
A note on domino treewidth
�

Hans L. Bodlaender
y

Abstract

In [3], Bodlaender and Engelfriet proved that for every k, and d,
there exists a constant ck;d, such that every graph with treewidth at
most k and maximum degree at most d has domino treewidth at most
ck;d. This note gives a new, simpler proof of this fact, with a much
better bound for ck;d, namely (9k + 7)d(d+ 1)� 1.

It is also shown that a lower bound of
(kd) holds: there are
graphs with domino treewidth at least 1

12kd� 1, treewidth at most k,
and maximum degree at most d, for many values k and d. The domino
treewidth of a tree is at most its maximum degree.

1 Introduction

In [3], Bodlaender and Engelfriet give the following result: for every k, and d,
there exists a constant ck;d, such that every graph with treewidth at most k
and maximum degree at most d has domino treewidth at most ck;d. The proof
given in [3] was quite complicated, and the constant ck;d was exponential in k
and d. In this note, a new and easier to understand proof of the fact is given.
Additionally, the constant factor arising from the proof given here is much
smaller: it is shown that graphs with treewidth at most k and maximum
degree at most d have domino treewidth at most (9k + 7)d(d+ 1)� 1.

The proof uses amongst others a technique from [4] (inspired by a tech-
nique from [8]), and some other ideas. The proof is given in Section 3.

�This research was partially supported by ESPRIT Long Term Research Project 20244
(project ALCOM IT: Algorithms and Complexity in Information Technology).

yDepartment of Computer Science, University of Utrecht, P.O.Box 80.089, 3508 TB
Utrecht, the Netherlands. Email: hansb@cs.uu.nl.

1

In Section 4, it is shown that a lower bound of
(kd) holds: there are
graphs with domino treewidth at least 1

12
kd � 1, treewidth at most k, and

maximum degree at most d, for many values k and d.
Some �nal remarks are made in Section 5, and it is shown that the domino

treewidth of a tree is at most its maximum degree.

2 De�nitions and Preliminary Results

De�nition. A tree decomposition of a graph G = (V;E) is a pair (fXi j i 2
Ig; T = (I; F)) with fXi j i 2 Ig a collection of subsets of V , and T = (I; F)
a tree, such that

�
S
i2I Xi = V

� for all edges (v; w) 2 E there is an i 2 I with v; w 2 Xi

� for all i; j; k 2 I: if j is on the path from i to k in T , then Xi\Xk � Xj.

The width of a tree decomposition (fXi j i 2 Ig; T = (I; F)) is maxi2I jXij�1.
The treewidth of a graph G = (V;E) is the minimum width over all tree
decompositions of G.

In some cases, T will be considered a rooted tree; a speci�c node of T is
considered to be the root. A tree decomposition (X ; T) with T a rooted tree
is called a rooted tree decomposition. For a node i 2 I, we call the set Xi the
bag of i.

De�nition. A tree decomposition (fXi j i 2 Ig; T = (I; F)) of G =
(V;E) is a domino tree decomposition, if for each vertex v 2 V , there are
at most two nodes i 2 I with v 2 Xi. The domino treewidth of a graph
G = (V;E) is the minimum width over all domino tree decompositions of G.

The open neighbourhood of a set of vertices W � V in a graph G =
(V;E) is N(W) = fv 2 V � W j 9w 2 W : fv; wg 2 Eg. For a graph
G = (V;E), and W � V , the subgraph of G, induced by W is denoted as
G[W] = (W; ffv; wg 2 E j v; w 2 Wg).

Lemma 2.1 Let T = (I; F) be a tree. Let J1 � I. Then there exists a set
J2 � I with

� jJ2j � 2 � jJ1j � 1.

2

� J1 � J2.

� Every subtree of T [I � J2] is adjacent to at most two nodes in J2.

Proof: Choose an arbitrary root r in T .
Let J2 = J1 [fj 2 I j j is the lowest common ancestor of two nodes in

J1g. We claim that this set J2 ful�ls the conditions. Clearly, J1 � J2.
Let T 0 be a subtree of T [I � J2]. If i0 2 J2 is adjacent to a node in T 0,

then there are two cases:

� i0 is an ancestor of a node in T 0. Then i0 is the unique parent of the
root of T 0.

