepts, it is very important to unambiguously
establish what is meant by these concepts when ascribed to some speci�c implemented agent.
Formal speci�cations allow for such an unambiguous de�nition.

The formal tool that we propose to model agency is modal logic [4, 20, 21]. Using modal
logics o�ers a number of advantages. Firstly, using an intensional logic like modal logic
allows one to come up with an intuitively acceptable formalisation of intensional notions with
much less e�ort than it would take to do something similar using fully-
edged �rst-order
logic. Secondly, the reducibility of modal logic to (fragments of) �rst-order logic ensures that
methods and techniques developed for �rst-order logic are still applicable to modal logic.
Lastly, using possible worlds models as originally proposed by Kripke [25], provides for a
uniform, clear, intelligible, and intuitively acceptable means to give mathematical meaning to
a variety of modal operators. The modal systems that we propose to formalise agents belong
to what we call the KARO-framework. In this framework, the name of which is inspired by
the well-known BDI-architecture [40], special attention is paid to the agents' knowledge and
abilities, and to the results of and opportunities for their actions. We present two di�erent
systems, both belonging to the KARO-framework, that di�er in their treatment of abilities
for certain actions. To show the expressive power of the framework we formalise various
notions that are interesting maybe from a philosophical point of view, but that above all
should help to understand and model arti�cially intelligent agents|we like to stress that our
aim is to describe arti�cial agents like softbots and robots by means of these notions, rather
than human agents, which are far more complex and for which one probably needs more
complicated descriptions.

2



The agent attitudes in this paper are limited to knowledge, and abilities, results and
opportunities with respect to his/its actions, i.e. the KARO framework. We stress that the
purpose of this paper is to give a thorough treatment of this KARO framework, which has
been used by us as a basis for a much more extensive description of agents, incorporating such
notions as observations ([30]), communication ([29]), default reasoning ([33]), belief revision
([31]), and goals ([32]).

The philosophy adhered to in this endeavour is that the primary attitude of agents is to
act, by the very meaning of the word `agent', so that a speci�cation logic for the behaviour
of agents should start out from a logic of action (for which we have chosen an extension of
dynamic logic in which knowledge and ability is expressible as well). In this enterprise we
owe to Bob Moore's work combining a version of dynamic logic and epistemic logic for the
�rst time [37] So here we deviate from the philosophy of other foundational work on agents,
in particular that of Rao & George� [40, 39, 41], who take belief, desire, intentions as well
as time as primitive notions for agents. (One could argue that our approach is more in line
with that of Cohen & Levesque [5]. They, too, take actions as basic building blocks for
their theory of agents. However, they consider only models of their framework and provide
no formal proof system. Furthermore, they are mainly concerned with the formalisation of
motivational attitudes such as goals and intentions of agents, and employ actions merely as
a basis to obtain this, while here we are interested in actions and aspects of these, such as
opportunities and abilities, in their own right.)

Therefore, the main contribution of this paper is to investigate the KARO logic and
provide meta-results such as completeness, which, particularly by the addition of abilities,
will turn out to be a non-trivial extension of that for basic dynamic logic.

Organisation of the paper The rest of the paper is organised as follows. In Section 2
we look at the philosophical foundations of the KARO-framework. In Section 3 we present
the formal de�nitions constituting the two systems belonging to the KARO-framework. We
start by de�ning the language common to the two systems, where-after a common class of
models and two di�erent interpretations for the formulas from the language in the models are
presented. In Section 4 various properties of knowledge and action in the KARO-framework
are considered. In Section 5 we consider the notion of practical possibility, and formalise part
of the reasoning of agents on the correctness and feasibility of their plans. In Section 6 we
present two slightly di�erent proof systems that are sound and complete with respect to the
notions of validity associated with the two interpretations. Section 7 concludes this paper
with a brief summary, an overview of related work, and some suggestions for future research.
In the appendix we present the proofs of soundness and completeness in considerable detail.

2 The KARO-framework from a philosophical perspective

As mentioned in the previous section, in its simplest form an agent is an entity that performs
actions and possesses information. The informational attitude that we equip our agents with
is termed knowledge. Our use of the term knowledge agrees with the common one in AI and
computer science [14, 36], i.e. knowledge is veridical information with respect to which the
agent satis�es conditions of both positive and negative introspection. Veridicality implies that
only true formulas are known by agents, positive introspection states that agents know that
they know something whenever they know it, and negative introspection states that agents
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know that they do not know something as soon as they do not know it.
To explain the concept of action, we �rst have to spend some words on the ontology of

states of a�airs that we presuppose. By a state of a�airs we mean the way the world is, or
one way it might be, at a moment. The (currently) actual state of a�airs is composed of
the facts about the world as it actually is at this very moment. But there are, presumably,
various other states of a�airs which could have applied to the world as this moment instead,
or that would apply as the result of a given action. An agent, with limited knowledge of the
facts, might consider various merely hypothetical states of a�airs consistent with the agent's
knowledge Actions are now considered to be descriptions of causal processes, which upon
execution by an agent may turn one state of a�airs into another one. Thus, our intuitive idea
of actions corresponds to what Von Wright calls the generic view on actions [52]. An event
consists of the performance of a particular action by a particular agent, and is as such related
to Von Wright's individual view on actions [52]. We will use the plain term events, although
perhaps the term agent-driven event would be more appropriate, here. Given the ontology
of actions and events as somehow causing transitions between states of a�airs, we deem two
aspects of these notions to be crucial: when is it possible for an agent to perform an action,
and what are the e�ects of the event consisting of the performance by a particular agent of
a particular action in a particular state of a�airs? To investigate these questions we focus on
three aspects of actions and events that are in our opinion essential, viz. result, opportunity
and ability. Slightly simplifying ideas of Von Wright [51], we consider any aspect of the state
of a�airs brought about by the occurrence of an event in some state of a�airs to be among the
results of that particular event in that particular state of a�airs. In adopting this description
of results we abstract from all kinds of aspects of results that would probably have to be dealt
with in order to come up with an account that is completely acceptable from a philosophical
point of view, such as for instance the question whether all changes in a state of a�airs have
to be ascribed to the occurrence of some event, thereby excluding the possibility of external
factors in
uencing these changes. However, it is not our aim to provide a complete theory of
results incorporating all these aspects, but instead combine results with other notions that
are important for agency. From this point of view it seems that our de�nition of results is
adequate to investigate the e�ects of actions, and, given the complexity already associated
with this simple de�nition, it does not make much sense to pursue even more complex ones.

Along with the notion of the result of events, the notions of ability and opportunity
are among the most discussed and investigated in analytical philosophy. Ability plays an
important part in various philosophical theories, as for instance the theory of free will and
determinism, the theory of refraining and seeing-to-it, and deontic theories. Following Kenny
[22], we consider ability to be the complex of physical, mental and moral capacities, internal
to an agent, and being a positive explanatory factor in accounting for the agent's performing
an action. Opportunity on the other hand is best described as circumstantial possibility, i.e.
possibility by virtue of the circumstances. The opportunity to perform some action is external
to the agent and is often no more than the absence of circumstances that would prevent or
interfere with the performance. Although essentially di�erent, abilities and opportunities are
interconnected in that abilities can be exercised only when opportunities for their exercise
present themselves, and opportunities can be taken only by those who have the appropriate
abilities. From this point of view it is important to remark that abilities are understood to
be reliable (cf. [2]), i.e. having the ability to perform a certain action su�ces to take the
opportunity to perform the action every time it presents itself. The combination of ability
and opportunity determines whether or not an agent has the (practical) possibility to perform
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an action.
For our arti�cial agents, we will in Section 5 study `correctness' of � for i to bring about

� in terms of having the opportunity: for the arti�cial agents that we have in mind and the
actions (`programs') they perform correctness has to do with intrinsic (rather than external)
features of the action: its halting and the intended outcome. Such features are still beyond
the scope of the agent's abilities, of course.

3 The KARO-framework from a formal perspective

For the reasons already given in Section 1, we propose the use of a propositional multi-
modal language to formalise the knowledge and abilities of agents, and the results of and
opportunities for their actions. In contrast with most philosophical accounts, but �rmly in
the tradition of theoretical computer science, this language is an exogenous one, i.e. actions
are represented explicitly. Although it is certainly possible to come up with accounts of action
without representing actions (see for instance [38, 44]), we are convinced that many problems
that plague these endogenous formalisations can be avoided in exogenous ones.

The language contains modal operators to represent the knowledge of agents as well as
to represent the result and opportunity of events. The ability of agents is formalised by
a factually non-modal operator. Following the representation of Hintikka [17] we use the
operator K to refer to the agents' knowledge: Ki' denotes the fact that agent i knows '
to hold. To formalise results and opportunities we borrow constructs from dynamic logic:
hdoi(�)i' denotes that agent i has the opportunity to perform the action � and that ' will
result from this performance. The abilities of agents are formalised through the A operator:
Ai� states that agent i has the ability to perform the action �. The class of actions that
we consider here is built up from a set of atomic actions using a variety of constructors.
These constructors deviate somewhat from the standard actions from dynamic logic [12, 15],
but are both well-known from high-level programming languages and somewhat closer to
philosophical views on actions than the standard constructors. When de�ning the models
we will ensure that atomic actions are deterministic, i.e. the event consisting of an agent
performing an action in some state of a�airs has a unique outcome. As we will see later on
this ensures that all actions are deterministic.

De�nition 3.1 The language L(�;A;At) is founded on three denumerable, non-empty sets,
each of which is disjoint of the others: � is the set of propositional variables, A � IN is the
set of (names of) agents, and At is the set of atomic actions. The alphabet contains the
well-known connectives : and ^, the epistemic operator K , the dynamic operator hdo ( )i ,
the ability operator A , the action constructors confirm (con�rmations), ; (sequential
composition), if then else fi (conditional composition) and while do od (repetitive com-
position).

De�nition 3.2 The language L(�;A;At) is the smallest superset of � such that

� if ' 2 L(�;A;At) and  2 L(�;A;At) then :' 2 L(�;A;At) and ' ^  2 L(�;A;At)

� if ' 2 L(�;A;At), i 2 A, � 2 Ac(At) then Ki' 2 L(�;A;At), hdoi(�)i' 2 L(�;A;At)
and Ai� 2 L(�;A;At)

where the class Ac(At) of actions is the smallest superset of At such that
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� if ' 2 L(�;A;At) then confirm' 2 Ac(At)

� if �1 2 Ac(At); �2 2 Ac(At) then �1;�2 2 Ac(At)

� if ' 2 L(�;A;At), �1 2 Ac(At); �2 2 Ac(At) then if' then�1 else�2 fi 2 Ac(At)

� if ' 2 L(�;A;At), � 2 Ac(At) then while' do� od 2 Ac(At)

The constructs _,!,$, >, denoting the canonical tautology and ?, denoting the canoni-
cal contradiction, are de�ned in the usual way. Other constructs are introduced by de�nitional
abbreviation:

Mi' =def :Ki:'
[doi(�)]' =def :hdoi(�)i:'
skip =def confirm>
fail =def confirm?
�0 =def skip

�n+1 =def �;�n

The following letters, possibly marked, are used as typical elements:

� p; q; r for the elements of �

� i; j for the elements of A

� a; b; c for the elements of At

� ';  ; � for the elements of L(�;A;At)

� �; �; 
 for the elements of Ac(At)

Whenever the sets �;A;At are understood, which we assume to be the case unless explicitly
stated otherwise, we write L and Ac rather than L(�;A;At) and Ac(At).

The intuitive interpretation of formulas Ki'; hdoi(�)i' and Ai� is discussed above. The
formula Mi' is the dual of Ki' and represents the epistemic possibility of ' for agent i, i.e.
on the basis of its knowledge, i considers ' to be possible. The formula [doi(�)]' is the dual
of hdoi(�)i'; this formula is noncommittal about the opportunity of agent i to perform the
action � but states that if the opportunity to do � is present, then ' would be among the
results of doi(�). The action constructors presented in De�nition 3.2 constitute the class of
so-called strict programs (cf. [13, 15]). Their intuitive interpretation is as follows:

confirm' verify '
�1;�2 �1 followed by �2
if' then�1 else�2 fi �1 if ' holds and �2 otherwise
while' do� od � as long as ' holds

The action skip represents the void action, and fail denotes the abort action. The action
�n consists of sequentially doing � n times.
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3.1 The KARO-framework: semantics

The vast majority of all interpretations proposed for modal languages is based on the use
of Kripke-style possible worlds models. The models that we use to interpret formulas from
L contain a set S of possible worlds, representing actual and hypothetical states of a�airs,
a valuation � on the elements of �, indicating which atomic propositions are true in which
possible world, a relation R denoting epistemic accessibility, and two functions r0 and c0

dealing with (the result, opportunity and ability for) atomic actions. In the sequel S� denotes
the lift of S, i.e. S� =def S [ f;g, and bool =def f1; 0g is a set of truth values.

De�nition 3.3 A model M for L is a tuple consisting of the following �ve elements:

� a non-empty set S of possible worlds or states.

� a valuation � : �� S! bool on propositional symbols.

� a function R : A ! }(S � S) indicating the epistemic alternatives of agents. This
function is required to be such that R(i) is an equivalence relation for all i 2 A.

� a function r0 : A�At! S! S� indicating the state-transitions caused by the execution
of atomic actions.

� a function c0 : A � At ! S ! bool determining the abilities of agents with regard to
atomic actions.

Note that models in principle depend on the language: valuations � depend on �, there
are epistemic alternatives for each agent and the state transitions and abilities are agent- and
atomic action-dependent. However, we will in the semantics often omit reference to the sets
�, A and At. The class containing all models for L is denoted by M. The letter M, possibly
marked, denotes a typical model, and s; t; u, possibly marked, are used as typical elements of
the set of states.

The relation R(i) indicates which pairs of worlds are indistinguishable for agent i on the
basis of its knowledge: if (s; s0) 2 R(i) then whenever s is the description of the actual world,
s0 might as well be for all agent i knows. To ensure that knowledge indeed has the properties
sketched in Section 2, it is demanded that R(i) is an equivalence relation for all i. That this
demand ensures that knowledge behaves as desired is stated in Proposition 4.1 and explained
in Proposition 4.7. The function r0 characterises occurrences of atomic events, i.e. events
consisting of an agent performing an atomic action: whenever s is some possible world, then
r0(i; a)(s) represents the state of a�airs following execution of the atomic action a in the
possible world s by the agent i. Since atomic actions are inherently deterministic, r0(i; a)(s)
yields at most one state of a�airs as the one resulting from the occurrence of the event doi(a)
in s. If r0(i; a)(s) = ;, we will sometimes say that execution of a by i in s leads to the (unique)
counterfactual state of a�airs, i.e. a state of a�airs which is neither actual nor hypothetical,
but counterfactual. One may think of r0(i; a)(s) = ; as indicating a serious failure, rather
than just a disappointment: from ;, no further actions can be taken. The function c0 acts as
a kind of valuation on atomic actions, i.e. c0(i; a)(s) indicates whether agent i has the ability
to perform the action a in the possible world s.

