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Abstract

The LogP model is a model of parallel computation that characterises a parallel com-

puter system by four parameters: the latency L, the overhead o, the gap g and the number

of processors P . We study the complexity of scheduling fork graphs in the LogP model.

It will be proved that constructing minimum-length schedules for fork graphs in the LogP

model is a strongly NP-hard optimisation problem. We also present a polynomial-time

algorithm that constructs schedules that are at most twice as long as minimum-length

schedules. Moreover, we prove that if all tasks of a fork graph have the same execution

length, then a minimum-length schedule can be constructed in polynomial time.

1 Introduction

In recent years, a great variety of parallel computer systems have been developed. Because of
this variety, it is very di�cult to construct a model that characterises all aspects of commu-
nication of a parallel computer system. A model of parallel computation can be used to focus
on those aspects of communication in a parallel computer system that have a large impact
on the length of a schedule, an execution of a computer program. A good model of parallel
computation helps to understand the essence of the problem of multiprocessor scheduling
with communication.

The PRAM [11] is the most common model of parallel computation. A PRAM consists
of a collection of processors that execute a computer program in a synchronous manner;
processors communicate by writing and reading in global memory. The PRAM model does
not capture the complexity of communication in the execution of computer programs: a
communication step takes the same amount of time as a local computation step, whereas, in
a real parallel computer system, a communication step is far more time consuming. There are
several PRAM-based models of parallel computation that include aspects of communication
in a real parallel computer system, such as latency [2, 3, 22], memory contention [15, 14] and
asynchrony [6, 13].

Most models of parallel computation include only one or two aspects of communication in
real parallel computer systems, but some include more aspects. These models are all archi-
tecture independent and characterise the execution of computer programs in a real parallel
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computer system by a small number of parameters. Such models are the BSP model [23], the
LogP model [9] and the Postal model [4]. In this paper, we will consider the LogP model that
provides more control over the machine resources than the BSP model and is more general
than the Postal model.

The LogP model captures the characteristics of communication in a real parallel computer
system using four parameters.

1. The latency L is an upper bound on the time required to send a unit-length message
from one processor to another via the communication network. The latency depends
on the diameter of the network topology.

2. The overhead o is the amount of time during which a processor is involved in sending
or receiving a message consisting of one word. During this time, a processor cannot
perform other operations.

3. The gap g is the minimum length of the delay between the starting times of two consecu-
tive message transmissions or two consecutive message receptions on the same processor.
1
g
is the communication bandwidth available for each processor.

4. P is the number of processors.

We will assume that L, o and g are non-negative integers and that P 2 f2; 3; : : : ;1g.
In addition, Culler et al. [9] make the following assumptions. The communication network

is assumed to be of �nite capacity: at each time at most dL
g
e messages can be in transit from

or to any processor. If a processor attempts to send a message that causes such a bound to
be exceeded, then this processor stalls until the message can be sent without exceeding the
bound of dL

g
e messages. Moreover, the time needed to transfer a message from one processor

to another is assumed to be exactly L time units: any message arrives at its destination
processor exactly L time units after it has been submitted to the communication network by
its source processor.

The communication between processors in the LogP model is modelled as follows. Con-
sider two di�erent processors p1 and p2. Assume that data has to be transferred from processor
p1 to processor p2 and that this data is contained in two messages. Then two messages must
be sent from processor p1 to processor p2. Figure 1 shows the communication between pro-
cessors p1 and p2. The send operations are represented by s1 and s2; r1 and r2 are the receive
operations corresponding to s1 and s2, respectively.

s1 s2

r1 r2

L

og

og

Figure 1: Communication between two processors in the LogP model

It takes o units of time to submit the �rst message to the communication network. Exactly
L time units after this message is submitted it can be received by processor p2. The second
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message cannot be sent immediately after the �rst: there must be a delay of at least g time
units between the starting times of two consecutive send operations on the same processor.
The second message can be received L time units after it has been sent. Note that since both
messages are received exactly L time units after they have been sent, there is a delay of g
time units between the starting times of the receive operations on processor p2.

Like for many other models of parallel computation, little is known about scheduling in
the LogP model. A few algorithms have been presented that construct schedules in the LogP
model for common computer programs. These programs include sorting [1, 10], broadcast [18]
and the Fast Fourier Transform [8].

In addition, L�owe and Zimmermann [20, 25] presented an algorithm that constructs sched-
ules for communication structures of PRAMs on an unrestricted number of processors. The
length of these schedules is at most 1+ 1


(G) times the length of a minimum-length schedule,

where 
(G) is the grain size of G. L�owe et al. [21] proved the same result for a generalisa-
tion of the LogP model. Moreover, L�owe and Zimmermann [20] presented an algorithm that
constructs schedules that are at most twice as long as a minimum-length schedule plus the
duration of the sequential communication operations.

Kort and Trystram [19] presented three algorithms for scheduling join graphs. They proved
that if g equals o and all task lengths or all message lengths are equal, then a minimum-
length schedule for a join graph on an unrestricted number of processors can be constructed
in polynomial time. In addition, Kort and Trystram [19] showed that if all tasks have the
same length and this length is at least maxfg; 2o+ Lg, then a minimum-length schedule for
a join graph on two processors can be constructed in linear time.

This paper is concerned with the problem of constructing minimum-length schedules for
fork graphs in the LogP model. It is proved that constructing minimum-length schedules
for a fork graph on an unrestricted number of processors is a strongly NP-hard optimisation
problem. A polynomial-time algorithm is presented that constructs schedules for fork graphs
on P processors that are at most twice as long as a minimum-length schedule on P processors.
In addition, it is shown that if all task lengths are equal, then a minimum-length schedule for
a fork graph on P processors can be constructed in polynomial time.

