
The complexity of scheduling typed task systems with and

without communication delays�

Jacques Verriet

Department of Computer Science, Utrecht University,

P.O. Box 80.089, 3508 TB Utrecht, The Netherlands.

E-mail: jacques@cs.uu.nl

Abstract

We consider the problem of scheduling typed task systems subject to precedence con-

straints and communication delays. For such task systems, the set of tasks is divided into

sets of tasks of the same type and there are di�erent types of processors. In a schedule for a

typed task system, the type of a task must correspond to the type of the processor on which

it is executed.

It is proved that if there is only one processor of each type, then, without communication

delays, a schedule of length at most three can be constructed in polynomial time and that

determining the existence of a schedule of length at most four is an NP-complete decision

problem. Moreover, we show that with non-zero communication delays, determining the

existence of a schedule of length at most four can be done in polynomial time and that

determining the existence of schedules of length at most �ve is an NP-complete decision

problem. The problem of constructing minimum-length schedules for typed task systems on

two processors is shown to be an NP-hard optimisation problem.

We prove that if there are no restrictions on the number of processors of one type, then,

without communication delays, the existence of a schedule of length at most two can be

determined in polynomial time and that determining the existence of a schedule of length

at most three is an NP-complete decision problem. In addition, it is proved that with non-

zero communication delays, the existence of schedules of length at most three can be done in

polynomial time and that determining the existence of a schedule of length at most four is a

NP-complete decision problem.

For the special case of interval-ordered tasks, it is proved that minimum-length schedules

for interval orders with unit-length tasks on m processors can be constructed in polynomial

time and that constructing minimum-length schedules for preallocated interval-ordered tasks

with arbitrary task lengths is an NP-hard optimisation problem.

1 Introduction

Many parallel computer systems contain components that can execute only one type of tasks.
For instance, the evaluation of arithmetic expressions is often done by special processors. In this
report, we will study the complexity of scheduling problems in which every processor and every
task has a type. If a task is to be executed on a processor, then their types must coincide.

The execution of a set of precedence-constrained tasks on a number of typed processors gives
rise to a lot of data transfers. Data-dependent tasks of di�erent types have to be executed on
di�erent processors. So the result of a task needs to be transferred to other processor in order to
execute data-dependent tasks on this processors. We will consider two kinds of scheduling prob-
lems, problems in which the duration of these data transfers is neglected and problems in which

�This research was partially supported by ESPRIT Long Term Research Project 20244 (project ALCOM IT:
Algorithms and Complexity in Information Technology).

1



these durations are not neglected.

Little is known about the general problem of scheduling typed task systems: Ja�e [16] and
Jansen [18] studied the problem of scheduling typed task systems without any restrictions on the
number of processors of one type. However, there are two special cases that have been studied
extensively. The �rst is the problem of scheduling a set of precedence-constrained tasks on a
number of identical processors. In this special case, all tasks and all processors have the same type.
Overviews of the results for this special case are given by Cheng and Sin [6] for scheduling without
communication delays, and by Chr�etienne and Picouleau [7] for scheduling with communication
delays.

The second well-studied special case is the problem of scheduling preallocated tasks subject
to precedence constraints. In this special case, there is exactly one processor of each type. Con-
sequently, it is known on which processor a task has to be executed. Job shops form collections
of chains of preallocated tasks in which no immediate successors has to be executed on the same
processor [11], a 
ow shop is a job shop in which all chains have the same length and the ith tasks
of all chains must be executed on the same processor [11]. More general precedence constraints are
considered by Bernstein et al. [2, 3, 4], who studied the problem of scheduling preallocated tasks
on two processors of di�erent types, and by Goyal [13], who studied the complexity of scheduling
preallocated tasks on m processors.

In this report, we study the complexity of scheduling preallocated tasks and the more general
problem of scheduling arbitrary typed task systems. For both types of problems, we will consider
problems in which the duration of the data transfers is negligible and ones in which these durations
are not negligible.

This report is divided into two parts. The �rst part consists of Sections 3, 4 and 5. In these
sections, we consider the problem of scheduling preallocated task systems. In Section 3, it is
proved that constructing minimum-length schedules on two processors is an NP-hard optimisation
problem even if the tasks form a collection of chains of unit-length tasks and the communication
delays are of unit length.

Section 4 deals with the problem of scheduling preallocated tasks without communication
delays. We present an algorithm that determines the existence of a schedule of length at most
three in polynomial time. Determining the existence of a schedule of length at most four is proved
to be an NP-complete decision problem even if the precedence constraints form a collection of fork
graphs with unit-length tasks.

In Section 5, we study the problem of scheduling preallocated tasks subject to non-zero com-
munication delays. It is shown that scheduling preallocated tasks with non-zero communication
delays is a special case of scheduling without communication delays. It will be proved that this
special case is less complicated than the general case: the existence of a schedule of length at most
four can be determined in polynomial time. Determining the existence of schedules of length at
most �ve is shown to be an NP-complete decision problem.

The second part of this report consists of Sections 6, 7 and 8. In these sections, we study
the problem of scheduling arbitrary typed task systems. In Section 6, a simple polynomial-time
algorithm is presented that determines the existence of a schedule of length at most two. The
problem of determining the existence of schedules of length at most three is shown to be an
NP-complete decision problem even if the tasks form a collection of fork graphs with unit-length
tasks.

Section 7 deals with the problem of scheduling typed task systems subject to non-zero com-
munication delays. Although this is not a special case of scheduling typed task systems without
communication delays, it is shown that it is less complicated than scheduling without communica-
tion delays. It is proved that the existence of schedules of length at most three can be determined
in polynomial time, whereas determining the existence of schedules of length at most four is shown
to be an NP-complete decision problem.

Section 8 considers typed task systems for which the precedence constraints form an interval

2



order. We present a polynomial-time algorithm that constructs minimum-length schedules for
interval-ordered tasks of unit length that must be scheduled subject to unit-length communica-
tion delays. In addition, it is proved that if the task lengths are unrestricted, then constructing
minimum-length schedules for interval orders is an NP-hard optimisation problem even for preal-
located interval-ordered tasks on two processors.

2 Preliminaries

In this report, I will present several algorithms that construct schedules for typed precedence-
constrained tasks on m typed processors. The precedence-constrained tasks will be represented
by a directed acyclic graph. An instance of such a scheduling problem is represented by a tuple
(G;m; �; �; c), where G = (V;E) is a directed acyclic graph or precedence graph,m 2 f2; 3; : : : ;1g
is the number of processors, � : V [ f1; : : : ;mg ! f1; : : : ; kg assigns a type to every task of G
and every processor, � : V ! ZZ

+ an execution length to every node of G, and c : E ! IN a
communication duration to every arc of G. The number of processors of type i is denoted by mi.
Clearly,

Pk

i=1mi = m.
A node of G corresponds to a task of the typed task system and will be called a task of G.

The execution of a task u of G takes �(u) time units on a processor of type �(u) during which
this processor cannot executed another task. u cannot be executed on a processor of another
type than �(u). Consider two tasks u1 and u2 of G, such that E contains the arc from u1 to
u2. If u1 is executed on processor p1 and u2 on processor p2 6= p1, then the result of u1 has to
be transferred from processor p1 to processor p2 after u1 is completed. This takes c(u1; u2) time.
During this delay, processors p1 and p2 can execute other tasks. If u1 and u2 are executed on the
same processor, then no data transfer is required.

Let G be a precedence graph. V (G) denotes the set of nodes of G and E(G) the set of arcs.
Throughout this report, we will assume that V (G) contains n tasks and that E(G) contains e
arcs. Let u1 and u2 be two tasks of G. If E(G) contains the arc (u1; u2), than u2 is called a child

of u1 and u1 a parent of u2. This is denoted by u1 �0 u2. The number of children of a task u

is the outdegree of u; the indegree of u is the number of parents of u. If there is a directed path
in G from u1 to u2, then u1 is said to be a predecessor of u2 and u2 a successor of u1. This is
denoted by u1 � u2. If u1 is neither a predecessor nor a successor of u2, then u1 and u2 will be
called incomparable. Otherwise, they are called comparable.

Let u be a task of G. If u has no successors, then it is called a sink of G; if u has no pre-
decessors, then u is said to be a source of G. An independent task is a task of G that has no
predecessors and no successors.

To de�ne special instances (G;m; �; �; c), we will use two functions. For any set S, 1S is the
function that assigns 1 to every element of S. Similarly, 0S is the function that assigns 0 each
element of S. These functions are used to represent special instances. For example, the instance
(G;m; �;1V (G);0E(G)) corresponds to the problem of scheduling typed unit-length tasks on m

typed processors without communication delays.

A schedule for an instance (G;m; �; �; c) is a pair of functions (�; �), where � : V (G) ! IN

assigns a starting time to every task of G and � : V (G) ! f1; : : : ;mg a processor. A schedule
(�; �) is called a feasible schedule for (G;m; �; �; c) if, for all tasks u1 6= u2 of G,

1. �(�(u1)) = �(u1);

2. if �(u1) = �(u2), then �(u1) � �(u2) + �(u2) or �(u2) � �(u1) + �(u1);

3. if u2 is a child of u1, then �(u2) � �(u1) + �(u1); and

4. if u2 is a child of u1 and �(u1) 6= �(u2), then �(u2) � �(u1) + �(u1) + c(u1; u2).

3



The �rst constraint ensures that each task is scheduled on a processor of the correct type. The
second constraint states that no processor can execute two tasks at the same time. The third
constraint ensures that a task is scheduled after its predecessors. The fourth constraint states
that there is a communication delay between two comparable tasks on di�erent processors.

Consider a feasible schedule (�; �) for an instance (G;m; �; �; c). Let u be a task of G. Then
u is said to be scheduled at time �(u) on processor �(u). In addition, u is executed at times
�(u); : : : ; �(u) + �(u) � 1. �(u) + �(u) is the completion time of u. The length or makespan

of schedule (�; �) is the maximum completion time of a task of G: the length of (�; �) equals
maxu2V (G) �(u) + �(u).

As stated in the previous section, scheduling without processor requirements is a special case of
scheduling typed task systems. For such problems, all processors have the same type. An instance
of a untyped problem (an untyped instance) will be denoted by a tuple (G;m; �; c).

Scheduling preallocated tasks is another special case of scheduling typed task systems. This
problem corresponds to scheduling typed task systems in which all processors have a di�erent
type. Consider an instance (G;m; �; �; c), such that �(i) 6= �(j) for all processors i 6= j. Since
each processor has a di�erent type and the type of each task is known, the processor on which a task
must be scheduled is known is advance. Hence such an instance will be denoted by (G;m; �; �; c),
where � : V (G) ! f1; : : : ;mg assigns a processor to every task of G. A schedule for such an
instance (G;m; �; �; c) can be represented by a function � : V (G) ! IN assigning a starting time
to every task of G. A schedule � for (G;m; �; �; c) is called feasible if (�; �) is feasible for the
corresponding instance (G;m; �; �; c). In other words, � is a feasible schedule for (G;m; �; �; c) if,
for all tasks u1 6= u2 of G,

1. if �(u1) = �(u2), then �(u1) � �(u2) + �(u2) or �(u2) � �(u1) + �(u1);

2. if u2 is a child of u1, then �(u2) � �(u1) + �(u1); and

3. if u2 is a child of u1 and �(u1) 6= �(u2), then �(u2) � �(u1) + �(u1) + c(u1; u2).

3 Preallocated tasks on two processors

In this section, we will consider the complexity of scheduling preallocated tasks on two processors
subject to precedence constraints and communication delays. Goyal [13] proved that this problem
without communication delays is NP-hard if all tasks have length one. Bernstein, et al [4] showed
that this result remains true if the precedence constraints form a outforest with unit-length tasks.
Jansen [18] proved that constructing minimum-length schedules for chains of unit-length tasks
without communication delays is a strongly NP-hard optimisation problem. Picouleau [23] gen-
eralised the result of Goyal [13] for scheduling subject to unit-length communication delays: he
showed that constructing minimum-length schedules for arbitrary precedence graphs with unit-
length communication delays is an NP-hard optimisation problem.

In this section, the result of Jansen [18] will be generalised for scheduling subject to non-zero
communication delays: it will be proved that the constructing a minimum-length schedule for
an instance (G; 2; �;1V (G);1E(G)) is a strongly NP-hard optimisation even if G is a collection of
chains. This is proved using a pseudo-polynomial reduction from 3Partition which is known to
be a strongly NP-complete decision problem [10]. 3Partition is the following decision problem.

Problem. 3Partition

Instance. A set of 3k integers A = fa1; : : : a3kg and a positive integer B, such that 1
4B < ai <

1
2B for all i 2 f1; : : : ; 3kg and

P3k
i=1 ai = kB.

Question. Are there k pairwise disjoint subsets A1; : : : ; Ak of A, such that
Sk
j=1 Aj = A andP

a2Aj
a = B for all j 2 f1; : : : ; kg?

Two-processor preallocation is the following decision problem.