� i0 is a child of a node in T 0. We claim that there can be only one node
ful�lling this case (for this tree T 0): suppose i0 2 J2 and i1 2 J2 are
children of nodes in T 0. Then, the lowest common ancestor i2 of i0 and
i1 belongs to T

0. However, i0 and i1 belong to J1 or are ancestor of a
node in J1. So, i2 is the lowest common ancestor of two nodes in J1,
which is a contraction with the observation that it belongs to T 0.

As for T 0, each case can appear only once, T 0 is adjacent to at most two
nodes in J2.

To show that jJ2j � 2 � jJ1j � 1, build a tree T in the following way: J2 is
the set of nodes in T . If j 2 J2 has an ancestor that also belongs to J2, then
take an edge from j to the closest ancestor that also belongs to J2. One can
observe that T is indeed a tree. Every node j 2 J2 � J1 must have at least
two children. So T is a tree with at most jJ1j leaves, and without nodes with
one child. A well know fact about trees tells us that T has at most 2jJ1j � 1
nodes, hence jJ2j � 2 � jJ1j � 1. 2

Lemma 2.2 Let (fXi j i 2 Ig; T = (I; F)) be a tree decomposition of G =
(V;E). Let W � V , jW j = r. Let s < r.

1. There exists a set of br=(s+1)c nodes J1 � I, such that each connected
component of G[V �

S
j2J1 Xi] contains at most s vertices from W .

2. There exists a set of 2br=(s + 1)c � 1 nodes J2 � I, such that each
connected component Z of G[V �

S
j2J2 Xi] contains at most s vertices

fromW , and for each connected component of G[V �
S
j2J2 Xi] there are

nodes i1; i2 2 J2, such that every vertex v that is adjacent to a vertex
in Z belongs to Z [Xi1 [Xi2.

3

Proof: 1. First, observe that for any J � I, G[V �
S
j2J Xi] consists of

a number of connected components, such that for any connected component
Z of G[V �

S
j2J Xi], we have a subtree JZ of the forest T [I � j] with Z �

S
j2JZ Xj, i.e., removing J from I splits T in a number of disjoint trees, and

each connected component has its vertices in the bags of the nodes in only
one of these subtrees.

Choose an arbitrary root r 2 I, and view T as a rooted tree. We will
process T in a bottom-up order: a node is processed after all its children
are processed. While processing vertices, we maintain a set J1 � I, which is
initially empty, and a set W 0 � W , for which initially W 0 = W . The idea is
that nodes are added to J1 until �nally the requested set is found, and that
W 0 gives those vertices in W that still can belong to a connected component
with too many vertices in W in it.

For a node i 2 I, let Vi =
S
j2Ii Xi, with Ii the set containing i and all its

descendants in T .
While processing a node i, compute Yi = Vi \W

0. If jYij > s, put i in J1,
and set W 0 = W � Yi. Otherwise, nothing is done when processing node i.

We now claim that the set J1 which is obtained after processing root node
r ful�ls the requirements of the lemma. Consider a connected component Z of
G[V �

S
j2J1 Xi]. Let iZ be the highest node in T whose bag contains a vertex

in Z. Clearly, iZ 62 J1, as Z � V �
S
j2J1 Xi. Hence, when iZ was processed,

jYiZ j � s. Now we note that Z \W � YiZ : suppose v 2 Z \W . By choice
of iZ , v 2 ViZ . If v 2 W �W 0, then v belongs to a bag that is below a node
in J1 or in J1, and hence either v belongs to

S
j2J1 Xi or is separated from Z

by
S
j2J1 Xi. This contradicts that v 2 Z, hence Z \W � Z \W 0 � YiZ , and

we have jZ \W j � jYiZ j � s.
To each node i 2 J1, we can associate the s+ 1 or more vertices that are

removed from W 0 when i was added to J1. As each vertex in W is associated
with at most one i 2 J1, we have jJ1j � br=(s+ 1)c.

2. First, obtain a set J1 as above. As in Lemma 2.1, create set J2, such
that

� jJ2j � 2br=(s+ 1)c � 1/

� J1 � J1.