2 Preliminaries

In this paper, we consider the problem of scheduling a computer program in the LogP model.
Such a program is represented by a triple (G;�; c), such that G = (V;E) is a precedence
graph, � : V ! ZZ+ and c : V ! IN . An element of V will be called a task of G; an element
of E an arc of G. A task of G corresponds to a task of a computer program; an arc to a
data dependency between the tasks: if there is an arc from task u1 to task u2, then the result
of u1 is needed to execute u2. Task u has execution length �(u): the execution of u on a
processor takes �(u) time. If the result of u must be transferred to another processor, then
c(u) messages need to be sent to this processor. A LogP scheduling instance is represented
by a tuple (G;�; c; L; o; g; P ), where (G;�; c) represents a computer program and (L; o; g; P )
contains the parameters of the LogP model.

Consider an instance (G;�; c; L; o; g; P ). Let u1 and u2 be two tasks of G. If there is an
arc from u1 to u2, then u2 is called a child of u1 and u1 a parent of u1. If there is a directed
path from u1 to u2, then u2 is called a successor of u1 and u1 a predecessor of u2. This is
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denoted by u1 �G u2.
Consider an arc (u1; u2) of G. Assume u1 and u2 are scheduled on di�erent proces-

sors. Assume u1 is executed on processor p1 and u2 on processor p2. Then c(u1) messages
mu1;1; : : : ;mu1;c(u1) have to be sent from processor p1 to processor p2. Sending message mu1;i

to processor p2 will be represented by the send operation su1;p2;i. This send operation must be
executed on processor p1. The reception of messagemu1;i is represented by a receive operation
ru1;p2;i that must be executed by processor p2.

We will de�ne two sets S(G;P; c) and R(G;P; c) containing the send and the receive op-
erations, respectively. S(G;P; c) contains the send operations su;p;i, such that u is a task of
G, p 2 f1; : : : ; Pg is a processor and i 2 f1; : : : ; c(u)g is the index of a message of u. The set
R(G;P; c) contains the receive operations ru;p;i, such that u is a task of G, p 2 f1; : : : ; Pg and
i 2 f1; : : : ; c(u)g. Let C(G;P; c) be the union of S(G;P; c) and R(G;P; c), the set of commu-

nication operations. Each communication operation u in C(G;P; c) has length �(u) = o.

A schedule for an instance (G = (V;E); �; c; L; o; g; P ) is a pair of functions (�; �), such
that � : V [ C(G;P; c) ! IN [ f?g and � : V [ C(G;P; c) ! f1; : : : ; Pg [ f?g. � assign a
starting time and a processor to every task of G and every communication operation in of
C(G;P; c). The value ? denotes the starting time and processor of communication operations
that are not scheduled.

De�nition 2.1. A schedule (�; �) for (G;�; c; L; o; g; P ) is called a feasible schedule for
(G;�; c; L; o; g; P ) if

1. for all tasks u of G, �(u) 6= ? and �(u) 6= ?;

2. for all elements u1 and u2 of V (G) [ C(G;P; c), if �(u1) = �(u2) 6= ?, then �(u1) +
�(u1) � �(u2) or �(u2) + �(u2) � �(u1);

3. for all tasks u1 and u2 of G, if u1 �G u2, then �(u1) + �(u1) � �(u2);

4. for all tasks u1 and u2 of G, if u2 is a child of u1 and �(u1) 6= �(u2), then, for all
i � c(u1), �(su1;�(u2);i) = �(u1), �(ru1;�(u2);i) = �(u2), �(su1;�(u2);i) � �(u1) + �(u1),
�(ru1;�(u2);i) = �(su1;�(u2);i) + o+ L and �(u2) � �(ru1;�(u2);i) + o;

5. for all send operations s1 and s2 in S(G;P; c), if �(s1) = �(s2) 6= ?, then �(s1) + g �
�(s2) or �(s2) + g � �(s1);

6. for all receive operations r1 and r2 in R(G;P; c), if �(r1) = �(r2) 6= ?, then �(r1)+ g �
�(r2) or �(r2) + g � �(r1); and

7. for all tasks u of G and all processors p, if no child of u is scheduled on processor p or
p = �(u), then �(su;p;i) = ? and �(ru;p;i) = ? for all i 2 f1; : : : ; c(u)g.

The �rst constraint states that all tasks of G have to be executed. The second and third
ensure that a processor does not execute two tasks at the same time and that a task is be
scheduled after its predecessors. The fourth states that messages have to be sent if a task and
one of its children are scheduled on di�erent processors. Moreover, it states that a message
must be received exactly L time units after it has been submitted to the communication
network. The �fth and sixth constraint ensure that there is a delay of at least g time units
between two consecutive send or receive operations on the same processor. Note that there
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need not be a delay between a send operation and a receive operation on the same processor.
The last constraint states that some communication operations need not be executed.

In the de�nition of the LogP model [9], a source processor can send a message to a desti-
nation processor, unless the number of messages in transit from the source processor or to the
destination processor exceeds dL

g
e, in which case the source processor stalls. The de�nition of

feasible schedules in the LogP model states that a receive operation must be executed exactly
L time units after the corresponding send operation has been completed. So each processor
can send at most one message in g consecutive time units and at most one message can be
sent to the same processor in g consecutive time units. Hence the number of messages in
transit from or to any processor cannot be larger than bL+maxfo;gg�1

maxfo;gg c � dL�1
g
e + 1 � dL

g
e.

