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Abstract

We'll give a strategy to locate all trees (points) from a starting tree using a rope,

navigation equipment, computation, and some memory.

1 Introduction

It is a well-known fact that it is sometimes di�cult to see the wood for the trees. In
this note it will be nontrivial to �nd even the trees which constitute a wood. Suppose an
environment with a set of trees is given of which the locations are unknown. The number
of trees is also unknown. Imagine that you are walking amidst the trees, but somehow all
trees are invisible (for instance, suppose you are blind). However, you are equipped with
perfect distance and heading sensors, a memory, exact computation for reals, a pair of legs,
the possibility to walk along a straight line to a speci�ed point, and a rope.

Figure 1: Finding an-
other tree.

More abstractly, the trees are �xed points in the plane and
the reader is a moving point. You are supposed to visit all trees
(enumerate them), but you cannot see them. This is where the
rope comes in. Suppose you, Y , are standing at a tree, and want
to �nd another tree. You'll attach the rope to the tree, walk some
distance away while hanging on to the rope, and then describe a
circular arc with a tight rope. As soon as you discover that you
is following a circle with di�erent radius than the distance to the
original tree, you have located and can compute the coordinates of
a new tree using the distance and heading sensors, which let you

know your position at all times.
Note that if Y doesn't know the location of any tree at all, there is no way of �nding

one (assuming the rope cannot be attached to the ground). We'll show that if Y is standing
at some tree, Y can �nd them all, provided the rope is su�ciently long. We'll consider
enumeration of the trees and convex hulls. One could also consider solving other computa-
tional geometry problems like closest pair and Delaunay triangulation. We'll also consider
how much resources|the length of the rope and the amount of memory|are needed. Two
rope lengths are of special interest:

� The rope should have length at least maxt12T mint22Tnft1g dist(t1; t2), the maximum
distance from a tree t1 to its nearest neighbor t2. Otherwise, Y cannot �nd all trees
when starting at a given tree. This length is denoted rmin.
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� The rope can be of in�nite length, but more information is needed for Y to know
when you can stop walking to discover more trees. You should know an upper bound
on either the maximum nearest neighbor distance, or an upper bound on the diameter
or perimeter of the forest. Recall that the number of trees is unknown.

Similarly, two memory models are of particular interest. If Y has an unlimited amount
of memory, Y can store the coordinates of all trees after �nding them all (which is discussed
soon), and compute everything by head. If Y has a constant amount of memory, then the
situation becomes somewhat harder and �nding all trees doesn't solve problems like convex
hull anymore.

2 Finding the trees

ti

r

Figure 2: Finding all neighbors within
distance r from a tree.

First we show how to �nd all neighbors with-
in a distance r from a given tree ti, using only
constant memory. Simply describe a circle with
radius r around ti, walking inward around any
tree found and going back to the circle where it
was left afterwards, see Figure 2. With an in-
�nite rope length and an upper bound on the
diameter or perimeter of the forest, it's easy to
�nd all trees from any tree at all. Starting from
a tree ti, just be sure to walk on a circle with
radius at least the diameter and start �nding all
neighbors.

When the rope length is rmin and memory is unlimited, we can always �nd a new tree
from a set of given trees, or decide that none exists, using the following strategy. Start at
some tree, store it, and �nd all of its rmin-neighbors. Store these too, and apply the same
strategy to these. Only store a tree if it hasn't been stored before. Since every tree has a
neighbor within distance rmin, the whole forest will be found.

The situation is less simple when the rope length is rmin and memory is constant. We'll
give a strategy that will surely �nd all trees, but if we count each tree at each visit, may
visit O(n6) trees in a forest of n trees.

De�ne the rmin-circle graph as the graph where the nodes are the trees, and two nodes
are connected by an arc if their trees are at most distance rmin apart, see Figure 3. This
graph is a connected, embedded, not necessarily planar graph. Next we consider a planar
version of it, where all intersections of arcs are included as nodes. To avoid confusion, we
call the new graph G, and it consists of vertices and edges rather than nodes and arcs. So
each edge is part of an arc or a whole arc, and each vertex is a node or lies on (at least) two
arcs. Each vertex of G can be represented by one tree, or by two pairs of trees of which the
connecting line segments intersect; the intersection point is the vertex. Similarly, each edge
of G can be represented by three pairs of trees. One pair gives the arc on which the edge
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Figure 3: Set of trees and circles with radius rmin, and corresponding graph.

lies, and the other two pairs de�ne arcs that intersect the arc of the �rst pair in vertices.
The edge lies between these vertices.

Lemma 1 Given a vertex de�ned by two pairs of trees, we can �nd the next vertex on the
arc to any of the trees (using a rope of length rmin and constant memory).

Proof:

ti tj

tk

tl

Figure 4: Finding the next edge on an
arc (ti; tj).

Let the pairs of trees be (ti; tj) and (tk; tl),
and suppose that we want to �nd the next ver-
tex on the arc (ti; tj), closer to tj. We'll deter-
mine all arcs that intersect (ti; tj), and select the
one de�ning the next intersection. For each of
ti; tj, �nd all of its neighbors t, and for each of
its neighbors t0, determine if and where (t; t0) in-
tersects (ti; tj). This correctly locates all arcs in-
tersecting (ti; tj), because t or t0 (or both) must
be within distance rmin from ti or tj (or both).

�

The lemma just given is useful because it gives a means to explore the graph G one
step further. Imagining that G is stored in a doubly-connected edge list, we can use
the lemma to �nd the next edge of a cycle of edges bounding a face of the graph G.
Using (ti; tj) and (tj; ti) to represent di�erent directions of the arc and its edges, we can
do the primitives next-halfedge, previous-halfedge, twin-halfedge, origin-of-halfedge, and
destination-of-halfedge. Now we apply the algorithm of de Berg et al. [1, 2] for traversal
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of a subdivision without using extra storage or mark bits, which applies to any planar,
embedded, connected graph.

3 Finding the convex hull

In any of the unlimited memory models it is trivial to �nd the convex hull once all trees are
known and stored. With constant memory and a rope of length the diameter or perimeter
of the forest the convex hull determination is also easy. First determine the leftmost tree,
then start gift wrapping with the rope around the forest. In case the rope has length the
diameter of the forest we may need to go back and untie the rope, then continue at the
tree last discovered.

The case with constant memory and a rope of length rmin again is most interesting,
because we cannot do gift wrapping directly. The rope is too short. However, we can �nd
the leftmost tree by enumerating all, then mimic gift wrapping by �nding the next tree
of the convex hull again by enumerating all trees. After O(n7) tree visits all convex hull
edges have been found in order.

4 Toy open problems

Only little imagination is needed to list many open problems. For instance, �nd the
Delaunay triangulation, closest pair, diameter, or minimum spanning tree. As a complexity
measure we used the number of trees visited. Try to �nd strategies that are most e�cient.
Prove or disprove that a constant memory strategy with rope length rmin exists if and only
if the problem in the usual model of computation can be solved in polynomial time.

Acknowledgements. Conversations with Andrew Frank, Jack Snoeyink, Hakan Jons-
son, and Christian Icking have led to this note.
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