Formulas from the language L are interpreted on the possible worlds in the models from
M. Propositional symbols are directly interpreted using the valuation �: a propositional
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symbol p is true in a state s i� �(p; s) yields the value 1. Negations and conjunctions are
interpreted as in classical logic: a formula :' is true in a state s i� ' is not true in s and
'^ is true in s i� both ' and  are true in s. The knowledge formulas Ki' are interpreted
using the epistemic accessibility relation R(i): agent i knows that ' in s i� ' is true in all the
possible worlds that are epistemically equivalent to s, for that agent. The dynamic formulas
hdoi(�)i' and the ability formulas Ai� are interpreted through the extensions r and c of the
functions r0 and c0, respectively. These extensions r and c will be de�ned in De�nition 3.4.
Informally, a formula hdoi(�)i' is true in some possible world s, if the extension r of r0
applied to i; � and s yields some successor state s0 in which the formula ' holds. A formula
Ai� is true in a state s if the extension c of c0 yields the value 1 when applied to i; � and s.
Before de�ning the extended versions of r0 and c0, we �rst motivate the choices underlying
these extensions.

3.1.1 Results and opportunities for composite actions

Recall from the introduction to this section that hdoi(�)i' denotes that agent i has the
opportunity to perform action � in such a way that ' will result from this performance. Thus,
we can de�ne the opportunity sec to do � as hdoi(�)i>. Note that under our assumption about
determinism of actions, the formula hdoi(�)i' is in fact stronger than [doi(�)]': whereas the
diamond-formula expresses that i has the opportunity to do � and ' will be among the
results of i's doing �, the box-formula conditions ' being a result of i performing � upon i's
opportunity to do �.

The extension r of the function r0 as we will present it is originally due to Halpern&
Reif [13]. Although Halpern & Reif's logic is meant to reason about computer programs and
not about agents performing actions, we argue that their de�nition is also adequate for our
purposes. Using this de�nition, actions confirm' are interpreted as genuine con�rmations:
whenever the formula ' is true in a state s, s is its own doi(confirm')-successor. If ' does
not hold in a possible world s, then the confirm' action fails, and no successor state results.
In practice this implies that (all) agents have the opportunity to con�rm the truth of a certain
formula i� the formula holds. Execution of such an action does not have any e�ects in the
case that the formula that is con�rmed holds, and leads to the counterfactual state of a�airs
if the formula does not hold1.

Since the action �1;�2 is intuitively interpreted as `�1 followed by �2', the transition
caused by execution of an action �1;�2 equals the `sum' of the transition caused by �1 and
the one caused by �2 in the state brought about by execution of �1. In the case that execution
of �1 leads to an empty set of states, execution of the action �1;�2 also leads to an empty
set: there is no escape from the counterfactual state of a�airs. In practice this implies that an

1Originally in dynamic logic [15, 24] these actions were referred to as tests instead of con�rmations. As
long as one deals with the behaviour of computer programs, the term `test' is quite acceptable. However,
as soon as formalisations of (human) agents are concerned, one should be careful with using this term. The
common-sense notion of test is that of an action, execution of which provides some kind of information (in
our terminology of [31], a test is a `knowledge producing action' and `informative'.). For example dope-tests
and eye-tests are performed in order to acquire information on whether some athlete has been taking drugs, or
whether someone's eyesight is adequate. The nature of this kind of tests is not captured by the action which
just checks for the truth of some proposition, without yielding any information whatsoever. To avoid confusion
we have chosen to refer to these latter kinds of actions as con�rmations. Thus, in terms of our models, we
think of a con�rmation as an action that does not change the state, whereas an agent testing for ' might end
up in a di�erent (epistemic) state.
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agent has the opportunity to perform a sequential composition �1;�2 i� it has the opportunity
to do �1 (now), and doing �1 results in the agent having the opportunity to do �2. The results
of performing �1;�2 equal the results of doing �2, having done �1.

Given its intuitive meaning, it is obvious that the transition caused by a conditional
composition if' then�1 else�2 fi equals the one associated with �1 in the case that '
holds and the one caused by execution of �2 in the case that :' holds. This implies that
an agent has the opportunity to perform an action if' then�1 else�2 fi if (it has the
opportunity to con�rm that) ' holds and it has the opportunity to do �1, or (it has the
opportunity to con�rm that) :' holds and the agent has the opportunity to do �2. The
result of performing if' then�1 else�2 fi equals the result of �1 in the case that ' holds
and that of �2 otherwise.

The de�nition of the extension r of r0 for the repetitive composition is based on the idea
that execution of the action while' do�od comes down to sequentially testing for the truth
of ' and executing � until a state is reached in which :' holds. For deterministic while-loops
while' do� od, at most one of the actions �k = ((confirm';�)k; confirm:'), with k 2 IN,
has an execution which does not lead to the counterfactual state of a�airs. Now if such an
action �k exists, the resulting state of execution of the while-loop is de�ned to be the state
resulting from execution of �k, and otherwise execution of the loop is taken to lead to the
counterfactual state of a�airs.

3.1.2 Abilities for composite actions

Whereas the extension r of r0 for composite actions is more or less standard, the extension c

of c0 as determining the abilities of agents for composite actions, is not. Since we are (among)
the �rst to give a formal, exogenous account of ability, extending the function c0 to the class
of all actions involves a couple of personal choices.

We start with motivating our de�nitions of ability for con�rmations and conditional com-
positions since neither of these is really controversial: the de�nition of ability for con�rma-
tions is indisputable since it represents a highly personal choice (and there is no accounting
for tastes), and that of the ability for the conditional composition is too obvious and natural
to be questioned.

We have decided to let an agent have the ability to con�rm any formula that is actually
true. Since con�rmations do not correspond to any actions usually performed by humans,
this de�nition seems to be perfectly acceptable, or at least it is hard to come up with any
convincing counterarguments to it. Note that this de�nition implies that in a situation where
some proposition is true, (all) agents have both the opportunity and the ability to con�rm
this proposition.

Let us continue with de�ning abilities for conditionally composed actions. For these ac-
tions, ability is de�ned analogously to opportunity: an agent is able to perform the action
if' then�1 else�2 fi i� either it is able to con�rm the condition ' and perform �1 after-
wards, or it is able to con�rm the negation of the condition and perform �2. In practice this
implies that having the ability to perform an action if' then�1 else�2 fi boils down to
being able to do �1 whenever ' holds and being able to do �2 whenever ' does not hold. In
our opinion this is the natural way to de�ne the ability for conditionally composed actions,
thereby accepting the import of some oddities of conditionals like the following. With our
de�nition, an agent may claim on Tuesday that it has the ability to jump over the moon if it
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is Wednesday and scratch its nose otherwise'2. This may be undesirable, but also note that
it is not the same as (the even worse) claim that on Wednesday it is able to jump over the
moon.

Whereas the de�nitions of the ability for con�rmations and conditional compositions are
easily explained and motivated, this is not the case for those describing the ability for sequen-
tial and repetitive compositions, even though the basic ideas underlying these de�nitions are
perfectly clear.

Informally, having the ability to perform a sequentially composed action �1;�2 is de�ned
as having the ability to do �1 now, while being able to do �2 as a result of having done �1. If
the opportunity to perform �1 exists, i.e. performing �1 does not result in the counterfactual
state of a�airs, there is no question concerning the intuitive correctness of this de�nition,
but things are di�erent when this opportunity is absent. It is not clear how the abilities
of agents are to be determined in the counterfactual state of a�airs. Probably the most
acceptable approach would be to declare the question of whether the agent is able to perform
an action in the counterfactual state of a�airs to be meaningless, which could be formalised
by extending the set of truth-values to contain an element representing unde�nedness of a
proposition. Since this would necessitate a considerable complication of our classical, two-
valued approach, we have chosen not to explore this avenue, which leaves us with the task of
assigning a classical truth-value to the agents' abilities in the counterfactual state of a�airs.
In general we see two ways of doing this, the �rst of which would be to treat all actions
equally and come up with a uniform truth value for the abilities of all agents to perform any
action in the counterfactual state of a�airs. This approach is relatively simply to formalise,
and is in fact the one that we will pursue. The second approach would be to treat each action
individually, and determine the agents' abilities through other means, such as by assuming an
agent to be in the possession of certain default, or typical, abilities. This approach is further
discussed in Section 7. Coming back to the �rst approach, it is obvious that | given that
there are exactly two truth-values | two ways exist to treat all actions equally with respect
to the agents' abilities in the counterfactual state of a�airs. The �rst of these could be called
an optimistic, or bold, approach, and states that agents are omnipotent in the counterfactual
state of a�airs. According to this approach, in situations where an agent does have the ability
but not the opportunity to perform an action �1 it is concluded that the agent has the ability
to perform the sequential composition �1;�2 for arbitrary actions �2. The second approach
is a pessimistic, or careful one. In this approach agents are assumed to be nilpotent in
counterfactual situations. Thus, in situations in which an agent does have the ability but not
the opportunity to perform an action �1 it is concluded that the agent is unable to perform
the sequential composition �1;�2 for all �2. Note that in the case that the agent has the
opportunity to do �1, optimistic and pessimistic approaches towards the agent's ability to do
�1;�2 coincide. Although there is a case for both de�nitions, neither is completely acceptable.
Consider the example of a lion in a cage, which is perfectly well capable of eating a zebra,
but ideally never has the opportunity to do so. Using the �rst de�nition we would have to
conclude that the lion is capable of performing the sequential composition `eat zebra; 
y to
the moon', which hardly seems intuitive. Using the second de�nition it follows that the lion
is unable to perform the action `eat zebra; do nothing', which seems equally counterintuitive.
Fortunately, the problems associated with these de�nitions are not really serious. They occur

2these oddities, and, in particular, this example, was suggested by a referee of a preliminary version of this
paper

10



only in situations where an agent has the ability but not the opportunity to perform some
action. And since it is exactly the combination of opportunity and ability that is important,
no unwarranted conclusions can be drawn in these situations. Henceforth, we pursue both
the optimistic and the pessimistic approach; in Section 7 we suggest alternative approaches
in which the aforementioned counterintuitive situations do not occur.

De�ning abilities for while-loops is even more hazardous than for sequential compositions.
Intuitively it seems a good point of departure to let an agent be able to perform a while-loop
only if it is at any point during execution capable of performing the next step. However,
using this intuitive de�nition one has to be careful not to jump to undesired conclusions in
the case of an action for which execution does not terminate. It seems highly counterintuitive
to declare an agent, be it arti�cial or not, to have the reliable ability to perform an action
that goes on inde�nitely. For no agent is eternal: human agents die, arti�cial agents break
down, and after all even the lifespan of the earth and the universe is bounded. Hence agents
should not be able to perform actions that take in�nite time. Therefore it seems reasonable
to equate the ability to perform a while-loop with the ability to perform some �nite-length
sequence of con�rmations and actions constituting the body of the while-loop, which ends in
a con�rmation for the negation of the condition of the loop, analogously to the equation used
in extending the function r0 to while-loops. Accepting this equation, it is obvious that the
discussion concerning the ability of agents for sequentially composed actions also becomes
relevant for the repetitive composition, i.e. also with respect to abilities for while-loops a
distinction between optimistic and pessimistic agents can be made. In the case that the while-
loop terminates, optimistic and pessimistic approaches coincide, but in the case that execution
of the action leads to the counterfactual state of a�airs, they di�er. Consider the situation
of an agent that up to a certain point during the execution of an action while' do� od has
been able to perform the con�rmation for ' followed by �, and now �nds itself in a state
where ' holds, it is able to do � but does not have the opportunity for �. An optimistic
agent concludes that it would have been able to �nish the �nite-length sequence constituting
the while-loop after the (counterfactual) execution of �, and therefore considers itself to be
capable of performing the while-loop. A pessimistic agent considers itself unable to �nish
the sequence, and thus is unable to perform the while-loop. The demand for �niteness of
execution of the while-loop and the pessimistic view on abilities provide for a very interesting
combination. For in order for an agent to be able to perform an action while' do� od it has
to have the opportunity to perform all the steps in the execution of while' do� od, possibly
except for the last one. Furthermore, as as result of performing the last but one step in the
execution the agent should obtain the ability to perform the last one, which is a con�rmation
for :'. Since ability and opportunity coincide for con�rmations this implies that the agent
has the opportunity to con�rm :', i.e. the agent has the opportunity to perform the last
step in the execution of while' do� od. But then the agent has the opportunity to perform
all the steps in the execution of the while-loop, and thus has the opportunity to perform the
while-loop. Hence in the pessimistic approach the ability to perform a while-loop implies the
opportunity!

3.1.3 Formally interpreting knowledge, abilities, results and opportunities

To interpret dynamic and ability formulas from L in a model M for L, the functions r0 and
c0 from M are extended to deal with composite, i.e. non-atomic actions. To account for the
di�erence between the optimistic and the pessimistic outlook on the agents' abilities, we de�ne
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two di�erent extensions of c0, and thereby also two di�erent interpretations. The optimistic
and the pessimistic approach coincide in their extension of r0, but di�er in the extension of c0
for sequentially composed actions, and hence also in their treatment of ability for repetitive
compositions. The following de�nition presents the extensions of r0 and c0. Here functions
with the superscript 1 correspond to the optimistic view, and those with the superscript 0 to
the pessimistic view on the agents' abilities in the counterfactual state of a�airs.

De�nition 3.4 For b 2 bool we inductively de�ne the binary relation j=b between a formula
from L and a pair M; s consisting of a model M for L and a state s in M for the dynamic and
ability formulas as follows:

M; s j=b p , �(p; s) = 1 for p 2 �
M; s j=b :' , not (M; s j=b ')
M; s j=b ' ^  , M; s j=b ' and M; s j=b  
M; s j=b Ki' , 8s0 2 S((s; s0) 2 R(i)) M; s0 j=b ')
M; s j=b hdoi(�)i' , 9s0 2 S(s0 = rb(i; �)(s) &M; s0 j=b ')
M; s j=b Ai� , cb(i; �)(s) = 1

where rb and cb are de�ned by:

rb : A�Ac! S� ! S�

rb(i; a)(s) = r0(i; a)(s)
rb(i; confirm')(s) = s if M; s j=b '

= ; otherwise
rb(i; �1;�2)(s) = rb(i; �2)(rb(i; �1)(s))
rb(i; if' then�1 else�2 fi)(s) = rb(i; �1)(s) if M; s j=

b '
= rb(i; �2)(s) otherwise

rb(i; while' do� od)(s) = s0 if s0 = rb(i; (confirm';�)k; confirm:')(s)
for some k 2 IN

= ; otherwise
rb(i; �)(;) = ;

cb : A�Ac! S� ! bool
cb(i; a)(s) = c0(i; a)(s)
cb(i; confirm')(s) = 1 i� M; s j=b '

cb(i; �1;�2)(s) = 1 i� cb(i; �1)(s) = 1& cb(i; �2)(r
b(i; �1)(s)) = 1

cb(i; if' then�1 else�2 fi)(s) = 1 i� cb(i; confirm';�1)(s) = 1 or
cb(i; confirm:';�2)(s) = 1

cb(i; while' do� od)(s) = 1 i� cb(i; (confirm';�)k; confirm:')(s) = 1
for some k 2 IN

cb(i; �)(;) = b

The formula ' is j=b-satis�able in the model M i� M; s j=b ' for some s in M; ' is j=b-valid
in M, denoted by M j=b ', i� M; s j=b ' for all s in M. The formula ' is j=b-satis�able in M
i� ' is j=b-satis�able in some M 2 M; ' is j=b-valid in M, denoted by j=b ', i� ' is j=b-valid
in all M 2 M. Whenever j=b is clear from the context, we drop it as a pre�x and simply
speak of a formula ' being satis�able or valid in a (class of) model(s). For a given model M,
we de�ne [s]R(i) =

def fs0 2 S j (s; s0) 2 R(i)g and [[']]M =def fs 2 S j M; s j=b 'g. Whenever
the model M is clear from the context, the latter notion is usually simpli�ed to [[']].
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4 Properties of knowledge and actions in the KARO-framework

In this section we look at the properties that knowledge and actions have in the KARO-
framework. We furthermore consider additional properties, and show how some of these
additional properties can be brought about by imposing constraints on the interpretation of
atomic actions. We start with the properties of knowledge. When demanding the agents'
epistemic accessibility relations to be equivalence relations, the modal operator K indeed
formalises the notion of knowledge discussed in Section 2.