So we do not need to consider stalling.

Constructing a schedule for an instance (G;�; c; L; o; g; P ) corresponds to assigning a
starting time and a processor to every task of G and every communication operation in
C(G;P; c). Hence any algorithm that constructs feasible schedules for instances (G =
(V;E); �; c; L; o; g; P ) uses at least �(

P
u2V c(u)) time. If cmax = maxu2V c(u) is not bounded

by a polynomial in n and logmaxu2V �(u), then such an algorithm cannot have a polynomial
time complexity.

In a well-structured computer program, the size of a result of a task is not very large.
Hence we may assume that cmax is not exponentially large. In the remainder of this paper, we
do not want to focus on the time needed to schedule the communication operations. Hence
we will assume that cmax is bounded by a constant. However, the time complexity of the
algorithms presented in this paper remains polynomial if cmax is bounded by a polynomial in
n and logmaxu2V �(u).

In the remainder of this paper, we will focus on a special class of precedence graphs, the
fork graphs. A fork graph is a outtree of height one: it consists of a task, the source, and its
children, the sinks. Example 2.2 shows a schedule for a fork graph in the LogP model.

x:1,3

y1:1,0 y2:1,0 y3:2,0 y5:7,0y4:3,0

Figure 2: An instance (G;�; c; 2; 1; 2; 2)

x y1 y2

y3 y4

y5sx;1 sx;2 sx;3

rx;1 rx;2 rx;3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 3: A feasible schedule for (G;�; c; 2; 1; 2; 2)

Example 2.2. Consider the instance (G;�; c; 2; 1; 2; 2) shown in Figure 2. It is not di�cult
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to see that the schedule shown in Figure 3 is a feasible schedule for (G;�; c; 2; 1; 2; 2). Note
that y1 and y2 are scheduled between the send operations on processor 1. No task can be
executed between the receive operations on processor 2, since all three messages are needed
to send the result of x to another processor. Although two children of x are executed on the
second processor, only three send and receive operations are executed: the result of x has to
be sent to the second processor exactly once.

3 An NP-completeness result

In this section, we study the complexity of constructing minimum-length schedules for fork
graphs in the LogP model. If the number of processors is restricted, then it is not di�cult to
prove that this optimisation problem is NP-hard. Using a polynomial reduction from 3Par-

tition, it will be shown that constructing minimum-length schedules for fork graphs on an
unrestricted number of processors is strongly NP-hard. 3Partitionis de�ned as follows [12].

Problem. 3Partition

Instance. A set A = fa1; : : : ; a3mg of positive integers and an integer B, such that
P3m

i=1 ai =
mB and 1

4B < ai <
1
2B for all i 2 f1; : : : ; 3mg.

Question. Are there pairwise disjoint subsets A1; : : : ; Am of A, such that
P

a2Aj
a = B for

all j 2 f1; : : : ;mg?

3Partition is a well-known strongly NP-complete decision problem [12]. Fork graph

scheduling is the following decision problem.

Problem. Fork graph scheduling

Instance. An instance (G;�; c; L; o; g;1), such that G is a fork graph and an integer D.
Question. Is there a feasible schedule for (G;�; c; L; o; g;1) of length at most D?

Lemma 3.1 shows the existence of a polynomial reduction from 3Partition to Fork

graph scheduling. This reduction shows that Fork graph scheduling is a strongly
NP-complete decision problem.

Lemma 3.1. There is a polynomial reduction from 3Partition to Fork graph schedul-

ing.

Proof. Let A = fa1; : : : ; a3mg and B be an instance of 3Partition. Construct an instance
(G;�; c; L; o; g;1) of Fork graph scheduling as follows. G is a fork graph with source
x and sinks y1; : : : ; y3m and z1; : : : ; zm+2. Let �(x) = 1, �(yi) = ai for all i 2 f1; : : : ; 3mg,
�(z1) = 3mB and �(zi) = 3mB + (m + 2 � i)B for all i 2 f2; : : : ;m + 2g. Let c(x) = 1,
c(yi) = 0 for all i 2 f1; : : : ; 3mg and c(zi) = 0 for all i 2 f1; : : : ;m + 2g. Let L = 0, o = 0
and g = B. In addition, let D = 4mB + 1. Now it is proved that there are pairwise disjoint
subsets A1; : : : ; Am of A, such that

P
a2Aj

a = B for all j 2 f1; : : : ;mg if and only if there is

a feasible schedule for (G;�; c; L; o; g;1) of length at most D.

()) Assume A1; : : : ; Am are pairwise disjoint subsets of A, such that
P

a2Aj
a = B for all

j 2 f1; : : : ;mg. Then A1[ : : :[Am = A. A schedule (�; �) for (G;�; c; L; o; g;1) can be
constructed as follows. x starts at time 0 on processor 1. For all i 2 f2; : : : ;m+2g, send
operation sx;i;1 is executed at time (i�2)B+1 on processor 1 and receive operation rx;i;1
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at time (i�2)B+1 on processor i. Sink z1 is scheduled at timemB+1 on processor 1 and
sink zi at time (i�2)B+1 on processor i for all i 2 f2; : : : ;m+2g. For all j 2 f1; : : : ;mg,
de�ne Yj = fyi j ai 2 Ajg. Then

P
y2Yj

�(y) = B for all j 2 f1; : : : ;mg. The tasks of Yj
are scheduled without interruption from time (j�1)B+1 to time jB+1 on processor 1.
Then the sinks y1; : : : ; y3m are scheduled between the send operations on processor 1 and
the sinks z1; : : : ; zm+2 after the communication operations. Hence (�; �) is a feasible
schedule for (G;�; c; L; o; g;1). Its length equals max1�i�m+2(�(zi) + �(zi)). z1 is
completed at time �(z1)+�(z1) = mB+1+3mB = 4mB+1. For all i 2 f2; : : : ;m+2g,
sink zi �nishes at time �(zi) + �(zi) = (i� 2)B + 1+ 3mB + (m+ 2� i)B = 4mB +1.
Hence (�; �) is a feasible schedule for (G;�; c; L; o; g;1) of length at most D.