� Every subtree of T [I � J2] is adjacent to at most two nodes in J2.

Now, let Z be a connected component of G[V �
S
j2J2 Xj]. By the proper-

ties of tree decompositions, it follows that there is a subtree TZ of T [I � J2],

4

such that all vertices of Z only belong to bags of nodes in TZ . Thus, the
vertices that neighbour a vertex in Z but do not belong to Z must belong to
a bag Xi, with i 2 J2 one of the at most two nodes in J2 that are adjacent
to TZ . 2

Corollary 2.3 Let G = (V;E) have treewidth at most k and maximum de-
gree at most d. Let W � V , jW j � r, Let s < r. There exists a set S � V of
at most (k+1) � (2br=(s+1)c� 1) vertices, such every connected component
Z in G[V � S] contains at most s vertices from W and at most (2k + 2)d
vertices that are adjacent to a vertex in S. If k is a constant, such a set S
can be found in linear time.

Proof: The non-algorithmic result follows directly from the previous
lemma. (Note that for such a componentW , there are at most 2k+2 vertices
in S adjacent to vertices inW (namely the vertices in at most two bags of the
tree decomposition), hence at most (2k+2)d vertices in W that are adjacent
to a vertex in S.) To e�ectively obtain the set S, �rst apply the algorithm
in [1] to obtain an arbitrary tree decomposition of width at most k. It is
not hard to see that the proofs given above then can be carried out in linear
time. 2

3 The domino treewidth theorem

In this section, we proof the main result of this section. The technique is
inspired by a technique from [4], which was again inspired by a technique
from [8].

Theorem 3.1 Let G = (V;E) be a graph with treewidth at most k and
maximum degree at most d. Then the domino treewidth of G is at most
(9k + 7)d(d+ 1)� 1.

Proof:

We �rst give a recursive procedure, called makedec, called with two
arguments: a graph H = (VH ; EH) (which is always an induced subgraph
of G, and is assumed to have treewidth at most k, and maximum degree at
most d), and a set of vertices W � VH . The procedure outputs a rooted
domino tree decomposition of H, (fX 0

i j i 2 I 0g; T 0 = (I 0; F 0)) of width at

5

most (9k+7)d(d+1)�1, such that the vertices in W only belong to the bag
of the root node of the domino tree decomposition.

Procedure makedec (graph H = (VH ; EH), vertex set W) has the fol-
lowing steps:

1. Obtain a set S � VH , such that every connected component of H[VH�
S] contains at most 4k + 2 vertices from W and at most (2k + 2)d
vertices that are adjacent to a vertex in S, (as in Corollary 2.3.)

2. Set R = N(S [W).

3. Compute the connected components H1 = (V1; E1), . . . , Hs = (Vs; Es)
of H[VH � S �W].

4. For each i, 1 � i � s, call makedec(Hi, Vi \R).

5. Combine the tree decompositions obtained in the previous step in the
following way: Take a new node r with Xr = R [S [W . This is the
root of the new tree decomposition. Make r adjacent to the roots of
each of the tree decompositions, obtained in the previous step. The
result is the output of the procedure.

Assume that the set S is at most of the size, guaranteed to exist by
Corollary 2.3.

Claim 3.1.1 Let H = (VH ; EH) be a connected graph, and W � VH, W 6= ;.
When makedec(H;W) is called, the procedure outputs a rooted domino tree
decomposition of H, such that vertices in W only belong to the root bag of
the domino tree decomposition.

Proof: First, observe that the �rst parameter of a recursive call to
makedec always is a connected graph, and the second parameter of every
recursive call to makedec is always a non-empty set: every connected com-
ponent of H[VH�S�W] must contain vertices adjacent to S[W . Thus, the
recursive calls done to makedec involve graphs with fewer vertices, hence
the procedure terminates.

Let fu; vg 2 EH . If fu; vg\(S[W) 6= ;, then u and v belong both to the
root bag Xr. Otherwise, x and y belong to the same connected component
Hi of H[VH �S�W], and by induction, there will be a bag containing both

6

x and y. In both cases, there is a bag in the resulting decomposition that
contains both x and y.