4



Problem. Two-processor preallocation

Instance. An instance (G; 2; �;1V (G);1E(G)), such that G is a collection of chains and a positive
integer D.

Question. Is there a feasible schedule for (G; 2; �;1V (G);1E(G)) of length at most D?

Using a pseudo-polynomial reduction from 3Partition similar to the one presented by
Jansen [18] for chains without communication delays and the one presented by Bernstein, et al [4]
for inforests without communication delays, I will show that Two-processor preallocation

is a strongly NP-complete decision problem.

Lemma 3.1. There is a pseudo-polynomial reduction from 3Partition to Two-processor

preallocation.

Proof. Consider an instance A = fa1; : : : ; a3kg, B of 3Partition. Construct an instance
(G; 2; �;1V (G);1E(G)) of Two-processor preallocation as follows. For each element ai of
A, construct a chain Ci consisting of 2ai tasks ui;1; : : : ; ui;ai ; vi;1; : : : ; vi;ai , such that �(ui;j) = 1
and �(vi;j) = 2 for all j 2 f1; : : : ; aig. In addition, construct a chain C0 consisting of 2m(B�2)+2
tasks. C0 is divided in 2m subchains C0;1; : : : ; C0;2m, such that the last task of C0;j is a predecessor
of the �rst task of C0;j+1. Subchain C0;1 consists of B�1 tasks c1;1; : : : ; c1;B�1 and subchain C0;2m

of B � 1 tasks c2m;1; : : : ; c2m;B�1. For each j 2 f2; : : : ; 2m� 1g, subchain C0;j consists of B � 2
tasks cj;1; : : : ; cj;B�2. For all j 2 f1; : : : ;mg, the tasks of subchains C0;2j�1 are to be scheduled on
processor 2; those of subchains C0;2j on processor 1. Furthermore, let D = 2mB � 2m+ 1. Now
it will be proved that there are pairwise disjoint subsets A1; : : : ; Ak of A, such that

P
a2Aj

a = B

for all j 2 f1; : : : ; kg if and only if there is a feasible schedule for (G; 2; �;1V (G);1E(G)) of length
at most D.

()) LetA1; : : : ; Ak be pairwise disjoint subsets of A, such that
P

a2Aj
a = B for all j 2 f1; : : : ; kg.

Construct a schedule � for (G; 2; �;1V (G);1E(G)) as follows. For all j 2 f1; : : : ; B � 1g, let
�(c1;j) = j � 1. For each i 2 f1; : : : ;m� 1g and j 2 f1; : : : ; B � 2g, let

�(ci;2j) = B + (i� 1)(2B � 2) + j � 1

and

�(ci;2j+1) = i(2B � 2) + j:

In addition, let

�(c2m;j) = (m� 1)(2B � 2) +B + j � 1

for all j 2 f1; : : : ; B � 1g. Each set Aj contains exactly three elements. Assume Aj =
faj1 ; aj2 ; aj3g for all j 2 f1; : : : ; kg. Schedule the tasks of the chains Cj1 , Cj2 and Cj3 as
follows. For all i 2 f1; : : : ; aj1g, let

�(uj1;i) = (j � 1)(2B � 2) + i� 1

and

�(vj1;i) = (j � 1)(2B � 2) +B + i� 2:

For all i 2 f1; : : : ; aj2g, let

�(uj2;i) = (j � 1)(2B � 2) + aj1 + i� 1

and

�(vj2;i) = (j � 1)(2B � 2) +B + aj1 + i� 2:

5



In addition, for all i 2 f1; : : : ; aj3g, let

�(uj3;i) = (j � 1)(2B � 2) + aj1 + aj2 + i� 1

and

�(vj3;i) = (j � 1)(2B � 2) +B + aj1 + aj2 + i� 2:

The last task of subchain C0;1 �nishes at time B � 1 on processor 2; the �rst of subchain
C0;2 starts at time B on processor 1. For each j 2 f1; : : : ;m� 1g, the last task of subchain
C0;2j is completed at time (j � 1)(2B� 2)+ 2B� 2 = j(2B� 2) on processor 2 and the �rst
of subchain C0;2j+1 at time j(2B � 2) + 1 on processor 1. Moreover, all tasks of subchain
C0;2j+1 are �nished at time j(2B � 2) + B � 1 and at time j(2B � 2) + B, the �rst task
of subchain C0;2j+2 starts. So chain C0 is scheduled without violation of the precedence
constraints and the communication delays.

Consider the set Aj = faj1 ; aj2 ; aj3g. The tasks of chains Cj1 , Cj2 and Cj3 are scheduled at
times (j � 1)(2B� 2); : : : ; (j � 1)(2B� 2)+B � 1 on processor 1 and at times (j � 1)(2B�
2) +B � 1; : : : ; j(2B � 2) on processor 2. This does not interfere with the execution of the
tasks of chain C0. Task uji;aji is completed at time

(j � 1)(2B � 2) +
X
i0�i

aji0

on processor 1; its child, vji;1, starts at time

(j � 1)(2B � 2) +B � 1 +
X
i0�i

aji0

on processor 2. Since B � 3, the execution of these tasks does not violate the precedence con-
straints and the communication delays. So � is a feasible schedule for (G; 2; �;1V (G);1E(G)).

The last task of chain C0 (that is task c2m;B�1) is completed at time (m�1)(2B�2)+2B�1 =
2mB � 2m + 1 = D. The last task of a chain Cj �nishes at time m(2B � 2) + 1 =
2mB � 2m+ 1 = D. So � is a schedule of length D.

(() Let � be a feasible schedule for (G; 2; �;1V (G);1E(G)) of length at most D. Because of the
unit-length communication delays, there is only one way in which the tasks of chain C0 can
be executed. The tasks of C0 are scheduled on processor 2 at times 0; : : : ; B�1 and at times
j(2B� 2)+1; : : : ; j(2B� 2)+B� 2 for all j 2 f1; : : : ;m� 1g. Tasks of C0 are scheduled on
processor 1 at times (j�1)(2B�2)+B; : : : ; (j�1)(2B�2)+2B�3 for all j 2 f1; : : : ;m�1g
and at times (m� 1)(2B � 2) +B; : : : ; (m� 1)(2B � 2) + 2B � 2.

The number of tasks of G equals 2
P3k

i=1 ai + 2m(B � 2) + 2 = 2D. Hence both processors
execute a task at all times 0; : : : ; D�1. Consider the tasks scheduled at times B�1; : : : ; 2B�2
on processor 2. This time interval contains exactly B tasks vi;j . Since 1

4B < ai <
1
2B for

all i 2 f1; : : : ; 3kg, these tasks are contained in at least three chains Ci. The tasks ui;j of
these chains are executed at times 0; : : : ; B � 1 on processor 1. The tasks ui;j of at most
three chains Ci can be completed at time B. So the tasks ui;j and vi;j executed before
time 2B � 2 form three chains Ci1 , Ci2 and Ci3 . Since � does not have any idle time slots,
ai1 +ai2 +ai3 = B. Choose A1 = fai1 ; ai2 ; ai3g. The same argument can be repeated for the
remaining intervals containing tasks of chains Ci. This way one constructs disjoint subsets
A1; : : : ; Ak of A, such that

P
a2Aj

a = B for all j 2 f1; : : : ; kg.

The reduction shown in Lemma 3.1 proves thatTwo-processor preallocation is a strongly
NP-complete decision problem and that constructing minimum-length schedules for a collection
of chains on two processors is a strongly NP-hard optimisation problem.

6



Theorem 3.2. Constructing minimum-length schedules for instances (G; 2; �;1V (G);1E(G)), such
that G is a collection of chains, is a strongly NP-hard optimisation problem.

Proof. Obvious from Lemma 3.1.

Although constructing minimum-length schedules for preallocated tasks on two processors is
unlikely to be tractable, the two-processor job shop scheduling problem with unit-length tasks is
solvable in polynomial time. Hefetz and Adiri [14] presented a level algorithm that constructs
minimum-length schedules for the two-processor job shop with tasks of unit length in polynomial
time. Their algorithm depends on the constraint that two subsequent tasks in one job (chain of
tasks) have to be executed on di�erent processors. Lemma 3.1 shows that if this constraint is
removed, then the constructing minimum-length schedules becomes a strongly NP-hard optimisa-
tion problem. If another constraint of this problem is relaxed, then the problem becomes NP-hard
as well: Lenstra and Rinnooy Kan [21] showed that constructing minimum-length schedules for
the three-processor job shop with unit-length tasks and for the two-processor job shop with tasks
of length 1 and 2 are strongly NP-hard optimisation problems.

For special classes of precedence graphs, a minimum-length schedule for an instance
(G;m; �;1V (G); c) can be constructed in polynomial time. The width of a precedence graph G

is the maximum number of pairwise incomparable tasks of G. If the width of a precedence
graph G equals a constant w and the communication delays are bounded by a constant, then a
minimum-length schedule for an instance (G;m; �;1V (G); c) can be constructed in O(nw) time
using a dynamic-programming algorithm [29]. This dynamic-programming approach can also be
used to construct schedules that are optimal with respect to other objective functions [29, 30].

The dynamic-programming approach cannot be generalised for scheduling preallocated tasks
with arbitrary execution lengths. It is unlikely that a minimum-length schedule for an instance
(G;m; �; �; c), such that G is a precedence graph of constant width w, can be constructed in poly-
nomial time: Sotskov and Shakhlevich [28] proved that constructing a minimum-length schedule
for a job shop with three jobs and three processors is an NP-hard optimisation problem. How-
ever, the job shop scheduling problem with two jobs and m processors is solvable in polynomial
time [5, 27].

4 Preallocated tasks without communication delays

In this section, we consider the problem of scheduling arbitrary precedence graphs with preal-
located tasks without communication delays. We will study the the complexity of constructing
schedules of small length. In Section 4.1, it will be proved that determining the existence of a
schedule of length at most three can be done in polynomial time. If there is a schedule of length
at most three, then such a schedule can be constructed in polynomial time as well.

In Section 4.2, it is proved that determining whether there is a schedule of length at most four
is an NP-complete decision problem, even if the precedence constraints form a collection of fork
graphs and all tasks have unit length.

4.1 Schedules of length at most three

Williamson et al. [31] proved that for the job shop scheduling problem, a schedule of length at
most three can be constructed in polynomial time if such a schedule exists. For an instance of the
job shop scheduling problem, they construct an instance of 2SAT that is satis�able if and only if
there is a schedule of length at most three. A truth assignment for the instance of 2SAT coincides
with a schedule of length at most three. In this section, a generalisation of their algorithm for
scheduling preallocated tasks without communication delays is presented.

7



Consider an instance (G;m; �; �;0E(G)) for which we want to construct a schedule of length
at most three. We will assume that, for all processors p 2 f1; : : : ;mg,X

�(u)=p

�(u) � 3

and there are no tasks of length at least four. If this is not true, then there is no schedule of length
at most three.

Two height functions are used to determine the possible starting times of a task in a sched-
ule of length at most three. h+(u) is a lower bound on the schedule length for the instance
(G+(u);m; �; �;0E

G+(u)
), where G+(u) is the subgraph of G induced by u and its successors.

h+(u) =

(
�(u) if u is a sink

max
u�v

(h+(v) + �(u)) otherwise

Similarly, h�(u) a lower bound on the length of a feasible schedule for (G�(u);m; �; �;0E
G�(u)

),

where G�(u) is the subgraph of G induced by u and its predecessors.

h�(u) =

(
�(u) if u is a source

max
v�u

(h�(v) + �(u)) otherwise

Suppose there exists a schedule � for (G;m; �; �;0E(G)) of length three. Then for all tasks u
of G, 1 � h+(u); h�(u) � 3 and

h�(u)� �(u) � �(u) � 3� h+(u):

Hence we may assume that h�(u)� 1 � 3� h+(u) and that 1 � h+(u); h�(u) � 3 for all tasks u
of G.

Let u be a task of G, such that h�(u) � �(u) = 0 and 3 � h+(u) = 2. Then u has three
possible starting times in a schedule of length three. Clearly, h+(u) = h�(u) = �(u) = 1. Hence
u is an independent task of length one. Let G� be the subgraph of G containing the tasks v with
h+(v) � 2 or h�(v) � 2. It is easy to see that a schedule for (G;m; �; �;0E(G)) can be constructed
from a schedule for (G�;m; �; �;0E(G)) by scheduling the remaining tasks in idle time slots. This
is possible, since we assumed that

P
�(u)=p �(u) � 3 for all processors p.

Let u be a task of G�. Let S(u) = fh�(u)�1; 3�h+(u)g be the set of potential starting times
of u is a schedule of length at most three. Note that if S(u) contains two elements, then these are
consecutive.

Using the sets S(u), we will construct an instance of 2SAT. 2SAT is the following decision
problem.

Problem. 2SAT

Instance. A set of truth variables fx1; : : : ; xng and a collection C of clauses containing two
literals (disjunctions of two variables and negations of variables).

Question. Is there a truth assignment that satis�es every clause of C?

