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Abstract

By subjecting a Bayesian belief network to a sensitivity
analysis with respect to its conditional probabilities, the
reliability of its output can be evaluated. Unfortunately,
straightforward sensitivity analysis of a belief network is
highly time-consuming, as a result of the usually large
number of probabilities to be investigated. In this paper,
we show that the graphical independence structure of a
Bayesian belief network induces various properties that
allow for reducing the computational burden of a sensi-
tivity analysis. We show that several analyses can be
identi�ed as being uninformative because the condition-
al probabilities under study cannot a�ect the network's
output. In addition, we show that the analyses that are
informative comply with simple mathematical functions.
By exploiting these properties, the practicability of sen-
sitivity analysis of Bayesian belief networks is enhanced
considerably.

AMS classi�cation: 60K10, 62A15, 62N05, 68Q25.
Key words : Probabilistic models, Bayesian belief net-
works, sensitivity analysis, computational e�ciency.

1 INTRODUCTION

Bayesian belief networks have become widely accepted as
intuitively appealing probabilistic models that are highly
valuable in addressing real-life problems in such complex
domains as medical diagnosis, weather forecast, and prob-
abilistic information retrieval. A Bayesian belief network
basically is a concise representation of a joint probability
distribution on a set of statistical variables. It encodes,
in a graphical structure, the variables under study, along

with their independences; the dependences among the
variables are captured by conditional probabilities (Pearl,
1988).

The conditional probabilities of a Bayesian belief network
are generally assessed from statistical data or by human
experts. As a result of incompleteness of data and par-
tial knowledge of the problem domain being modelled,
the assessments obtained are inevitably inaccurate. In-
accuracies in the assessments for the various conditional
probabilities in
uence the reliability of the network's out-
put. In a medical application, for example, erroneous di-
agnoses or non-optimal treatment recommendations may
result from building on inaccurate assessments.

The reliability of the output of a Bayesian belief network
can be evaluated by subjecting the network to a sensitiv-
ity analysis. In general, sensitivity analysis of a mathe-
matical model amounts to investigating the e�ects of the
inaccuracies in the model's parameters on its output; to
this end, the model's parameters are varied systematically
(Morgan and Henrion, 1990; Habbema et al., 1990). For
a Bayesian belief network, sensitivity analysis amounts to
varying the assessments for one or more of its conditional
probabilities simultaneously and investigating the e�ects
of deviation on a probability of interest or, for example,
on a diagnosis or decision based upon this probability of
interest (Laskey, 1995; Coup�e et al., 1998).

Straightforward sensitivity analysis of a Bayesian belief
network, unfortunately, is highly time-consuming. In the
simplest type of analysis, for example, for every single
conditional probability, a number of deviations from its
assessment is investigated. For every value under study,
the probability of interest is computed from the network.
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Even for a rather small belief network, this easily requires
tens of thousands of network computations. In fact, the
computational burden involved is prohibitive when sensi-
tivity analysis is to be used for verifying the reliability of
a belief network's output in, for example, daily medical
practice. To be of practical use, therefore, more e�cient
methods for sensitivity analysis of Bayesian belief net-
works should be found.

In earlier work on sensitivity analysis of Bayesian belief
networks, K. Blackmond Laskey has introduced an ef-
�cient method for computing sensitivity values from a
belief network (Laskey, 1995). A sensitivity value is the
partial derivative of the network's probability of inter-
est with respect to a conditional probability under study:
it is a �rst-order approximation of the e�ect of deviation
from this probability's assessment. Compared to straight-
forward variation of conditional probabilities, Laskey's
method requires considerably less computational e�ort.
The method, however, provides insight in the e�ect of
small deviations from an assessment only: as Laskey in-
dicates, when larger deviations are considered, the qual-
ity of the approximation may break down rapidly. As
the assessments for a network's conditional probabilities
are often quite inaccurate, we feel that exact sensitivity
analysis of a Bayesian belief network is preferred to ap-
proximate analysis.

In this paper, we show that the graphical independence
structure of a Bayesian belief network induces various
properties that allow for reducing the computational bur-
den of exact sensitivity analysis. We show that, by in-
spection of a network's structure, conditional probabili-
ties can be identi�ed that upon variation cannot in
uence
the probability of interest. Analyses with respect to these
probabilities can be excluded from the overall analysis as
they are uninformative. We further show that analyses
that are informative comply with simple mathematical
functions relating the network's probability of interest
to the conditional probabilities under study. Comput-
ing the constants in these functions su�ces to determine
the sensitivity of the probability of interest to the condi-
tional probabilities at hand. These properties with each
other provide for a method for exact sensitivity analy-
sis of Bayesian belief networks that requires considerably
less computational e�ort than straightforward variation
of probabilities.