(() Assume (�; �) is a feasible schedule for (G;�; c; L; o; g;1) of length at most D. Then
�(zi) 6= �(zj) for all i 6= j. So the tasks of G are scheduled on at least m+2 processors.
Assume x is scheduled at time 0 on processor 1. There is a sink zi that is scheduled
after m + 1 receive operations. This task cannot start until time mg + 1 = mB + 1.
Since �(zi) � 3mB for all i 2 f1; : : : ;m + 2g, we may assume that zm+2 is scheduled
at time mB + 1. Since it starts at time mB + 1, send operations must be executed at
times (i� 2)B + 1 on processor 1 for all i 2 f2; : : : ;m+ 2g. We may assume that send
operation sx;i;1 is scheduled at time (i � 2)B + 1 on processor 1 and receive operation
rx;i;1 at the same time on processor i. Hence we may assume that �(zm+2) = m+2. The
remaining sinks z1; : : : ; zm+1 must be scheduled on processors 1; : : : ;m + 1. Since the
length of the sinks z2; : : : ; zm+1 is larger than 3mB, z1 must be scheduled on processor 1
at time mB+1. Similarly, sink zi must be scheduled on processor i at time (i�2)B+1
for all i 2 f2; : : : ;m + 1g. Then all sinks z1; : : : ; zm+2 �nish at time 4mB + 1. A
sink yi cannot be executed on processor j 6= 1 before sink zj , because zj is scheduled
immediately after receive operation rx;j;1. So sinks y1; : : : ; y3m are scheduled between
the send operations on processor 1. There is a delay of mB time units between the �rst
and last send operation. Since the sum of the length of the sinks y1; : : : ; y3m equalsmB,
processor 1 is not idle before time D. No sink yi can start before a send operation and
�nish after it. For all j 2 f2; : : : ;m + 1g, de�ne Yj�1 = fyi j (j � 2)B + 1 � �(yi) <
(j � 1)B + 1g and Aj�1 = fai j yi 2 Yjg. Then the sets Aj are pairwise disjoint andP

a2Aj
a =

P
y2Yj

�(y) = B for all j 2 f1; : : : ;mg.

Lemma 3.1 shows that Fork graph scheduling is a strongly NP-complete decision
problem and that constructing minimum-length schedules for fork graphs on an unrestricted
number of processors is a strongly NP-hard optimisation problem.

Theorem 3.2. Constructing minimum-length schedules for instances (G;�; c; L; o; g;1),
such that G is a fork graph, is a strongly NP-hard optimisation problem.

The reduction presented in the proof of Lemma 3.1 uses the fact that g may exceed
o. Using a reduction from Partition [12], one can also prove that if o � g and o � 1,
then constructing a minimum-length schedule for a fork graph on an unrestricted number
of processors is an NP-hard optimisation problem. It is not clear whether constructing a
minimum-length schedule for a fork graph on an unrestricted number of processors remains
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NP-hard if o and g are bounded by a constant. If both o and g equal zero, then a minimum-
length schedule for a fork graph on an unrestricted number of processors can be constructed
in polynomial time [5].

4 A 2-approximation algorithm

In this section, a simple 2-approximation algorithm for scheduling fork graphs in the LogP
model is presented. It is not di�cult to see that in a minimum-length schedule for an instance
(G;�; c; L; o; g; P ), such that G is a fork graph, the number of processors on which a task of G
is scheduled need not exceed the number of sinks of G. This knowledge is used in this section:
for each possible number of processorsm, we will construct a schedule for (G;�; c; L; o; g; P ) in
which the tasks of G are scheduled on exactlym processors. It will be proved that the shortest
of these schedules is at most twice as long as a minimum-length schedule for (G;�; c; L; o; g; P ).

Consider an instance (G;�; c; L; o; g; P ), such that G is a fork graph with source x and
sinks y1; : : : ; yn. There is a minimum-length schedule for (G;�; c; L; o; g; P ) in which the
tasks of G are scheduled on at most minfn; Pg processors. Let m � minfn; Pg be a posi-
tive integer. A feasible schedule for (G;�; c; L; o; g; P ) will be called an m-processor schedule

for (G;�; c; L; o; g; P ) if there are exactly m processors on which a task of G is executed.
More precisely, a feasible schedule (�; �) for (G;�; c; L; o; g; P ) is an m-processor schedule for
(G;�; c; L; o; g; P ) if jf�(u) j u is a task of Ggj = m.

Consider an instance (G;�; c; L; o; g; P ), such that G is a fork graph with source x and
sinks y1; : : : ; yn, and a positive integerm � minfn; Pg. Algorithm Fork graph scheduling

shown in Figure 4 constructs an m-processor schedule for (G;�; c; L; o; g; P ) as follows. The
source x ofG is scheduled at time 0 on processor 1 and a set of c(x) send and receive operations
is scheduled for each of the processors 2; : : : ;m. To ensure that the constructed schedule is an
m-processor schedule, a sink of G is scheduled immediately after the last receive operation on
each of these processors. The remaining sinks are scheduled by a straightforward modi�cation
of Graham's List scheduling algorithm [16, 17].