Proposition 4.1 For all i 2 A and ';  2 L we have:

1. j=b Ki('!  )! (Ki'! Ki ) K

2. j=b ')j= Ki' N

3. j=b Ki'! ' T

4. j=b Ki'! KiKi' 4

5. j=b :Ki'! Ki:Ki' 5

The �rst two items of Proposition 4.1 formalise that Ki is a normal modal operator: Ki

satis�es both the K-axiom and the necessitation rule N (the names of these and other modal
axioms are according to the Chellas classi�cation [4]). Furthermore,Ki satis�es the axioms of
veridicality (the T-axiom), positive introspection (axiom 4) and negative introspection (axiom
5).

Although j=1 di�ers from j=0, the compositional behaviour of actions with respect to
opportunities and results is identical in the two interpretations.

Proposition 4.2 For b 2 bool, i 2 A, �; �1; �2 2 Ac and ';  2 L we have:

1. j=b hdoi(confirm')i $ ('^  )

2. j=b hdoi(�1;�2)i $ hdoi(�1)ihdoi(�2)i 

3. j=b hdoi(if' then�1 else�2 fi)i $ (('^ hdoi(�1)i )_ (:' ^ hdoi(�2)i ))

4. j=b hdoi(while' do� od)i $ ((:'^  )_ ('^ hdoi(�)ihdoi(while' do� od)i ))

5. j=b [doi(�)]('!  )! ([doi(�)]'! [doi(�)] )

6. j=b  )j=b [doi(�)] 

Proposition 4.2 is in fact nothing but a formalisation of the intuitive ideas on results and
opportunities for composite actions as expressed above. The �rst item states that agents have
the opportunity to con�rm exactly the formulas that are true, and that no state-transition
takes place as the result of such a con�rmation. The second item deals with the separation
of the sequential composition into its elements: an agent has the opportunity to do �1;�2
with result  i� it has the opportunity to do �1 (now) and doing so will result in having
the opportunity to do �2 with result  . The third item states that a conditionally composed
action equals its `then'-part in the case that the condition holds, and its `else'-part if the
condition does not hold. The fourth item formalises a sort of �xed-point equation for execution
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of while-loops: if an agent has the opportunity to perform a while-loop then it keeps this
opportunity under execution of the body of the loop as long as the condition holds. The
result of performing a while-loop is also �xed under executions of the body of the loop in
states where ' holds, and is determined by the propositions that are true in the �rst state
where :' holds. Note that a validity like this one does not su�ce to axiomatise the repetitive
composition: although it captures the idea of while-loops representing �xed-points, it fails to
force termination, i.e. this formula on its own does not guarantee that agents do not have the
opportunity to bring an in�nitely non-terminating while-loop to its end. In the proof systems
that we present in Section 6 this problem is solved by including suitable proof rules guiding
the repetitive composition. The last two items state the normality of [doi(�)].

As soon as the abilities of agents come into play, the di�erences between j=1 and j=0

become visible, in particular for sequential and repetitive compositions.

Proposition 4.3 For b 2 bool, i 2 A, �; �1; �2 2 Ac and ' 2 L we have:

1. j=b Aiconfirm'$ '

2. j=1 Ai�1;�2 $ Ai�1 ^ [doi(�1)]Ai�2

3. j=0 Ai�1;�2 $ Ai�1 ^ hdoi(�1)iAi�2

4. j=b Aiif' then�1 else�2 fi$ (('^Ai�1) _ (:' ^Ai�2))

5. j=1 Aiwhile' do� od$ (:' _ (' ^Ai� ^ [doi(�)]Aiwhile' do� od))

6. j=0 Aiwhile' do� od$ (:' _ (' ^Ai� ^ hdoi(�)iAiwhile' do�od))

The �rst and the fourth items of Proposition 4.3 deal with the actions for which abilities
are de�ned in a straightforward manner: agents are able to con�rm exactly the true formulas,
and having the ability to perform a conditional composition comes down to having the `right'
ability, dependent on the truth or falsity of the condition. The di�erences between the
optimistic and the pessimistic outlook on abilities in the counterfactual state of a�airs are
clearly visible in the other items of Proposition 4.3. Optimistic agents are assumed to be
omnipotent in counterfactual situations, and therefore it su�ces for the agent to be able to
do �2 as a conditional result of doing �1. A pessimistic agent needs certainty, and therefore
demands to have the opportunity to do �1 before concluding anything on its abilities following
execution of �1. This behaviour of optimistic and pessimistic agents is formalised in the second
and the third item, respectively. The �fth and sixth item formalise an analogous behaviour
for repetitive compositions: optimistic agents are satis�ed with conditional results (item 5)
whereas pessimistic agents demand certainty (item 6).

The compositional behaviour of sequential and repetitive compositions di�ers for the two
interpretations only in situations where an agent lacks opportunities. If all appropriate op-
portunities are present, there is no di�erence for the two interpretations, a property which is
formalised in the following corollary.

Corollary 4.4 For i 2 A, �; �1; �2 2 Ac and ' 2 L we have:

� j=1 hdoi(�1)i> ! (Ai�1;�2 $ Ai�1 ^ hdoi(�1)iAi�2)

� j=1 hdoi(while' do� od)i> !
(Aiwhile' do� od$ (:' _ (' ^Ai� ^ hdoi(�)iAiwhile' do� od)))
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4.1 Frames and correspondences

To investigate properties of knowledge and actions, it will often prove useful to refer to
schemas, which are sets of formulas, usually of a particular form. Using schemas one may
abstract from particular agents and particular formulas, thereby having the possibility to
formulate certain qualities of knowledge and action in a very general way. For instance, the
axiom 4, Ki'! KiKi', considered as a schema in ' expresses positive introspection of the
agent i, and, as a schema in ' and i, it denotes positive introspection of all of the agents. If
context allows it, we will remain implicit about what exactly are the varying elements in a
schema.

Where schemas are used to express general properties of knowledge and actions on the
syntactic level, frames can be used to do so on the semantic level. Informally speaking, a
frame can be seen as a model without a valuation. By leaving out the valuation one may
abstract from particular properties of knowledge and actions that are due to the valuation
rather than inherently due to the nature of knowledge and/or action itself. Truth in a frame
is de�ned in terms of truth in all models that can be constructed by adding a valuation to
the frame.

De�nition 4.5 A frame F for a model M 2 M is a tuple consisting of the elements of M
except for the valuation �. The class of all frames for models fromM is denoted by F. If F is
some frame then (F; �) denotes the model generated by the elements of F and the valuation
�. For F a frame, s one of its states and ' 2 L we de�ne

� F; s j= ', (F; �); s j= ' for all valuations �

� F j= ', F; s j= ' for all states s of F.

� F j= ', F j= ' for all F 2 F

Since schemas are used to express general properties of knowledge and action syntactical-
ly, and frames can be used to do this semantically, the question arises as to how these notions
relate. In particular, it is both interesting and important to try to single out �rst-order con-
straints on frames that exactly correspond to certain properties of knowledge and/or action,
expressed in the form of schemas. The area of research called correspondence theory deals
with �nding relations | correspondences | between schemas and (�rst-order expressible)
constraints on frames. A modal schema is said to correspond to a �rst-order constraint on
frames if the schema is satis�ed in exactly those frames that obey the constraint. A good
introduction into correspondence theory is given in [1].

De�nition 4.6 If ' is a schema and F is some frame then F j= ' i� F j= � for all formulas
� that are an instantiation of '. If P is a formula in the �rst-order language subsuming the
functions R; r0; c0 and equality, then F j=fo P i� F satis�es P . The schema ' corresponds to
the �rst-order formula P , notation ' � P i� 8F; (F j= ', F j=fo P ).

As already hinted at above, the properties that we require knowledge to obey correspond
to constraints on the epistemic accessibility relations R(i). In De�nition 3.3 we required these
relations to be equivalence relations, and this demand indeed corresponds to knowledge being
veridical and satisfying the properties of positive and negative introspection. The proof of
the following proposition is standard and well-known from the literature [21, 36].
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Proposition 4.7 The following correspondences hold.

1. T � 8s((s; s) 2 R(i)), i.e. R(i) is re
exive

2. 4 � 8s; s0; s00((s; s0) 2 R(i) & (s0; s00) 2 R(i)) (s; s00) 2 R(i)), i.e. R(i) is transitive

3. 5 � 8s; s0; s00((s; s0) 2 R(i) & (s; s00) 2 R(i)) (s0; s00) 2 R(i)), i.e. R(i) is Euclidean

4.2 Additional properties of actions

The language L is su�ciently expressive to formalise various properties of knowledge, actions
and their interplay, that are interesting both from a philosophical point of view as from the
point of view of AI. The �rst of the properties that we consider here is accordance. Informally
speaking, accordant actions are known to behave according to plan, i.e. for an accordant
action it will be the case that things that an agent expects | on the basis of its knowledge |
to hold in the future state of a�airs that will result from it executing the action, are indeed
known to be true by the agent when that future state of a�airs has been brought about.
Accordance of actions may be an important property in the context of agents planning to
achieve certain goals. For if the agent knows (now) that performing some accordant action
will bring about some goal, then it will be satis�ed after it has executed the action: the agent
knows that the goal is brought about. From a formal point of view, i-accordance of an action
� corresponds to the schema Ki[doi(�)]'! [doi(�)]Ki'.

The notion of determinism was already touched upon in the explanation of De�nition 3.3
where it was stated that atomic actions are inherently deterministic. As we will see later
on, viz. in Proposition 4.11, the determinism of atomic actions implies that of all actions.
The notion of i-determinism of an action � is formalised through the schema hdoi(�)i' !
[doi(�)]'.

Whenever an action is idempotent, consecutively executing the action twice | or in general
an arbitrary number of times | will have exactly the same results as performing the action
just once. In a sense, the state of a�airs reached after the �rst performance of the action can
be seen as a kind of �xed-point of execution of the action. The simplest idempotent action in
our framework is the void action skip: performing it once, twice or an arbitrary number of
times will not a�ect the state of a�airs in any way whatsoever. More interesting idempotent
actions were determined in our paper on actions that change the agent's epistemic state ([31]);
there, we claimed that such actions (we distinguished retracting , expanding and revising) have
idempotency as a characterising property. Formally, i-idempotence of an action � corresponds
to the schema [doi(�;�)]'$ [doi(�)]', or equivalently hdoi(�;�)i'$ hdoi(�)i'.

Agents always have the opportunity to perform realisable actions, regardless of the cir-
cumstances, i.e. there never is an external factor that may prevent the performance of such
an action. Typical realisable actions are, again, those in which the agent changes its informa-
tion; an agent always has the opportunity to change its mind. The property of A-realisability
relates ability and opportunity. For actions that are A-realisable, ability implies opportunity,
i.e. whenever an agent is able to perform the action it automatically has the opportunity
to perform it. Realisable actions are trivially A-realisable, and so are actions that no agent
is ever capable of performing, but it seems hard to think of non-trivial examples of regu-
lar, mundane actions that an agent is able to execute and therefore automatically has the
opportunity to do so. Adopting the A-realisability schema as an axiom schema would not
be desirable for a general-purpose account of actions, opportunities and abilities, but might
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be appropriate for some specialized investigations. In any case it is far more reasonable to
assume that ability implies opportunity than the reverse, given the fact that `abilities are
states that are acquired with e�ort [whereas] opportunities are there for the taking until they
pass' ([22], p. 133). Realisability of an action � for agent i is formalised through the schema
hdoi(�)i> in i 2 A; A-realisability of � for agent i corresponds to Ai�! hdoi(�)i>.

The following de�nition summarises the properties discussed above in a formal way.

De�nition 4.8 Let � 2 Ac be some action, i an agent and let F be a frame. The right-hand
side of the following de�nitions is to be understood as a schema in '.

� � is i-accordant in F i� F j= Ki[doi(�)]'! [doi(�)]Ki'

� � is i-deterministic in F i� F j= hdoi(�)i'! [doi(�)]'

� � is i-idempotent in F i� F j= [doi(�;�)]'$ [doi(�)]'

� � is realisable for i in F i� F j= hdoi(�)i>

� � is A-realisable for i in F i� F j= Ai�! hdoi(�)i>

We often omit explicit reference to the agent i in the above properties. Then, for instance,
naming � accordant may either mean that is is i-accordant for all agents i, or that mentioning
the particular agent is clear from context, or not important. If Prop is any of the properties
de�ned above, we say that � has the property Prop in F i� � has the property Prop in every
F 2 F.

Here we show how these properties can be brought about to hold for all actions by impos-
ing constraints on the functions R, r0 and c0. On the level of atomic actions, these properties
correspond to �rst-order expressible constraints on R, r0 and c0. In Proposition 4.10 we
present the correspondences for the properties of accordance, determinism, idempotence, re-
alisability and A-realisability, respectively. Since we have de�ned two possible interpretations,
viz. j=1 and j=0, for schemas from L in frames from F we have to be precise on the meaning
of these correspondences.

De�nition 4.9 For b 2 bool we de�ne the schema ' to correspond to the �rst-order formula
P given the interpretation j=b i� 8F(F j=b ', F j=fo P ). In such a case, we write ' �b P .

Proposition 4.10 For atomic actions a 2 At, the following correspondences hold in the class
F of frames for M both for b = 1 and b = 0. The left-hand side of these correspondences is
to be understood as a schema in '.