The paper is organised as follows. In Section 2, we pro-
vide some preliminaries on Bayesian belief networks. In
the subsequent sections, we present the properties of sen-
sitivity analysis outlined above: in Section 3 we address
identifying uninformative analyses and in Section 4 we
discuss the mathematical functions that informative anal-
yses comply with. In our discussions, we focus on one-way

sensitivity analysis of Bayesian belief networks, in which
probabilities are investigated one at a time. The paper
ends with some conclusions and directions for further re-
search in Section 5.

2 BELIEF NETWORKS

A Bayesian belief network is a concise representation of
a joint probability distribution on a set of statistical vari-
ables, consisting of a graphical structure and an associat-
ed set of probabilities.

The graphical structure of a Bayesian belief network en-
codes the independences holding among the variables in
the represented probability distribution. It takes the form
of an acyclic directed graph G = (V (G); A(G)), where
V (G) is a �nite set of nodes and A(G) is a set of arcs.
Each node Vi in G represents a statistical variable that
takes one of a �nite set of values. The digraph's set of arcs
A(G) models the independences among the represented
variables. Informally speaking, we take an arc Vi ! Vj
to represent an in
uential relationship between the vari-
ables Vi and Vj ; the arc's direction marks Vj as the e�ect
of the cause Vi. Absence of an arc between two nodes
means that the corresponding variables do not in
uence
each other directly and, hence, are (conditionally) inde-
pendent.

Associated with the graphical structure of a Bayesian be-
lief network are numerical quantities from the represented
probability distribution. With each node Vi in the net-
work's digraph G is associated a set of conditional proba-
bilities p(Vi j �G(Vi)), describing the joint in
uence of the
various values for Vi's (immediate) predecessors �G(Vi) on
the probabilities of the values of Vi itself.

We de�ne the semantics of a Bayesian belief network more
formally (Pearl, 1988). In doing so, we assign a proba-
bilistic meaning to a network's digraph.

De�nition 2.1 Let G = (V (G); A(G)) be an acyclic di-

graph and let t be a trail in G between the nodes Vi and Vj .

We say that t is blocked by the set of nodes Y � V (G), if
either Vi or Vj is included in Y , or t contains three con-

secutive nodes X1; X2; X3 for which one of the following

conditions holds:

� arcs X1  X2 and X2 ! X3 are on the trail and

X2 2 Y ;

� arcs X1 ! X2 and X2 ! X3 are on the trail and

X2 2 Y ;

� arcs X1 ! X2 and X2  X3 are on the trail, and

��G(X2) \ Y = ?, where ��G(X2) is the set of nodes
composed of X2 itself and all its descendants.
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Building on the notion of blocking, we de�ne the d-sepa-
ration criterion for sets of trails.

De�nition 2.2 Let G = (V (G); A(G)) be an acyclic di-

graph and let X;Y; Z � V (G). The set of nodes Y is said

to d-separate the sets X and Z, denoted hX j Y j ZidG, if
for each Vi 2 X and Vj 2 Z every trail from Vi to Vj in

G is blocked by Y .

The d-separation criterion provides for reading indepen-
dences from a belief network's graphical structure, as in-
dicated in the following theorem.

Theorem 2.3 Let B be a Bayesian belief network with

the digraph G = (V (G); A(G)) and the conditional prob-

abilities p(Vi j �G(Vi)), Vi 2 V (G). Then,

Pr(V (G)) =
Y

Vi2V (G)

p(Vi j �G(Vi))

de�nes a joint probability distribution Pr on V (G) such
that for all sets X;Y; Z � V (G), if hX j Y j ZidG, then X

and Z are conditionally independent given Y in Pr.

From the previous theorem, we have that a Bayesian belief
network provides all information necessary for uniquely
de�ning a joint probability distribution on the variables
discerned, that respects the independences portrayed by
its graphical structure. A belief network therefore pro-
vides for computing any (prior or posterior) probability
of interest, for which purpose various algorithms are avail-
able (Pearl, 1988; Lauritzen and Spiegelhalter, 1988).

