
Decision Trees: Equivalence and Propositional Operations

Hans Zantema

Department of Computer Science, Utrecht University,
Padualaan 14, P.O. box 80.089, 3508 TB Utrecht, The Netherlands,

e-mail: hansz@cs.ruu.nl

Abstract. For the well-known concept of decision trees as it is used for inductive inference we
study the natural concept of equivalence: two decision trees are equivalent if and only if they
represent the same hypothesis. We present a simple e�cient algorithm to establish whether
two decision trees are equivalent or not. The complexity of this algorithm is bounded by the
product of the sizes of both decision trees.
The hypothesis represented by a decision tree is essentially a boolean function, just like a
proposition. Although every boolean function can be represented in this way, we show that
disjunctions and conjunctions of decision trees can not e�ciently be represented as decision
trees, and simply shaped propositions may require exponential size for representation as de-
cision trees.

1 Introduction

The problem of inductive inference, or shortly induction, in machine learning ([7]) can be described
as follows. Roughly speaking, a number of observations each having an outcome, has to be used to
predict the outcome of new observations. More precisely, given a �nite set of attributes A, a �nite
instance space X =

Q
a2AXa and a �nite training set of observations (xi; yi) 2 X �ftrue; falseg for

i = 1; 2; : : : ; n, we have to �nd a suitable total function h : X ! ftrue; falseg, called the hypothesis,
such that h(xi) = yi for all i = 1; 2; : : : ; n. The objective is to �nd a hypothesis reecting underlying
unknown regularities in the observations as much as possible. A standard way is by means of a
decision tree ([8]): a directed tree in which

{ every internal node including the root is labelled by an attribute a 2 A;
{ every internal node labelled by an attribute a 2 A has exactly #Xa outgoing edges, each of
them labelled by a unique element of Xa;

{ every leaf is labelled by true or by false.

Such a decision tree T represents a hypothesis in the following way: to compute the result of the
hypothesis for a particular instance start in the root of the tree and follow a path by choosing in
every node the edge labelled by the corresponding value. Then the result of the hypothesis is the
label of the leaf at the end of this path.

The standard way of decision tree induction is now as follows: for a training set of observations
�nd a corresponding decision tree T using some greedy algorithm, and yield the corresponding
hypothesis. For this purpose two decision trees behave equally if the two corresponding hypotheses
are equal. This is called decision equivalence ([2, 3]). This notion of equivalence is central in this
paper. It is a natural notion that has various practical implications. For instance, the standard
greedy algorithms for growing decision trees often yield a decision tree for which an equivalent
smaller decision tree exists. As an example consider the following training set of 16 observations
with three binary attributes p; q; r and one binary `result' :

frequency p q r result
5 true true true true
1 true true false false
1 true false true false
1 false true true true
4 false true false false
4 false false true false

Let T be the decision tree q(r(true; false); false), or r(q(true; false); false) by symmetry between q and
r, in the notation to be introduced in Section 2. The decision tree T represents the conjunction of q
and r and is consistent with all 16 observations. However, the standard greedy algorithm for growing
decision trees based on the information gain criterion as in [8] yields the decision tree p(T; T), which
is equivalent to the much smaller decision tree T . A usual objective, motivated by Occam's Razor,
is trying to �nd a decision tree that is as small as possible. Finding the smallest tree consistent with
some training set is NP-hard ([6]); from this example we see that replacing the resulting tree by
a smaller equivalent tree may already be helpful. In [3] an e�cient algorithm is presented for this
goal.

Instead of elaborating this kind of practical applications, in this paper we concentrate on basic
theoretical issues. We present a new quadratic algorithm for deciding whether two decision trees are
equivalent or not, more precisely, the complexity of the algorithm is bounded by the product of the
sizes of both decision trees.

Finally we compare propositions and decision trees; in fact the hypothesis represented by a deci-
sion tree is a function yielding a boolean value, just like a proposition. Since establishing equivalence
of propositions is known to be NP-complete and establishing equivalence of decision is done by a
quadratic algorithm we expect that e�cient representation of propositions as decision trees will not
be possible. Indeed we prove that in worst case for two given decision trees the smallest decision
tree yielding the disjunction of the hypotheses of both given trees has a size exceeding the product
of the sizes of the given trees, and similar for conjunction. Surprisingly, the upper and lower bounds
we can give for these sizes exactly coincide. Moreover, for arbitrary n we give a simple proposition of
size O(n) for which we prove that the size of the smallest decision tree representing this proposition
is exponential in n.

To keep the treatment concise we assume all attributes to be binary, i.e., Xa = ftrue; falseg for
all a 2 A. All our results straightforwardly generalize to arbitrary �nite sets Xa; we do not do it
here because of a lot of extra notation needed. In this way our treatment covers all decision trees
with nominally valued attributes; numeric attributes handled by binary splits are not covered.

In Section 2 we present the basic de�nitions. In Section 4 deciding equivalence of two decision
trees is discussed. The relation between propositions and decision trees is elaborated in Section 5.