1. Ki[doi(a)]'! [doi(a)]Ki' �b

8s0 2 S8s1 2 S(9s2 2 S(s2 = r0(i; a)(s0) & (s2; s1) 2 R(i)))
9s3 2 S((s0; s3) 2 R(i) & s1 = r0(i; a)(s3)))

2. hdoi(a)i'! [doi(a)]' �
b

8s 2 S8s0 2 S8s00 2 S(r0(i; a)(s) = s0& r0(i; a)(s) = s00 ) s0 = s00)

3. [doi(a; a)]'$ [doi(a)]' �
b 8s 2 S(r0(i; a)(r0(i; a)(s)) = r0(i; a)(s))

4. hdoi(a)i> �b 8s 2 S(r0(i; a)(s) 6= ;)
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5. Aia! hdoi(a)i> �b 8s 2 S(c0(i; a)(s) = 1) r0(i; a)(s) 6= ;)

Since the functions r0 and c0 are de�ned for atomic actions only, and the functions rb

and cb | which are the extensions of r0 and c0 for arbitrary actions | are constructed out
of r0 and c0 and have no existence on their own, it is not possible to prove correspondences
like those of Proposition 4.10 for non-atomic actions. There simply is no semantic entity
to correspond the syntactic schemas with. This implies that it is in general not possible to
ensure that arbitrary actions satisfy a certain property. However, it turns out that some of
the properties considered above straightforwardly extend from the atomic level to the level of
arbitrary actions, regardless of the interpretation that is used. This is in particular the case
for the properties of A-realisability and determinism.

Proposition 4.11 The following lifting results hold for all F and i 2 A, in the case of j=1 as
well as that of j=0:

� 8a 2 At(a is A-realisable for i in F)) 8� 2 Ac(� is A-realisable for i in F)

� 8a 2 At(a is i-deterministic in F)) 8� 2 Ac(� is i-deterministic in F)

Since the range of the function r0 is the set S�, it follows directly that atomic actions are
deterministic in F: for if a 2 At, i 2 A and s a state in some model, then r0(i; a)(s) is either
the empty set, or a single state from S, and hence the frame condition for determinism as
given in Proposition 4.10 is satis�ed. Using the lifting result obtained in Proposition 4.11 one
then concludes that all actions are deterministic in F.

Corollary 4.12 All actions � 2 Ac are deterministic in F, both for j=1 and j=0.

Thus two of the properties formalised in De�nition 4.8 can be ensured to hold for arbitrary
actions by imposing suitable constraints on the frames forM. For the other three properties,
viz. accordance, idempotence and realisability, constraining the function r0 for atomic actions
does not su�ce, since this does not conservatively extend to the class of all actions. That
realisability may not be lifted is easily seen by considering the action fail. Independent of
the realisability of atomic actions, fail will never be realisable: the formula :hdoi(fail)i> is
valid, both for j=1 and for j=0. The following examples show why accordance and idempotence
are in general not to be lifted.

Example 4.13 Consider the language L(�;A;At) with � = fp; qg, i 2 A and At arbi-
trary. Let F 2 F be a frame such that the set S of states in F contains at least two
elements, say s and t, on which the relation R(i) is de�ned to be universal, and the �rst-
order property corresponding with accordance of atomic actions is met. Let � be a valuation
such that �(p; s) = �(q; s) = 1; �(p; t) = �(q; t) = 0. Then we have that (F; �); s j=b

Ki[doi(confirm p)]q, and furthermore that (F; �); s 6j=b [doi(confirmp)]Kiq. Hence F 6j=b

Ki[doi(confirm p)]q ! [doi(confirm p)]Kiq, which provides a counterexample to the lifting
of accordance.

Example 4.14 Consider the language L(�;A;At) with � = fpg, i 2 A hS;R; r0; c0i, where

� S = fs1; s2; s3; s4g

� R(i) is an arbitrary equivalence relation on S
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� r0(i; a1)(s1) = s1 r0(i; a1)(s2) = s3 r0(i; a1)(s3) = s3 r0(i; a1)(s4) = ;
r0(i; a2)(s1) = s2 r0(i; a2)(s2) = s2 r0(i; a2)(s3) = s4 r0(i; a2)(s4) = s4

� c0 : A� S! bool is arbitrary

It is easily checked that both a1 and a2 are idempotent in F. However, it is not the case
that all actions that can be built on At are idempotent in F. For it holds for arbitrary
b 2 bool that F 6j=b [doi((a1; a2); (a1; a2))]p $ [doi(a1; a2)]p. To see this take M = (F; �)
where �(p; s2) 6= �(p; s4). In this model it holds that M; s1 j=b [doi((a1; a2); (a1; a2))]p $
[doi(a1; a2)]:p. Hence M 6j=b [doi((a1; a2); (a1; a2))]p $ [doi(a1; a2)]p, and therefore also
F 6j=b [doi((a1; a2); (a1; a2))]p $ [doi(a1; a2)]p. Thus neither for j=1 nor for j=0 is a1; a2
idempotent in F.

Although we showed in Example 4.13 that accordance is not to be lifted from atomic
actions to general ones, we can prove a restricted form of lifting for accordance. That is, if
we leave con�rmations out of consideration, we can prove that accordance is lifted.

Proposition 4.15 Let Ac� be the con�rmation-free fragment of Ac, i.e. the fragment built
from atomic actions through sequential, conditional or repetitive composition. Then we have
for all F 2 F and for all b 2 bool:

� 8a 2 At(a is accordant for j=b in F)) 8� 2 Ac�(� is accordant for j=b in F)

The properties of idempotence and (A-)realisability are in general undesirable ones. If all
actions were idempotent, it would be impossible to walk the roads by taking one step at a
time. Realisability would render the notion of opportunity meaningless and A-realisability
would tie ability and opportunity in a way that we feel is unacceptable. Therefore we consider
neither the lifting result for A-realisability to be very important, nor the absence of such a
result for idempotence and realisability. And even though the property of accordance is, or
may be, important, it is not one that typically holds in the lively world of human agents.
Therefore we consider this property to be an exceptional one, that holds for selected actions
only. Hence also for accordance the absence of a lifting result is not taken too seriously.

5 Correctness and feasibility of actions: practical possibility

Within the KARO-framework, several notions concerning agency may be formalised that are
interesting not only from a philosophical point of view, but also when analysing agents in
planning systems. The most important one of these notions formalises the knowledge that
agents have about their practical possibilities. We consider the notion of practical possibility
as relating an agent, an action, and a proposition: agents may have the practical possibility
to bring about (truth of) the proposition by performing the action. We think of practical
possibility as consisting of two parts, viz. correctness and feasibility. Correctness implies that
no external factors will prevent the agent from performing the action and thereby making the
proposition true. As such, correctness is de�ned in terms of opportunity and result: an action
is correct for some agent to bring about some proposition i� the agent has the opportunity to
perform the action in such a way that its performance results in the proposition being true.
Feasibility captures the internal aspect of practical possibility. It states that it is within the
agent's capacities to perform the action, and as such is nothing but a reformulation of ability.
Together, correctness and feasibility constitute practical possibility.
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De�nition 5.1 For � 2 Ac, i 2 A and ' 2 L we de�ne:

� Correcti(�; ') =
def hdoi(�)i'

� Feasiblei� =def Ai�

� PracPossi(�; ') =
def Correcti(�; ')^ Feasiblei�

The counterintuitive situations that occurred with respect to the ability of agents as
described previously do not take root for practical possibility. That is, a lion that has the
ability but not the opportunity to eat a zebra will neither have the practical possibility to eat
a zebra �rst and thereafter 
y to the moon nor have the practical possibility to eat a zebra and
rest on its laurels afterwards. Thus even though the notion of ability su�ers from problems
like these, the more important notion of practical possibility does not. The importance of
practical possibility manifests itself particularly when ascribing | from the outside | certain
qualities to an agent. It seems that for the agent itself practical possibilities are relevant in
so far as the agent has knowledge of these possibilities. For one may not expect an agent to
act on its practical possibilities if the agent does not know of this possibilities. To formalise
this kind of knowledge, we introduce the Can-predicate and the Cannot-predicate. The �rst
of these predicates concerns the knowledge of agents about their practical possibilities, the
latter predicate does the same for their practical impossibilities.

De�nition 5.2 For � 2 Ac, i 2 A and ' 2 L we de�ne:

� Cani(�; ') =
def KiPracPossi(�; ')

� Cannoti(�; ') =
def Ki:PracPossi(�; ')

The Can-predicate and the Cannot-predicate integrate knowledge, ability, opportunity
and result, and seem to formalise one of the most important notions of agency. In fact it is
probably not too bold to say that knowledge like that formalised through the Can-predicate,
although perhaps in a weaker form by taking aspects of uncertainty into account, underlies all
acts performed by rational agents. For rational agents act only if they have some information
on both the possibility to perform the act, and its possible outcome; at least in this paper
we restrict ourselves to such actions, leaving mere experiments out of our scope. It therefore
seems worthwhile to take a closer look at both the Can-predicate and the Cannot-predicate.
The following proposition focuses on the behaviour of the means-part of the predicates, which
is the � in Cani(�; ') and Cannoti(�; ').

Proposition 5.3 For all b 2 bool, i 2 A, �; �1; �2 2 Ac and ';  2 L we have:

1. j=b Cani(confirm';  )$ Ki(' ^  )

2. j=b Cannoti(confirm';  )$ Ki(:'_ : )

3. j=b Cani(�1;�2; ')$ Cani(�1;PracPossi(�2; '))

4. j=b Cani(�1;�2; ')! hdoi(�1)iCani(�2; ') for �1 accordant in F

5. j=b Cannoti(�1;�2; ')$ Cannoti(�1;PracPossi(�2; '))

6. j=b Cani(if' then�1 else�2 fi;  )^Ki'$ Cani(�1;  )^Ki'

20



7. j=b Cani(if' then�1 else�2 fi;  )^Ki:'$ Cani(�2;  )^Ki:'

8. j=b Cannoti(if' then�1 else�2 fi;  )^Ki'$ Cannoti(�1;  )^Ki'

9. j=b Cannoti(if' then�1 else�2 fi;  )^Ki:'$ Cannoti(�2;  )^Ki:'

10. j=b Cani(while' do� od;  )^Ki'$ Cani(�;PracPossi(while' do� od;  ))^Ki'

11. j=b Cani(while' do� od;  )^Ki'! hdoi(�)iCani(while' do� od;  )
for � accordant in F

12. j=b Cani(while' do� od;  )! Ki('_  )

13. j=b Cannoti(while' do� od;  )^Ki:'$ Ki(:' ^ : )

14. j=b Cannoti(while' do� od;  )^Ki'$ Cannoti(�; while' do� od;  )^Ki'

Proposition 5.3 supports the claim about appropriateness of the Can-predicate and Cannot-
predicate as formalising knowledge of practical possibilities of actions performed by rational
agents. In particular items 6 through 9 and item 14 are genuine indications of the rationality
of the agents that we formalised. Consider for example item 7. This item states that when-
ever an agent knows both that it has the practical possibility to bring about  by perform-
ing if' then�1 else�2 fi and that the negation of the condition of if' then�1 else�2 fi

holds, it also knows that performing the else-part of the conditional composition provides
the practical possibility to achieve  . Conversely, if agent i knows that it has the prac-
tical possibility to bring about  by performing �2 while at the same time knowing that
the proposition ' is false, then the agent knows that performing a conditional composition
if' then�1 else�2 fi would also bring about  , regardless of �1. For since it knows that :'
holds, it knows that this compositional composition comes down to the else-part �2. Items 4
and 11 explicitly use the accordance of actions. For it is exactly this property of accordance
that causes the agent's knowledge of its practical possibilities to persist under execution of
the �rst part of the sequential composition in item 4 and the body of the while-loop in item
11.

In the following proposition we characterise the relation between the Can-predicate and
the Cannot-predicate. Furthermore some properties are presented that concern the end-part
of these predicates, i.e. the ' in Cani(�; ') and Cannoti(�; ').

Proposition 5.4 For all b 2 bool, i 2 A, � 2 Ac and ';  2 L we have:

1. j=b Cani(�; ')! :Cani(�;:')

2. j=b Cani(�; ')! :Cannoti(�; ')

3. j=b Cani(�; ')! Cannoti(�;:')

4. j=b Cani(�; '^  )$ Cani(�; ')^Cani(�;  )

5. j=b Cannoti(�; ')_Cannoti(�;  )! Cannoti(�; '^  )

6. j=b Cani(�; ') _Cani(�;  )! Cani(�; '_  )

7. j=b Cannoti(�; '_  )$ Cannoti(�; ')^Cannoti(�;  )
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8. j=b Cani(�; ') ^Ki[doi(�)]('!  )! Cani(�;  )

9. j=b Cannoti(�; ')^Ki[doi(�)]( ! ')! Cannoti(�;  )

Even more than Proposition 5.3 does Proposition 5.4 make out a case for the rationality
of agents. Take for example item 3, which states that whenever an agent knows that it has
the practical possibility to achieve ' by performing � it also knows that � does not provide
for a means to achieve :'. Items 4 through 7 deal with the decomposition of the end-part of
the Can-predicate and the Cannot-predicate, which behaves as desired. Note that the reverse
implication of item 5 is not valid: it is quite possible that even though an agent knows that �
is not correct to bring about (p^:p) it might still be that it knows that � is correct for either
p or :p. An analogous line of reasoning shows the invalidity of the reverse implication of
item 6. Items 8 and 9 formalise that agents can extend their knowledge about their practical
(im-)possibilities by combining it with their knowledge of the (conditional) results of actions.

6 Proof theory

Here we present a proof theory for the semantic framework de�ned in the previous section.
In general the purpose of a proof theory is to provide a syntactic counterpart of the semantic
notion of validity for a given interpretation and a given class of models. The idea is to
de�ne a predicate denoting deducibility, which holds for a given formula i� the formula is
valid. This predicate is to be de�ned purely syntactically, i.e. it should depend only on the
syntactic structure of formulas, without making any reference to semantic notions such as
truth, validity, satis�ability etc. We present two such predicates, viz. `1 and `0, which
characterise the notions of validity associated with j=1 and j=0, respectively. The de�nition
of these predicates is based on a set of axioms and proof rules, which together constitute a
proof system. The proof systems that we de�ne deviate somewhat from the ones that are
common in (modal) logics, the most notable di�erence being the use of in�nitary proof rules.
Given the relative rarity of this kind of rules, we feel that some explanation is justi�ed.

6.1 In�nitary proof rules

The proof rules that are commonly employed in proof systems, are inference schemes of the
form P1; : : : ;Pm =C, where the premises P1; : : : ;Pm and the conclusion C are elements of the
language under consideration. Informally, a rule like this denotes that one may deduce C
as soon as P1; : : : ;Pm have been deduced. An in�nitary3 proof rule is a rule containing an
in�nite number of premises. Although not very common, in�nitary proof rules have been used
in a number of proof systems: Hilbert used an in�nitary proof rule in axiomatising number
theory [16], Sch�utte uses in�nitary proof rules in a number of systems [43], and both Kr�oger
[26] and Goldblatt [10, 11] use in�nitary proof rules in logics of action.