3 UNINFORMATIVE ANALYSES

In a one-way sensitivity analysis of a Bayesian belief net-
work, the sensitivity of the network's probability of inter-
est in essence is investigated with respect to every single
conditional probability. By inspection of the network's
graphical structure, however, various conditional proba-
bilities can be identi�ed that upon variation cannot in
u-
ence the probability of interest. We say that the probabil-
ity of interest is algebraically independent of these condi-
tional probabilities; for abbreviation, we will write p 6� q

to denote that the probabilities p and q are algebraical-
ly independent. For a conditional probability of which
the probability of interest is algebraically independent,
no further analysis is required. The sensitivity analysis of
the belief network under study can therefore be restricted
to the conditional probabilities of which the probability
of interest is algebraically dependent. The nodes to which
these probabilities refer constitute the sensitivity set for
the node of interest. We de�ne the concept of sensitivity
set more formally.

De�nition 3.1 Let B be a Bayesian belief network with

the digraph G = (V (G); A(G)). Let O � V (G) be the

set of observed nodes in G and let Vr 2 V (G) be the net-
work's node of interest. Now, let G� be the digraph that

is constructed from G by adding to each node Vi 2 V (G)
an auxiliary predecessor Xi. Then, the sensitivity set for
Vr given O, denoted Sen(Vr; O), is the set of all nodes

Vi 2 V (G) for which :hfXig j O j fVrgi
d
G� .

The following proposition now asserts that the probabil-
ity of interest of a Bayesian belief network indeed is al-
gebraically independent of the conditional probabilities
that are speci�ed for any node that is not included in the
sensitivity set under study.

Proposition 3.2 Let B be a Bayesian belief network with

the digraph G = (V (G); A(G)) and the conditional prob-

abilities p(Vi j �G(Vi)), Vi 2 V (G); let Pr be the joint

probability distribution de�ned by B. Let O � V (G) be
the set of observed nodes in G and let o denote the cor-

responding observations. Let Vr be the network's node of

interest. Then, for every node Vi 62 Sen(Vr ; O), we have

that Pr(vr j o) 6� p(Vi j �G(Vi)), for any value vr of Vr.

From the previous proposition, we �nd that a belief net-
work's probability of interest Pr(vr j o) is algebraically
independent of the conditional probabilities of any node
Vi for which one of the following properties holds:

� Vi 2 �
�

G(Vr) and h(fVig [ �G(Vi)) j O j fVrgi
d
G;

� Vi 62 ��G(Vr), h(fVig [ �G(Vi)) j O j fVrgi
d
G, and

��G(Vi) \O 6= ?;

� Vi 62 �
�

G(Vr) and ��G(Vi) \ O = ?;

where ��G(Vr) is used to denote the set of nodes composed
of Vr along with all its ancestors and ��G(Vi) once more
denotes the set of nodes including Vi and all its descen-
dants. Informally speaking, any causal in
uence originat-
ing from an ancestor Vi of the node Vr is shielded from the
probability of interest Pr(vr j o) if both Vi and its imme-
diate predecessors are d-separated from Vr by the set of
observed nodes. Under similar conditions, any diagnostic
in
uence from a non-ancestor Vi of Vr is shielded from
the probability of interest. A non-ancestor without any
observed descendants, to conclude, cannot exert nor pass
on any diagnostic in
uence on the probability of interest.
Further details are provided in an extended technical pa-
per (Coup�e and Van der Gaag, 1998).

We illustrate the concept of sensitivity set and its use by
means of an example.

Example 3.3 We consider a one-way sensitivity analysis
of the well-known alarm-network (Beinlich et al., 1989).
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Figure 1: The digraph of the alarm-belief network.

For ease of reference, the digraph of the network is repro-
duced in Figure 1; the network's conditional probabilities
are not given here, because of space limitations. For our
probability of interest, we take the probability that LV
failure is true; the node of interest is indicated by a dou-
ble circle in the �gure. The network's observable nodes
are drawn with shading. We now consider the sensitivity
set for the node LV failure given di�erent sets of observed
nodes. If the set of observed nodes is empty, that is, if
no observations are available, the sensitivity set for LV
failure equals

Sen(LV failure ;?) = fHistory ;LV failureg

Upon performing a one-way sensitivity analysis of the a
priori network, therefore, only the conditional probabili-
ties of these two nodes need be investigated. Now, sup-
pose that we would like to evaluate the sensitivity of the
network's probability of interest in view of observations
for the nodes in the set O1 = fHistory ;CVP ;TPR;Blood
pressure; COg. The sensitivity set for LV failure given
O1 equals