2 Basic de�nitions

We consider a �nite set A of binary attributes of which typical elements are denoted by p; q; r; : : :.
An instance s over A is de�ned to be a map from A to ftrue; falseg; intuitively for an attribute p
and an instance s the value s(p) represents whether the boolean attribute p holds for the instance
s or not. Note that in the introduction we considered instances as being elements of

Q
a2AXa; by

the assumption that Xa = ftrue; falseg for all a 2 A this di�erence is only a matter of notation.

A decision tree over A is a binary tree in which every internal node is labelled by an attribute
and every leaf is labelled either true or false. More formally, the set D of decision trees is de�ned to
be the smallest set of strings satisfying

{ true 2 D, and

{ false 2 D, and

{ if p 2 A and T; U 2 D then p(T; U) 2 D.

Introducing the convention that in a decision tree the left branch of a node p corresponds to p taking
the value true and the right branch corresponds to false, a boolean value �(T; s) can be assigned to
every decision tree T and every instance s, inductively de�ned as follows

�(true; s) = true
�(false; s) = false

�(p(T; U); s) = �(T; s) if s(p) = true
�(p(T; U); s) = �(U; s) if s(p) = false.

2

Alternatively, in propositional notation the last two lines can be written as

�(p(T; U); s) = (s(p) ^ �(T; s)) _ (:s(p) ^ �(U; s));

or equivalently as �(p(T; U); s) = (s(p) ! �(T; s)) ^ (:s(p) ! �(U; s)). The function �(T;�) is
the hypothesis corresponding to T .

For any decision tree T let attr(T) be the set of attributes occurring in T , de�ned inductively by

attr(true) = attr(false) = ;;

attr(p(T; U)) = fpg [attr(T) [attr(U) for all p 2 A and all T; U 2 D.

For any decision tree T let depth(T) be the depth of T , de�ned inductively by

depth(true) = depth(false) = 0;

depth(p(T; U)) = 1 +max(depth(T); depth(U)) for all p 2 A and all T; U 2 D.

3 Decision equivalence

Two decision trees T and U are called decision equivalent, or shortly equivalent, denoted as T ' U ,
if

�(T; s) = �(U; s) for all s : A! ftrue; falseg.

Decision equivalence can be described by a �nite equational axiomatization as follows. Let E
consist of the equations

(1) p(x; x) = x

(2) p(q(x; y); q(z; w)) = q(p(x; z); p(y; w))
(3) p(p(x; y); z) = p(x; z)
(4) p(x; p(y; z)) = p(x; z)

for all p; q 2 A. Here x; y; z; w are variables from a set X of variable symbols for which decision trees
have to be substituted. More precisely, if � : X ! D, and t is a term built from attributes from A

and variables from X , then t� is de�ned inductively as follows

x� = �(x) for all x 2 X ,
p(t; u)� = p(t� ; u�) for all p 2 A.

Let �E be the congruence generated by E , i.e., �E is the smallest binary relation on D satisfying

{ t� �E u
� for every equation t = u in E and every � : X ! D, and

{ �E is reexive, symmetric and transitive, and

{ if T �E U then p(T; V) �E p(U; V) and p(V; T) �E p(V; U) for all p 2 A and all V 2 D.

We prove that E is a sound and complete axiomatization for decision equivalence, i.e., the re-
lations �E and ' on decision trees coincide. This means that two decision trees are equivalent if
and only if this can be derived by only applying the four types of equations in E . Our �rst theorem
states soundness of E .

Theorem1. If T �E U then T ' U .

3

Proof. Since ' is a congruence, it su�ces to prove that �(t� ; s) = �(u� ; s) for every equation t = u

in E , every � : X ! D, and every instance s. We prove this for all four types of equations.
(1): �(p(x; x)� ; s) = �(p(x� ; x�); s)

= (p(s) ^ �(x� ; s)) _ (:p(s) ^ �(x� ; s))
= �(x� ; s):

(2). If p(s) and q(s) then

�(p(q(x; y); q(z; w))� ; s) = �(x� ; s) = �(q(p(x; z); p(y; w))� ; s);

if p(s) and :q(s) then

�(p(q(x; y); q(z; w))� ; s) = �(y� ; s) = �(q(p(x; z); p(y; w))� ; s);

if :p(s) and q(s) then

�(p(q(x; y); q(z; w))� ; s) = �(z� ; s) = �(q(p(x; z); p(y; w))� ; s);

and if :p(s) and :q(s) then

�(p(q(x; y); q(z; w))� ; s) = �(w� ; s) = �(q(p(x; z); p(y; w))� ; s);

hence for all four cases the required equality holds.
(3). If p(s) then �(p(p(x; y); z)� ; s) = �(x� ; s) = �(p(x; z)� ; s), otherwise
�(p(p(x; y); z)� ; s) = �(z� ; s) = �(p(x; z)� ; s), hence in both cases the required equality holds.
(4). If p(s) then �(p(x; p(y; z))� ; s) = �(x� ; s) = �(p(x; z)� ; s), otherwise
�(p(x; p(y; z))� ; s) = �(z� ; s) = �(p(x; z)� ; s), hence in both cases the required equality holds. ut

In order to prove completeness we need a few extra de�nitions and lemmas. For any decision
tree T let attr(T) be the set of attributes occurring in T , de�ned inductively by

attr(true) = attr(false) = ;;

attr(p(T; U)) = fpg [attr(T) [attr(U) for all p 2 A and all T; U 2 D.