In �nitary proof systems proofs can be carried out completely within the formal system.
A proof is usually taken to be a �nite sequence of formulas that are either axioms of the proof
system or conclusions of proof rules applied to formulas that appear earlier in the sequence.
Since �nitary proof rules can be applied as soon as all of their �nitely many premises have been
deduced, there is no need to step outside of the formal system. In order to apply an in�nitary

3We decided to follow the terminology of Goldblatt [10, 11] and refer to these rules as being in�nitary.
Other authors call these rules in�nite [26, 43].
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rule, a meta-logical investigation on the deducibility of the (in�nitely many) premises needs
to be carried out, which makes it in general impossible to carry out proofs completely within
the proof system. As such, proofs are no longer `schematically' constructed, and theorems
are not recursively enumerable. However, there are also advantages associated with the use
of in�nitary proof rules. One such advantage is that for some systems strong completeness
can be achieved using in�nitary proof rules, whereas this is not possible using �nitary proof
rules (cf. [10, 43]). The notion of strong completeness implies that fewer sets of formulas are
consistent, and in particular that sets of formulas that are seen to be inconsistent can also be
proved to be so. After the presentation of the proof systems, we will return to the property
of strong completeness in the presence of in�nitary rules. Besides the possibility to achieve
strong completeness when using in�nitary proof rules, there are two other arguments that
in
uenced our decision to use this kind of rule. The �rst of these is its intuitive acceptability.
In particular when dealing with notions with an in�nitary character, like for instance while-
loops, in�nitary proof rules provide a much better formalisation of human intuition on the
nature of these notions than do �nitary proof rules. The second, perhaps less convincing but
certainly more compelling, argument is given by the fact that our attempts to come up with
�nitary axiomatisations remained unavailing.

6.2 Logics of capabilities

Before presenting the actual axiomatisations, we �rst make some notions precise that were
already informally discussed above. An axiom is a schema in L. A proof rule is a schema
of the form '1; '2; : : : =  where '1; '2; : : : ;  are schemas in L. A proof system is a pair
consisting of a set of axioms and a set of proof rules. As mentioned above, the presence of
in�nitary proof rules forces us to adopt a more abstract approach to the notions of deducibility
and theorem than the one commonly employed in �nitary proof systems. Usually, a formula
' is de�ned to be a theorem of some proof system if there exist a �nite-length sequence of
formulas of which ' is the last element and such that each formula in the sequence is either
an instance of an axiom or the conclusion of a proof rule applied to earlier members of the
sequence. An alternative formulation, which is equally usable in �nitary and in in�nitary
proof systems, is to de�ne ' to be a theorem of a proof system i� it belongs to the smallest
subset of L containing all (instances of all) axioms and closed under the proof rules. This
latter notion of deducibility is actually the one that we will employ here. We de�ne a logic
for a given proof system to be a subset of L containing all instances of the axioms of the proof
system and closed under its proof rules. A formula is a theorem for a given proof system i�
it is an element of the smallest logic for the proof system. These notions are formalised in
De�nitions 6.4 through 6.6.

To axiomatise the behaviour of while-loops we propose two in�nitary rules. Both these
rules are based on the idea to equate a repetitive composition while' do� od with the in�-
nite set f(confirm';�)k; confirm:' j k 2 INg. The two proof rules take as their premises
an in�nite set of formulas built around this in�nite set and have as their conclusion a for-
mula built around while' do� od. To make this idea of `building formulas around actions'
explicit, we introduce the concept of admissible forms. The notion of admissible forms as
given in De�nition 6.1 is an extension of that used by Goldblatt in his language of program
schemata [10]. In his investigation of in�nitary proof rules, Kr�oger found that, in order to
prove completeness, he needed rules in which the context of the while-loop and of the set
f(confirm';�)k; confirm:' j k 2 INg is taken into account [26]. The concept of admissible
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forms provides an abstract generalisation of this idea of taking contexts into account.

De�nition 6.1 The set of admissible forms for L, denoted by Afm(L), is de�ned by the
following BNF.

� ::= # j [doi(�)]� j Ki� j  ! �

where i 2 A; � 2 Ac and  2 L. We use � as a typical element of Afm(L).

Usually `admissible form' is abbreviated to `afm'. By de�nition, each afm has a unique
occurrence of the special symbol #. By instantiating this symbol with a formula from L,
afms are turned into genuine formulas. If � is an afm and  2 L is some formula we denote
by �( ) the formula that is obtained by replacing (the unique occurrence of) # in � by  .

The following de�nition introduces two abbreviations that will be used in formulating the
in�nitary rules.

De�nition 6.2 For all  ; ' 2 L, i 2 A, � 2 Ac and l 2 IN we de�ne:

�  l(i; '; �) =
def [doi((confirm';�)

l; confirm:')] 

� 'l(i; �) =def Ai((confirm';�)l; confirm:')

The formulas introduced in De�nition 6.2 are used to de�ne the premises of the in�ni-
tary rules. The rule formalising the behaviour of while-loops with respect to results and
opportunities has as premises all sentences in the in�nite set f�( l(i; '; �)) jl 2 INg for
some � 2 Afm(L)g. The conclusion of this rule is the formula �([doi(while' do�od)] ).
Leaving the context provided by � out of consideration, this rules intuitively states that
if it is deducible that  holds after executing the actions (confirm';�)k; confirm:', for
every k 2 IN, then it is also deducible that  holds after executing while' do� od. The
rule used in formalising the ability of agents for while-loops has as its premises the set
�(:('l(i; �))) for l 2 IN; � 2 Afm(L), and a conclusion �(:Aiwhile' do� od). This rule
states that whenever it is deducible that an agent i is not capable of performing any of the
actions (confirm';�)k; confirm:', where k 2 IN, then it is also deducible that the agent
is incapable of performing the while-loop itself. Or read in its contrapositive form, that
an agent is able to perform a while-loop only if it is able to perform some �nite-length se-
quence of con�rmations and actions constituting the while-loop. As such, this rule is easily
seen to be the proof-theoretic counterpart of the negated version of the (semantic) de�ni-
tion of cb for while-loops. For read in its negative form this semantic de�nition states that
cb(i; while' do� od)(s) = 0 i� cb(i; 'l(i; �))(s) = 0 for all l 2 IN.

The axioms that are used to build the two proof systems are formulated using the necessity
operator for actions, i.e. [do ( )] , rather than its dual hdo ( )i . The reason for this is
essentially one of convenience: in proving completeness of the axiomatisations it turns out
to be useful to deal with two necessity operators, viz. K and [do ( )] , to allow proofs by
analogy. Since [do ( )] and hdo ( )i are inter-de�nable this does not create any essential
di�erences.

De�nition 6.3 The following axioms and proof rules are used to constitute the two proof
systems that we consider here. Both the axioms as well as the premises and conclusions of
the proof rules are to be taken as schemas in i 2 A; ';  2 L and �; �1; �2 2 Ac. The �
occurring in the two in�nitary rules 
I and 
IA is taken to be a meta-variable ranging over
Afm(L).
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A1. All propositional tautologies and their epistemic and dynamic instances
A2. Ki('!  )! (Ki'! Ki )
A3. Ki'! '

A4. Ki'! KiKi'
A5. :Ki'! Ki:Ki'

A6. [doi(�)]('!  )! ([doi(�)]'! [doi(�)] )
A7. [doi(confirm')] $ (:' _  )
A8. [doi(�1;�2)]'$ [doi(�1)][doi(�2)]'
A9. [doi(if' then�1 else�2 fi)] $

([doi(confirm';�1)] ^ [doi(confirm:';�2)] )
A10. [doi(while' do�od)] $ ([doi(confirm:')] ^

[doi(confirm';�)][doi(while' do� od)] )
A11. [doi(�)]' _ [doi(�)]:'
A12. Aiconfirm'$ '

A131. Ai(�1;�2)$ Ai�1 ^ [doi(�1)]Ai�2
A130. Ai(�1;�2)$ Ai�1 ^ hdoi(�1)iAi�2
A14. Aiif' then�1 else�2 fi$

(Aiconfirm';�1 _Aiconfirm:';�2)
A151. Aiwhile' do� od$ (Ai(confirm:')_

(Aiconfirm';�^ [doi(confirm';�)]Aiwhile' do� od))
A150. Aiwhile' do� od$ (Ai(confirm:')_

(Aiconfirm';�^ hdoi(confirm';�)iAiwhile' do� od))

R1. �( l(i; '; �)) all l 2 IN = �([doi(while' do�od)] ) 
I
R2. �(:('l(i; �))) all l 2 IN = �(:Aiwhile' do� od) 
IA
R3. '; '!  = MP
R4. ' =Ki' KN
R5. ' = [doi(�)]' AN

Most of the axioms are fairly obvious, in particular given the discussion on the validities
presented in Section 4. Rule R1, the Omega Iteration rule, is adopted from the axiomatisations
given by Goldblatt [10, 11]. Both 
I and rule R2, which is the Omega Iteration rule for
Ability, were already discussed above. Rule R3 is the rule of Modus Ponens, well known
from, and used in, both classical and modal logics. R4 and R5 are both instances of the
rule of necessitation, which is known to hold for necessity operators. These rules state that
whenever some formula is deducible, it is also deducible that an arbitrary agent knows the
formula, and that all events have this formula among their conditional results, respectively.
Axioms A2 and A6, and the rules R4 and R5 indicate that both knowledge and conditional
results are formalised through normal modal operators.

The axioms and proof rules given above are used to de�ne two di�erent proof systems.
One of these proof systems embodies the optimistic view on abilities in the counterfactual
state of a�airs, the other employs a pessimistic view.

De�nition 6.4 The proof system �1 contains the axioms A1 through A12, A131, A14, A151
and the proof rules R1 through R5. The proof system �0 contains the axioms A1 through
A12, A130, A14, A150 and the proof rules R1 through R5.
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As mentioned above, a logic for a given proof system is a set encompassing the proof
system.

De�nition 6.5 A b-logic is a set � that contains all the instances of the axioms of �b and
is closed under the proof rules of �b. The intersection of all b-logics, which is itself a b-logic,
viz. the smallest one, is denoted by LCapb. Whenever the underlying proof system is either
irrelevant or clear from the context, we refer to a b-logic simply as a logic.

Deducibility in a given proof system is now de�ned as being an element of the smallest
logic for the proof system.

De�nition 6.6 For � some logic, the unary predicate `�� L is de�ned by: `� ', ' 2 �.
As an abbreviation we occasionally write `b ' for `LCapb . Whenever `� ' holds we say that
' is deducible in � or alternatively that ' is a theorem of �.

The proof systems �1 and �0 provide sound and complete axiomatisations of validity for
j=1 and j=0 respectively. This is summarized in the following theorem, of which the proof is
provided in the appendix.

Theorem 6.7 For b 2 bool and all ' 2 L we have: `b ',j=b '.

Besides the notion of deducibility per se, it is also interesting to look at deducibility from a
set of premises. In modal logics one may distinguish two notions of deducibility from premises.
In the �rst of these, the premises are considered to be additional axioms, on which also rules
of necessitation may be applied. The second notion of deducibility allows necessitation only
on the axioms of the proof system, and not on the premises. This latter notion of deducibility
is perhaps the more natural one, and is in fact the one that we will concentrate on.

To account for deducibility from premises with respect to the alternative notion of de-
ducibility as being an element of some set of formulas, we introduce the notion of a theory
of a logic. Corresponding to the idea that the rules of necessitation are not to be applied
on premises, we do not demand that a theory be closed under these rules. A formula is now
de�ned to be deducible from some set of premises i� it is contained in every theory that
encompasses the set of premises.

De�nition 6.8 For � some logic, we de�ne a �-theory to be any subset � of L that contains
� and is closed under the rules 
I, 
IA, and MP.

De�nition 6.9 Let � be some logic and �[ f'g � L. The binary relation `�� }(L)� L is
de�ned by:

� `� ', ' 2
T
f� � L j � � � and � is a �-theoryg

Whenever � `� ' we say that ' is deducible from � in �. A set � � L is called �-inconsistent
i� � `� ?, and �-consistent i� it is not �-inconsistent.

Given the `overloading' of the symbol `� as representing both deducibility per se and
deducibility from premises, it is highly desirable that the two uses of this symbol coincide in
the case that the set of premises is empty: deducibility from an empty set of premises should
not di�er from deducibility per se.
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Proposition 6.10 For � some logic and ' 2 L we have: `� ', ; `� '.

As already mentioned before, using in�nitary rules to describe the behaviour of while-
loops allows one to achieve strong completeness, the notion which states that every consistent
set of formulas is simultaneously satis�able. Achieving strong completeness is in general not
possible when just �nitary rules are used. To see this consider the set 
 = f[doi(a

k)]p j k 2
INg [ fhdoi(while p doa od)i>g. It is obvious that 
 is not satis�able. For whenever M; s j=b

[doi(a
k)]p for all k 2 IN then execution of while p doa od does not terminate, and hence

M; s 6j= hdoi(while p doa od)i>. However, when using just �nitary rules to describe while-
loops (like for instance the well-known Hoare rule [18]), the set 
 will be consistent. For when
restricting oneself to �nitary rules, consistency of an in�nite set of formulas corresponds to
consistency of each of its �nite subsets. And in every axiomatisation that is to be sound, all
�nite subsets of 
 should be consistent, and therefore 
 itself is consistent. In the in�nitary
proof systems �1 and �0, ? is deducible from 
, i.e. 
 is inconsistent. More generally, the
property of strong completeness holds for both �1 and �0.

Proposition 6.11 The proof systems �1 and �0 are strongly complete, i.e. every set � � L
that is LCapb-consistent is j=

b-satis�able.

Just as deducibility per se is the proof theoretic counterpart of the semantic notion of
validity, there is also a semantic counterpart to the notion of deducibility from premises.

Proposition 6.12 For b 2 bool, � � L and ' 2 L we have:

� � `b ', � j=b '

where � j=b ' i� M; s j=b � implies M; s j=b ' for all M 2M with state s.

In the light of the strong completeness property, Proposition 6.12 is not very surprising. In
fact, the left-to-right implication is a direct consequence of the strong completeness property.
The right-to-left implication follows from the observation that the set of formulas that is
satis�ed in some world forms a theory.

7 Summary and conclusions

In this paper we introduced the KARO-framework, a formal framework based on a com-
bination of various modal logics that can be used to formalise agents. After a somewhat
philosophical exposition on knowledge, actions and events, we presented two formal systems,
both belonging to the KARO-framework, that share a common language and a common class
of models but that di�er in the interpretation of dynamic and ability formulas. The language
common to the two systems is a propositional, multi-modal, exogenous language, contain-
ing modalities representing knowledge, opportunity and result, and an operator formalising
ability. The models that are used to interpret formulas from the language L are Kripke-style
possible worlds models. These models interpret knowledge by means of an accessibility rela-
tion on worlds; opportunity, result and ability are interpreted using designated functions. We
explained our intuition on the composite behaviour of results, opportunities and abilities, and
presented two formal interpretations that comply with this intuition. These interpretations
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di�er in their treatment of abilities of agents for sequentially composed actions. We consid-
ered various properties of knowledge and action in the KARO-framework. In de�ning some
of these properties we used the notions of schemas, frames and correspondences. Using the
various modalities present in the framework, we proposed a formalisation of the knowledge
of agents about their practical possibilities, a notion which captures an important aspect of
agency, particularly in the context of planning agents. We presented two proof systems that
syntactically characterise the notion of validity in the two interpretations that we de�ned.
The most remarkable aspect of these proof systems is the use of in�nitary proof rules, which
on the one hand allows for a better correspondence between the semantic notion of validity
and its syntactic counterpart, and on the other hand forces one to generalise the usual notions
of proof and theorem.