The instance of 2SAT constructed using the sets S(u) has variables xu;t for all tasks u of G�

and all times t 2 f0; 1; 2g. The intended meaning is as follows: if u starts at time t, then xu;t is
true, and if u does not start at time t, then xu;t is false.

A collection of clauses C is constructed as follows.

1. For all tasks u of G�, add clauses _
t2S(u)

xu;t and �xu;t0

for all times t0, such that t0 62 S(u).

8



2. For all tasks u of G�, add clauses

�xu;t1 _ �xu;t2

for all times t1 and t2, such that t1 6= t2.

3. For all tasks u1 and u2 of G
�, such that u1 � u2, add clauses

�xu1;t1 _ �xu2;t2

for all times t1 and t2, such that t2 � t1 + �(u1)� 1.

4. For all tasks u1 and u2 of G
�, such that �(u1) = �(u2), add clauses

�xu1;t1 _ �xu2;t2

for all times t1 and t2, such that t1 � t2 � t1 + �(u1)� 1 or t2 � t1 � t2 + �(u2)� 1.

The clauses of the �rst type demand that a task starts at one of its potential starting times. The
clauses of the second type ensure that each task has exactly one starting time. Those of the third
type state that a task must be executed after its predecessors and those of the fourth type ensure
that two tasks on the same processor are not executed at the same time.

We can prove that the instance of 2SAT is satis�able if and only if there is a feasible schedule
for (G�;m; �; �;0E(G)) of length at most three.

Lemma 4.1. There is a feasible schedule for (G�;m; �; �;0E(G)) of length at most three if and

only if there is a truth assignment that satis�es every clause in C.

Proof. ()) Suppose � is a feasible schedule for (G�;m; �; �;0E(G)) of length at most three.
Construct a truth assignment as follows. Let xu;�(u) be true and let xu;t be false for all times
t 6= �(u). It is not di�cult to see that this truth assignment satis�es all clauses of C.

(() Suppose there is a truth assignment that satis�es all clauses in C. Construct a schedule � for
(G�;m; �; �;0E(G)) as follows. Let u be a task of G�. There is exactly one time t 2 f0; 1; 2g,
such that xu;t is true; let �(u) = t for that t. If �(u) = t, then t 2 S(u). Hence the length
of � is at most three. Since the clauses of the fourth type are satis�ed, no two tasks are
executed at the same time on the same processor. In addition, because the clauses of the
third type are satis�ed, a task is scheduled after its predecessors. So � is a feasible schedule
of length at most three.

Determining the existence of a truth assignment that satis�es all clauses of an instance of
2SAT in a polynomial problem; and if such an assignment exists, then it can be constructed in
polynomial time [9]. Hence the existence of a schedule of length at most three can be determined
in polynomial time.

Theorem 4.2. There is a polynomial-time algorithm that determines the existence of a feasible

schedule of length at most three for all instances (G;m; �; �;0E(G)); if such a schedule exists, then

this algorithm constructs a feasible schedule for (G;m; �; �;0E(G)) of length at most three.

4.2 Schedules of length at most four

Williamson et al. [31] proved that determining the existence of a schedule of length at most four
for 
ow shops and job shops is an NP-hard problem. Their proof also shows that verifying whether
there exists a schedule of length at most four for instances (G;m; �;1V (G);0E(G)) is NP-complete,
even if G forms a collection of chains of length at most three.

9



In this section, I will prove the same for instances (G;m; �;1V (G);0E(G)), whereG is a collection
of fork graphs. A fork graph is an outtree of height one; it consist of a task, its source, and the
children of the source, its sinks. A join graph is an fork graph in which the arcs have been reversed,
an intree of height one; a join graph consists of a task, its sink, and the parents of the sinks, its
sources. The NP-completeness of determining the existence of schedules of length at most four is
proved using a polynomial reduction from 3SAT, which is the following decision problem.

Problem. 3SAT

Instance. A set of truth variables fx1; : : : ; xng and a collection C of clauses containing three
literals.

Question. Is there a truth assignment that satis�es every clause of C?

3SAT is a strongly NP-complete decision problem [10]. De�ne the decision problem Preal-

located tasks without communication delays as follows.

Problem. Preallocated tasks without communication delays

Instance. An instance (G;m; �;1V (G);0E(G)), where G is a collection of fork graphs.
Question. Is there a feasible schedule for (G;m; �;1V (G);0E(G)) of length at most four?

Using a polynomial reduction from 3SAT, we will prove that Preallocated tasks without

communication delays is a strongly NP-complete decision problem.

Lemma 4.3. There is a polynomial reduction from 3SAT to Preallocated tasks without

communication delays.

Proof. Let fx1; : : : ; xng and C be an instance of 3SAT. Then C is a collection of clauses with
three literals. Suppose C = fC1; : : : ; Ckg, such that Ci = (yi;1 _ yi;2 _ yi;3) for all i 2 f1; : : : ; kg.
Note that a literal yi;j is either a truth variable or the negation of a truth variable. Construct an
instance (G;m; �;1V (G);0E(G)) of Preallocated tasks without communication delays as
follows. Let m = n+ k. For every literal yi;j , G contains a task vi;j , such that �(vi;j) = n+ i. For
each variable x`, G contains two tasks u` and �u`, such that �(u`) = �(�u`) = `. If literal yi;j equals
variable x`, then G contains an arc from u` to vi;j . Similarly, if yi;j corresponds to �x`, then G

contains an arc from �u` to vi;j . Now we will prove that there is a truth assignment that satis�es
all clauses of C if and only if there is a feasible schedule for (G;m; �;1V (G);0E(G)) of length at
most four.

()) Suppose there is a truth assignment that satis�es all clauses of C. Consider such an assign-
ment. A schedule � for (G;m; �;1V (G);0E(G)) can be constructed as follows. If x` is true,
then let �(u`) = 0 and �(�u`) = 1. Otherwise, let �(�u`) = 0 and �(u`) = 1. Every clause Ci
contains at least one literal that is satis�ed. Let yi;j0 be such a literal. Let �(vi;j0 ) = 1 and
schedule the remaining tasks vi;j at times 2 and 3. Obviously, � is a feasible schedule for
(G;m; �;1V (G);0E(G)). The last task is completed at time 4, so � is a schedule of length at
most four.

(() Let � be a feasible schedule for (G;m; �;1V (G);0E(G)) of length at most four. Every task
vi;j has a predecessor. So such a task is executed at time 1, 2 or 3. For each clause Ci, there
is a task vi;j , such that �(vi;j) = 1. The predecessor of vi;j must be executed at time 0.
Construct a truth assignment as follows. For all ` 2 f1; : : : ; ng, if �(u`) = 0, then let x` be
true. Otherwise, let x` be false. Since the tasks vi;j that start at time 1 are successors of a
task scheduled at time 0, each clause contains at least one literal that is satis�ed. So there
is a truth assignment that satis�es all clauses of C.

Lemma 4.3 shows that Preallocated tasks without communication delays is a
strongly NP-complete decision problem.

10



Theorem 4.4. Preallocated tasks without communication delays is a strongly NP-
complete decision problem.

Proof. Obvious from Lemma 4.3.

Theorem 4.4 shows the following result.

Corollary 4.5. Unless Pequals NP, there is no polynomial-time algorithm that constructs sched-

ules for instances (G;m; �; �;0E(G)), such that G is a collection of fork graphs of length at most
5
4 times the length of a minimum-length schedule for (G;m; �; �;0E(G)).

Proof. Obvious from Theorem 4.4.

5 Preallocated tasks with non-zero communication delays

In this section, we will consider the problem of scheduling preallocated tasks subject to non-zero
communication delays. Consider an instance (G;m; �; �; c), such that c(u1; u2) � 1 for all arcs
(u1; u2) of G. Such an instance will be called an instance with non-zero communication delays.
Since for each task, it is known on which processor it will be scheduled, the communication delays
that occur in a feasible schedule for (G;m; �; �; c) are known. Such a delay does not interfere with
the execution of the tasks of G. So a communication delay can be viewed as a task that has to be
scheduled on a separate processor.

This observation can be used to construct an instance (G0;m0; �0; �0;0EG0
), such that there is

a one-to-one correspondence between feasible schedules for (G;m; �; �; c) and feasible schedules
for (G0;m0; �0; �0;0EG0

). Such an instance can be constructed as follows. For each arc (u; v) of G,
such that �(u) 6= �(v), a new task cu;v is introduced. Hence

V (G0) = V (G) [ fcu;v j (u; v) 2 E(G) ^ �(u) 6= �(v)g:

The tasks cu;v correspond to the communication delays: a task cu;v has to be scheduled after task
u and before task v. So

EG0 = f(u; v) 2 E(G) j �(u) = �(v)g [ f(u; cu;v); (cu;v; v) j (u; v) 2 E(G) ^ �(u) 6= �(v)g:

Let �0(u) = �(u) and �0(u) = �(u) for all tasks of G. Moreover, �0(cu;v) = c(u; v) and �0(cu;v) =
m + iu;v, where iu;v is the index of arc (u; v) in some enumeration of E(G) n f(u; v) 2 E(G) j
�(u) = �(v)g. Each communication task is executed on a separate processor, so

m0 = m+ jf(u; v) 2 E(G) j �(u) 6= �(v)gj:

It is not di�cult to see that a feasible schedule � for (G;m; �; �; c) can be transformed into a
feasible schedule �0 for (G0;m0; �0; �0;0EG0

): let �0(u) = �(u) for all tasks u of G, and �0(cu;v) =
�(u) + �(u) for all communication tasks cu;v . Furthermore, let �0 be a feasible schedule for
(G0;m0; �0; �0;0EG0

). Then the restriction of �0 to V (G) is a feasible schedule for (G;m; �; �; c).
Note that in both transformations, the length of the schedules remains unchanged.

Hence scheduling with non-zero communication delays is a special case of scheduling without
communication delays. From Theorem 4.2, the existence of a schedule of length at most three
can be determined in polynomial time. In Section 5.1, it will be proved that scheduling with
non-zero communication delays is less complicated than scheduling without them: the existence
of a schedule of length at most four can be determined in polynomial time. In Section 5.2, the
NP-completeness of determining the existence of a schedule of length at most �ve is shown even
if the precedence graph is a collection of fork graphs.

11



5.1 Schedules of length at most four

In this section, we will present a polynomial-time algorithm that checks whether there is a schedule
of length at most four for instances (G;m; �; �; c) with non-zero communication delays. If such a
schedule exists, then a schedule of length at most four is constructed in polynomial time. Like in
Section 4, an instance of 2SAT is constructed. This instance is proved to be satis�able if and only
if there is a feasible schedule of length at most four.

Consider an instance (G;m; �; �; c) with non-zero communication delays. We want to construct
a schedule for (G;m; �; �; c) of length four. Hence we may assume that, for all processors p 2
f1; : : : ;mg, X

�(u)=p

�(u) � 4:

Like in Section 4.1, we will use two height functions that are lower bounds on the length of
a schedule for (G;m; �; �; c). h+(u) is a lower bound on the schedule length for the instance
(G+(u);m; �; �; c).

h+(u) =

8>>>><
>>>>:

�(u) if u is a sink

maxfmax
u�0v

(h+(v) + �(u)); max
u�0v:�(u)6=�(v)

(h+(v) + �(u) + c(u; v));

max
1�p�m

(�(u) +
X

u�v:�(v)=p

�(v))g otherwise

Similarly, h�(u) is a lower bound on the length of a feasible schedule for (G�(u);m; �; �; c).

h�(u) =

8>>>><
>>>>:

�(u) if u is a source

maxfmax
v�0u

(h�(v) + �(u)); max
v�0u:�(u)6=�(v)

(h�(v) + �(u) + c(v; u));

max
1�p�m

(�(u) +
X

v�u:�(v)=p

�(v))g otherwise

If for some task u of G, h+(u) � 5 or h�(u) � 5, then there is no schedule for (G;m; �; �; c) of
length at most four. Hence we may assume that h+(u); h�(u) � 4 for all tasks u of G.

If there is a feasible schedule for (G;m; �; �; c) of length at most four, then task u starts at a
time in S(u) = fh�(u)� �(u); : : : ; 4� h+(u)g. It is not di�cult to see that

jS(u)j � 3 if and only if h+(u) + h�(u) � 3 or h+(u) = h�(u) = �(u) = 2:

Let u be a task of G. If u is an independent task of length one, then this task can be scheduled
at any time t that processor �(u) is idle. Suppose �(u) = 1 and u has a child v with �(v) = 1,
�(u) = �(v) and u and v do not have other children or parents. Such a chain will be called an
independent chain. Then tasks u and v can be scheduled in any two idle time slots on processor
�(u). Hence we need not consider such tasks. Let G� be the precedence graph obtained from G

by removing all independent tasks of length one and all independent chains consisting of two tasks
of length one. Then every feasible schedule for (G�;m; �; �; c) of length four can be extended to
a feasible schedule for (G;m; �; �; c) with the same length.

