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Abstract

Primary non-Hodgkin lymphoma of the stomach is a rare disorder for which clinical
management has not yet been settled completely. Faced with the many uncertainties
associated with the selection of a treatment for a patient with this disorder, it is difficult
to determine the treatment that is optimal for the patient, as well as the prognosis to
be expected. The development of a decision-theoretic model of non-Hodgkin lymphoma
of the stomach is described. The model aims to assist the clinician in exploring various
clinical questions, among others questions concerning prognosis and optimal treatment.
Central to the model is a probabilistic network that offers an explicit representation of the
uncertainties underlying the decision-making process. The model has been incorporated
into a computer-based system, that can be used as a decision-support system. Prelim-
inary evaluation results indicate that the performance of the model in its present form
matches the performance of experienced clinicians.

Keywords: medical decision making, medical expert systems, probabilistic networks, in-
fluence diagrams, gastric lymphoma.

1 Introduction

Primary non-Hodgkin lymphoma (NHL) of the stomach is a relatively rare malignant disorder,
accounting for about 5% of gastric tumours. Until recently, the aetiology of gastric NHL was
unknown; it is now generally believed that the main factor in the pathogenesis of this disease
is a chronic infection with the bacterium Helicobacter pylori [1, 2]. H. pylori has been shown
to be an important causative factor in the development of mucosa-associated lymphoid tissue
(MALT) in the stomach [3], which, by largely unknown mechanisms, may undergo malignant
change [1, 4].

Various treatment modalities are in use for this disease, varying from chemotherapy, radio-
therapy, surgery and, more recently, H. pylori eradication [5], i.e. elimination of the bacterium
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from the stomach by means of antibiotic drugs, to particular combinations of these therapies.
Due to the rare nature of the condition, reports on clinical experience with specific therapeutic
regimes usually concern small numbers of patients. When the numbers of patients are larger,
studies have been carried out over a long period of time, during which variation in diagnostic
workup and treatment occurs (cf. [6]). Furthermore, most studies are retrospective in nature,
without a predefined treatment regime, thus precluding a comparison between various ther-
apeutic strategies. As a result, the prognostic impacts of particular patient features are still
far from clear, even when only considering past experience at a single institution.

Several researchers have recognised the need for decision support in the clinical manage-
ment of patients with NHL [7], NHL of the stomach included [8]. Therapy selection for gastric
NHL is a complicated process, because only part of the patient findings necessary for ther-
apy selection may be known at a particular stage of the disease, and knowledge of adverse
reactions to particular treatments in patient groups may influence treatment selection signif-
icantly. Moreover, knowledge of outcome-specific clinical profiles, such as the typical clinical
picture of a patient with microscopic evidence of tumour cell elimination after treatment,
may help in clinical management and in the choice of appropriate therapy. Much work has
been done in the identification of both pretreatment and treatment prognostic factors that
help identifying patients at risk [9]. For example, the histological classification of NHL of
the stomach in low-grade versus high-grade malignancy using the MALT concept has been
shown to be such a prognostic factor [9, 10]. Recently, a number of centres have developed
a prognostic model for agressive nodal NHL, called the International Prognostic Index (IPI),
which includes five clinical features for predicting prognosis in patients [11]. This prognostic
model has also been applied to NHL patients in general [12]. However, current prognostic
models like the IPI are very restrictive. They can only be employed to predict survival; they
have limited value in the selection of effective therapy, and provide no support in dealing with
the other problems mentioned above.

In this paper, the technique of decision-theoretic networks is investigated with respect to
its capability of generating patient-specific risk profiles, to predict prognosis, as well as to
select optimal treatment for individual patients. The main goal of this study was to overcome
the limitations of common prognostic models by means of a computer-based system that can
be used by the clinician to answer many different clinical questions concerning gastric NHL.
The development and possible clinical usage of this decision-theoretic model of gastric NHL
is discussed in detail.

2 Methods

In this section, the basic techniques, and the development of a decision-theoretic model of
primary gastric NHL are discussed.

2.1 Decision-theoretic networks

We briefly review the theory of decision-theoretic networks so far as is required for the reading
of this paper. For a recent review of the subject, the reader is referred to [13, 14].
A distinction is made between two types of decision-theoretic network:

e probabilistic networks, and

e influence diagrams.
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Figure 1: Simplified probabilistic network with gastric NHL pretreatment variables.