In the KARO-framework we proposed two de�nitions for the ability of agents to execute
a sequentially composed action �1;�2 in cases where execution of �1 leads to the counter-
factual state of a�airs. The simplicity of these de�nitions, both at a conceptual and at a
technical level, may lead to counterintuitive situations. Recall that using the so-called opti-
mistic approach it is possible that an agent is considered to be capable of performing �; fail,
whereas in the pessimistic approaches agents may be declared unable to perform �; skip, for
� 2 Ac. A more realistic approach would be not to treat all actions equally, but instead to
determine for each action individually whether it makes sense to declare an agent (un)able to
perform the action in the counterfactual state of a�airs. One way to formalise this consists of
extending the models from M with an additional function t : A�Ac! S! S which is such
that t(i; �)(s) = r(i; �)(s) whenever r(i; �)(s) 6= ;. Hence in the case that r(i; �)(s) 6= ;,
t(i; �)(s) equals r(i; �)(s) and in other cases t(i; �)(s) is de�nitely not empty. The function
t denotes the outcome of actions when `abstracting away' from opportunities, so to speak.
The ability for the sequential composition is then de�ned by

c(i; �1;�2)(s) = 1, c(i; �1)(s) = 1& c(i; �2)(t(i; �1)(s)) = 1

Applying this de�nition implies that Ai�1; fail is no longer satis�able, and that Ai�1; skip
holds in cases whereAi�1 is true, regardless of the truth of hdoi(�1)i>. A special instantiation
of this approach corresponds to the idea that abilities of agents do not tend to change.
Therefore it could seem reasonable to assume that agents retain their abilities when ending
up in the counterfactual state of a�airs. Formally this can be brought about by demanding
t(i; �)(s) to equate s in cases where r(i; �)(s) = ;. Since this is but a special case of the
general idea discussed above, it also avoids the counterintuitive situations where agents are
declared to be able to do �; fail or unable to do �; skip.
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A A proof of soundness and completeness

Below we prove the soundness and completeness of deducibility in LCapb for j=b-validity in
M. As far as we know, this is one of the very few proofs of completeness that concerns a
proof system in which both knowledge and actions are dealt with, and it is probably the very
�rst in which abilities are also taken into consideration.
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Rather than restricting ourselves to LCapb we will for the greater part consider general
logics, culminating in a very general and rather powerful result from which the soundness and
completeness proof for LCapb can be derived as a corollary. Globally, the proof given below
can be split into three parts. In the �rst part of the proof, canonical models are constructed for
the logics induced by the proof systems �1 and �0. The possible worlds of these canonical
models are given by so-called maximal theories. In the second part, the truth-theorem is
proved, which states that truth in a possible world of a canonical model corresponds to being
an element of the maximal theory that constitutes the possible world. In the last, and almost
trivial, part of the proof it is shown how the general truth-theorem implies soundness and
completeness of LCapb for b-validity in M.

The de�nition of canonical models as we give it is, as far as actions and dynamic constructs
are concerned, based on the construction given by Goldblatt [10]. The proof of the truth-
theorem is inspired by the one given by Spruit [47] to show completeness of the Segerberg
axiomatisation for propositional dynamic logic. Due to the fact that formulas and actions are
strongly related, the subformula or subaction relation does not provide an adequate support
for induction in the proof of the truth-theorem. Instead a fairly complex ordering is used, well-
foundedness of which is proved using some very powerful (and partly automated) techniques
that are well-known from the theory of Term Rewriting Systems [7, 23].

Some preliminary de�nitions, propositions and lemmas are needed before the canonical
models can be constructed.

Proposition A.1 For all M 2M with state s and all i 2 A, � 2 Ac, ' 2 L and � 2 Afm(L)
we have:

� M; s j=b �([doi(while' do� od)] ) i� for all l 2 IN, M; s j=b �( l(i; �; '))

� M; s j=b �(:Aiwhile' do� od) i� for all l 2 IN, M; s j=b �(:('l(i; �)))

Proof: We prove both items by induction on the structure of �.

� Let M 2M with state s, and i 2 A, ';  2 L and � 2 Ac be arbitrary.

1. � = #:

M; s j=b [doi(while' do� od)] 
, M; t j=b  for all t 2 S such that t = rb(i; while' do� od)(s)
, M; t j=b  for all t 2 S such that t = rb(i; (confirm';�)l; confirm:')(s)

for all l 2 IN
, M; s j=b [doi(confirm';�)l; confirm:')] for all l 2 IN
, M; s j=b  l(i; '; �) for all l 2 IN

2. � = Ki�
0:

M; s j=b (Ki�
0)([doi(while' do�od)] )

, M; s j=b Ki(�
0([doi(while' do� od)] ))

, M; t j=b �0([doi(while' do� od)] ) for all t 2 S such that (s; t) 2 R(i)
, M; t j=b �0( l(i; �; ')) for all l 2 IN,

for all t 2 S such that (s; t) 2 R(i) (by induction hypothesis)
, M; s j=b Ki�

0( l(i; �; ')) for all l 2 IN
, M; s j=b (Ki�

0)( l(i; �; ')) for all l 2 IN
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3. The cases where � = [doi(�)]�
0 and � =  0 ! �0 are analogous to the case where

� = Ki�
0.

� Let again M 2M with state s, i 2 A, ' 2 L= and � 2 Ac be arbitrary.

1. � = #:

M; s j=b :Aiwhile' do� od
, not(M; s j=b Aiwhile' do� od)
, not(9k 2 IN(cb(i; (confirm';�)k; confirm:')(s) = 1))
, 8k 2 IN(not(cb(i; (confirm';�)k; confirm:')(s) = 1))
, 8k 2 IN(not(M; s j=b 'k(i; �)))
, 8k 2 IN(M; s j=b :('k(i; �1)))

2. � = [doi(�)]�
0:

M; s j=b ([doi(�)]�
0)(:Aiwhile' do� od)

, M; s j=b [doi(�)](�
0(:Aiwhile' do� od))

, M; t j=b �0(:Aiwhile' do� od) for all t 2 S such that t = rb(i; �)(s)
, M; t j=b �0(:('l(i; �))) for all l 2 IN, for all t 2 S such that t = rb(i; �)(s)

(by induction hypothesis)
, M; s j=b [doi(�)](�

0(:('l(i; �)))) for all l 2 IN
, M; s j=b ([doi(�)]�0)(:('l(i; �))) for all l 2 IN

3. The cases where � = Ki�
0 and � = ( 0 ! �0) are analogous to the case where

� = [doi(�)]�
0.

�

Proposition A.2 If M 2M is a well-de�ned model fromM, then �M
b
=def f' 2 L jM j=b 'g

is a b-logic.

Proof: We need to check for a given model M 2M that the axioms of �b are valid in M and
that M is validity-preserving for the proof rules of �b. The validity of the axioms A1{A9 and
A12{A14 is easily checked. Axiom A10 follows from the determinism of all actions as stated
in Corollary 4.12. Axiom A151 is shown in Proposition 4.3, and A150 is shown analogously.
The validity-preservingness of M for the rules R1 and R2 follows from Proposition A.1; M
is easily seen to be validity-preserving for the other rules. As an example we show here the
validity of axiom A10.

M; s j=b [doi(while' do� od)] 
, M; t j=b  for all t 2 S such that t = rb(i; while' do�od)(s)
, M; t j=b  for all t 2 S such that t = rb(i; confirm:')(s) and

M; t j=b  for all t 2 S such that t = rb(i; (confirm';�); while' do� od)(s)
, M; s j=b [doi(confirm:')] and

M; s j=b [doi((confirm';�); while' do�od)] 
, M; s j=b [doi(confirm:')] ^

[doi(confirm';�)][doi(while' do� od)] 

�
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Proposition A.3 Let � be a logic. The following properties are shared by all �-theories �,
for all ';  2 L, i 2 A, � 2 Ac and all � 2 Afm(L):

1. > 2 �

2. if � `� ' then ' 2 �

3. if `� ('!  ) and ' 2 � then  2 �

4. � is �-consistent i� ? 62 � i� � 6= L

5. (' ^  ) 2 � i� ' 2 � and  2 �

6. if ' 2 � or  2 � then (' _  ) 2 �

7. �([doi(while' do� od)] ) 2 � i� f�( l(i; '; �)) j l 2 INg � �

8. �(:Aiwhile' do� od) 2 � i� f�(:('l(i; �))) j l 2 INg � �

Proof: The items 1 to 6 are fairly standard, and are proved by Goldblatt [10]. The cases
7 and 8 follow from the fact that theories contain the axioms A10 and A15b and are closed
under 
I and 
IA.
�

De�nition A.4 Let � be a logic. A maximal �-theory is a consistent �-theory � such that
' 2 � or :' 2 � for all ' 2 L.

Proposition A.5 The following properties are shared by all maximal �-theories �, for �
some logic, and ';  2 L.

1. ? 62 �

2. exactly one of ' and :' belongs to �, for all ' 2 L

3. (' _  ) 2 � i� ' 2 � or  2 �

Proposition A.6 For � a logic and all ';  2 L, �;	 � L, i 2 A, � 2 Ac and � 2 Afm(L)
we have:

1. if ' 2 � then � `� '

2. if � `� ' and � � 	 then 	 `� '

3. `� ' i� ; `� '

4. if � `� ('!  ) and � `� ' then � `�  

5. if � `� �( l(i; '; �)) for all l 2 IN then � `� �([doi(while' do�od)] )

6. if � `� �(:('l(i; �))) for all l 2 IN then � `� �(:Aiwhile' do� od)

Theorem A.7 (The deduction theorem) For � some logic and all ';  2 L and � � L
we have that � [ f'g `�  i� � `� ('!  ).
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Proof: We will prove the `i�' by proving two implications:

`(' This case follows directly from items 1, 2, and 4 of Proposition A.6.

`)' Assume that � [ f'g `�  . Let � =def f� 2 L j � `� ('! �)g. We have to show that
 2 �. For this it su�ces to show that � is a �-theory containing � [ f'g. We show
here that � is closed under 
IA; the proof of the other properties is easy and left to the
reader. Assume that f�(:('0l(i; �))) j l 2 INg � �. Then � `� ('! �(:('0l(i; �)))) for
all l 2 IN. Applying case 6 of Proposition A.6 to the set f('! �(:('0l(i; �)))) j l 2 INg
yields � `� ('! �(:Aiwhile'

0 do� od)), hence �(:Aiwhile'
0 do� od) 2 �. Thus �

is closed under 
IA.

�

Corollary A.8 For � some logic and all ' 2 L and � � L we have:

� � [ f'g is �-consistent i� � 6`� :'

� � [ f:'g is �-consistent i� � 6`� '

De�nition A.9 For � � L, i 2 A and � 2 Ac we de�ne:

� �=Ki =
def f' 2 L j Ki' 2 �g

� Ki� =def fKi' 2 L j ' 2 �g

� �=[doi(�)] =def f' 2 L j [doi(�)]' 2 �g

� [doi(�)]� =def f[doi(�)]' 2 L j ' 2 �g

Proposition A.10 For � some logic and all ' 2 L, i 2 A and � � L we have:

� if � `� ' then Ki� `
� Ki'

� if � `� ' then [doi(�)]� `
� [doi(�)]'

Proof: We show the �rst case; the second case is completely analogous. So let � be a �-
theory such that Ki� � �. We need to show that Ki' 2 �. Let � =def �=Ki. Since � `� ',
it su�ces to show that � is a �-theory containing �. Then ' 2 � and hence Ki' 2 �.

1. � � �: If  2 �, then Ki 2 � and hence  2 �.

2. � contains �: If `�  , then by NK, `� Ki and, since � is a �-theory, then Ki 2 �,
which implies  2 �.

3. � is closed under MP, 
I and 
IA.

� MP: If  2 � and ( !  1) 2 �, then Ki 2 � and Ki( !  1) 2 �. Since �
contains axiom A2, this implies Ki 1 2 � and hence  1 2 �.

� 
I: If f�( l(j; '0; �)) j l 2 INg � �, then fKi�( l(j; '0; �)) j l 2 INg � �. Applying

I to the set fKi�( l(j; '

0; �)) j l 2 INg yields Ki�([doj(while'
0 do�od)] ) 2 �,

and hence �([doj(while'0 do� od)] ) 2 �.
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� 
IA: If f�(:('0l(j; �))) j l 2 INg � �, then fKi�(:('0l(j; �))) j l 2 INg � �.
Applying 
IA to fKi�(:('

0

l(j; �))) j l 2 INg yields Ki�(:Ajwhile'
0 do� od) 2 �,

and hence �(:Ajwhile'
0 do� od) 2 �.

It follows that � is closed under MP, 
I and 
IA.

Since � contains � and is closed under MP, 
I and 
IA it follows that � is a �-theory.
�

Corollary A.11 Let � be some logic. For all �-theories �, and for i 2 A, � 2 Ac and ' 2 L
we have:

� Ki' 2 � i� �=Ki `
� '

� [doi(�)]' 2 � i� �=[doi(�)] `
� '

Proposition A.12 Let � be some logic. For all maximal �-theories � we have that if
�=[doi(�)] is �-consistent then �=[doi(�)] is a maximal �-theory.

Proof: Suppose that �=[doi(�)] is �-consistent. We show that �=[doi(�)] is a �-theory and
that for all ' 2 L, either ' 2 �=[doi(�)] or :' 2 �=[doi(�)]. Since by assumption �=[doi(�)]
is consistent, this su�ces to conclude that �=[doi(�)] is a maximal �-theory.

1. �=[doi(�)] contains �: If `� ' then by NA, `� [doi(�)]', and, since � is a �-theory,
[doi(�)]' 2 �. This implies that ' 2 �=[doi(�)].

2. �=[doi(�)] is closed under MP, 
I and 
IA:

� MP: Assume that (' !  ) 2 �=[doi(�)] and ' 2 �=[doi(�)]. Then [doi(�)](' !
 ) 2 � and [doi(�)]' 2 �, which implies, since � contains A6 and is closed under
MP, that [doi(�)] 2 �. This implies that  2 �=[doi(�)].

� 
I: If f�( l(j; '; �)) j l 2 INg � �=[doi(�)], then f[doi(�)]�( l(j; '; �)) j l 2 INg �
�. Applying 
I to the set of afms f[doi(�)]�( l(j; '; �)) j l 2 INg, yields that
[doi(�)]�([doj(while' do� od)] ) 2 �, and �([doj(while' do� od)] ) 2 �=[doi(�)].

� 
IA: Let f�(:('l(j; �))) j l 2 INg � �=[doi(�)]. Then f[doi(�)]�(:('l(j; �))) j l 2
INg � �. By applying 
I to the set f[doi(�)]�(:('l(j; �))) j l 2 INg it follows that
[doi(�)]�(:Ajwhile' do� od) 2 �. Hence �(:Ajwhile' do� od) 2 �=[doi(�)].

3. Since � is a theory, � contains axiom A11: [doi(�)]' _ [doi(�)]:' for all i; � and '.
Since � is maximal, [doi(�)]' 2 � or [doi(�)]:' 2 � for all i; � and '. But this implies
that ' 2 �=[doi(�)] or :' 2 �=[doi(�)], for all ' 2 L.