Let u be a task of G�, such that jS(u)j � 3. Then h+(u) = h�(u) = �(u) = 2 or �(u) = 1 and u
has a child or parent v with �(v) = 1, such that the chain containing u and v is not independent.
u cannot be executed at any idle time slot on processor �(u), but it does restrict the possible
starting times of the other tasks on processor �(u). This is expressed in the collection of clauses
constructed as follows.

For all tasks u of G� and all times t 2 f0; 1; 2; 3g, a truth variable xu;t is introduced. The
intended meaning is as follows: if xu;t is true, then u starts at time t; if xu;t is false, then u does
not start at time t. Construct a collection of clauses C using the following rules.

12



1. For all tasks u of G�, add the clauses

�xu;t

for all times t, such that t 62 S(u).

2. For all tasks u of G�, add the clauses

�xu;t1 _ �xu;t2

for all times t1 and t2, such that t1 6= t2.

3. For all tasks u of G�, such that jS(u)j � 2, add the clause_
t2S(u)

xu;t:

4. For all tasks u1 and u2 of G
�, such that u1 �0 u2, add the clauses

�xu1;t1 _ �xu2;t2

for all times t1 and t2, such that t2 � t1 + �(u1) � 1. For all tasks u1 and u2 of G�, such
that u1 �0 u2 and �(u1) 6= �(u2), add the clauses

�xu1;t1 _ �xu2;t2

for all times t1 and t2, such that t2 � t1 + �(u1) + c(u1; u2)� 1.

5. For all tasks u1 and u2 of G
�, such that �(u1) = �(u2), add the clauses

�xu1;t1 _ �xu2;t2

for all times t1 and t2, such that t1 � t2 � t1 + �(u1)� 1 or t2 � t1 � t2 + �(u2)� 1.

6. For all tasks u1 and u2 of G�, such that �(u1) = �(u2) and �(u1) = �(u2) = 2, add the
clauses

xu1;0 _ xu1;2 and xu2;0 _ xu2;2:

7. For all tasks u, u1 and u2 of G�, such that �(u) = �(u1) = �(u2), �(u) = 2 and �(u1) =
�(u2) = 1, add the clauses

�xu1;1 _ �xu2;3; �xu1;3 _ �xu2;1; �xu1;0 _ �xu2;2;

�xu1;2 _ �xu2;0; �xu1;1 _ �xu2 ;2 and �xu1;2 _ �xu2;1:

8. For all tasks u1, u2, v1 and v2 of G�, such that �(u1) = �(u2) = �(v1) = �(v2), �(u1) =
�(u2) = �(v1) = �(v2) = 1 and u1 � v1 and u2 � v2, add the clauses

xu1;0 _ xu2;0 and xv1;3 _ xv2;3:

13



9. For all tasks u1, u2 and v of G�, such that �(u1) = �(u2) = �(v), �(u1) = �(u2) = 1,
�(v) � 2 and jS(u1) [ S(u2)j = 2, add the clause_

t62S(u1)[S(u2)

xv;t:

10. For all tasks u1, u2, u3 and v of G�, such that �(u1) = �(u2) = �(u3) = �(v) = 1,
�(u1) = �(u2) = �(u3) = �(v) and jS(u1) [ S(u2) [ S(u3)j = 3, add the clause

xv;t;

for all times t 62 S(u1) [ S(u2) [ S(u3).

11. For all tasks u1, u2 and v of G�, such that �(u1) = �(u2) = �(v), �(u1) = �(u2) = 1,
�(v) = 2 and u1 � u2, add the clauses

�xu1;1; �xu2;2; xu1;0 _ xv;0 and xu2;3 _ xv;2:

12. For all t 2 f0; 1; 2; 3g and all tasks u1, u2, v1 and v2 of G�, such that �(u1) = �(u2) =
�(v1) = �(v2) = 1, �(u1) = �(u2) = �(v1) = �(v2) and t 62 S(v1); S(v2), add the clause

xu1;t _ xu2;t:

13. For all tasks u, v1, v2 and w of G�, such that �(u) = �(v1) = �(v2) = �(w), �(u) = �(v1) =
�(v2) = �(w) = 1 and u � v1; v2 and 0 62 S(w), add the clause

xu;0:

14. For all tasks u, v1, v2 and w of G�, such that �(u) = �(v1) = �(v2) = �(w), �(u) = �(v1) =
�(v2) = �(w) = 1 and v1; v2 � u and 3 62 S(w), add the clause

xu;3:

The clauses of Rules 1, 2 and 3 state that a task u must start at a time in S(u) and that
each task has exactly one starting time. The clauses of Rule 4 demand that tasks are scheduled
before their children and those of Rule 5 that no two tasks are executed at the same time on one
processor. The clauses added using Rule 6 state that if two tasks of length two are scheduled on
the same processor, then they must start at time 0 or 2. The clauses of Rule 7 ensure that a task
of length two can be scheduled in two consecutive time slots. Rule 8 ensures that, if two chains
of two unit-length tasks are executed at the same processor, then a source must start at time 0
and a sink at time 3. The clauses of Rule 9 state that, if two unit-length tasks have a set of two
potential starting times in common, then the other tasks cannot be executed at those two times.
The clauses added using Rule 10 are similar to those of Rule 9: if three tasks have three possible
starting times, then a fourth task must be scheduled on the remaining starting time. The clauses
added by Rule 11 demand that, if two comparable unit-length tasks and a task of length two are
to be scheduled on the same processor, then either the task of length two or the source task starts
at time 0, and, similarly, either the task of length two or the sink task �nishes at time 4. The
clauses of Rule 12 state that if there are four tasks with the same processor assignment and two of
these cannot start at a time t, then one of the other two tasks must be scheduled at time t. The
clauses added by Rules 13 ensure that, if there are two unit-length tasks with the same processor

14



assignment and one task has two successors that must be scheduled on the same processor, then
this task must start at time 0 if the second task cannot be executed at that time. Rule 14 is the
same as Rule 13 for the inverted schedule.

The next lemma shows that a satisfying truth assignment for C can be used to construct a
feasible schedule for (G�;m; �; �; c) of length at most four.

Lemma 5.1. There is a feasible schedule for (G�;m; �; �; c) of length at most four if and only if

there is a truth assignment that satis�es all clauses of C.

Proof. ()) Let � be a feasible schedule for (G�;m; �; �; c) of length at most four. Then construct
a truth assignment for C as follows: xu;�(u) is true and xu;t is false for all times t 6= �(u). It
is not di�cult to verify that this truth assignment satis�es all clauses of C.

(() Consider a truth assignment that satis�es every clause in C. Construct a schedule � for
(G�;m; �; �; c) as follows. For all tasks u and t 2 f0; 1; 2; 3g, if the variable xu;t is true,
then let �(u) = t. These starting times do not interfere. However, not all tasks of G� have
a starting time. Let u be a task without a starting time. Then, with Rule 3, jS(u)j � 3.
In that case, u is either an independent task of length two or a task of length one with a
child (or parent) v with �(v) = 1 and �(u) = �(v) and u has no other parents or children.
These tasks can be assigned a starting time by considering every processor separately. De�ne
Vp = fv 2 V (G�) j �(v) = pg. Let V 0

p be the set of tasks of Vp without a starting time. Then
0 �
P

v2V 0

p
�(v) � 4 and the total amount of idle time on processor p is at least

P
v2V 0

p
�(v).

A starting time is assigned to every task of V 0
p using the following case analysis.

Case 1.
P

v2V 0

p
�(v) = 0.

Trivial, because V 0
p = ?.

Case 2.
P

v2V 0

p
�(v) = 1.

V 0
p contains exactly one task u of length one. u has either a parent or a child of length

one that has to be scheduled on processor p and u has no other parents or children. We
will assume that u has a child v, such that �(v) = 1 and �(v) = p. Suppose u cannot be
scheduled on processor p without violating the feasibility of (partial schedule) �. Then
processor p is busy at times 0, 1 and 2. v has a predecessor, so 0 62 S(v). Hence v starts
at time 1 or 2. Let v0 be the task with �(v0) = p and �(v0) + �(v0) = 3. Then �(v0) = 1,
because v is scheduled at time 1 or 2. If the tasks executed at times 0, 1 and 2 form a
chain, then the total execution length of the predecessors of v0 equals three. In that case,
h�(v0) = 4 and S(v0) � f3g. Contradiction. So the tasks scheduled at times 0, 1 and 2
do not form a chain.

Case 2.1. Every task in Vp has length one.
Assume Vp = fu; v0; v1; v2g, such that �(vi) = i for all i 2 f0; 1; 2g. We know that
S(u) = f0; 1; 2g and that S(v0) � f0; 1; 2g. So, if S(v1) � f0; 1; 2g, then, with Rule 10,
the clause xv2;3 is satis�ed and �(v2) = 3. Hence we may assume that 3 2 S(v1).
Both u and v0 can start at time 0. Each set S(w) consists of consecutive times. No
independent task is to be scheduled on processor p, so 3 62 S(u) and 3 62 S(v0). Hence,
with Rule 12, the clause xv1;3 _ xv2;3 is satis�ed. So either v1 or v2 is scheduled at
time 3. Contradiction.

Case 2.2. Vp contains a task of length at least two.
Then Vp contains one task of length two and two of length one. Assume Vp =
fu; v; v0g, such that �(v0) = 2. From Rule 11, the clauses �xu;1, �xv;2, xu;0 _ xv0;0 and
xv0;2 _ xv;3 are satis�ed. Since v does not start at time 3, it must start at time 1.
Then v0 starts at time 2 and u can be scheduled at time 0. Contradiction.

Case 3.
P

v2V 0

p
�(v) = 2.

Then V 0
p contains either one task of length two or two of length one.

15



Case 3.1. V 0
p contains one task of length two.

Let u be the task in V 0
p . u is an independent task of length two. From Rules 6 and 7,

it is easy to see that there are at least two consecutive idle times on processor p. So
u can be scheduled without violating the feasibility of �.

Case 3.2. V 0
p contains two tasks of length one.

Assume u1 and u2 are the tasks in V 0
p . Both have either a parent or child of length

one that has to be scheduled on processor p. If the chains in which u1 and u2 are
contained are disjoint, then, with Rule 8, it is easy to see that u1 and u2 can be
scheduled on processor p without violating the feasibility of �.
Therefore we may assume that u1 and u2 have a common parent v, such that �(v) = p

and �(v) = 1. h+(v) � 3, so S(v) � f0; 1g. Suppose u1 and u2 cannot be scheduled
without violating the feasibility of �. Then there is a task w of length one, such that
�(w) = p and �(w) 2 f2; 3g and, moreover, �(v) = 1. w is not an independent task,
so S(w) � f1; 2; 3g. Using Rule 13, the clause xv;0 is satis�ed. In that case, �(v) = 0.
Contradiction.
In a similar way, one can prove that u1 and u2 cannot have a common child v, such
that �(v) = p and �(v) = 1.

Case 4.
P

v2V 0

p
�(v) = 3.

V 0
p does not contain a task of length three, so V 0

p contains either one task of length two
and one of length one or three tasks of length one.

Case 4.1. V 0
p contains one task of length two and one of length one.

Assume V 0
p contains tasks u1 and u2, such that �(u1) = 1 and �(u2) = 2. u1 has

either a child or a parent v with �(v) = p and �(v) = 1. We will assume that v is a
parent of u1. Using Rule 11, the clauses �xv;1, �xu1 , xv;0 _ xu2;0 and xu2;2 _ xu1;3 are
satis�ed. So v is not scheduled at time 1. Then u1 and u2 can be scheduled without
violating the feasibility of �. Similarly, if v is a child of u1, then u1 and u2 can be
scheduled without violating the feasibility of �.

Case 4.2. V 0
p contains three tasks of length one.

Assume u1, u2 and u3 are the tasks in V 0
p . Each of these tasks has a child or parent

v, such that �(v) = 1 and �(v) = p. Since the total execution time of the tasks of
Vp is at most four, such a task v is either a common child or a common parent of
u1, u2 and u3. Assume v is a parent of u1, u2 and u3. In that case, h+(v) = 4 and
S(v) = f0g. With Rule 3, �(v) = 0. Hence u1, u2 and u3 can be scheduled without
violating the feasibility of �. The case that v is a common child of u1, u2 and u3 is
similar.

Case 5.
P

v2V 0

p
�(v) = 4.

Since V 0
p does not contain the tasks of independent chain of two unit-length tasks, V 0

p

contains two independent tasks u1 and u2 of length two. With Rule 6, we �nd that the
clauses xu1;0 _ xu1;2 and xu2;0 _ xu2;2 are satis�ed. From Rule 1, a task has at most one
starting time. As a result, u1 and u2 have been assigned a starting time. Contradiction.

Hence there is a schedule for (G�;m; �; �; c) of length at most four.

If there is a satisfying truth assignment for an instance of 2SAT, then such an assignment can
be constructed in polynomial time [9]. So if there is a feasible schedule for (G�;m; �; �; c) of length
at most four, then such a schedule � can be constructed in polynomial time. The tasks of G that
have no starting time in � can be scheduled without violating the feasibility of � or increasing its
length. Hence if there is a feasible schedule for (G;m; �; �; c) of length at most four, then such a
schedule can be constructed in polynomial time.