For any decision tree T let depth(T) be the depth of T , de�ned inductively by

depth(true) = depth(false) = 0;

depth(p(T; U)) = 1 +max(depth(T); depth(U)) for all p 2 A and all T; U 2 D.

The �rst lemma states that one attribute may be forced to occur only at the root.

Lemma2. Let T be a decision tree and let p 2 A. Then there exist decision trees T1 and T2 satisfying

T ' p(T1; T2) and attr(Ti) � attr(T) n fpg for both i = 1; 2.

Proof. A straightforward proof can be given by induction on depth(T). Alternatively, this lemma
follows from Lemma 8 for which we give an independent proof. ut

The next lemma states that attributes not occurring in a decision tree do not a�ect the corre-
sponding hypothesis.

Lemma3. Let T be a decision tree and let p 2 A for which p 62 attr(T). Let s; s0 be instances such

that s(q) = s0(q) for all q 2 A n fpg. Then �(T; s) = �(T; s0).

Proof. Straightforward by induction on depth(T). ut

The next lemma is not only a key lemma for the completeness result, also for the results of the
next sections.

Lemma4. Let p 2 A and T1; T2; T3; T4 2 D satisfying p 62 attr(Ti) for i = 1; 2; 3; 4. Then

p(T1; T2) ' p(T3; T4) if and only if T1 ' T3 and T2 ' T4.

4

Proof. The `if'-part is immediate from the de�nition of �. For the `only if'-part assume p(T1; T2) '
p(T3; T4) and let s be an arbitrary instance. De�ne instances s0; s00 by s0(p) = true, s00(p) = false
and s0(q) = s00(q) = s(q) for all q 2 A n fpg. Since p(T1; T2) ' p(T3; T4) we have �(p(T1; T2); s

0) =
�(p(T3; T4); s

0) and �(p(T1; T2); s
00) = �(p(T3; T4); s

00) by de�nition. Applying Lemma 3 we obtain

�(T1; s) = �(T1; s
0) = �(p(T1; T2); s

0) = �(p(T3; T4); s
0) = �(T3; s

0) = �(T3; s)

and

�(T2; s) = �(T2; s
00) = �(p(T1; T2); s

00) = �(p(T3; T4); s
00) = �(T4; s

00) = �(T4; s):

This holds for arbitrary s, hence T1 ' T3 and T2 ' T4. ut

Now we are ready for proving completeness.

Theorem5. If T ' U then T �E U .

Proof. We proceed by induction on #attr(T) + #attr(U). If #attr(T) + #attr(U) = 0 then both T

and U are either true or false. Since true 6' false we conclude from T ' U that T = U , hence T �E U .
Next assume #attr(T) + #attr(U) > 0 and T ' U . Then at least one of the values #attr(T)

and #attr(U) is positive, by symmetry we may assume it is #attr(T). Then T = p(T1; T2) for some
p 2 A and T1; T2 2 D. Due to Lemma 2 there are decision trees T 0

1 and T 0
2 satisfying T ' p(T 0

1; T
0
2)

and attr(T 0
i) � attr(T) n fpg for both i = 1; 2, hence #attr(T 0

i) < #attr(T) for both i = 1; 2.
Again according to Lemma 2 there are decision trees U1 and U2 satisfying U ' p(U1; U2) and
attr(Ui) � attr(U) n fpg for both i = 1; 2, hence #attr(Ui) � #attr(U) for both i = 1; 2.

From T ' U we conclude p(T 0
1; T

0
2) ' p(U1; U2). Since p is not contained in any of the sets

attr(T 0
i); attr(Ui) for i = 1; 2, we may apply Lemma 4, yielding T 0

i ' Ui for i = 1; 2. Since #attr(T 0
i)+

#attr(Ui) < #attr(T) + #attr(U) we may apply the induction hypothesis for both i = 1 and i = 2,
yielding T 0

i �E Ui for i = 1; 2. Hence

T = p(T1; T2) �E p(T
0
1; T

0
2) �E p(U1; U2) �E U:

ut

Summarizing Theorems 1 and 5 we have proved that two decision trees are equivalent if and
only if this can be derived by only applying the four types of equations in E . A some sloppier proof
of the same observation has been given in [2].

4 Deciding equivalence

Given two decision trees T and U , how can we decide whether they are equivalent or not? A trivial
algorithm for this is computing and comparing �(T; s) and �(U; s) for all 2#A values for s. It is
not e�cient: in worst case it is exponential in the size of the decision trees. Here the size size(T) of
a decision tree T is de�ned to be the number of (internal) nodes of T . A more e�cient algorithm
follows from observations in [2], as we will discuss later on.