Let v 2 VH . There are three cases.
If v 2 S [W , then v does not belong to any connected component of

H[VH � S �W], hence v only belongs to bag Xr, and no other bag of the
decomposition.

If v 2 R, then v belongs to Xr. In addition, v belongs to exactly
one connected component Hi of H[VH � S �W]. By induction, v belongs
to the root bag of the domino tree decomposition yielded by the call of
makedec(Hi,Vi\R) and no other bag. Thus, v belongs to exactly two bags
that are adjacent.

If v 62 R [S [W , then v belongs to exactly one connected component
Hi of H[VH � S �W], and by induction to one or two adjacent bags in the
decomposition made by the recursive call to makedec(Hi,Vi \ R). v does
not belong to any other bag.

Hence, the claim follows. 2

Claim 3.1.2 If makedec(H;W) is called with H = (VH ; EH) a connected
graph of maximum degree d and treewidth at most k, and W � VH a set of
vertices of size at most (6k+4)d, then the resulting domino tree decomposition
has width at most (9k + 7)d(d+ 1)� 1.

Proof: First, we estimate the size of the root bag of the resulting
domino tree decomposition. We have jW j � (6k+ 4)d. By Corollary 2.3, we
can take jSj � (k+1)(2b(6k+4)d=(4k+3)c�1)< 3(k+1)d. jRj � d�jS[W j �
d�((6k+4)d+3(k+1)d) = (9k+7)d(d+1). So, jR[S[W j � (9k+7)d(d+1).

Secondly, we estimate the size of a set Vi \ R in a recursive call
makedec(Hi,Vi \ R). Write Vi \ R = (Vi \ N(S)) [(Vi \ N(W)). Each
connected component Hi of H[VH � S � W] is contained in a connected
component H 0

i of H[VH � S]. H 0

i contains at most 4k + 2 vertices from
W , hence at most (4k + 2)d vertices of N(W). Also, by construction of
S, H 0

i contains at most (2k + 2)d vertices in N(S). As a consequence,
jVi \Rj � (4k + 2)d+ (2k + 2)d = (6k + 4)d.

Now, we can use induction: each recursive call of makedec is called with
as second parameter a set of size at most (6k+4)d, hence the recursive calls
give tree decompositions of width at most (9k+7)d(d+1)� 1, which proves
the claim. 2

7

So, from these two claims it follows, that when we call makedec(G,W)
for a connected graphG of treewidth at most k, and maximum degree at most
d, and any non-empty vertex subset W which has size at most (6k+4)d, we
obtain a domino tree decomposition ofG of width at most (9k+7)d(d+1)�1.

If G is not connected, then make separate domino tree decompositions
for each connected component, and connect these to a tree in an arbitrary
way. 2

The new idea in the proof can be found in step 2 of the procedure
makedec: by adding the neighbours of the vertices in set S [W to the
root bag of the tree decomposition to make, we do not have to use these
vertices at lower levels of the tree decomposition anymore. Apart from this
idea, the structure of the algorithm is similar to algorithms found in [8, 4].

Corollary 3.2 Let k be a constant. Given a graph with treewidth at most k
and maximum degree at most d, a domino tree decomposition of G of width
at most (9k + 7)d(d+ 1)� 1 can be built in O(n2) time.

Proof: Use the procedure, given in the proof above. Excluding the
time spent in recursive calls of makedec, one call of makedec uses O(n)
time. There are O(n) such calls (e.g., every vertex belongs to at most two
bags, hence a tree decomposition with O(n) nodes is obtained, and the num-
ber of recursive calls of makedec equals the number of nodes of the resulting
tree decomposition), so the total time is bounded by O(n2). 2

4 A lower bound

In this section, we show that a general bound like obtained in the previous
section must always be of order
(kd).

We �rst start with the following lemma, which is also interesting on its
own. For a graph G = (V;E), let G2 = (V; ffv; wg j fv; wg 2 E or 9x 2 V :
fv; xg 2 E ^ fx; wg 2 Eg).

Lemma 4.1 Let G = (V;E) be a graph with domino treewidth at most k.
The treewidth of G2 is at most 2k.