Theorem 5.2. There is a polynomial-time algorithm that determines the existence of a feasible

schedule of length at most four for all instances (G;m; �; �; c) with non-zero communication delays;

if such a schedule exists, then this algorithm constructs a feasible schedule for (G;m; �; �; c) of

length at most four.

16



5.2 Schedules of length at most �ve

In this section, I will prove that determining the existence of a feasible schedule of length at most
�ve for instances (G;m; �; �; c) with non-zero communication delays is a strongly NP-complete
decision problem. This is done using the same reduction as the one presented in Section 4.2. Let
Preallocated tasks with unit communication delays be the following decision problem.

Problem. Preallocated tasks with unit communication delays

Instance. An instance (G;m; �;1V (G);1E(G)), where G is a collection of fork graphs.
Question. Is there a feasible schedule for (G;m; �;1V (G);1E(G)) of length at most �ve?

Using a polynomial reduction from 3SAT, we will prove that Preallocated tasks with

communication delays is a strongly NP-complete decision problem.

Lemma 5.3. There is a polynomial reduction from 3SAT to Preallocated tasks with unit

communication delays.

Proof. Let fx1; : : : ; xng and C be an instance of 3SAT. Then C is a collection of clauses with three
literals. Suppose C = fC1; : : : ; Ckg. Assume Ci = (yi;1_yi;2_yi;3) for all i 2 f1; : : : ; kg. Construct
an instance (G;m; �;1V (G); c) of Preallocated tasks with unit communication delays as
follows. Let m = n + k. For every literal yi;j , G contains a task vi;j , such that �(vi;j) = n + i.
For each variable x`, G contains two tasks u` and �u`, such that �(u`) = �(�u`) = `. If literal yi;j
equals variable x`, then G contains an arc from u` to vi;j . Similarly, if yi;j corresponds to �x`,
then G contains an arc from �u` to vi;j . The communication requirement of each arc of G equals
one. Now we will prove that there is a truth assignment that satis�es all clauses of C if and only
if there is a schedule for (G;m; �;1V (G);1E(G)) of length at most �ve.

()) Suppose there is a truth assignment that satis�es all clauses of C. Consider such an assign-
ment. A schedule � for (G;m; �;1V (G); c) can be constructed as follows. If x` is true, then
let �(u`) = 0 and �(�u`) = 1. Otherwise, let �(�u`) = 0 and �(u`) = 1. Every clause Ci
contains at least one literal that is satis�ed. Let yi;j be such a literal. Let �(vi;j) = 2 and
schedule the remaining literal tasks vi;j at times 3 and 4. Clearly, � is a feasible schedule
for (G;m; �;1V (G);1E(G)) and the length of � is �ve.

(() Let � be a feasible schedule for (G;m; �;1V (G);1E(G)) of length at most �ve. Every literal
task vi;j has a predecessor. This predecessor is not scheduled on the same processor as vi;j .
So the literal tasks are executed at time 2, 3 or 4. For each clause Ci, there is a task vi;j ,
such that �(vi;j) = 2. The predecessor of vi;j is executed at time 0. Construct a truth
assignment as follows. If �(u`) = 0, then let x` be true. Otherwise, let x` be false. Since
the tasks vi;j scheduled at time 2 are successors of tasks scheduled at time 0, each clause
contains a literal that is satis�ed. Consequently, there is a truth assignment that satis�es
all clauses of C.

Lemma 5.3 shows that Preallocated tasks with unit communication delays is strongly
NP-complete.

Theorem 5.4. Preallocated tasks with unit communication delays is a strongly NP-
complete decision problem.

Proof. Obvious from Lemma 5.3.

Theorem 5.4 shows the following result.

Corollary 5.5. Unless Pequals NP, there is no polynomial-time algorithm that constructs sched-

ules for instances (G;m; �; �; c) with non-zero communication delays, such that G is a collection of

fork graphs, of length at most 6
5 times the length of a minimum-length schedule for (G;m; �; �; c).

17



Proof. Obvious from Theorem 5.4.

Theorems 4.4 and 5.2 show that scheduling preallocated tasks subject to non-zero communica-
tion delays is less complicated than the more general problem of scheduling without communication
delays. This is due to the fact that, in a short schedule, the number of possible starting times of
a task decreases when communication delays are introduced.

The same situation occurs in scheduling untyped task systems. Without communication delays,
the existence of a schedule of length at most two for an untyped task system can be determined
in polynomial time, whereas determining the existence of a schedule of length at most three is an
NP-complete decision problem [20]. With communication delays, one can determine in polynomial
time whether there exists a schedule of length at most three; determining the existence of a schedule
of length at most four is an NP-complete decision problem [15]. In Sections 6 and 7, the same is
shown for scheduling arbitrary typed task systems.

6 Typed task systems without communication delays

In this section and the next, we will study the complexity of the problem of constructing short
schedules for typed instances (G;m; �; �; c). In this section, we will assume that the communication
delays are negligible. It will be shown that scheduling typed instances is more complicated than
the special case of scheduling preallocated tasks. In Section 4.1, we proved that that the existence
of schedules of length at most three can be determined in polynomial time for preallocated tasks.
This problem is proved to be strongly NP-complete in Section 6.2. In Section 6.1, it will be shown
that the existence of a schedule of length at most two for an arbitrary typed task system can be
determined in polynomial time.

6.1 Schedules of length at most two

In this section, it will be shown that determining the existence of a schedule of length at
most two for typed instances (G;m; �; �;0E(G)) is a polynomial problem. Consider an instance
(G;m; �; �;0E(G)). We may assume that there are no tasks of length three and there are no paths
in G with a total task length more than two. Furthermore, we may assume that the sum of the
task lengths of the tasks of type i does not exceed 2mi, where mi equals the number of processors
of type i. If G contains tasks of length two, then these are independent. Such a task must be
scheduled on one processor of the same type as the task. If there are not enough processor of these
types, then there is no schedule of length at most two.

So we may assume that G does not contain tasks of length two. We need not consider in-
dependent tasks of length one, since these can be added to a feasible schedule for the instance
(G�;m; �; �;0EG�

), where G� is the subgraph of G induced by the tasks that are not independent.
So the other tasks are either sources or sinks. The sources must be scheduled at time 0, the sinks
at time 1. It is easy to see that there is a schedule of length at most two if and only if, for each
type i, the number of sources of type i and the number of sinks of type i does not exceed the
number of processors of type i.

Theorem 6.1. There is a polynomial-time algorithm that determines the existence of a feasible

schedule of length at most two for all instances (G;m; �; �;0E(G)); if such a schedule exists, then

this algorithm constructs a feasible schedule for (G;m; �; �;0E(G)) of length at most two.

6.2 Schedules of length at most three

Using a polynomial reduction from Clique, Lenstra and Rinnooy Kan [20] proved that
determining the existence of a schedule of length at most three for an untyped instance
(G;m;1V (G);0E(G)) is an NP-complete decision problem. Since scheduling untyped task systems
is a special case of scheduling typed task systems, this is also true for scheduling typed instances
(G;m; �;1V (G);0E(G)).

18



In this section, I will present a proof that determining the existence of a schedule of length at
most three for an instance (G;m; �;1V (G);0E(G)) is an NP-complete decision problem even if G
is a collection of fork graphs. This is proved using a reduction from 3SAT that is similar to the
ones presented in Sections 4 and 5. Let Typed tasks without communication delays be the
following decision problem.

Problem. Typed tasks without communication delays

Instance. An instance (G;m; �;1V (G);0E(G)), such that G is a collection of fork graphs.
Question. Is there a feasible schedule for (G;m; �;1V (G);0E(G)) of length at most three?

Using a polynomial reduction from 3SAT, we will prove that Typed tasks without com-

munication delays is a strongly NP-complete decision problem.

Lemma 6.2. There is a polynomial reduction from 3SAT to Typed tasks without commu-

nication delays.

Proof. Let fx1; : : : ; xng and C be an instance of 3SAT. Then C is a collection of clauses with three
literals. Suppose C = fC1; : : : ; Ckg. Assume Ci = (yi;1 _ yi;2 _ yi;3) for all i 2 f1; : : : ; kg. Con-
struct an instance (G;m; �;1V (G);0E(G)) of Typed tasks without communication delays

as follows. Let m = n+2k. There are n+k di�erent types of tasks (and processors). There is one
processor (processor `) of type ` for all ` 2 f1; : : : ; ng and two processors (processors n+2i�1 and
n+ 2i) of type n+ i for all i 2 f1; : : : ; kg. For every literal yi;j , G contains a task vi;j , such that
�(vi;j) = n+ i. For each variable x`, G contains two tasks u` and �u`, such that �(u`) = �(�u`) = `.
If literal yi;j equals variable x`, then G contains an arc from u` to vi;j . Similarly, if yi;j corresponds
to �x`, then G contains an arc from �u` to vi;j . The communication requirement of each arc of G
equals zero. Now we will prove that there is a truth assignment that satis�es all clauses of C if
and only if there is a feasible schedule for (G;m; �;1V (G);0E(G)) of length at most three.

()) Suppose there is a truth assignment that satis�es all clauses of C. Consider such an as-
signment. A schedule � for (G;m; �;1V (G);0E(G)) can be constructed as follows. If x` is
true, then let �(u`) = 0 and �(�u`) = 1. Otherwise, let �(�u`) = 0 and �(u`) = 1. Let
�(u`) = �(�u`) = `. Every clause Ci contains a literal that is satis�ed. Let yi;j be such
a literal. Let �(vi;j) = 1 and �(vi;j) = n + 2i � 1. Schedule the remaining literal tasks
vi;j at time 2 on processors n + 2i� 1 and n + 2i. Clearly, (�; �) is a feasible schedule for
(G;m; �;1V (G);0E(G)). The length of (�; �) is three.

(() Let (�; �) be a feasible schedule for (G;m; �;1V (G);0E(G)) of length at most three. Every
literal task vi;j has a predecessor that must be scheduled on a processor of a di�erent type.
So the tasks vi;j are executed at time 1 or 2. For each clause Ci, there is at least one task
vi;j , such that �(vi;j) = 1. The predecessor of vi;j must be executed at time 0. Construct a
truth assignment as follows. For all variables x`, if �(u`) = 0, then let x` be true. Otherwise,
let x` be false. Since the tasks vi;j scheduled at time 1 are successors of task scheduled at
time 0, each clause contains a literal that is satis�ed. So there is a truth assignment that
satis�es all clauses of C.

Lemma 6.2 shows that Typed tasks without communication delays is a strongly NP-
complete decision problem.

Theorem 6.3. Typed tasks without communication delays is a strongly NP-complete de-

cision problem.

Proof. Obvious from Lemma 6.2.

Theorem 6.3 shows the following result.

19



Corollary 6.4. Unless Pequals NP, there is no polynomial-time algorithm that constructs sched-

ules for instances (G;m; �; �;0E(G)), such that G is a collection of fork graphs, whose lengths are

less than 4
3 times the length of a minimum-length schedule for (G;m; �; �;0E(G)).

7 Typed task systems with non-zero communication delays

Similar to the construction presented in Section 5, one can show that scheduling typed tasks with
non-zero communication delays is less complicated than scheduling typed task systems without
communication requirements. It is, however, not a special case. The results that are proved are
the same as for scheduling untyped unit-length tasks [15]: determining the existence of a schedule
of length at most three is a polynomial problem, whereas determining the existence of a schedule of
length at most four is an NP-complete decision problem. These results are proved in Sections 7.1
and 7.2, respectively.

7.1 Schedules of length at most three

In this section, it will be shown that the existence of a schedule of length at most three for an
instance (G;m; �; �; c) with non-zero communication delays can be determined in polynomial time.
The proof consists of two parts. First, the problem instance is divided into a number of untyped
scheduling problems. For these untyped problems, the existence of a schedule of length at most
three is determined.

Consider an instance (G;m; �; �; c) with non-zero communication delays. Suppose G contains
two tasks u1 and u2, such that u1 �0 u2 and �(u1) 6= �(u2). If �(u1) � 2, �(u2) � 2 or
c(u1; u2) � 2, then there is no schedule of length at most three. Hence we may assume that
�(u1) = �(u2) = c(u1; u2) = 1. In a feasible schedule for (G;m; �; �; c) of length (at most) three,
u1 is executed at time 0 and u2 at time 2. This knowledge can be used to remove the arc from u1
to u2.

A new instance (G0;m0; � 0; �0; c0) is constructed as follows.

V (G0) = V (G) [ fv1; v2; v3; w1; w2; w3g

and

E(G0) = (E(G) n f(u1; u2)g) [ f(v1; v2); (v2; v3); (w1; w2); (w2; w3); (u1; v3); (w1; u2)g:

The types and task lengths of the tasks in V (G) remain unchanged. The same holds for the
communication requirements of the arcs in E(G) n f(u1; u2)g. The new tasks v1, v2 and v3 have
length one and type �(u1). Similarly, tasks w1, w2 and w3 are of unit length and have the same
type as u2. Two processors are added, one of type �(u1) and one of type �(u2). The communication
requirements of the new arcs equal one.