Example 4.1. Consider the instance (G;�; c; 2; 1; 2;1) shown in Figure 5. For this instance,
Algorithm Fork graph scheduling constructs the 3-processor schedule shown in Figure 6.
First x is scheduled on processor 1 at time 0. The result of x is sent to processors 2 and 3
as early as possible. Sink y1 is scheduled immediately after the last receive operation on
processor 2. Similarly, y2 is scheduled immediately after the last receive operation on proces-
sor 3. The remaining sinks are scheduled after the send operations on processor 1, after y1
on processor 2, or after y2 on processor 3.

Now we will prove that Algorithm Fork graph scheduling correctly constructs m-
processor schedules for fork graphs.

Lemma 4.2. Let G be a fork graph with source x and sinks y1; : : : ; yn. Let m � minfn; Pg
be a positive integer. Let (�m; �m) be the schedule for (G;�; c; L; o; g; P ) constructed by

Algorithm Fork graph scheduling. Then (�m; �m) is an m-processor schedule for

(G;�; c; L; o; g; P ).

Proof. x is executed at time 0 on processor 1. It is easy to see that all sinks ofG are scheduled
after x. For all processors p 2 f2; : : : ;mg and all j 2 f1; : : : ; c(x)g, send operation sx;p;j is
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Algorithm Fork graph scheduling

Input. An instance (G;�; c; L; o; g; P ), such that G is a fork graph with source x and sinks
y1; : : : ; yn and a positive integer m � minfn; Pg.

Output. A m-processor schedule (�m; �m) for (G;�; c; L; o; g; P ).
1. �m(x) := 0
2. �m(x) := 1
3. idle(1) := �(x)
4. for p := 2 to m

5. do idle(p) := 0
6. for j := 1 to c(x)
7. do �m(sx;p;j) := �(x) + ((p� 2)c(x) + j � 1)maxfo; gg
8. �m(sx;p;j) := 1
9. idle(1) := �m(sx;p;j) + o

10. �m(rx;p;j) := �(x) + ((p� 2)c(x) + j � 1)maxfo; gg+ L+ o

11. �m(rx;p;j) := p

12. idle(p) := �m(rx;p;j) + o

13. �m(yp�1) := idle(p)
14. �m(yp�1) := p

15. idle(p) := �m(yp�1) + �(yp�1)
16. for i := m to n

17. do assume idle(p) = min1�j�m idle(j)
18. �m(yi) := idle(p)
19. �m(yi) := p

20. idle(p) := idle(p) + �(yi)

Figure 4: Algorithm Fork graph scheduling

x:1,2

y1:7,0 y2:3,0 y3:3,0 y5:1,0y4:2,0

Figure 5: An instance (G;�; c; 2; 1; 2;1)

x s3;1s2;2 s3;2

r2;2r2;1

r3;1

s2;1

r3;2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

y1

y2

y3 y4 y5

Figure 6: A 3-processor schedule constructed by Algorithm Fork graph scheduling

scheduled on processor 1 at time �(x)+((p�2)c(x)+ j �1)maxfo; gg and the corresponding
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receive operation rx;p;j on processor p at time �(x)+((p�2)c(x)+j�1)maxfo; gg+o+L. So
the send operations are scheduled after x and there is a delay of maxfo; gg time units between
the starting times of two consecutive send operations or two consecutive receive operations on
the same processor. Moreover, there is a delay of exactly L time units between the completion
time of a send operation and the starting time of the corresponding receive operation. For
all processors p 2 f2; : : : ;mg, a sink of G is scheduled on processor p at the completion time
of the last receive operation on processor p. Clearly, the sinks of G are scheduled after all
communication operations and no processor executes two tasks at the same time. So (�m; �m)
is a feasible schedule for (G;�; c; L; o; g; P ). Because every processor p 2 f1; : : : ;mg executes
at least one task of G, (�m; �m) is an m-processor schedule for (G;�; c; L; o; g; P ).

The time complexity of Algorithm Fork graph scheduling can be determined as fol-
lows. Consider an instance (G;�; c; L; o; g; P ), such that G is a fork graph with n sinks, and
a positive integer m � minfn; Pg. Assigning a starting time and a processor to the source of
G, m�1 sinks of G and the communication operations takes O(n) time. If the processors are
stored in a balanced search tree (for instance, a red-black tree [7]) ordered by non-decreasing
�rst idle time, then for each of the remaining n �m + 1 sinks of G, O(logm) time is used
to determine a starting time and a processor. Hence O(n logn) time is used to construct an
m-processor schedule for (G;�; c; L; o; g; P ).

Lemma 4.3. For all instances (G;�; c; L; o; g; P ), such that G is a fork graph with n sinks

and all positive integers m � minfn; Pg, Algorithm Fork graph scheduling constructs a

m-processor schedule for (G;�; c; L; o; g; P ) in O(n logn) time.