Here we present a very simple quadratic algorithm for deciding equivalence of decision trees.
More precisely, for two decision trees having n and m nodes respectively, our algorithm requires
O(m � n) steps worst case to decide whether the two decision trees are equivalent or not. In the
algorithm we need two auxiliary functions strip : A � ftrue; falseg � D ! D and clean : D ! D

inductively de�ned by

strip(p; b; true) = true
strip(p; b; false) = false
strip(p; b; q(T; U)) = q(strip(p; b; T); strip(p; b; U)) if q 6= p,
strip(p; true; p(T; U)) = strip(p; true; T);
strip(p; false; p(T; U)) = strip(p; false; U);

5

clean(true) = true;
clean(false) = false;
clean(p(T; U)) = p(clean(strip(p; true; T)); clean(strip(p; false; U)))

for all p; q 2 A; b 2 ftrue; falseg; T; U 2 D. Hence strip(p; true; T) removes all p's and its right
branches from T . Similarly strip(p; false; T) removes all p's and its left branches from T . By clean a
decision tree is made clean, where a decision tree is called clean if no attribute occurs more than
once on any path from the root to a leaf. More precisely, for every attribute p and every subtree
of the shape p(U;U 0) the attribute p is neither contained in U nor in U 0. Roughly speaking, clean
removes a particular kind of redundancy from a decision tree.

Since for all p and all b the complexity of computing strip(p; b; T) is O(size(T)), and
#attr(strip(p; b; T)) < #attr(T), we conclude that the complexity of computing clean(T) accord-
ing to its inductive de�nition is O(size(T) �#attr(T)). By using a more sophisticated data structure
it is even possible to compute clean(T) in O(size(T) � log(#attr(T))) steps, but for the quadratic
bound on our algorithm we will not use this.

S := f(clean(T); clean(U))g;
while S 6= ; do

begin
choose (T; U) 2 S;
S := S n f(T; U)g;
if T 2 ftrue; falseg then

begin
if b 6= T for some leaf b of U then return(`NO')
end

else
begin
let T = p(T1; T2);
S := S [f(T1; strip(p; true; U)); (T2; strip(p; false; U))g;
end

end;
return(`YES')

In this algorithm T and U are initially the two decision trees for which equivalence has to be
established. The type of S is a set of pairs of decision trees.

Theorem6. Applying the algorithm on two decision trees T and U returns `YES' if and only if

T ' U and `NO' if and only if T 6' U . The complexity of the algorithm is O(size(T) � size(U) +
size(T) �#attr(T) + size(U) �#attr(U)).

Crucial in the proof of this theorem is the observation that the assertion 8(T; U) 2 S : T ' U

remains invariant through all changes of S in the algorithm. The full proof is given below.
If both size(T) and size(U) are bounded by n, the time complexity of the algorithm is O(n2). If

choose (the �rst statement in the body of the loop) is implemented according to the principle: last
in, �rst out, then it can be seen that during the execution of the algorithm always #S � a holds,
for a being the number of occurring attributes, yielding a space complexity of O(n � a).

In [2] the following result is proved. Two decision trees T and U are equivalent if and only if
clean(T) and clean(T 0) are equal up to idempotence (rule (1) in E), where T 0 is obtained from T

by replacing all leaves by a copy of U . Since checking equality up to idempotence is easily checked
by only applying rule (1) from left to right, this provides an alternative algorithm for establishing
equivalence.

The rest of this section consists of the proof of Theorem 6, starting by some lemmas.

Lemma7. Let p be an attribute, b 2 ftrue; falseg, T a decision tree and s an instance. Then

�(strip(p; b; T); s) = �(T; s0)

6

for the instance s0 de�ned by s0(p) = b and s0(q) = s(q) for all q 6= p.

Proof. We apply induction on the depth of T . If depth(T) = 0 then T = true or T = false and
strip(p; b; T) = T .

Let depth(T) > 0. Then T = q(T1; T2) for some attribute q. The induction hypothesis may be
applied on T1 and T2. If q 6= p and s(q) = true then

�(strip(p; b; T); s) = �(q(strip(p; b; T1); strip(p; b; T2)); s) =

�(strip(p; b; T1); s) = �(T1; s
0) = �(q(T1; T2); s

0) = �(T; s0);

and similar for q 6= p and s(q) = false. If q = p and b = s0(p) = true then

�(strip(p; b; T); s) = �(strip(p; b; T1); s) = �(T1; s
0) =

�(p(T1; T2); s
0) = �(T; s0);

and similar for q = p and b = s0(p) = false. ut

Lemma8. Let T be any decision tree and p 2 A. Then

T ' p(strip(p; true; T); strip(p; false; T)):

Proof. Let s be an arbitrary instance. If s(p) = true then

�(p(strip(p; true; T); strip(p; false; T)); s) = �(strip(p; true; T); s) = �(T; s)

by Lemma 7. If s(p) = false then

�(p(strip(p; true; T); strip(p; false; T)); s) = �(strip(p; false; T); s) = �(T; s)

again by Lemma 7. In both cases we are done. ut

Lemma9. Let T be any decision tree. Then T ' clean(T) and clean(T) is clean.