It is not di�cult to see that a schedule of length three for (G;m; �; �; c) can be transformed
into a schedule for (G0;m0; � 0; �0; c0) by executing tasks v1, v2 and v3 at times 0, 1 and 2 on the
new processor of type �(u1) and tasks w1, w2 and w3 at times 0, 1 and 2 on the new processor of
type �(u2). Furthermore, if (�; �) is a feasible schedule of length three for (G0;m0; � 0; �0; c0), then
the restriction of (�; �) to V (G) is a feasible schedule for (G;m; �; �; c) of the same length.

Hence we may assume that there are no arcs between tasks of di�erent types. In that case,
there is a feasible schedule of length at most three for (G;m; �; �; c) if and only if there are such
schedules for the untyped instances (Gi;mi; �i; ci), where V (Gi) = fu 2 V (G) j �(u) = ig,
E(Gi) = E(G)\ (V (Gi)�V (Gi)), mi equals the number of processors of type i, and �i and ci are
the restrictions of � and c to V (Gi) and E(Gi), respectively. Hence we have proved the following
result.

Theorem 7.1. The existence of a schedule of length at most three for all instances (G;m; �; �; c)
with non-zero communication delays can be determined in polynomial time if and only if the

20



existence of a schedule of length at most three for an untyped instances (G0;m0; �0; c0) with non-

zero communication delays can be determined in polynomial time.

From now on, we will consider untyped instances. Consider an untyped instance (G;m; �; c)
with non-zero communication delays. Since we want to determine whether there exists a schedule
for (G;m; �; c) of length at most three, we may assume that the sum of the task lengths of all
tasks does not exceed 3m and that there is no path in G with total task length at least four.
Hence every task of length three is an independent task. Such a task must be scheduled at time
0 on a processor of its own. The other tasks of G have to be scheduled on the remaining m � 1
processors. So we may assume that G does not contain any tasks of length three.

Independent tasks of length one can be scheduled in every idle time on any processor. Hence
these tasks can be scheduled without violating the feasibility of a feasible partial schedule. There-
fore we will assume that there are no independent tasks of length one.

Let u1 and u2 be two tasks of G, such that u1 �0 u2, �(u1) = �(u2) = 1, c(u1; u2) � 2 and u1
and u2 do not have other children or parents. Let (�; �) be a feasible schedule for (G;m; �; c) of
length at most three. Then �(u1) = �(u2). Suppose �(u1) = 0 and �(u2) = 2. Due to non-zero
communication delays, the idle time on processor �(u1) can only be �lled by an independent task
of length one. Since such tasks can be executed in any empty time slot, we can reschedule u1
and u2, such that �(u1) = 1 or �(u2) = 1. This does not violate the feasibility of (�; �). In that
case, u1 and u2 are executed without interruption. Hence we may replace them by a single task
of length two.

Now we will assign a starting time to every task. Consider tasks u1, u2 and u3 of G, such that
�(u1) = �(u2) = �(u3) = 1 and u1 �0 u2 �0 u3. Then let �(u1) = 0, �(u2) = 1 and �(u3) = 2.
In a feasible schedule for (G;m; �; c) of length at most three, u1, u2 and u2 must be scheduled on
the same processor. If u1 has other children v1; : : : ; vk, then these must be scheduled at time 2.
Similarly, if u3 has other parents wi; : : : ; w`, then these are to start at time 0. Note that there is no
schedule of length at most three if �(vi) � 2 or �(wi) � 2 for some i 2 f1; : : : ; kg or c(u1; vi) � 2
or c(wi; u3) � 2 for some i 2 f1; : : : ; `g. Moreover, the tasks vi must be sinks of G and the tasks
wi sources of G. The other children of u1 and the other parents of u3 may be scheduled on any
idle processor.

Next consider tasks u1 and u2 of G, such that �(u1) = 1, �(u2) = 2 and u1 �0 u2. Then let
�(u1) = 0 and �(u2) = 1. These tasks must be scheduled on the same processor. If u1 has other
children, then these must start at time 2. Such a child w of u1 must be a sink of G of length one
and c(u1; w) may not exceed 1. u2 may not have other parents or children. In a schedule of length
three, the children of u1 can be scheduled on any processor.

A similar construction can be used to assign starting times to tasks v1 and v2 of G, such that
�(v1) = 2, �(v2) = 1 and v1 �0 v2: v1 starts at time 0 and v2 at time 2. A parent w 6= v1 of
v2 must be a source of unit length, such that c(w; v2) = 1. w must start at time 0 and can be
executed on any idle processor.

Let u1 and u2 be two unit-length of G tasks that have not been assigned a starting time.
Suppose u2 is a child of u1 and c(u1; u2) � 2. We may assume that u1 has other children or u2
has other parents. Suppose the tasks v1; : : : ; vk are the other children of u1 and w1; : : : ; w` the
other parents of u2. If

Pk

i=1 c(u1; vi) +
P`

i=1 c(wi; u2) � k + `+ 2, then there is no schedule for

(G;m; �; c) of length at most three. Hence we may assume that
Pk

i=1 c(u1; vi) +
P`

i=1 c(wi; u2) is
at most k + `+ 1. If k � 1, then let �(u1) = 0. If ` � 1, then u2 must start at time 2.

Assume k; ` � 1. If c(u1; vi) � 2, then vi starts at time 1 and the other children of u1 at time
2. Similarly, if c(wi; u2) � 2, then wi is to be scheduled at time 1 and the other children of u2 at
time 0. If c(u1; vi) and c(wi; u2) do not exceed 1, then let �(vi) = 2 and �(wi) = 0 for all i � 2.
The starting times of v1 and w1 remain unknown.

Suppose u1 is the only parent of u2. Then the only tasks that can start at time 1 on the same
processor as u1 is either a child of u1 or an independent task. So we may assume that �(u2) = 1

21



and that �(vi) = 2 for all i 2 f1; : : : ; kg. Similarly, suppose u1 does not have other children. Then
let �(u1) = 1 and �(wi) = 0 for all i 2 f1; : : : ; `g.

In all cases, we may assume that, in a feasible schedule of length three, u1, u2 and a child vi
of u1 or a parent wi of u2 are scheduled on one processor.

Consider a unit-length task u1 with k � 2 children v1; : : : ; vk, such that c(u1; vi) = 1 for all
i 2 f1; : : : ; kg. We may assume that u1 has not been assigned a starting time. In a feasible
schedule for (G;m; �; c), at most one successor of u1 can start immediately after u1. So �(u1) = 0
and �(vi) = 2 for all i 2 f2; : : : ; kg. Note that all children of u1 must be sinks of G of length one.
The children v2; : : : ; vk can be executed on any idle processor. If v1 were to start at time 1, then
it must be scheduled on the same processor as u1.

Similarly, let u2 be a task of length one without a starting time. Suppose u2 has ` � 2 parents
w1; : : : ; w`, such that c(wi; u2) = 1 for all i 2 f1; : : : ; `g. We may assume that each task wi is a
source of G of unit length. Let �(u2) = 2 and �(wi) = 0 for all i 2 f2; : : : ; `g. Tasks w2; : : : ; w`
can be scheduled on any processor that is idle at time 0. If w1 starts at time 1, then it must be
scheduled on the same processor as u2.

Now consider the tasks that have not been assigned a starting time. The independent tasks of
length two do not have a starting time. The same holds for unit-length tasks u1 and u2 of G, such
that u1 �0 u2, c(u1; u2) = 1 and u1 and u2 do no have other parents or children. Furthermore,
there are sinks of fork graphs and sources of join graphs without a starting time. In addition, for
every pair of unit-length tasks u1 and u2 of G, such that u1 �0 u2 and c(u1; u2) � 2, there may
be two tasks v1 and v2 of G of unit length, such that u1 �0 u2, u1 �0 v1, v2 �0 u2, c(u1; u2) � 2,
c(u1; v1) = c(v2; u2) = 1 and v1 and v2 do not have a starting time.

First, we will consider the last type of tasks. Let u1, u2, v1 and v2 be unit-length tasks of G,
such that u1 �0 u2, u1 �0 v1, v2 �0 u2, c(u1; u2) � 2 and c(u1; v1) = c(v2; u2) = 1. In a feasible
schedule (�; �) of length at most three, �(u1) = 0, �(u2) = 2 and �(u1) = �(u2). The only tasks
(without a starting time) that can be executed at time 1 on the same processor as u1 and u2 are
v1, v2 and independent tasks of length one. Since we assumed that there are no independent tasks
of length one, we may assume that either �(v1) = 1, �(v2) = 0 and �(v1) = �(u1), or �(v1) = 2,
�(v2) = 1 and �(v2) = �(u1).

Hence the tasks of such quadruples (u1; u2; v1; v2) can be scheduled in two possible ways: one
processor is completely �lled and one task starts at time 0 or 2. This task can be scheduled on any
empty processor. So the total number of way to schedule the tasks of the quadruples (u1; u2; v1; v2)
is bounded by n. Such a possibility is described by the number of tasks v1 that start at time 2
(and the number of tasks v2 that start at time 0).

To determine the existence of a schedule of length three, we have to consider all possibilities
of scheduling the tasks of the quadruples (u1; u2; v1; v2). There is a feasible schedule of length
at most three if and only if one of the possible partial schedules can be extended to a feasible
schedule of length at most three.

So we will to consider one of the ways in which the quadruples (u1; u2; v1; v2) can be scheduled.
A number of starting times is known. If the starting time of u1 and u2 is known and u1 and u2
should be executed on the same processor, then the total task length of the tasks that should be
executed on this processor equals three. Consequently, we can ignore this processor and the tasks
that must be executed on it.

Suppose m0 processors are not completely �lled. There are tasks with starting time 0 and 2
that can be scheduled on any of the m0 empty processors. There are no tasks that start at time 1
that need not be executed on a full processor. In addition, the tasks without a starting time are
not comparable with a tasks on a processor that is completely �lled.

Now we will divide the tasks without a starting time in four sets. V1 contains the independent
tasks of length two. The elements of V2 are the unit-length tasks u1 and u2, such that u1 �0 u2
and u1 and u2 do not have other children or parents. V3 is the set of sinks of fork graphs that do
not have a starting time. The sources of join graph without a starting time are contained in V4.

22



Note that the tasks in V2, V3 and V4 are all of unit length.
In a schedule of length three, a task of V1 has starting time 0 or 1. Since there is no di�erence

between the tasks of V1, there are at most jV1j+1 = O(n) way in which the independent tasks of
length two can be scheduled. Let u1 and u2 be two tasks of V2, such that u1 �0 u2. There are
three ways in which u1 and u2 can be executed in a schedule (�; �) of length three: �(u1) = 0
and �(u2) = 1, �(u1) = 0 and �(u2) = 2 or �(u1) = 1 and �(u2) = 2. The �rst and the last
possibility require that u1 and u2 are scheduled on the same processor. Since the tasks in V2 form
independent chains, there are O(n2) di�erent ways in which the tasks of V2 can be scheduled.

Consider a task u of V3. u must be scheduled at time 1 or 2. If it starts at time 1, then it
must be scheduled on the same processor as its parent, which has been assigned starting time 0.
At time 2, it can be scheduled on any empty processor. For every task v1 with starting time 0
that is not scheduled on a full processor, there is exactly one child v2 in V3. The pairs (v1; v2) are
all similar, so there are at most jV3j+ 1 = O(n) ways in which the tasks of V3 can be scheduled.

Similarly, there are at most jV4j + 1 = O(n) possibilities of scheduling the tasks of V4. These
tasks must start at time 0 or 1. If they are executed at time 1, then they must be scheduled on
the same processor as their children that are assigned starting time 2.

Hence there are O(n5) ways to assign starting times to the tasks of V1, V2, V3 and V4. Such a
possible assignment can be described by a tuple (n1;0; n1;1; n2;0;1; n2;0;2; n2;1;2; n3;1; n3;2; n4;0; n4;1),
where ni;t denotes the number of tasks of Vi that start at time t and n2;t1;t2 equals the number of
pairs of tasks (u1; u2) of V2, such that u1 �0 u2, u1 starts at time t1 and u2 at time t2. For each
assignment of starting times �, we will try to construct an assignment of processors �, such that
(�; �) is a feasible schedule of length at most three. In order to this, we only need to consider the
tasks that are not executed on a processor that is completely �lled.

So, given an assignment of starting times �, we have to determine whether there exists a
schedule (�; �) of length at most three. Note that we may assume that �(u) + �(u) � 3 for all
tasks u. � must schedule all tasks on m0 available processors.