Proof: W.l.o.g., suppose G is connected. Let (fXi j i 2 Ig; T = (I; F))
be a domino tree decomposition of G of width at most k. Note that (by the

8

properties of tree decompositions and the assumption of connectedness of G)
each two adjacent bags intersect. Choose an arbitrary root r. If we add to
each bag Xi the bag of the parent of i (unless i = r), then we obtain a tree
decomposition of G of width at most 2k. (The union of two bags with a
non-empty intersection and with size at most k + 1 each is taken.)

For every edge fv; wg in G2, we have a bag containing both v and w:
this is trivially true if fv; wginE. If v and w have a common neighbour x in
G, then either there is a bag Xi containing both v, w, x, or there are two
adjacent bags, one containing v and x, and one containing w and x. One
must be a child in T (with root r) of the other. Thus, v, w, and x all three
belong to a common bag in the constructed tree decomposition. 2

A 1=3 � 2=3-separator of a set W in a graph G = (V;E), is a set of
vertices S, such that W can be partitioned into sets W1, W2, and W3, with
W3 = S \W , jW1j � 2=3jW j, jW2j � 2=3jW j, and every path from a vertex
in W1 to a vertex in W2 uses a vertex in S.

The following lemma is well known. See e.g. [4, 5, 6, 7].

Lemma 4.2 Let G = (V;E) be a graph of treewidth at most k. Let W � V .
Then G contains a 1=3� 2=3-separator of W of size at most k + 1.

Lemma 4.3 For all d � 5, k � 2, k even, there exists a graph G with
treewidth at most k, maximum degree at most d, and domino treewidth at
least 1

12
kd� 2.

Proof: Consider the following graph.
First, we take a grid of size k=2 by d2k. I.e., we have vertices of the form

vi;j, 1 � i � k=2, 1 � j � d2k, and vi;j is adjacent to vi0;j0, i� ji�i0j+jj�j 0j =
1. To this grid, we add k=2 additional vertices z1; : : : ; zk=2, with, for each i,
1 � i � k=2, zi adjacent to each vertex vi;j�dk, 1 � j � d. Let G = (V;E) be
the resulting graph.

See Figure 1 for an illustration of the construction. (In order to make
the �gure not too large, the distance between successive neighbours of the
vertices zi is 4 in the �gure, instead of dk.)

The maximum degree of G is max(5; d): vertices of the form vi;j have
degree at most �ve, while vertices of the form zi have degree d. It is also
not hard to see that the treewidth of G is at most k. The k=2 by d2k grid
graph has treewidth exactly k=2 (see e.g. [2].) As G contains k=2 vertices

9

Figure 1: Grid with added vertices zi

such that when these are deleted from G, G becomes a graph of treewidth
k=2, the treewidth of G is at most k. (See e.g. [2], Lemma 72.)

Call the ith row the set of all vertices of the form vi;j, 1 � j � d2k.
Similar, the set of all vertices of the form vi;j, 1 � i � k=2 is called the jth
column.

Now, we claim that G2 has treewidth at least 1
6
dk � 1. Note that all

vertices in the ith row that were adjacent to zi form a clique in G2. Call the
set of these vertices the ith row-clique. Let W = fvi;j j 1 � i � k=2; 1 �
j � kd2g, i.e., W is the set of the grid vertices in G.

Suppose S is a 1=3 � 2=3-separator of W of minimum size in G2, parti-
tioning W into W1, W2, W3 = S \W .

We will now show that jSj � 1
6
dk. Assume jSj < 1

6
dk.

Note that jW1j �
2
3
� d2k2=2, hence jW2 \ W3j �

1
6
d2k2, and likewise

jW1 \W3j �
1
6
d2k2.

Every column that contains both a vertex in W1 and a vertex in W2 must
also contain a vertex in S. Thus, we may assume there are less than 1

6
dk such

columns. So, less than 1
12
dk2 vertices in W can belong to such a column. It

follows that there are at least (1
6
d2k2 � 1

12
dk2)=(k=2) = 1

3
d2k � 1

6
dk columns

that only contain vertices in W1, and thus, every row contains 1
3
d2k � 1

6
dk

vertices in W1. Likewise, every row contains 1
3
d2k � 1

6
dk in W2.