Proof. We apply induction on the depth of T . For T 2 ftrue; falseg both assertions hold. Next let
T = p(T1; T2), as the induction hypothesis we assume that both assertions hold for strip(p; true; T1)
and strip(p; false; T2). Applying this induction hypothesis, the de�nitions of strip and clean and
Lemma 8 we obtain

T ' p(strip(p; true; T); strip(p; false; T)) = p(strip(p; true; T1); strip(p; false; T2))

' p(clean(strip(p; true; T1)); clean(strip(p; false; T2))) = clean(p(T1; T2)) = clean(T):

It remains to show that

clean(T) = p(clean(strip(p; true; T1)); clean(strip(p; false; T2)))

is clean. By the induction hypothesis both clean(strip(p; true; T1)) and
clean(strip(p; false; T2)) are clean; it su�ces to show that

p 62 attr(clean(strip(p; true; T1))) and p 62 attr(clean(strip(p; false; T2))):

This is immediate since strip(p;�;�) removes all occurrences of p and clean does not introduce new
occurrences of p. ut

Lemma10. Let T = p(T1; T2) be a clean decision tree. Then both T1 and T2 are clean.

Proof. By de�nition. ut

Lemma11. Let T be a clean decision tree and let b 2 ftrue; falseg. Then T ' b if and only if all

leaves of T are equal to b.

7

Proof. The `if'-part is trivial. For the `only if'-part we prove by induction on depth(T) that

If T is clean and contains a leaf unequal to b then T 6' b.

If T 2 ftrue; falseg then this trivially holds. For the induction step let T = p(T1; T2). Since T contains
a leaf unequal to b there is i 2 f1; 2g such that Ti contains a leaf unequal to b. By Lemma 10 Ti is
clean, and by the induction hypothesis applied on Ti there is some instance s satisfying �(Ti; s) 6= b.
De�ne s0 by s0(q) = s(q) for q 6= p, and s0(p) = true if i = 1 and s0(p) = false if i = 2. Since T is
clean we obtain p 62 attr(Ti). Applying Lemma 3 we obtain

�(T; s0) = �(p(T1; T2); s
0) = �(Ti; s

0) = �(Ti; s) 6= b;

proving T 6' b. ut

Lemma12. Let T be a clean decision tree and let b 2 ftrue; falseg and p 2 A. Then strip(p; b; T) is
clean.

Proof. An arbitrary path from the root to a leaf in strip(p; b; T) is obtained from a path from the
root to a leaf in T by stripping away occurrences of p. If the original path does not contain double
occurrences of any attribute q, then the same holds for the stripped path. ut

Now we are prepared for proving Theorem 6.

Proof. Write T0; U0 for the original decision trees on which the algorithm is applied. First we prove
that

T0 ' U0 () 8(T; U) 2 S : T ' U: (�)

is an invariant of the while loop. Initially it holds by Lemma 9 and the initialization
S := f(clean(T); clean(U))g. It remains to show that if the invariant holds and the body of the
while loop is executed, then after successful termination the invariant holds again. Here success-
ful termination means that no return(`NO') is executed. This occurs in two cases. In the �rst case
(T; U) 2 S has been chosen satisfying T 2 ftrue; falseg and b = T for all leaves b of U . Since for
every (T 0; U 0) 2 S the decision tree U 0 is originally clean by lemma 9, and remains clean at every
step of the while loop by lemma 12, we conclude that U is clean. Hence T ' U by lemma 11, and
(T; U) may be removed from S without a�ecting the invariant (�).

In the second case we have T = p(T1; T2). Since for every (T 0; U 0) 2 S the decision tree T 0

is originally clean by Lemma 9, and remains clean at every step of the while loop by Lemma 10,
we conclude that T is clean. Hence p 62 attr(Ti) for i = 1; 2. Moreover p 62 attr(strip(p; b; U)) for
b 2 ftrue; falseg, and U ' p(strip(p; true; U); strip(p; false; U)) by lemma 8. Hence by Lemma 4 we
conclude

T ' U () T1 ' strip(p; true; U) ^ T2 ' strip(p; false; U);

by which (�) remains una�ected. Hence (�) is indeed an invariant of the while loop.
Termination of the while loop follows from the observation that the value of

P
(T;U)2S size(T)

strictly decreases at every step of the while loop, hence the total number of steps is bounded by
size(T0). Hence the algorithm always terminates in either returning `YES' or returning `NO'. In case
`NO' is returned, then by lemma 11 this is caused by an element (T; U) 2 S satisfying T 6' U . Hence
by the invariant (�) we conclude that T0 6' U0. In the remaining case the algorithm returns `YES',
which is only done in case S = ;. In that case we conclude from the invariant (�) that T0 ' U0,
proving correctness of the algorithm.

It remains to show the bound on the complexity of the algorithm. As remarked the computation of
clean(T0) and clean(U0) according to the inductive de�nition of clean requires O(size(T0)�#attr(T0))
and O(size(U0)�#attr(U0)) steps respectively. Next we prove that the while loop requiresO(size(T0)�
size(U0)) steps. As remarked the total number of steps is bounded by size(T0), hence it remains to
prove that the complexity of the body of the while loop is O(size(U0)). This is immediate since
the only computation in the body is checking all leaves of U or computing strip(p; true; U) and
strip(p; false; U) for U satisfying size(U) � size(U0).