First, consider the tasks of length two and all unit-length tasks u1 and u2, such that
�(u2) = �(u1) + 1. These have to be scheduled on separate processors. If the number of available
processors is not su�cient, then there is no schedule for (G;m; �; c) of length three. Second, con-
sider the remaining tasks. The tasks that have not been scheduled on a processor are unit-length
tasks with starting time 0 or 2. Such a task u can be executed by any processor that is idle at
time �(u). So there is a feasible schedule (�; �) if and only if the number of processors that are
empty at times 0 and 2 is su�cient to schedule the remaining tasks with starting time 0 and 2.

Given an instance (G;m; �; �; c), we can determine the existence of a schedule for (G;m; �; �; c)
of length at most three is polynomial time. First, the instance is transformed into O(m) untyped
instances (Gi;mi; �i; �i; ci). For each of these instances, O(n6) possible assignments of starting
times are constructed. For each assignment of starting times �, it can be determined in polynomial
time, whether there is an assignment of processors �, such that (�; �) is a feasible schedule for
the untyped problem instance. If for each untyped instance (Gi;mi; �i; �i; ci), there is a feasible
schedule (�i; �i) of length at most three, then there is a feasible schedule (�; �) for the typed
instance (G;m; �; �; c). Hence we have proved the following result.

Theorem 7.2. There is a polynomial-time algorithm that determines the existence of a feasible

schedule of length at most three for all instances (G;m; �; �; c) with non-zero communication delays;

if such a schedule exists, then this algorithm constructs a feasible schedule for (G;m; �; �; c) of

length at most three.

7.2 Schedules of length at most four

In this section, I will prove that determining the existence of a feasible schedule of length at
most four for typed instances (G;m; �; �; c) with non-zero communication delays is a strongly NP-
complete decision problem. This was already proved by Hoogeveen et al. [15] for the special case

23



of untyped instances with unit-length tasks and unit-length communication delays.
The proof presented in this section is less complicated than the proof of Hoogeveen et al. [15].

Using a reduction reduction similar to the one presented in Section 6.2, it is shown that determining
the existence of a schedule of length at most four for instances (G;m; �;1V (G);1E(G)) is NP-
complete even if G is a collection of fork graphs and all tasks and communication delays are of
unit length. Let Typed tasks with unit communication delays be the following decision
problem.

Problem. Typed tasks with unit communication delays

Instance. An instance (G;m; �;1V (G);1E(G)), where G is a collection of fork graphs.
Question. Is there a feasible schedule for (G;m; �;1V (G);1E(G)) of length at most four?

A polynomial reduction from 3SAT is used to prove the NP-completeness of Typed tasks

with unit communication delays.

Lemma 7.3. There is a polynomial reduction from 3SAT to Typed tasks with unit commu-

nication delays.

Proof. Let fx1; : : : ; xng and C be an instance of 3SAT. Then C is a collection of clauses with three
literals. Suppose C = fC1; : : : ; Ckg. Assume Ci = (yi;1_yi;2_yi;3) for all i 2 f1; : : : ; kg. Construct
an instance (G;m; �;1V (G);1E(G)) of Typed tasks with unit communication delays as
follows. Let m = n+ 2k. There are n+ k di�erent types of tasks (and processors). There is one
processor (processor `) of type ` for all ` 2 f1; : : : ; ng and two processors (processors n+2i�1 and
n+ 2i) of type n+ i for all i 2 f1; : : : ; kg. For every literal yi;j , G contains a task vi;j , such that
�(vi;j) = n+ i. For each variable x`, G contains two tasks u` and �u`, such that �(u`) = �(�u`) = `.
If literal yi;j equals variable x`, then G contains an arc from u` to vi;j . Similarly, if yi;j corresponds
to �x`, then G contains an arc from �u` to vi;j . The communication requirement of each arc of G
equals one. Now we will prove that there is a truth assignment that satis�es all clauses in C if and
only if there is a feasible schedule for (G;m; �;1V (G);1E(G)) of length at most four.

()) Suppose there is a truth assignment that satis�es all clauses of C. Consider such an assign-
ment. A schedule � for (G;m; �;1V (G);1E(G)) can be constructed as follows. If x` is true,
then let �(u`) = 0 and �(�u`) = 1. Otherwise, let �(�u`) = 0 and �(u`) = 1. Obviously,
�(u`) = �(�u`) = `. Every clause Ci contains at least one literal that is satis�ed. Let yi;j be
such a literal. Let �(vi;j) = 2 and �(vi;j) = n+ 2i� 1. Schedule the remaining literal tasks
vi;j at time 3 on processors n + 2i� 1 and n + 2i. Clearly, (�; �) is a feasible schedule for
(G;m; �;1V (G);1E(G)). The length of (�; �) equals four.

(() Let (�; �) be a feasible schedule for (G;m; �;1V (G);1E(G)) of length at most four. Every
literal task vi;j has a predecessor that must be scheduled on a processor of a di�erent type.
So the tasks vi;j are executed at time 2 or 3. For each clause Ci, there is at least one task
vi;j , such that �(vi;j) = 2. The predecessor of vi;j is executed at time 0. Construct a truth
assignment as follows. If �(u`) = 0, then let x` be true. Otherwise, let x` be false. Since the
tasks vi;j scheduled at time 2 are successors of task scheduled at time 0, each clause contains
a literal that is satis�ed. So there is a truth assignment that satis�es all clauses of C.

Lemma 7.3 shows that Typed tasks with communication delays is a strongly NP-
complete decision problem.

Theorem 7.4. Typed tasks with unit communication delays is a strongly NP-complete

decision problem.

Proof. Obvious from Lemma 7.3.

24



Theorem 7.4 shows the following result. Hoogeveen et al. [15] proved the same for untyped
instances with unit-length tasks and unit-length communication requirements.

Corollary 7.5. Unless Pequals NP, there is no polynomial-time algorithm that constructs sched-

ules for instances (G;m; �; �; c), such that G is a collection of fork graphs, whose lengths are less

than 5
4 times the length of a minimum-length schedule for (G;m; �; �; c).

8 Typed interval-ordered tasks

In this last section, we deal with a special type of precedence graphs, the interval orders. In
Section 8.1, I will present an algorithm that constructs minimum-length schedules for typed in-
stances (G;m; �;1V (G);1E(G)), such that G is an interval order. In Section 8.2, it is proved that
minimising the makespan for instances (G;m; �; �; c) is NP-hard even if G is an interval order.

Papadimitriou and Yannakakis [22] de�ned interval orders as follows. An interval order is a
partial order (V;�), for which every element v of V can be assigned a closed interval I(v) in the
real line such that for all elements v1 and v2 of V ,

v1 � v2 if and only if x < y for all x 2 I(v1); y 2 I(v2).

Interval orders have a very nice property: the sets of successors of the tasks of an interval order
form a total order. If u1 and u2 are two tasks of an interval order, then

Succ(u1) � Succ(u2) or Succ(u2) � Succ(u1);

where Succ(u) denotes the set of successors of u.

8.1 Unit-length tasks

In this section, we will consider the problem of scheduling instances (G;m; �;1V (G); c), such that
G is an interval order. Jansen [17, 18] proved that without communication delays, a minimum-
length schedule can be constructed in polynomial time. Kellerer and Woeginger [19] showed that if
each task has an arbitrary set of processors on which it can be scheduled, then a minimum-length
schedule on two processors for interval orders can be constructed in polynomial time.

In this section, an algorithm will be presented that constructs minimum-length schedules for
instances (G;m; �;1V (G);1E(G)), such that G is an interval order. This algorithm is a generalisa-
tion of the algorithm presented by Ali and El-Rewini [1] that minimises the makespan for untyped
instances (G;m;1V (G);1E(G)), such that G is an interval order.

Algorithm Typed interval order scheduling is shown in Figure 1. It only con-
structs an assignment of starting times. An assignment of starting times for an instance
(G;m; �;1V (G);1E(G)) is called a feasible assignment of starting times if, for all tasks u1 6= u2
of G, all times t and all types i,

1. jfu 2 V (G) j �(u) = t ^ �(u) = igj � mi;

2. if u1 � u2, then �(u2) � �(u1) + 1;

3. if u1 � u2 and �(u1) 6= �(u2), then �(u2) � �(u1) + 2;

4. there is at most one child v of u1, such that �(v) = �(u1) + 1; and

5. there is at most one parent v of u1, such that �(v) = �(u1)� 1.

The �rst constraint ensures that the number of tasks of the same type that are scheduled at the
same time does not exceed the number of processors of that type. The second constraint states
that a task must be scheduled after its predecessors. The third constraint ensures that there is a
delay of at least one time unit between two comparable tasks of di�erent types; there should be

25



such a delay, because such tasks are not scheduled on the same processor. The fourth and �fth
constraint state that at most one child and at most one parent of a task are scheduled without
interruption.

Obviously, every feasible schedule (�; �) for an instance (G;m; �;1V (G);1E(G)) implies a feasi-
ble assignment of starting times for (G;m; �;1V (G);1E(G)). In addition, it is not di�cult to show
that given a feasible assignment of starting time �, a feasible schedule (�; �) can be constructed
in polynomial time.

The following notation is used. N(t; i) denotes the number of tasks of type i that start at
time t. ready(u) equals the earliest time at which u becomes available for scheduling. last(u) is
a parent of u with maximum starting time. last2(u) 6= last(u) is a parent of u with maximum
starting time among the parents of u except last(u). These parents may not exist; in that case,
they represent empty tasks. We will assume that the starting time of an empty task equals �1.

Algorithm Typed interval order scheduling

Input. An instance (G;m; �;1V (G);1E(G)), such that G is an interval order, and a list (u1; : : : ; un)
containing all tasks of G, such that Succ(u1) � � � � � Succ(un).

Output. A feasible assignment of starting times � for (G;m; �;1V (G);1E(G)).
1. for t := 0 to n� 1
2. do for all types i
3. do N(t; i) := 0
4. for i := 1 to n

5. do last(ui) := ?
6. last2(ui) := ?
7. for all parents v of ui
8. do if �(v) > �(last(ui)) or �(v) = �(last(ui)) and �(v) 6= �(ui)
9. then last2(ui) := last(ui)
10. last(ui) := v

11. else if �(v) > �(last2(ui))
12. then last2(ui) := v

13. if �(last(ui)) 6= �(ui) or �(last(u)) = �(last2(u))
14. then ready(ui) := �(last(ui)) + 2
15. else if there is a child w of last(ui), such that �(w) = �(last(ui)) + 1
16. then ready(ui) := �(last(ui)) + 2
17. else ready(ui) := �(last(ui)) + 1
18. �(ui) := minft � ready(ui) j N(t; �(ui)) < mig
19. N(�(ui); �(ui)) := N(�(ui); �(ui)) + 1

Figure 1. Algorithm Typed interval order scheduling

Consider an instance (G;m; �;1V (G);1E(G)), such that G is an interval order. Let � be the
assignment of starting times for (G;m; �;1V (G);1E(G)) constructed by Algorithm Typed inter-

val order scheduling. It is not di�cult to see that a task u of type i is scheduled at a time at
which at most mi�1 tasks of type i are scheduled and no precedence constraint or communication
requirement is violated. So � is a feasible assignment of starting times for (G;m; �;1V (G);1E(G)).

The time complexity of Algorithm Typed interval order scheduling can be determined
as follows. First we will compute the transitive closure of G. A topological order of G can
be constructed in O(n + e) time [8]. Using a topological order of an interval order G, the set
of successors of each task can be computed. Assume u1; : : : ; un is a topological order of G.
Assume Succ(ui+1); : : : ; Succ(un) have been computed. Let v1; : : : ; vk be the children of ui with
Succ(v1) � � � � � Succ(vk). Then Succ(ui) = Succ(vk)[fv1; : : : ; vkg. For every task v in Succ(u),
add an arc from u to v to G. The resulting precedence graph is the transitive closure of G. It is

26



constructed in O(n+ e+) time, where e+ is the number of arcs in the transitive closure of G.
Using the transitive closure of G, the tasks of G can be ordered by non-increasing number of

successors in O(n) time using Counting sort [8].
For each task u of G, ready(u) is computed by traversing all parents of u. Hence the parents

last(u) and last2(u) are computed in O(indegree(u)) time. Then ready(u) is determined in
O(outdegree(last(u)) time by checking all children of last(u). Hence, throughout the execution
of the algorithm, O(e) time used to determine the ready time of a task. The computation of the
starting time of u takes O(n) for each task u, so O(n2) time in total.

Lemma 8.1. For all instances (G;m; �;1V (G);1E(G)), such that G is an interval order, Algo-

rithm Typed interval order scheduling constructs a feasible assignment of starting times

for (G;m; �;1V (G);1E(G)) in O(n2) time.

With an exchange argument, we can show that Algorithm Typed interval order schedul-

ing constructs assignments of starting times that correspond to minimum-length schedules for
typed interval orders with unit-length tasks. Let the length of an assignment of starting times be
the maximum completion time of a task.

Theorem 8.2. Algorithm Typed interval order scheduling constructs assignments of start-

ing times of minimum length for all instances (G;m; �;1V (G);1E(G)), such that G is an interval

order.