Now it will be proved that the m-processor schedules constructed by Algorithm Fork

graph scheduling are at most twice as long as m-processor schedules of minimum length.
Let G be a fork graph with source x and sinks y1; : : : ; yn. Let m � minfn; Pg be a positive
integer. Let (�m; �m) be the m-processor schedule for (G;�; c; L; o; g; P ) constructed by Al-
gorithm Fork graph scheduling. Let `m be the length of (�m; �m) and `�m the length of
a minimum-length m-processor schedule for (G;�; c; L; o; g; P ). In any m-processor schedule
for (G;�; c; L; o; g; P ), c(x) receive operations have to be executed on m�1 processors. Hence
if m 6= 1, then every m-processor schedule for (G;�; c; L; o; g; P ) has length at least

`�m � �(x) + ((m� 1)c(x)� 1)maxfo; gg+ 2o+ L:

Obviously, every 1-processor schedule for (G;�; c; L; o; g; P ) has length at least �(x) +Pn
i=1 �(yi) and if m = 1, then Algorithm Fork graph scheduling constructs a sched-

ule of this length. Hence we will assume that m � 2.
Assume y is a sink of G that �nishes at time `m. Then y has been assigned a starting time

and a processor either in Lines 13 and 14 or in Lines 18 and 19 of Algorithm Fork graph

scheduling.

Case 1. y has been assigned a starting time and a processor in Lines 13 and 14.
Assume �(y) = p. Then p 6= 1 and y is scheduled immediately after receive operation
rx;p;c(x). This receive operation �nishes at time �(x)+((p�1)c(x)�1)maxfo; gg+2o+L �
`�m. Obviously, �(y) � `�m. So

` = �m(y) + �(y)

= (�(x) + ((p� 1)c(x) � 1)maxfo; gg+ 2o+ L) + �(y)

� 2`�m:
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Case 2. y has been assigned a starting time and a processor in Lines 18 and 19.
Assume y is scheduled on processor p. If p = 1, then y is scheduled after x and the send
operations. Otherwise, y is scheduled after sink yp�1. If processor 1 is idle at a time t,
such that �(x) + ((m � 1)c(x) � 1)maxfo; gg + o � t < �m(y), then y would have been
scheduled at time t on processor 1. Similarly, if a processor p0 2 f2; : : : ;mg is idle at a
time t, such that �(x) + ((p0 � 1)c(x) � 1)maxfo; gg + 2o + L + �(yp0�1) � t < �m(y),
then y would have been scheduled at time t on processor p0. Hence processor 1 is busy
from time �(x) + ((m � 1)c(x) � 1)maxfo; gg + o until time �m(y) and each processor
p0 2 f2; : : : ;mg from time �(x) + ((p0 � 1)c(x) � 1)maxfo; gg + 2o + L + �(yp0�1) until
time �m(y).

No sink of G can be executed before a receive operation on a processor p 2 f2; : : : ;mg.
Because the communication operations are executed as early as possible, the idle periods
in (�m; �m) on processors 2; : : : ;m before the �rst sink cannot be avoided. Hence the only
idle time in (�m; �m) that can be avoided is the idle time between the send operations on
processor 1. As a result,

`�m � 1
m
(m�m(y) + �(y)� ((m� 1)c(x)� 1)(maxfo; gg � o))

= �m(y) +
1
m
�(y)� 1

m
((m� 1)c(x)� 1)(maxfo; gg � o):

In addition, `�m � �(y) and `�m � �(x) + ((m � 1)c(x) � 1)maxfo; gg + 2o + L, since
the last receive operation on the mth processor cannot be completed before this time.
Consequently,

`m = �m(y) + �(y)

� `�m + (1� 1
m
)�(y) + 1

m
(((m� 1)c(x)� 1)(maxfo; gg � o))

� `�m + (1� 1
m
)`�m + 1

m
`�m

= 2`�m:

Consequently, (�m; �m) is at most twice as long as a minimum-length m-processor schedule
for (G;�; c; L; o; g; P ).

For each positive integer m � minfn; Pg, Algorithm Fork graph scheduling is used
to construct an m-processor schedule (�m; �m) for (G;�; c; L; o; g; P ) of length `m. Assume
(�k; �k) is the shortest of these schedules. Let `� = min1�m�minfn;Pg `

�
m. Assume `� = `�p.

Then `k � `p � 2`�p = 2`�. Hence we have proved the following result.

Theorem 4.4. There is an algorithm with an O(n2 logn) time complexity that constructs fea-

sible schedules for instances (G;�; c; L; o; g; P ), such that G is a fork graph with n sinks, with

length at most 2`�, where `� is the length of a minimum-length schedule for (G;�; c; L; o; g; P ).

5 A polynomial special case

In Section 3, it was shown that constructing minimum-length schedules for fork graphs is
a strongly NP-hard optimisation problem. In Section 4, a 2-approximation algorithm was
presented. In this section, it will be proved that if all sinks of a fork graph have the same
task length, then a minimum-length schedule can be constructed in polynomial time.
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Let G be a fork graph with n sinks. Consider an instance (G;�; c; L; o; g; P ), such that
�(y) = � for all sources y of G. There is a minimum-length schedule for (G;�; c; L; o; g; P )
in which the tasks of G are scheduled on at most minfn; Pg processors. A minimum-length
schedule for (G;�; c; L; o; g; P ) is constructed by computing the length of a minimum-length
m-processor schedule for all positive integers m � minfn; Pg. These lengths are used to
construct a minimum-length schedule for (G;�; c; L; o; g; P ).

Let G be a fork graph with n sinks. Consider an instance (G;�; c; L; o; g; P ), such that all
sinks y of G have execution length �(y) = �. Let m � minfn; Pg be a positive integer. In an
m-processor schedule for (G;�; c; L; o; g; P ), c(x) receive operations have to be executed on
m� 1 processors and at least one sink is scheduled after the last receive operation on each of
these processors. Hence Cm = (m� 1)c(x) send and receive operations are executed in an m-
processor schedule for (G;�; c; L; o; g; P ). Because the length of a minimum-length 1-processor
schedule for (G;�; c; L; o; g; P ) equals �(x)+n�, we will only consider the computation of the
length of minimum-length m-processor schedules for (G;�; c; L; o; g; P ), where m � 2.