This concludes the proof of Theorem 6. ut

8

5 Decision trees versus propositions

Every boolean function represented by a proposition can be represented by a decision tree too. Since
establishing logical equivalence of propositions is known to be NP-complete, Theorem 6 is quite
surprising. Combining these observations we expect that e�cient representation of propositions as
decision trees will not be possible. In this section we indeed prove this: we derive sharp bounds on
the e�ciency of the representation of propositions as decision trees.

Write B for ftrue; falseg and (A ! B) for the set of maps from A to B. De�ning true; false; p :
(A ! B) ! B by true(s) = true, false(s) = false and p(s) = s(p) for all s 2 (A ! B) and all p 2 A,
and de�ning (P _ Q)(s) = P (s) _ Q(s), (P ^ Q)(s) = P (s) ^ Q(s) and (:P)(s) = :(P (s)) for all
s 2 (A! B) and all P;Q : (A! B)! B, we can identify propositions with functions from (A! B)
to B built from true; false; p;:;_ and ^. We de�ne the size of a proposition to be the number of
applications of :;_ and ^ used to construct it.

We extend the equivalence on decision trees to an equivalence on the union of the sets of decision
trees and propositions: a proposition P and a decision tree T are called equivalent if �(T; s) = P (s)
for all s 2 (A ! B), and two propositions P and Q are called equivalent if P (s) = Q(s) for all
s 2 (A ! B), corresponding to the usual notion of logical equivalence. One easily checks that this
extended equivalence ' is an equivalence relation on the union of decision trees and propositions.

From the de�nition of � it is clear that any decision tree T of size n is equivalent to a proposition
of size 4n. Conversely, for every proposition P there exists an equivalent decision tree T , for instance
by choosing a decision tree of size 2#A � 1 coding the truth table of P . It is a natural question to
ask whether this can be done more e�ciently: given a proposition of size n, what is the minimal size
of an equivalent decision tree T ? By the observations above we expect that in worst case this will
be exponential in n. Indeed we will show in this section that if pi; qi are pairwise distinct attributes
for i = 1; : : : ; n, for the proposition

Wn

i=1(pi ^ qi) of size 2n � 1 the minimal size of an equivalent
decision tree is exactly 2n+1 � 2. Moreover, we will show that the minimal size of a decision tree
equivalent to (

Vn

i=1 pi) _ (
Vk

i=1 qi) is n � k +min(n; k). Since
Vn

i=1 pi and
Vk

i=1 qi are equivalent to
decision trees of sizes n and k, respectively, this shows that in this case describing the disjunction of
two decision trees as a decision tree requires a size exceeding the product of the sizes of the original
decision trees.

First we derive some upper bounds on sizes of decision trees.

Proposition 13. Let T; U be decision trees of sizes n; k, respectively, n; k � 1. Then

{ :�(T;�) is equivalent to a decision tree of size n;

{ �(T;�) _ �(U;�) is equivalent to a decision tree of size at most n � k +min(n; k);
{ �(T;�) ^ �(U;�) is equivalent to a decision tree of size at most n � k +min(n; k);

Proof. A decision tree equivalent to :�(T;�) of size n is simply obtained from T by replacing all
occurrences of true in T by false and replacing all occurrences of false in T by true.

For �(T;�) _ �(U;�) assume by symmetry that n � k. If all n+1 leaves of T are equal to false
then �(T;�) _ �(U;�) is equivalent to U of size k < n � k +min(n; k). In the remaining case T has
at most n leaves equal to false, and the required tree can be obtained from T by replacing each of
these leaves by U .

For �(T;�)^ �(U;�) a similar argument can be given by replacing each occurrence of true in T

by U . ut

Proposition 13 states upper bounds for minimal sizes of decision trees equivalent to negations,
disjunctions and conjunctions of decision trees. Clearly the bound for negation is sharp; the next
theorem states that the quadratic bounds for disjunctions and conjunctions are sharp too. Sharpness
of all of these bounds is not only with respect to the order but even with respect to the exact value.

In order to be able to prove the theorem we �rst need a lemma.

Lemma14. Let a decision tree p(T1; T2) be equivalent to a proposition P . Assume that p 62 attr(Ti)
for i = 1; 2 and let P1 and P2 be two propositions in which p does not occur, and satisfying p^ P '
p ^ P1 and (:p) ^ P ' (:p) ^ P2. Then Ti ' Pi for i = 1; 2.

9

Proof. Since p does not occur in P1 and P2 there are decision trees U1; U2 satisfying Ui ' Pi and
p 62 attr(Ui) for i = 1; 2, for instance by coding truth tables using only the attributes occurring in
P1 and P2. We obtain

P (T1; T2) ' P ' (p ^ P) _ (:p ^ P) ' (p ^ P1) _ (:p ^ P2) ' p(U1; U2);

where the last step follows from �(p(U1; U2); s) = (p ^ �(U1; s)) _ (:p ^ �(U2; s)) for every s. From
Lemma 4 we conclude Ti ' Ui ' Pi for i = 1; 2. ut

Now we are ready to state and prove the theorem on the sharpness of the bounds.