Sen(LV failure ; O1) = fLV failure ;Hypovolemia ;

LVED ;CVP ;Stroke vol ;CO ; Insu� anest ;Cate�
cholamine ;Heart rate;Art CO2 ;SaCO2 ;PA SAT ;

FiO2 ;Vent alv ;Shunt; Intubation;Pulm Embg

From the 37 nodes included in the network, the condition-
al probabilities of only 17 nodes need now be investigat-
ed. If in addition an observation is assumed for the node
SaCO2 , rendering O2 for the set of observed nodes, the
sensitivity set reduces in size from 17 nodes to 10 nodes:

Sen(LV failure ; O2) = fLV failure ;Hypovolemia ;

LVED ;CVP ;Stroke vol ;CO ; Insu� anest ;Cate�
cholamine ;Heart rate;Art CO2g

2

From the previous discussion, we conclude that in a one-
way sensitivity analysis of a Bayesian belief network, anal-
yses with respect to the conditional probabilities of nodes
that are not included in a sensitivity set under study are
uninformative and can therefore be excluded from the
overall analysis. Also, analyses with respect to condition-
al probabilities that are incompatible with any of the ob-
servations can be excluded as being uninformative. In re-
cent experiments on randomly generated belief networks,
we have found that excluding the indicated analyses may
lead to a considerable reduction of the computational bur-
den involved (Coup�e and Van der Gaag, 1998).

4 INFORMATIVE ANALYSES

In the previous section, we have shown that the graphical
structure of a Bayesian belief network induces algebraic
independence of the probability of interest with regard
to several of the network's conditional probabilities. For
the other conditional probabilities, the graphical struc-
ture strongly constrains the shape of the associated sen-
sitivity analyses' curves: the network's probability of in-
terest relates as a quotient of two linear functions to a
conditional probability under study. We state this prop-
erty more formally.

Proposition 4.1 Let B be a Bayesian belief network with

the digraph G = (V (G); A(G)) and the conditional prob-

abilities p(Vi j �G(Vi)), Vi 2 V (G); let Pr be the joint

probability distribution de�ned by B. Let O � V (G) be
the set of observed nodes in G and let o denote the cor-

responding observations. Let Vr be the network's node of

interest and let Sen(Vr ; O) be the sensitivity set for Vr
given O. Then, for every conditional probability x for

every node Vi 2 Sen(Vr; O), we have that

Pr(vr j o) =
a � x+ b

c � x+ d
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for any value vr of Vr, where a, b, c, and d are constants.

Proof (Sketch). The probability of interest equals

Pr(vr j o) =
Pr(vr ^ o)

Pr(o)

We recall from Section 2 that the joint probability dis-
tribution Pr that is de�ned by the belief network under
study, can be written as a product of its conditional prob-
abilities. From the basic property of marginalisation, we
further have that both Pr(vr ^ o) and Pr(o) can be writ-
ten as a sum of products of conditional probabilities. By
separating, in these sums, the terms that specify the con-
ditional probability x and those that do not, it is readily
seen that Pr(vr ^ o) as well as Pr(o) relate linearly to
x. In addition, it will be evident that the constants a, b,
c, and d in the quotient stated above are built from the
network's conditional probabilities. For a more detailed
proof, we refer the reader to our extended technical paper
(Coup�e and Van der Gaag, 1998). 2

The mathematical function stated in the previous propo-
sition reduces to a linear function for a conditional prob-
ability that pertains to a node from the sensitivity set
under study that does not have any observed descendants.

Proposition 4.2 Let B be a Bayesian belief network as

before. Let O � V (G) once again be the set of observed

nodes in G, with the corresponding observations o. Let Vr
be the network's node of interest and let Sen(Vr; O) be the
sensitivity set for Vr given O as before. Then, for every

conditional probability x for every node Vi 2 Sen(Vr ; O)
with ��(Vi) \ O = ?, we have that

Pr(vr j o) = a � x+ b

for any value vr of Vr, where a and b are constants.

Proof (Sketch). The probability of interest once again
equals

Pr(vr j o) =
Pr(vr ^ o)

Pr(o)

As we have argued before, the probability Pr(vr ^ o) re-
lates linearly to the conditional probability x under study.
We now observe that the probability of a combination
of observations is algebraically independent of the condi-
tional probabilities of any non-ancestor without observed
descendants. From this property, we have that the proba-
bility Pr(o) is algebraically independent of the conditional
probability x under study. We conclude that Pr(o) is a
constant with respect to x. The reader is referred once
more to our extended paper for a detailed proof (Coup�e
and Van der Gaag, 1998). 2

Note that from the previous proposition we have that, if

no observations are available, a belief network's probabil-
ity of interest relates linearly to the conditional probabil-
ities of all nodes in a sensitivity set under study.