First we will consider anm-processor schedule (�m;0; �m;0) for (G;�; c; L; o; g; P ), in which
the communication operations are executed as early as possible. We may assume that x is
scheduled at time 0 on processor 1 and that send operations sx;p;i are executed before send
operations sx;p+1;j for all processors p 2 f2; : : : ;m�1g and all i; j 2 f1; : : : ; c(x)g. So we may
assume that for all processors p 2 f2; : : : ;mg and all i 2 f1; : : : ; c(x)g, send operation sx;p;i
is scheduled at time �(x) + ((p� 2)c(x) + i� 1)maxfo; gg and receive operation rx;p;i at time
�(x) + ((p� 2)c(x) + i� 1)maxfo; gg+L+ o. Hence the last send operation �nishes at time

idlem;0(1) = �(x) + ((m� 1)c(x)� 1)maxfo; gg+ o:

Since we may assume that the sinks of G are scheduled immediately after the last communi-
cation operation on processors 2; : : : ;m, the �rst sink on processor p 2 f2; : : : ;mg �nishes at
time

idlem;0(p) = �(x) + ((p� 1)c(x)� 1)maxfo; gg+ L+ 2o+ �:

Now consider a minimum-lengthm-processor schedule (�m; �m) for (G;�; c; L; o; g; P ). We
may assume that the communication operations are scheduled in the same order and on the
same processors as in (�m;0; �m;0). The sinks of G are scheduled after the receive operations
on one of the processors 2; : : : ;m or after or between the send operations on processor 1.

There is a delay of at least maxfo; gg�o time units between the completion time of a send

operation and the starting time of the next one. Let �(o; g) = maxfo;gg�o
�

. If there is a delay of
maxfo; gg time units between the starting times of two consecutive send operations, then at
most b�(o; g)c sinks can be scheduled between them. If at least d�(o; g)e sinks are scheduled
between two consecutive send operations, then we may assume that processor 1 is not idle
between these send operations. It is not di�cult to see that if more than d�(o; g)e sinks
are scheduled between two consecutive send operations, then one of them can be scheduled
at a later time without increasing the schedule length. Hence we may assume that at most
d�(o; g)e sinks are scheduled between two consecutive send operations. In addition, we may
assume that no sink is scheduled before the �rst send operation on processor 1. So the total
number of sinks that are scheduled between the send operations on processor 1 is at most
(Cm � 1)d�(o; g)e.

If d�(o; g)e sinks are scheduled between two consecutive send operations s1 and s2, then
the starting times of these send operations di�ers exactly o+ d�(o; g)e�. So compared to the
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starting times of s1 and s2 in (�m;0; �m;0), the starting time of s2 is increased by

inc(o; g) = d�(o; g)e� � (maxfo; gg � o):

Assume k sinks are scheduled between the send operations on processor 1. We may assume
that k � (Cm � 1)d�(o; g)e and k � n �m + 1. In addition, because b�(o; g)c sinks can be
scheduled between any pair of consecutive send operations without increasing the schedule
length, we may assume that at least minfn�m+ 1; (Cm � 1)b�(o; g)cg sinks are scheduled
between the send operations on processor 1. If k = k0+(Cm�1)b�(o; g)c for some non-negative
integer k0, then d�(o; g)e sinks have to be scheduled before the last k0 send operations and
b�(o; g)c before the other send operations except the �rst. If k � (Cm � 1)b�(o; g)c, then at
most b�(o; g)c sinks have to be scheduled between any pair of consecutive send operations on
processor 1. Hence the last send operation on processor 1 �nishes

incm;k(1) = maxf0; k � (Cm � 1)b�(o; g)cg inc(o; g)

time units later than in (�m;0; �m;0). Moreover, the completion times of the �rst sinks on
processors 2; : : : ;m are increased compared to their completion times in (�m;0; �m;0). The
send operations sx;p;i are scheduled before send operations sx;p+1;j for all processors p 2
f2; : : : ;m � 1g and all i; j 2 f1; : : : ; c(x)g. Because d�(o; g)e sinks are scheduled between
the last k0 pairs of consecutive send operations on processor 1, the completion times of the
�rst sink on the last d k0

c(x)e processors are increased. The completion time of the �rst sink on

processor p 2 f2; : : : ;mg is increased by

incm;k(p) = maxf0; k � (Cm � 1)b�(o; g)c � (m� p)c(x)g inc(o; g);

because d�(o; g)e sinks are scheduled before the last k0 = k�(Cm�1)b�(o; g)c send operations
on processor 1 and the (m � p)c(x) send operations scheduled on processor 1 after send
operation sx;p;c(x) does not increase the starting time of the �rst sink on processor p.