Theorem15. Let pi; qj be pairwise distinct attributes for i = 1; : : : ; n and j = 1; : : : ; k, where n; k �

1. Then the minimal size of a decision tree equivalent to (
Vn

i=1 pi) _ (
Vk

i=1 qi) is n � k +min(n; k),

while
Vn

i=1 pi and
Vk

i=1 qi are equivalent to decision trees of sizes n and k, respectively.

Conversely the minimal size of a decision tree equivalent to (
Wn

i=1 pi)^(
Wk

i=1 qi) is n�k+min(n; k)

too, while
Wn

i=1 pi and
Wk

i=1 qi are equivalent to decision trees of sizes n and k, respectively,

Proof. We only give the proof of the �rst part; for the second part a similar proof can be given.
Let T = p1(p2(� � � (pn(true; false); false); : : :); false). Then clearly

Vn

i=1 pi is equivalent to the

decision tree T of size n, and similar for
Vk

i=1 qi. Let f(n; k) be the minimal size of a deci-

sion tree that is equivalent to (
Vn

i=1 pi) _ (
Vk

i=1 qi). From Proposition 13 we already know that
f(n; k) � n � k +min(n; k); now it remains to prove f(n; k) � n � k +min(n; k). For n = 1 all k+ 1
relevant attributes p1; q1; : : : ; qk have to occur as a node in the corresponding decision tree, yielding
f(1; k) � k + 1 = 1 � k +min(1; k). Hence for n = 1 the required equality holds, and by symmetry
also for k = 1. For n; k > 1 we proceed by induction on n+ k. Let V be a decision tree of minimal
size that is equivalent to (

Vn

i=1 pi) _ (
Vk

i=1 qi). We have to prove that size(V) � n � k +min(n; k).
We have either V = pa(V1; V2) for some a = 1; : : : ; n or V = qb(V1; V2) for some b = 1; : : : ; k. First
assume V = pa(V1; V2). From the minimal size of V we conclude pa 62 attr(Vi) for i = 1; 2. Since

pa ^ ((

n̂

i=1

pi) _ (

k̂

i=1

qi)) ' pa ^ ((
^

i2f1;:::;ngnfag

pi) _ (

k̂

i=1

qi))

and

(:pa) ^ ((

n̂

i=1

pi) _ (

k̂

i=1

qi)) ' (:pa) ^ (

k̂

i=1

qi)

we conclude from Lemma 14 that

V1 ' (
^

i2f1;:::;ngnfag

pi) _ (
k̂

i=1

qi) and V2 '
k̂

i=1

qi:

From the induction hypothesis we conclude that

size(V1) � f(n� 1; k) � (n� 1) � k +min(n� 1; k);

since all k attributes q1; : : : ; qk are relevant in V2 we conclude size(V2) � k. Hence

size(V) = size(pa(V1; V2)) = 1 + size(V1) + size(V2) �

1 + (n� 1) � k +min(n� 1; k) + k = n � k +min(n; k + 1) � n � k +min(n; k):

In the remaining case V = qb(V1; V2) for some b = 1; : : : ; k we obtain symmetrically

size(V) = size(qb(V1; V2)) = 1 + size(V1) + size(V2) �

1 + n+ n � (k � 1) +min(n; k � 1) = n � k +min(n+ 1; k) � n � k +min(n; k);

concluding the proof of Theorem 15. ut

10

The next theorem states that the minimal size of a decision tree equivalent to some proposition
can be exponential in the size of the proposition.

Theorem16. Let pi; qi be pairwise distinct attributes for i = 1; : : : ; n, n � 1. Then for both P =Wn

i=1(pi ^ qi) and P =
Vn

i=1(pi _ qi) the minimal size of a decision tree equivalent to P is 2n+1 � 2.

Proof. We only give the proof of the �rst part; for the second part a similar proof can be given.
The �rst part immediately follows from the following claim that we prove to hold for every n � 1
by induction on n.

Claim: Let pi; qi; rj be pairwise distinct attributes for i = 1; : : : ; n, j = 1; : : : ; k, k � 0. Then

the minimal size of a decision tree equivalent to (
Wk

j=1 rj) _ (
Wn

i=1(pi ^ qi)) is 2
n+1 + k � 2.

For n = 1 the required size 2n+1 + k � 2 = k + 2 is achieved by

r1(true; r2(true; : : : ; rk(true; p1(q1(true; false); false)) � � �));

which is indeed minimal since all k + 2 attributes r1; r2; : : : ; rk ; p1; q1 are relevant.
For the induction step let T be a decision tree of minimal size equivalent to

(
Wk

j=1 rj)_ (
Wn

i=1(pi ^ qi)) for k � 0 and n � 2. Then either T = pa(T1; T2) for some a = 1; : : : ; n or
T = rb(T1; T2) for some b = 1; : : : ; k; the case T = qa(T1; T2) may be ignored by symmetry between
pa and qa.