We illustrate the basic idea of the two propositions by
means of our running example.

Example 4.3 We consider once more a one-way sensitiv-
ity analysis of the alarm-network, taking the probability
that LV failure is true for the probability of interest. In
Example 3.3 we have seen that, if no observations are
available, the sensitivity set for the node of interest LV
failure comprises the two nodes History and LV failure

only. As these nodes do not have any observed descen-
dants, we have from Proposition 4.2 that the probabili-
ty of interest relates linearly to the prior probabilities of
History and to the conditional probabilities of LV fail-

ure given History. As an example, Figure 2 depicts the
probability of interest as a function of the conditional
probability p(LV failure = true j History = false). Now

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 2: The probability Pr(LV failure = true) as a
function of p(LV failure = true j History = false).

assume that we would like to evaluate the network's prob-
ability of interest in view of observations o for the nodes
in the set O2 from Example 3.3. We recall that the sen-
sitivity set for LV failure given O2 includes the nodes LV
failure, Hypovolemia, LVED, CVP, Stroke vol, CO, Insu�
anest, Catecholamine, Heart rate, and Art CO2. We ob-
serve that these nodes each have at least one observed
descendant. From Proposition 4.1 we now have that the
probability of interest relates as a quotient of two linear
functions to the conditional probabilities of any of these
nodes. As an example, Figure 3 depicts the probabili-
ty of interest Pr(LV failure = true j o) as a function
of the prior probability p(Hypovolemia = true). Note
that the function is in fact non-linear in the probabili-
ty under study. To conclude, we would like to note that
absence of linearly related conditional probabilities is typ-
ically found in Bayesian belief networks for diagnostic ap-
plications where the nodes of interest are located mainly
in the upper part of the network and observable nodes
are located in its lower part. 2
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Figure 3: The probability Pr(LV failure = true j o) as a
function of p(Hypovolemia = true).

Knowledge of the mathematical functions relating a Bayes-
ian belief network's probability of interest to its condi-
tional probabilities allows for considerably reducing the
computational burden of a one-way sensitivity analysis
of the network. For the conditional probabilities under
study, only the constants in these functions need be de-
termined, rendering systematic variation of their assess-
ments unnecessary. These constants can be determined
by computing the probability of interest from the network
for a small number of values for a conditional probability
under study and solving the resulting system of equations.
For a conditional probability that is related linearly to the
probability of interest, two network computations su�ce;
for all other probabilities, three network computations are
required. Alternatively, the constants can be computed
directly from the belief network at hand.

5 CONCLUSIONS

Sensitivity analysis of a Bayesian belief network can be
performed by systematically varying the assessments for
its conditional probabilities. Unfortunately, even for a
rather small belief network such a straightforward analy-
sis is too time-consuming to be of any practical use. In
this paper, we have shown, however, that the graphical
structure of a belief network induces algebraic indepen-
dence of the network's probability of interest with regard
to several of its conditional probabilities. Analyses with
respect to these conditional probabilities can be exclud-
ed from the overall analysis as they are uninformative.
We have further shown that the graphical structure in-
duces simple mathematical functions relating the prob-
ability of interest to the conditional probabilities under
study. Computing the constants in these functions re-
quires far less computational e�ort than systematic vari-
ation of probabilities.

In this paper, we have focused attention on a one-way sen-
sitivity analysis of a Bayesian belief network, in which the
network's conditional probabilities are investigated one at

a time. It is also possible to subject a belief network to a
two-way sensitivity analysis in which conditional proba-
bilities are investigated pairwise. Such an analysis serves
to reveal how two conditional probabilities under study
interact to a�ect the probability of interest. The results
that we have presented in this paper are easily generalised
to a two-way sensitivity analysis of a Bayesian belief net-
work (Coup�e and Van der Gaag, 1998).

In the near future, we envision further investigation of the
properties of sensitivity analysis of Bayesian belief net-
works, both from a theoretical and an experimental point
of view. Our experiments so far on randomly generated
belief networks and on the alarm-network have shown
considerable computational savings. Motivated by these
initial results, we hope to be able to arrive at a generally
applicable, practicable method for sensitivity analysis of
Bayesian belief networks.
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