By items 1, 2, and 3 it follows that �=[doi(�)] is a maximal �-theory if �=[doi(�)] is �-
consistent.
�

De�nition A.13 For � some logic, the set S� is de�ned by S� =def f� � L j � is a maximal
�-theoryg.

Proposition A.14 For � some logic and all � � L and ' 2 L we have:
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� � `� ' i� for all � 2 S� such that � � � holds that ' 2 �

� `� ' i� for all � 2 S� holds that ' 2 �

Proof: The second item follows by instantiating the �rst item with � = ; and using item 3
of Proposition A.6. We show the �rst item by proving two implications.

`)' By de�nition of � `� '.

`(' We show: if � 6`� ' then some � 2 S� exists such that � � � and ' 62 �. We construct a
� that satis�es this demand. To this end, we start by making an enumeration �0; �1; : : :
of the formulas of L. Using this enumeration, the increasing sequence of sets �l � L is
for l 2 IN inductively de�ned as follows:

1. �0 = � [ f:'g

2. Assume that �k has been de�ned. The set �k+1 is de�ned by the following algo-
rithm, written in a high-level programming language pseudocode:

if �k `
� �k then �k+1 = �k [ f�kg

elsif �k is of the form �([doi(while' do� od)] )
then �k+1 = �k [ f:�( j(i; '; �))g[ f:�kg,

where j is the least number such that �k 6`
� �( j(i; '; �))

(this j exists since otherwise application of 
I would yield �k `� �k)
elsif �k is of the form �(:Aiwhile' do�od)
then �k+1 = �k [ f:�(:('j(i; �)))g[ f:�kg,

where j is the least number such that �k 6`
� �(:('j(i; �)))

(this j exists since otherwise application of 
IA would yield �k `� �k)
else �k+1 = �k [ f:�kg
�

Now � is de�ned by � =def [l2IN�l. We show that � is a maximal �-theory.

Lemma A.15 The set �l is �-consistent for all l 2 IN.

Proof: We prove the lemma by induction on l. Since � 6`� ', we have that �[f:'g =
�0 is �-consistent by Corollary A.8. Now assume that �k is consistent. Consider the
four possibilities for the de�nition of �k+1:

1. If �k `
� �k, then, since �k is assumed to be �-consistent, �k 6`

� :�k, and hence,
by Corollary A.8, �k+1 = �k [ f�kg is �-consistent.

2. If �k [ f:�( j(i; '; �))g [ f:�kg were to be �-inconsistent, we would have �k [
f:�( j(i; '; �))g `

� �k, where �k = �([doi(while' do� od)] ). Since we have
`� �k ! �( l(i; '; �)) for all l 2 IN, we also have �k [ f:�( j(i; '; �))g `�

�( j(i; '; �)), which implies that �k [ f:�( j(i; '; �))g is �-inconsistent. But
then, by Corollary A.8, �k `� �( j(i; '; �)) which contradicts the fact that �k 6`�

�( j(i; '; �)). Hence �k+1 is �-consistent.
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3. If �k [ f:(�(:'j(i; �)))g [ f:�kg were to be �-inconsistent, we would have �k [
f:�(:('j(i; �)))g `� �k, where �k = �(:Aiwhile' do� od). Since we have
`� �k ! �(:('l(i; �))) for all l 2 IN, we also have �k [ f:�(:('j(i; �)))g `�

�(:('j(i; �))), which implies that �k [ f:�(:('j(i; �)))g is �-inconsistent. Then
�k `� �(:('j(i; �))) which contradicts the fact that �k 6`� �(:('j(i; �))). Hence
�k+1 is �-consistent.

4. If �k 6`
� �k then �k [ f:�kg is �-consistent by Corollary A.8.

�

Lemma A.16 The set � as constructed above is maximal, i.e. for all ' 2 L, exactly
one of ' and :' is an element of �.

Proof: Let  2 L be arbitrary, then  = �k for some k 2 IN. By construction, now
either �k 2 �k+1 or :�k 2 �k+1, hence either  2 � or : 2 �. Suppose both  and : 
in �. Then for some k 2 IN, f ;: g � �k , which would make �k inconsistent. Since
this contradicts the result of Lemma A.15 given above, it follows that  and : are not
both in �.
�

Lemma A.17 The set � as constructed above is a �-theory.

Proof: We need to show that � contains � and is closed under MP, 
I, and 
IA. So
let ';  2 L, i 2 A and � 2 Ac be arbitrary.

1. � contains �: If `� ', where ' = �k for some k 2 IN, then �k `� �k and hence
' = �k 2 �k+1 � �.

2. Closure under MP, 
I, and 
IA:

{ MP: Suppose that '; '!  2 �. If  62 �, then : 2 �, since � is maximal
by Lemma A.16. Hence f'; ' !  ;: g 2 �k for some k 2 IN, which would
make �k �-inconsistent. This leads to a contradiction with Lemma A.15, hence
 2 �.

{ 
I: Suppose f�( l(i; '; �)) j l 2 INg � �. Let �([doi(while' do� od)] ) = �k,
for some k 2 IN. If �k 62 �, then �k 6`� �k, and, by case 2 of the construc-
tion of �k+1, this implies that :�( j(i; '; �)) 2 �k+1, where j 2 IN is the
least number such that �k 6`� �( j(i; '; �)). Hence :�( j(i; '; �)) 2 �, and
by Lemma A.16, �( j(i; '; �)) 62 �, which contradicts the assumption that
f�( l(i; '; �)) j l 2 INg � �. Hence �([doi(while' do� od)] ) 2 �.

{ 
IA: Suppose f�(:('l(i; �))) j l 2 INg � �. Let �(:Aiwhile' do� od) = �k,
for some k 2 IN. If �k 62 �, then �k 6`� �k, and by case 2 of the construc-
tion of �k+1, this implies that :(�(:'j(i; �))) 2 �k+1, for j 2 IN the least
number such that �k 6`� �(:('j(i; �))). Hence :�(:('j(i; �))) 2 �, and
�(:('j(i; �))) 62 �, which contradicts the assumption that f�(:('l(i; �))) j l 2
INg � �. Hence �(:Aiwhile' do� od) 2 �.

We conclude that � is closed under MP, 
I and 
IA.
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Since � contains � and is closed under MP, 
I and 
IA, we conclude that � is a �-
theory.
�

Now if � is �-inconsistent, then � `� ?. Since, by Lemma A.17, � is a �-theory,
it follows by Proposition A.3(2) that ? 2 �. Then ? 2 �k for some k 2 IN, which
contradicts the �-consistency of �k which was shown in Lemma A.15. Hence � is a
�-theory (Lemma A.17) which is maximal (Lemma A.16) and �-consistent, thus � is a
maximal �-theory. Note that by construction of �, � � � and :' 2 �, which su�ces
to conclude the right-to-left implication.

�

De�nition A.18 Let � be some logic. The canonical model M� for � is de�ned by M� =def

hS�; ��;R�; r�; c�i where

1. S� is the set of maximal �-theories

2. ��(p; s) = 1 i� p 2 s, for p 2 � and s 2 S�

3. (s; t) 2 R�(i) i� s=Ki � t, for s; t 2 S� and i 2 A

4. t = r�(i; a)(s) i� s=doi(a) � t, for i 2 A, a 2 At and s; t 2 S�

5. c�(i; a)(s) = 1 if Aia 2 s and c�(i; a)(s) = 0 if Aia 62 s for i 2 A, a 2 At and s 2 S�

Proposition A.19 Let � be some logic. The canonical model M� for � as de�ned above is
a well-de�ned model from M.

Proof: Let � be some logic. In order to show that M� is a well-de�ned model from M we
have to show that the demands determining well-de�nedness of models are met by M�. It is
easily seen that S�, ��, and c� are well-de�ned, which leaves to show that R� and r� are.
To prove that R(i) is an equivalence relation, assume that i 2 A and that fs; t; ug � S�. We
show:

1. (s; s) 2 R(i), i.e. R(i) is re
exive.

2. if (s; t) 2 R(i) and (s; u) 2 R(i) then (t; u) 2 R(i), i.e. R(i) is Euclidean.

To show the re
exivity of R(i), note that (s; t) 2 R(i) i� s=Ki � t. Now since s contains
axiom A3: Ki' ! ', we have for ' 2 s=Ki that Ki' 2 s and hence ' 2 s by MP. Thus
s=Ki � s, hence (s; s) 2 R(i). To show that R(i) is Euclidean assume that ' 2 t=Ki, i.e.,
Ki' 2 t. To prove: ' 2 u. Suppose ' 62 u. Then since (s; u) 2 R(i), ' 62 s=Ki, i.e., Ki' 62 s.
Since s is a maximal �-theory this implies that :Ki' 2 s, and since s contains axiom A5:
:Ki' ! Ki:Ki', also Ki:Ki' 2 s. Since (s; t) 2 R(i), s=Ki � t and thus :Ki' 2 t. But
then Ki' 2 t and :Ki' 2 t which contradicts the consistency of t. Thus R(i) is Euclidean,
and, combined with the re
exivity, this ensures that R(i) is an equivalence relation.

To show that r� is well-de�ned, it needs to be shown that for all i 2 A, a 2 At and
s 2 S� it holds that r�(i; a)(s) 2 S� or r�(i; a)(s) = ;. To this end it su�ces to show for
arbitrary i 2 A, a 2 At and s; t; u 2 S� that if t = r�(i; a)(s) and u = r�(i; a)(s) then t = u.
By de�nition it follows that s=[doi(a)] � t and s=[doi(a)] � u if both t = r�(i; a)(s) and
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u = r�(i; a)(s). Since both t and u are maximal �-theories, both t and u are �-consistent,
and hence s=[doi(a)] is �-consistent. But then, by Proposition A.12, s=[doi(a)] is a maximal
�-theory, which is properly contained only in L. Hence s=[doi(a)] = t and s=[doi(a)] = u,
which su�ces to conclude that r� is well-de�ned.
�

Up till now, the two proof systems �0 and �1 were dealt with identically, i.e. in none of
the de�nitions or propositions given above one needs to distinguish the proof systems or the
logics based on these proof systems. From this point on, however, we need to treat the two
systems, and thereby the logics, di�erently. We start with �nishing the proof of soundness
and completeness for 1-logics, and indicate thereafter how this proof needs to be modi�ed to
end up with one for 0-logics.

The presence of the con�rmation action, which tightly links actions and formulas, prevents
the subformula- or subaction-relation from being an adequate parameter for induction in the
proof of the truth-theorem, the theorem which links satis�ability in a state of the canonical
model to being an element of the maximal theory which constitutes the state. Instead we
need a more elaborate relation, which is de�ned below.

De�nition A.20 The relation � is the smallest relation on f0; 1g � L that satis�es for all
';  2 L, i 2 A, and �; �1; �2 2 Ac the following constraints:

1. (0; ') � (0; '_  )

2. (0;  )� (0; '_  )

3. (0; ') � (0;:')

4. (0; ') � (0;Ki')

5. (0; ') � (0; [doi(�)]')

6. (1; [doi(�)]') � (0; [doi(�)]')

7. (1; [doi(�1)][doi(�2)]') � (1; [doi(�1;�2)]')

8. (1; [doi(�2)]') � (1; [doi(�1;�2)]')

9. (1; [doi(confirm';�1)] ) � (1; [doi(if' then�1 else�2 fi)] )

10. (1; [doi(confirm:';�2)] ) � (1; [doi(if' then�1 else�2 fi)] )

11. (1;  l(i; '; �))� (1; [doi(while' do�od)] ) for all l 2 IN

12. (0;:') � (1; [doi(confirm')] )

13. (1;Ai�) � (0;Ai�)

14. (1;Ai�1) � (1;Ai�1;�2)

15. (1;Ai�2) � (1;Ai�1;�2)

16. (1; [doi(�1)]Ai�2) � (1;Ai�1;�2)

17. (1;Aiconfirm';�1) � (1;Aiif' then�1 else�2 fi)
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18. (1;Aiconfirm:';�2) � (1;Aiif' then�1 else�2 fi)

19. (1; 'l(i; �)) � (1;Aiwhile' do� od) for all l 2 IN

20. (0; ') � (1;Aiconfirm')

De�nition A.21 The ordering < is de�ned as the transitive closure of �, and � is de�ned
as the re
exive closure of <.

Proposition A.22 The ordering < is well-founded.

Proof: The proof of this proposition is quite elaborate; it can be found in [19] where it takes
over three pages. Basically, the idea is to use a powerful technique well-known from the
theory of Term Rewriting Systems, viz. the lexicographic path ordering. Using this technique
it su�ces to select an appropriate well-founded precedence on the function symbols of the
language in order to conclude that the ordering � is well-founded. Since the actual proof
is not only rather elaborate but also contains many details that are completely outside the
scope of this paper, it is omitted here; those who are interested can �nd all details in [19].
�

Having proved that the ordering < is well-founded, we can use it in the proof of the
truth-theorem.

Theorem A.23 (The truth-theorem) Let � be some 1-logic. For any ' 2 L, and any
s 2 S� we have: M�; s j=

1 ' i� ' 2 s.

Proof: We prove the theorem by proving the following (stronger) properties for all ';  2 L,
i 2 A, � 2 Ac, and s 2 S�:

1. For all (0;  )� (0; ') we have: M�; s j=1  i�  2 s

2. For all (1; [doi(�)] ) < (0; ') we have:

(a)  2 t for t = r1(i; �)(s)) [doi(�)] 2 s

(b) if t = r1(i; �)(s) and [doi(�)] 2 s then  2 t

3. For all (1;Ai�) < (0; ') we have: c1(i; �)(s) = 1 i� Ai� 2 s

where r1 and c1 are the functions induced by r� and c� in the way described in De�nition 3.4.
The theorem then follows from the �rst item, since (0; ') � (0; '). So let ' 2 L be some
�xed formula. We start by proving the �rst property. Let  2 L be such that (0;  )� (0; ').
Consider the various cases for  :

�  = p, for p 2 �. By de�nition of �� we have that ��(p; s) = 1 i� p 2 s.

�  =  1 ^  2. Since (0;  1) < (0;  1 ^  2) and (0;  2) < (0;  1 ^  2), we have that
M�; s j=1  1^ 2 i� (M�; s j=1  1 and M�; s j=1  2) i�  1 2 s and  2 2 s (by induction
on (1)) i�  1 ^  2 2 s (since s is a (maximal) theory).

�  = : 1. Since (0;  1) < (0;: 1) we have that M�; s j=
1 : 1 i� not(M�; s j=

1  1) i�
not( 1 2 s) (by induction on (1)) i� : 1 2 s since s is (a) maximal (theory).
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�  = Ki 1. We will prove two implications:

`(' Suppose Ki 1 2 s. Then by de�nition of R�(i),  1 2 t for all t such that (s; t) 2
R�(i). Since (0;  1) < (0;Ki 1), this implies that M�; t j=

1  1 for all t 2 S� with
(s; t) 2 R�(i), hence M�; s j=1 Ki 1.