First assume T = pa(T1; T2) for some a = 1; : : : ; n. By minimality we may conclude that pa 62
attr(Ti) for i = 1; 2. Since

pa ^ (

k_

j=1

rj) _ (

n_

i=1

(pi ^ qi)) ' pa ^ (qa _ (

k_

j=1

rj) _ (
_

i2f1;:::;ngnfag

(pi ^ qi)))

and

(:pa) ^ (

k_

j=1

rj) _ (

n_

i=1

(pi ^ qi)) ' (:pa) ^ ((

k_

j=1

rj) _ (
_

i2f1;:::;ngnfag

(pi ^ qi)))

we conclude from Lemma 14 that

T1 ' (qa _ (

k_

j=1

rj) _ (
_

i2f1;:::;ngnfag

(pi ^ qi)))

and

T2 ' ((

k_

j=1

rj) _ (
_

i2f1;:::;ngnfag

(pi ^ qi))):

From the induction hypothesis and the minimality of T we conclude that

size(T1) = 2n + (k + 1)� 2 and size(T2) = 2n + k � 2;

yielding size(T) = 1+ size(T1) + size(T2) = 2n+1+2k� 2. In case of k = 0 the shape T = pa(T1; T2)
is the only possible shape for T and we are done.

In case of k > 0 we still have to consider the case that T = rb(T1; T2) for some b = 1; : : : ; k. Since

rb ^ ((
k_

j=1

rj) _ (
n_

i=1

(pi ^ qi))) ' rb ^ true

and

(:rb) ^ ((

k_

j=1

rj) _ (

n_

i=1

(pi ^ qi))) ' (:rb) ^ ((
_

j2f1;:::;kgnfbg

rj) _ (

n_

i=1

(pi ^ qi)))

11

we conclude from Lemma 14 that T1 ' true and and

T2 ' (
_

j2f1;:::;kgnfbg

rj) _ (

n_

i=1

(pi ^ qi)):

From the induction hypothesis and the minimality of T we conclude that size(T1) = 0 and size(T2) =
2n+1 + (k � 1)� 2, yielding size(T) = 1 + size(T1) + size(T2) = 2(n+ 1) + k � 2. Since this value is
smaller than the value for size(T) in case of T = pa(T1; T2), this smaller value is the real minimal
value, as we had to prove, concluding the proof of Theorem 16. ut

6 Conclusions and further research

In algorithmic learning often a single hypothesis can be given in various representations, hence
de�ning a basic equivalence relation on the representation class. In this paper we studied this
equivalence relation for the class of decision trees. First we proposed a simple and e�cient algorithm
for establishing equivalence. This result is quite subtle, for instance for BDDs as presented in [1],
that only di�er from decision trees in allowing sharing of subtrees, the question of establishing
equivalence is NP-complete since every proposition can be represented in linear time as a BDD.

Next we investigated how to express disjunctions and conjunctions of decision trees as decision
trees again. It turned out that this could not be done e�ciently.

The question of establishing equivalence can be asked for other representation classes of hypothe-
ses, for instance for so-called ensembles([5, 4]). For decision trees this means that some number of
decision trees is given, and the resulting hypothesis is obtained by taking the majority among all
boolean values yielded by each of the decision trees. We like to stress that the operations conjunction
and disjunction that turned out to be expensive to express by decision trees, are simply described
by ensembles: two decision trees combined with true represent the disjunction of both decision trees,
and two decision trees combined with false represent the conjunction of both decision trees.

Although establishing equivalence of arbitrary ensembles of decision trees is NP-complete, it
may be expected that our algorithm can be applied to give a polynomial algorithm for establishing
equivalence of ensembles of decision trees of a �xed cardinality.

Acknowledgement

I like to thank Linda C. van der Gaag for many fruitful discussions and comments on earlier versions
of this paper.

References

1. Bryant, R. E. Graph-based algorithms for boolean function manipulation. IEEE Transactions on

Computers C-35, 8 (1986), 677{691.
2. Cockett, J. R. B. Discrete decision theory: Manipulations. Theoretical Computer Science 54 (1987),

215{236.
3. Cockett, J. R. B., and Herrera, J. A. Decision tree reduction. Journal of the Association for

Computing Machinery 37, 4 (1990), 815{842.
4. Dietterich, T. G. Machine-learning research: Four current directions. AI Magazine (Winter 1997),

97{136.
5. Hanson, L., and Salomon, P. Neural network ensembles. IEEE Transactions on Pattern Analysis and

Machine Intelligence 12 (1990), 993{1001.
6. Hyafil, L., and Rivest, R. L. Constructing optimal binary decision trees is NP-complete. Information

Processing Letters 5, 1 (1976), 15{17.
7. Mitchell, T. M. Machine Learning. McGraw-Hill, 1997.
8. Quinlan, J. R. Induction of decision trees. Machine Learning 1 (1986), 81{106.

12