Let `m;k be the minimum length of anm-processor schedule for (G;�; c; L; o; g; P ) in which
k sinks are scheduled between the send operations on processor 1. Then `m;k is the length of
(�m; �m). So we may assume that the last send operation on processor 1 �nishes at time

idlem;k(1) = idlem;0(1) + incm;k(1)

and that for all processors p 2 f2; : : : ;mg, the completion time of the �rst sink on processor p
equals

idlem;k(p) = idlem;0(p) + incm;k(p):

Note that idlem;k(m) � idlem;k(p) for all processors p 2 f1; : : : ;mg. Since the remaining
n � k sinks have to be scheduled after the send operations on processor 1 or after the �rst
sink on a processor p 2 f2; : : : ;mg, `m;k is the smallest integer `, such that

` � idlem;k(m) and

mX
p=1

�
`� idlem;k(p)

�

�
� n� k:

De�ne

`m;k;0 = minf` 2 Q j ` � idlem;k(m) ^

mX
p=1

`� idlem;k(p)

�
� n� kg:
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Then `m;k;0 � `m;k < `m;k;0 + �. `m;k;0 can be computed in O(m) time:

`m;k;0 = maxfidlem;k(m);
1

m
((n� k)�+

mX
p=1

idlem;k(p))g:

If `m;k;0 = idlem;k(m), then `m;k;0 = `m;k = idlem;k(m). So we will assume that `m;k;0 6=
idlem;k(m). Then

`m;k = minf` 2 ZZ j

mX
p=1

�
`� idlem;k(p)

�

�
=

mX
p=1

`m;k;0 � idlem;k(p)

�
g:

Since `m;k;0 6= idlem;k(m),
Pm

p=1
`m;k;0�idlem;k(p)

�
2 IN . De�ne

D =

mX
p=1

`m;k;0 � idlem;k(p)

�
�

mX
p=1

�
`m;k;0 � idlem;k(p)

�

�
:

Note that D 2 IN and D � m. Assume that for all processors p 2 f1; : : : ;mg,

`m;k;0 � idlem;k(p) = qp�+ rp;

such that 0 � rp < �. Then `m;k � `m;k;0 equals the smallest d 2 Q, such that `m;k;0 + d 2 ZZ

and for at least D processors p, rp+d � �. Then `m;k can be computed as follows. Select the
Dth element in the list of processors ordered by non-increasing rp-values. Assume the Dth

processor in this list is processor p0. Then

`m;k = d`m;k;0 + �� rp0e :

Selecting the Dth processor takes O(m) time [7], so `m;k can be computed in O(m) time.

Let `�m = mink `m;k and `� = min1�m�minfn;Pg `
�
m. Then `�m is the length of a minimum-

length m-processor schedule for (G;�; c; L; o; g; P ) and `� the length of a minimum-length
schedule for (G;�; c; L; o; g; P ). For each positive integerm � minfn; Pg, `�m can be computed
in O(n2) time, because c(x) is bounded by a constant. So `� can computed in O(n3) time. If
`� equals `m;k, then m and k can be used to construct a minimum-length schedule in linear
time. Hence we have proved the following result.

Theorem 5.1. There is an algorithm with an O(n3) time complexity that constructs

minimum-length schedules for instances (G;�; c; L; o; g; P ), such that G is a fork graph with

n sinks and there is a positive integer �, such that �(y) = � for all sinks y of G.

If maxfo; gg � o is divisible by � (for instance, if g � o or if � = 1), then the length of
a minimum-length schedule for (G;�; c; L; o; g; P ) can be computed more e�ciently. Assume
maxfo; gg�o is divisible by �. Then �(o; g) 2 IN . So we may assume that in a minimum-length
m-processor schedule for (G;�; c; L; o; g; P ), exactly km = minfn; (Cm � 1)�(o; g)g sinks of
G are scheduled between the send operations on processor 1. Obviously, incm;km(p) = 0
for all processors p 2 f1; : : : ;mg. So in a minimum-length m-processor schedule for
(G;�; c; L; o; g; P ), the last send operation on processor 1 �nishes at time

idlem;km(1) = idlem;0(1) = �(x) + ((m� 1)c(x)� 1)maxfo; gg+ o:
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The completion time of the �rst sink on processor p 2 f2; : : : ;mg equals

idlem;km(p) = idlem;0(p) = �(x) + ((p� 1)c(x)� 1)maxfo; gg+ L+ 2o+ �:

Moreover, `�m is the smallest integer `, such that

` � idlem;km(m) and
mX
p=1

�
`� idlem;km(p)

�

�
� n� km:

`�m can be computed in O(n) time. Hence `� = min1�m�minfn;Pg `
�
m can be computed in O(n2)

time. Given the number of processors m, such that `� = `�m, a minimum-length schedule for
(G;�; c; L; o; g; P ) can be constructed in linear time. So we have proved the following result.

Theorem 5.2. There is an algorithm with an O(n2) time complexity that constructs

minimum-length schedules for instances (G;�; c; L; o; g; P ), such that G is a fork graph with n

sinks and there is a positive integer �, such that �(y) = � for all sinks y of G and maxfo; gg�o
is divisible by �.

6 Concluding remarks

In this paper, we studied the complexity of scheduling fork graphs in the LogP model. It
was shown that constructing minimum-length schedules for fork graphs is a strongly NP-
hard optimisation problem. In addition, two polynomial-time algorithms were presented
that construct schedules for fork graphs; one is a 2-approximation algorithm for scheduling
arbitrary fork graphs, the other constructs minimum-length schedules for fork graphs in which
all sinks have the same execution length. The basis of these algorithms is the knowledge of
the structure of a minimum-length m-processor schedule for a fork graph.

A similar approach can be used for scheduling join graphs in the LogP model. The
structure of a minimum-length schedule for a join graph can be used to construct schedules for
join graphs. If g does not exceed o, then a schedule on an unrestricted number of processors
that is at most three times as long as a minimum-length schedule can be constructed in
polynomial time and for each constant k � 1, a schedule on a restricted number of processors
that is at most 3 + 1

k
times as long as minimum-length schedules can be constructed in

polynomial time [24]. In addition, if all tasks of a join graph have the same execution length,
then a minimum-length schedule on an unrestricted number of processors can be constructed
in polynomial time [24].
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