Proof. Let (G;m; �;1V (G);1E(G)) be a typed instance, such that G is an interval order. Let �
be the assignment of starting times for (G;m; �;1V (G);1E(G)) constructed by Algorithm Typed

interval order scheduling. We will prove by induction that for all j 2 f1; : : : ; ng, there is
a minimum-length assignment of starting times �j for (G;m; �;1V (G);1E(G)), such that �(ui) =
�j(ui) for all i 2 f1; : : : ; jg. Obviously, there is a minimum-length assignment of starting times
�0 for (G;m; �;1V (G);1E(G)), such that �(ui) = �0(ui) for all i 2 f1; : : : ; 0g = ?.

Assume by induction that there is a minimum-length assignment of starting times �k for
(G;m; �;1V (G);1E(G)), such that �(ui) = �k(ui) for all i 2 f1; : : : ; kg. Consider uk+1. We may
assume that �(uk+1) 6= �k(uk+1). Then �k(uk+1) > �(uk+1), otherwise, uk+1 was ready at an
earlier time and �(uk+1) would be smaller. We may assume that there is a task v, such that
�k(v) = �(uk+1), �(v) = �(uk+1) and v is not an element of fu1; : : : ; ukg. Then Succ(v) �
Succ(uk+1). There is at most one successor w of uk+1, such that �k(w) = �k(uk+1) + 1. Such a
successor has the same type as v and uk+1. Since v is ready at time �k(v), it can also be scheduled
at time �k(uk+1). So v and uk+1 can be exchanged. This gives a feasible assignment of starting
times �0, such that �0(ui) = �(ui) for all i 2 f1; : : : ; k+1g. Moreover, the length of �0 is the same
as that of the minimum-length assignment �k.

By induction, there is an assignment of starting times �n for (G;m; �;1V (G);1E(G)) of minimum
length, such that �(ui) = �n(ui) for all i 2 f1; : : : ; ng. As a result, � is a minimum-length
assignment of starting times for (G;m; �;1V (G);1E(G)).

So, for interval orders, constructing a minimum-length schedule for typed instances with unit-
length tasks and unit-length communication delays takes polynomial time. If the communication
delays are not of unit length, then the problem becomes more complicated: Sch�a�ter [24] proved
that minimising the makespan for untyped instances (G;1;1V (G); c), such that G is an interval
order and c : E(G) ! f0; 1g, is an NP-hard optimisation problem. He proved this using a
polynomial reduction similar to the one presented by Hoogeveen et al. [15] used for proving the NP-
hardness of constructing minimum-length schedules for untyped instances (G;1;1V (G);1E(G)).

8.2 Arbitrary task lengths

In this section, I will show that minimising the makespan for preallocated interval-ordered tasks
with arbitrary lengths and unit-length communication delays is an NP-hard problem. This is
proved using a polynomial reduction from Partition [10], which is the following well-known
NP-complete decision problem [10].

27



Problem. Partition

Instance. A set of positive integers A = fa1; : : : ; akg.
Question. Is there a subset A0 of A, such that

P
a2A0 a =

P
a62A0 a?

Preallocated interval-ordered tasks is the following decision problem.

Problem. Preallocated interval-ordered tasks

Instance. An instance (G; 2; �; �;1E(G)), such that G is an interval orders and a positive integer
D.

Question. Is there a feasible schedule for (G; 2; �; �;1E(G)) of length at most D?

The next lemma shows a simple polynomial reduction from Partition to Preallocated

interval-ordered tasks.

Lemma 8.3. There is a polynomial reduction from Partition to Preallocated interval-

ordered tasks.

Proof. Let A = fa1; : : : ; akg be an instance of Partition. De�ne B = 1
2

Pk

i=1 ai. Construct an
instance (G; 2; �; �;1E(G)) of Preallocated interval-ordered tasks as follows. For each ai,
G contains an independent task ui, such that �(ui) = ai and �(ui) = 2. In addition, G contains
four tasks v1, v2, v3 and w, such that v1 �0 v2 �0 v3 and v1 �0 w �0 v3. These have the following
lengths: �(v1) = �(v3) = B � 1, �(v2) = 3 and �(w) = 1. The communication requirements of
the arcs equals one. Let �(v1) = �(v2) = �(v3) = 1 and �(w) = 2. Let D = 2B + 1. Now we will
prove there is a subset A0 of A, such that

P
a2A1

a = 1
2B, if and only if there is a feasible schedule

for (G; 2; �; �;1E(G)) of length at most D.

()) Let A1 be a subset of A, such that
P

a2A1
a = 1

2B. Let A2 = AnA1. Construct a schedule �
for (G; 2; �; �;1E(G)) as follows. Let �(v1) = 0, �(v2) = B�1, �(v3) = B+2 and �(w) = B.
Moreover, for all tasks ui in A1, let

�(ui) =
X

j<i:uj2A1

aj

and, for all ui in A2,

�(ui) = B + 1 +
X

j<i:uj2A1

aj :

Then � is a feasible schedule for (G; 2; �; �;1E(G)). The last task of G is completed at time
2B + 1 = D.

(() Let � be a schedule for (G; 2; �; �;1E(G)) of length at most D. There is only one way in
which tasks v1, v2, v3 and w are scheduled: �(v1) = 0, �(v2) = B � 1, �(v3) = B + 2 and
�(w) = B. The remaining tasks are executed at times 0; : : : ; B � 1 and B + 1; : : : ; 2B on
processor 2. De�ne A1 = fai j �(ui) � B � 1g and A2 = fai j �(ui) � B + 1g. Since the
total task length equals 2B + 2, no processor is idle before time D. Because a task cannot
be preempted, X

a2A1

a =
X

i:�(ui)�B�1

�(ui) = B:

Lemma 8.3 shows that Preallocated interval-ordered tasks is an NP-complete decision
problem and that constructing minimum-length schedules for preallocated interval-ordered tasks
is an NP-hard optimisation problem.

28



Theorem 8.4. Constructing minimum-length schedules for instances (G; 2; �; �;1E(G)), such that
G is an interval order, is an NP-hard optimisation problem.

Proof. Obvious from Lemma 8.3.

Clearly, the same can be proved for scheduling preallocated interval-ordered tasks without
communication delays.

Theorem 8.5. Constructing minimum-length schedules for instances (G; 2; �; �;0E(G)), such that
G is an interval order, is an NP-hard optimisation problem.

9 Concluding remarks

In this report, I have shown that, if the existence of short schedules is di�cult to be determined,
then scheduling with non-zero communication delays is less complicated than scheduling without
communication delays. Hoogeveen et al. [15] proved this as well.

The communication delays restrict the number of possible starting times in a short feasible
schedule: every potential starting time of a task u in a schedule of length ` for an instance
(G;m; �; �; c) with (non-zero) communication delays is also a possible starting time of u in a
schedule for the instance (G;m; �; �;0E(G)) of length `, whereas a possible starting in the schedule
for (G;m; �; �;0E(G)) need not be a potential starting time in the schedule for (G;m; �; �; c).
These observations make it easier to determine the existence of short schedules for instances with
non-zero communication delays.

References

[1] H.H. Ali and H. El-Rewini. An optimal algorithm for scheduling interval ordered tasks with
communication on n processors. Journal of Computer and System Sciences, 51(2):301{306,
October 1995.

[2] D. Bernstein, J.M. Ja�e and I. Gertner. Scheduling arithmetic and load operations in parallel
with no spilling. In Proceedings of the Fourteenth Annual ACM Conference on Principles of

Programming Languages, pages 263{273, 1987.

[3] D. Bernstein, M. Rodeh and I. Gertner. Approximation algorithm for scheduling arithmetic
expressions on pipelined machines. Journal of Algorithms, 10:120{139, 1989.

[4] D. Bernstein, M. Rodeh and I. Gertner. On the complexity of scheduling problems for paral-
lel/pipelined machines. IEEE Transactions on Computers, 38(9):1308{1313, September 1989.

[5] P. Brucker. An e�cient algorithm for the job-shop problem with two jobs. Computing,
40:353{359, 1988.

[6] T.C.E. Cheng and C.C.S. Sin. A state-of-the-art review of parallel-machine scheduling re-
search. European Journal of Operational Research, 47:271{292, 1990.

[7] P. Chr�etienne and C. Picouleau. Scheduling with communication delays: a survey. In
P. Chr�etienne, E.G. Co�man, Jr., J.K. Lenstra and Z. Liu, editors, Scheduling Theory and

its Applications, Chapter 4, pages 65{90. John Wiley & Sons, Chichester, United Kingdom,
1995.

[8] T.H. Cormen, C.E. Leiserson and R.L. Rivest. Introduction to Algorithms. The MIT Press,
Cambridge MA, United States, 1990.

[9] S. Even, A. Itai and A. Shamir. On the complexity of timetable and multicommodity 
ow
problems. SIAM Journal on Computing, 5(4):691{703, December 1976.

29



[10] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. W.H. Freeman and Company, New York NY, United States, 1979.

[11] M.R. Garey, D.S. Johnson and R. Sethi. The complexity of 
owshop and jobshop scheduling.
Mathematics of Operations Research, 1(2):117{129, May 1976.

[12] L.A. Goldberg, M.S. Paterson, A. Srinivasan and E. Sweedyk. Better approximation guaran-
tees for job-shop scheduling. Technical report CS-RR-312, Department of Computer Science,
University of Warwick, Coventry, United Kingdom, August 1996.

[13] D.K. Goyal. Scheduling processor bound systems. Technical report CS-76-036, Computer
Science Department, Washington State University, Pullman WA, United States, November
1976.

[14] N. Hefetz and I. Adiri. An e�cient optimal algorithm for the two-machine unit-time jobshop
schedule-length problem. Mathematics of Operations Research, 7(3):354{360, August 1982.

[15] J.A. Hoogeveen, J.K. Lenstra and B. Veltman. Three, four, �ve, six, or the complexity of
scheduling with communication delays. Operations Research Letters, 16:129{137, 1994.

[16] J.M. Ja�e. Bounds on the scheduling of typed task systems. SIAM Journal on Computing,
9(3):541{551, August 1980.

[17] K. Jansen. On scheduling problems restricted to interval orders. In E.W. Mayr, editor, Pro-
ceedings of the 18th International Workshop on Graph-Theoretic Concepts in Computer Sci-

ence, Lecture Notes in Computer Science, volume 657, pages 27{36. Springer-Verlag, Berlin,
Germany, 1992.

[18] K. Jansen. Analysis of scheduling problems with typed task systems. Discrete Applied Math-

ematics, 52:223{232, 1994.

[19] H. Kellerer and G.J. Woeginger. UET-scheduling with constrained processor allocations.
Computers and Operations Research, 19(1):1{8, 1992.

[20] J.K. Lenstra and A.H.G. Rinnooy Kan. Complexity of scheduling under precedence con-
straints. Operations Research, 26(1):22{35, 1978.

[21] J.K. Lenstra and A.H.G. Rinnooy Kan. Computational complexity of discrete optimization
problems. Annals of Discrete Mathematics, 4:121{140, 1979.

[22] C.H. Papadimitriou and M. Yannakakis. Scheduling interval-ordered tasks. SIAM Journal

on Computing, 8(3):405{409, August 1979.

[23] C. Picouleau. Etude de Probl�emes d'Optimisation dans les Syst�emes Distribu�es. Th�ese de
doctorat, Universit�e Pierre et Marie Curie, Paris, France, 1992.

[24] M.W. Sch�a�ter. Scheduling Jobs with Communication Delays: Complexity Results and

Approximation Algorithms. Dissertation, Technische Universit�at Berlin, Berlin, Germany,
November 1996.

[25] J.P. Schmidt, A. Siegel and A. Srinivasan. Cherno�-Hoe�ding bounds for applications with
limited independence. In Proceedings of the Fourth Annual ACM-SIAM Symposium on Dis-

crete Algorithms, pages 331{340, 1993.

[26] D.B. Shmoys, C. Stein and J. Wein. Improved approximation algorithms for shop scheduling
problems. SIAM Journal on Computing, 23(3):617{632, June 1994.

[27] Yu.N. Sotskov. The complexity of shop-scheduling problems with two or three jobs. European
Journal of Operational Research, 53:326{336, 1991.

30



[28] Yu.N. Sotskov and N.V. Shakhlevich. NP-hardness of shop-scheduling problems with three
jobs. Discrete Applied Mathematics, 59(3):237{266, May 1995.

[29] J. Verriet. The complexity of scheduling graphs of bounded width subject to non-zero commu-
nication delays. Technical report UU-CS-1997-01, Department of Computer Science, Utrecht
University, Utrecht, the Netherlands, January 1997.

[30] J. Verriet. Scheduling with communication for multiprocessor computation. PhD thesis,
Utrecht University, Utrecht, the Netherlands, June 1998.

[31] D.P. Williamson, L.A. Hall, J.A. Hoogeveen, C.A.J. Hurkens, J.K. Lenstra, S.V. Sevast'janov
and D.B. Shmoys. Short shop schedules. Operations Research, 45(2):288{294, March{April
1997.

31