We now will show that every row contains at least 1
3
dk vertices in S.

Consider the ith row. Note that either all vertices in the ith row-clique
belong to W1 [S or all vertices in the ith row-clique belong to W2 [S.
Without loss of generality, we suppose the former; the other case is identical.

We partition the vertices in the ith row in d intervals, where the
mth interval contains vertices vi;(m�1)dk+1; vi;(m�1)dk+2; : : : ; vi;mdk. At least
d(1

3
d2k � 1

6
dk)=(dk)e � 1

3
d of these intervals must contain vertices in W2.

10

However, each interval also contains a vertex in the ith row-clique, hence it
contains a vertex in S [W1. So, each interval that contains a vertex in W2

must contain a vertex in S, hence the ith row contains at least 1
3
d vertices

in S.
As we have k=2 rows, it follows that jSj � 1

6
dk. By Lemma 4.2, we have

that the treewidth of G2 is at least 1
6
dk�1, hence by Lemma 4.1, the domino

treewidth of G is at least 1
12
dk � 2. 2

5 Final remarks

It is possible to give a modi�ed version of the procedure of Corollary 3.2,
that yields domino tree decompositions of somewhat larger width (but still
of O(kd2), but that uses O(n logn) time instead of O(n2) time. However,
the proof in [3] can be turned into an algorithm that uses linear time. The
proof given above seems unable to yield linear time algorithms - the approach
typically leads to algorithmic results of
(n log n) time. It is open whether
domino tree decompositions of O(kd2) width can be obtained with a linear
time algorithm.

Another interesting open problem is whether a bound of O(k2d) can es-
sentially be improved. It would be interesting to see if better bounds, e.g., a
bound of O(kd) can be proved, and whether better lower bounds are possible.

In some special cases, better bounds can be obtained. For instance, for
trees we have the following easy result.

Theorem 5.1 The domino treewidth of a tree is at most its maximum de-
gree.

Proof: Let T be a tree with maximum degree d. Choose an arbitrary
root r, and view T as a rooted tree. Let T 0 = (V 0; E 0) be the tree, obtained
by removing all leaves from T . Consider the following tree decomposition of
T : (fXv j v 2 V 0g; T 0), where each set Xv consists of v and all children of v
in T . One easily veri�es that this is a domino tree decomposition of T with
width at most d. 2

So for trees (and similarly for forests), the domino treewidth is linear in
its degree. (Note also that the domino treewidth of a graph with maximum
degree d � 1 is at least d(d + 1)=2e � 1: at most two bags can contain a
vertex of degree d and all its neighbours.) It seems interesting to see if it is

11

also possible to obtain similar bounds for other restricted classes of graphs
of bounded treewidth, e.g., series parallel graphs, Halin graphs, or arbitrary
graphs of treewidth two.

References

[1] H. L. Bodlaender. A linear time algorithm for �nding tree-decompositions
of small treewidth. SIAM J. Comput., 25:1305{1317, 1996.

[2] H. L. Bodlaender. A partial k-arboretum of graphs with bounded
treewidth. Technical Report UU-CS-1996-02, Department of Comput-
er Science, Utrecht University, Utrecht, 1996.

[3] H. L. Bodlaender and J. Engelfriet. Domino treewidth. J. Algorithms,
24:94{123, 1997.

[4] H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson, and T. Kloks. Approx-
imating treewidth, pathwidth, and minimum elimination tree height. J.
Algorithms, 18:238{255, 1995.

[5] J. R. Gilbert, D. J. Rose, and A. Edenbrandt. A separator theorem for
chordal graphs. SIAM J. Alg. Disc. Meth., 5:306{313, 1984.

[6] J. W. H. Liu. The role of elimination trees in sparse factorization. SIAM
J. Matrix Analysis and Applications, 11:134{172, 1990.

[7] N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects
of tree-width. J. Algorithms, 7:309{322, 1986.

[8] N. Robertson and P. D. Seymour. Graph minors. XIII. The disjoint paths
problem. J. Comb. Theory Series B, 63:65{110, 1995.

12