`)' Suppose M�; s j=1 Ki 1. Now if for t 2 S�, (s; t) 2 R�(i), then M�; t j=1  1. Since
(0;  1) < (0;Ki 1), we have by induction on (1) that  1 2 t, for all t 2 S� with
(s; t) 2 R�(i). This implies that  1 belongs to every maximal theory containing
s=Ki, and by Proposition A.14 we conclude that s=Ki `

�  1. By Corollary A.11
we conclude that Ki 1 2 s.

�  = [doi(�)] 1. We will prove two implications:

`(' Let [doi(�)] 1 2 s. Let t = r1(i; �)(s). Since (1; [doi(�)] 1) < (0; [doi(�)] 1),
we �nd by induction on (2b) that  1 2 t. Since (0;  1) < (0; [doi(�)] 1), we �nd
by induction on (1) that M�; t j=1  1, if t = r1(i; �)(s). But this implies that
M�; s j=

1 [doi(�)] 1.

`)' Suppose M�; s j=
1 [doi(�)] 1. This implies that M�; t j=

1  1 if t = r1(i; �)(s).
Since (0;  1) < (0; [doi(�)] 1) we have by induction on (1) that  1 2 t if t =
r1(i; �)(s). Now since (1; [doi(�)] 1) < (0; [doi(�)] 1), we conclude by induction
on (2a) that [doi(�)] 1 2 s.

�  = Ai�. Since (1;Ai�) < (0;Ai�) we �nd by induction on (3) that M�; s j=1 Ai� i�
c1(i; �)(s) = 1 i� Ai� 2 s.

Next we prove (2a). Let (1; [doi(�)] ) < (0; '). Consider the various possibilities for �.

� � = a, for a 2 At. Assume that  2 t if t = r�(i; a)(s). By de�nition of r� this
implies that  is in every maximal theory containing s=[doi(a)], i.e. s=[doi(a)] `

�  . By
Corollary A.11 we conclude that [doi(a)] 2 s.

� � = confirm 1. Assume that  2 t for t = r1(i; confirm 1)(s). If M�; s j=
1  1 we

have that s = t, by de�nition of r1. Then  2 s, and, since s is a theory, this implies
: 1_ 2 s, which in turn implies [doi(confirm 1)] 2 s. If M�; s j=

1 : 1 then, since
(0;: 1) < (1; [doi(confirm 1)] ), we have by induction on (1) that : 1 2 s, hence
: 1 _  2 s, and thus [doi(confirm 1)] 2 s.

� � = �1;�2. Assume that  2 t for t = r1(i; �1;�2)(s). By de�nition of r1 this
implies that  2 t for t = r1(i; �2)(u) for u = r1(i; �1)(s). Since (1; [doi(�2)] ) <
(1; [doi(�1;�2)] ) we have that [doi(�2)] 2 u for u = r1(i; �1)(s). Since furthermore
(1; [doi(�1)][doi(�2)] ) < (1; [doi(�1;�2)] ) we have that [doi(�1)][doi(�2)] 2 s. Since
s is closed under the axioms of �1 and MP, this implies that [doi(�1;�2)] 2 s.

� � = if' then�1 else�2 fi. Let  2 t for t = r1(i; if' then�1 else�2 fi)(s). Then
 2 t for all t = r1(i; confirm';�1)(s) and  2 t for all t = r1(i; confirm:';�2)(s).
Since we have both (1; [doi(confirm';�1)] ) < (1; [doi(if' then�1 else�2 fi)] ) and
(1; [doi(confirm:';�2)] ) < (1; [doi(if' then�1 else�2 fi)] ) we have by induction
that [doi(confirm';�1)] 2 s and [doi(confirm:';�2)] 2 s, and, since s is a theory,
[doi(if' then�1 else�2 fi)] 2 s.
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� � = while' do�od. Assume that  2 t for t = r1(i; while' do� od)(s). Since
r1(i; while' do� od)(s) = [k2INr

1(i; (confirm';�)k; confirm:')(s), we have that
 2 t for all t = r1(i; (confirm';�)k; confirm:')(s), for all k 2 IN. Now since we
have that (1; [doi((confirm';�)

k; confirm:')] ) < (1; [doi(while' do� od)] ) for all
k 2 IN we have by induction on (2a) that  k(i; '; �) 2 s for all k 2 IN, and since s is
closed under 
A this implies that [doi(while' do�od)] 2 s.

We continue with proving (2b). So let again (1; [doi(�)] ) < (0; '), and consider the
various possibilities for �.

� � = a, for a 2 At. If t = r�(i; a)(s) and [doi(a)] 2 s, then by de�nition of r�,  2 t.

� � = confirm 1. Let t = r1(i; confirm 1)(s) and [doi(confirm 1)] 2 s. By de�ni-
tion of r1, M�; s j=1  1 and s = t. Since (0;  1) < (0;: 1) < (1; [doi(confirm 1)] ),
we �nd by induction on (1) that  1 2 s. Since s is a theory, [doi(confirm 1)] 2 s
implies that : 1 _  2 s, and, since s is maximal, we conclude that  2 s.

� � = �1;�2. Let t = r1(i; �1;�2)(s) and [doi(�1;�2)] 2 s. Then, by de�nition of r1,
we have that t = r1(i; �2)(u) for some u 2 S� such that u = r1(i; �1)(s). Since s is
closed under the axioms and proof rules of �1 we have that [doi(�1)][doi(�2)] 2 s, and
hence, since (1; [doi(�1)][doi(�2)] ) < (1; [doi(�1;�2)] ), we have by induction on (2b)
that [doi(�2)] 2 u. But this implies, since (1; [doi(�2)] ) < (1; [doi(�1;�2)] ), that
 2 t.

� � = if' then�1 else�2 fi. Let t = r1(i; if' then�1 else�2 fi)(s) and let further-
more [doi(if' then�1 else�2 fi)] 2 s. Then either t = r1(i; confirm';�1)(s) or
t = r1(i; confirm:';�2)(s). If [doi(if' then�1 else�2 fi)] 2 s,then, since s is
a theory, both [doi(confirm';�1)] 2 s and [doi(confirm:';�2)] 2 s. Since it
holds that both (1; [doi(confirm';�1)] ) < (1; [doi(if' then�1 else�2 fi)] ) and
(1; [doi(confirm:';�2)] ) < (1; [doi(if' then�1 else�2 fi)] ) we have by induction
on (2b) that  2 t.

� � = while' do� od. Let t = r1(i; while' do� od)(s) and [doi(while' do� od)] 2 s.
Since s is a theory, we have that  l(i; '; �) 2 s, for all l 2 IN. By de�nition of r1,
it holds that t = r1(i; (confirm';�)k; confirm:')(s) for some k 2 IN. Now since
(1;  l(i; '; �))< (1; [doi(while' do� od)] ) for all l 2 IN, we conclude by induction on
(2b) that  2 t.

Finally we come to the proof of item (3). Let (1;Ai�) < (0; '). Consider the various cases
for �.

� � = a, where a 2 At. Now c�(i; a)(s) = 1 i� Aia 2 s, by de�nition of c�.

� � = confirm 1. By de�nition, c1(i; confirm 1)(s) = 1 i� M�; s j=1  1 i�, since
(0;  1) < (0;Aiconfirm 1),  1 2 s i� Aiconfirm 1 in s, since s is a theory.

� � = �1;�2. We prove two implications:

`(' Since s is a theory, Ai�1;�2 2 s i� Ai�1 2 s and [doi(�1)]Ai�2 2 s. Since
(1;Ai�1) < (1;Ai�1;�2), we �nd by induction on (3) that c1(i; �1)(s) = 1. Now
suppose t = r1(i; �1)(s). Since (1; [doi(�1)]Ai�2) < (1;Ai�1;�2), we �nd by
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induction on (2b) that Ai�2 2 t. Furthermore, since (1;Ai�2) < (1;Ai�1;�2), the
latter implies that c1(i; �2)(t) = 1, for all t = r1(i; �1)(s), which, together with
c1(i; �1)(s) = 1, su�ces to conclude that c1(i; �1;�2)(s) = 1.

`)' By de�nition, c1(i; �1;�2)(s) = 1 i� c1(i; �1)(s) = 1 and c1(i; �2)(t) = 1 for all
t = r1(i; �1)(s). Now since (1;Ai�1) < (1;Ai�1;�2), we conclude by induction
on (3) that Ai�1 2 s. Furthermore, since (1;Ai�2) < (1;Ai�1;�2), we have that
Ai�2 2 t, for all t = r1(i; �1)(s). Now since (1; [doi(�1)]Ai�2) < (1;Ai�1;�2), we
�nd by induction on (2a) that [doi(�1)]Ai�2 2 s. But then, since s is a theory, we
conclude that Ai�1;�2 2 s.

� � = if' then�1 else�2 fi. By de�nition of < we have that (1;Aiconfirm';�1) <
(1;Aiif' then�1 else�2 fi) and furthermore that (1;Aiconfirm:';�2) <
(1;Aiif' then�1 else�2 fi). This implies that c1(i; if' then�1 else�2 fi)(s) = 1

i� c1(i; confirm';�1)(s) = 1 or c1(i; confirm:';�2)(s) = 1 i� | by induction on
(3) | Aiconfirm';�1 2 s or Aiconfirm:';�2 2 s i� Aiif' then�1 else�2 fi 2 s,
since s is a theory.

� � = while' do� od. We prove two implications:

`(' LetAiwhile' do� od 2 s. Then, since s is maximal, :Aiwhile' do� od 62 s, and,
since s is closed under 
IA, this implies that :('k(i; �)) 62 s, for some k 2 IN, and,
again since s is maximal, 'k(i; �) 2 s. Since (1; 'l(i; �)) < (1;Aiwhile' do� od)
for all l 2 IN, we have by induction on (3) that c1(i; (confirm';�)k; confirm:')(s) =
1, and, by de�nition of c1, this implies c1(i; while' do� od)(s) = 1.

`)' If c1(i; while' do�od)(s) = 1, then c1(i; (confirm';�1)k; confirm:')(s) = 1

for some k 2 IN. Since (1; 'l(i; �)) < (1;Aiwhile' do� od) for all l 2 IN, this im-
plies by induction on (3) that 'k(i; �) 2 s. Then, since s is a theory, :('k(i; �)) 62
s, and, by item 7 of Proposition A.3, it follows that :Aiwhile' do� od 62 s. Now
since s is maximal it follows that Aiwhile' do�od 2 s.

Having proved the items (1), (2) and (3) su�ces to prove that the truth-theorem holds.
�

The proof of the truth-theorem for 0-logics is almost identical to the one given for The-
orem A.23. One just needs to change one clause in the de�nition of the �-relation, used to
apply induction upon, and modify the proof of the truth-theorem accordingly.

De�nition A.24 The ordering <0 is de�ned as the transitive closure of the smallest relation
on f0; 1g � L satisfying the constraints 1 through 15 and 17 through 20 as given in De�ni-
tion A.20 and the constraint

160. (1; [doi(�1)]:Ai�2) � (1;Ai�1;�2)

The ordering �0 is de�ned to be the re
exive closure of <0.

The only modi�cation to the proof of the truth-theorem for 1-logics that is required
to end up with a proof of a truth-theorem for 0-logics concerns the proof of property (3)
for sequentially composed actions, i.e. the proof that c0(i; �1;�2)(s) = 1 i� Ai�1;�2 2 s,
whenever (1;Ai�1;�2) <

0 (0; '). We will show this by proving two implications:
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`(' Since s is a �-theory, Ai�1;�2 in s i� Ai�1 2 s and :[doi(�1)]:Ai�2 2 s. Since
(1;Ai�1) <

0 (1;Ai�1;�2) we �nd by induction on (3) that c0(i; �1)(s) = 1. Since
(1; [doi(�1)]:Ai�2) <

0 (1;Ai�1;�2), we �nd by induction on (2b), read in its contra-
positive form, that for some t 2 S�, t = r0(i; �1)(s) with :Ai�2 62 t. Now since t is
maximal, this implies that Ai�2 2 t. Since (1;Ai�2) <

0 (1;Ai�1;�2) the latter implies
that c0(i; �2)(t) = 1. Together with c0(i; �1)(s) = 1 this su�ces to conclude that
c0(i; �1;�2)(s) = 1.

`)' By de�nition, c0(i; �1;�2)(s) = 1 i� c0(i; �1)(s) = 1 and for some t 2 S�, t =
r0(i; �1)(s) and c0(i; �2)(t) = 1. Now since (1;Ai�1) <

0 (1;Ai�1;�2) we have by
induction on (3) that Ai�1 2 s. Furthermore, since (1;Ai�2) <

0 (1;Ai�1;�2), we
have for the aforementioned t that Ai�2 2 t. Hence we have some t 2 S� such that
t = r0(i; �1)(s) and Ai�2 2 t while also Ai�1 2 s. Since t is maximal, :Ai�2 62 t.
And, rephrasing (2b) to `if t = r0(i; �)(s) and  62 t then [doi(�)] 62 s', we con-
clude by induction on (2b) that [doi(�1)]:Ai�2 62 s. Since s is maximal it follows that
:[doi(�1)]:Ai�2 2 s. Hence Ai�1 2 s and hdoi(�1)iAi�2 2 s, which, since s is a
�-theory, implies that Ai�1;�2 2 s, which was to be shown.

Having proved the truth-theorem both for 1-logics and for 0-logics, we can prove that de-
ducibility for a logic � corresponds with validity in the canonical model M�.

Proposition A.25 For all b-logics � and all ' 2 L we have: `� ' i� M� j=b '.

Proof: Let ' 2 L be arbitrary. Then we have:

`� ' i� ' 2 s, for all s 2 S�
i� M�; s j=

b ' for all s 2 S�
i� M� j=b '

�

Using the propositions and theorems shown above, we can now prove those given in
Section 6. Note that Proposition 6.10 is already shown as the third item of Proposition A.6.

6.7. Theorem. For b 2 bool and all ' 2 L we have:

� `b ',j=b '

Proof: We prove the theorem by proving two implications.

`(' If j=b ' then M j=b ' for all M 2M. Since MLCapb 2M it follows that MLCapb j=
b '.

By Proposition A.25 it then follows that `b '.

`)' Suppose `b ' and let M 2 M. By Proposition A.2 we have that f 2 L j M j=b  g
is a b-logic. Since LCapb is the smallest b-logic, it follows that whenever ' 2 LCapb
also ' 2 f 2 L j M j=b  g, and hence M j=b '. Since M is arbitrary, it follows that
M j=b ' for all M 2M and thus j=b ', which was to be shown.

�

6.11. Proposition. The proof systems �1 and �0 are strongly complete, i.e. every set � � L
that is LCapb-consistent is j=b-satis�able.
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Proof: The proposition follows, for arbitrary logics, directly from the proof of Proposi-
tion A.14. For if � is �-consistent, then by the procedure given in the proof of Proposi-
tion A.14 one constructs a maximal �-theory � that contains �. This � appears as a state in
the canonical model for �, and by the truth-theorems, all formulas from � | and hence from
� | are satis�ed at this state. Hence every �-consistent set � is satis�ed at some state of the
canonical model for �, and since this canonical model is a well-de�ned one, the proposition
follows.
�
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