A probabilistic network, or belief network, is a directed acyclic graph G = (V(G), A(G)),
consisting of a set of nodes V(G) = {Vi,...,V,}, called probabilistic nodes, representing
discrete random variables, and a set of arcs A(G) C V(G) x V(G), representing causal
relationships or correlations among random variables. Consider Figure 1, which shows a
simplified version of a probabilistic network modelling some of the relevant variables in the
management of gastric NHL. The presence of an arc between two nodes denotes the exis-
tence of a direct causal relationship or other influences; absence of an arc means that the
variables do not influence each other directly. In Figure 1, the variable AGE is expressed to
influence ‘GENERAL-HEALTH-STATES’, ‘CLINICAL-STAGE’, presence of ‘BULKY-DISEASE’, and
‘HISTOLOGICAL-CLASSIFICATION’. Associated with a probabilistic network is a joint prob-
ability distribution Pr, defined in terms of conditional probability tables according to the
structure of the graph. For example, for Figure 1, the conditional probability table

PI‘(BULKY—DISEASE | CLINICAL-STAGE, AGE, HISTOLOGICAL—CLASSIFICATION)

has been assessed with repect to all possible values of the variables CLINICAL-STAGE, AGE,
HISTOLOGICAL-CLASSIFICATION and BULKY-DISEASE. In general, the graph associated with
a probabilistic network mirrors the stochastic (in)dependencies that are assumed to hold
among variables in a domain. For a joint probability distribution defined in accordance with
the structure of a probabilistic network, it, therefore, holds that:

Pr(Vi,...,V,) = _HPr(w | (Vi)

where V; denotes a random variable associated with an identically named node, and 7(V;)
denotes the parents of that node. As a consequence, the amount of probabilistic information
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Figure 2: Updated probabilistic network after entering evidence concerning age.

that must be specified, exponential in the number of variables in general when ignoring the
independencies represented in the graph, is greatly reduced. By means of special algorithms
for probabilistic reasoning — well-known are the algorithms by Pearl [15] and by Lauritzen
and Spiegelhalter [16] — a once constructed probabilistic network can be employed to enter
and process data of a specific patient, i.e. specific values for certain variables, yielding, for
example, prognostic information. Figure 2 shows the updated probabilistic network after
entering evidence about a patient’s age (30-39 years) in the network shown in Figure 1.
Entering evidence in a network is also referred to as instantiating the network.

The probabilistic-network formalism provides only for probabilistic reasoning. For making
therapeutic decisions, certain extensions to the probabilistic-network formalism are required,
as offered, among others, by the influence-diagram formalism. Like a probabilistic network,
an influence diagram is an acyclic directed graph G = (V(G), A(G)), except that in addition
to probabilistic nodes O(G) C V(G), two additional node types are distinguished: decision
nodes D(G) C V(G) and a wvalue node U € V(G), where O(G) N D(G)N{U} = @. A
probabilistic node is denoted by means of a circle, a decision node is indicated by means of a
box, and a value node is indicated by a diamond.

As holds for probabilistic networks, arcs between probabilistic nodes denote direct causal
relationships or correlations. An example of such an uncertain influential relationship in
Figure 3 is the arc between ‘AGE’ and ‘CLINICAL-STAGE’. Incoming arcs to a decision node
indicate information that is required for the purpose of making a decision. The order of
decision nodes in an influence diagram expresses the order in which the decisions are made in
the domain; here, first a decision must be reached concerning surgery, next about a particular
chemotherapy-radiotherapy (CT&RT) schedule (possibly none in both cases). Usually, it is
assumed that this order is complete, although, in principle, a partial order can be employed
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Figure 3: Simplified influence diagram for the treatment of gastric NHL.

to indicate alternative sequences of decisions. In order to select the most optimal sequence of
decisions, assessments of these decisions with respect to other, partially uncertain, information
must be available. These assessments, also called wutilities, are represented by the value node.
A utility in medicine is often a quantitative measure of the strength of a patient’s preferences
for particular therapeutic outcomes [17]. Incoming arcs of the value node indicate variables
on which utilities must be defined, i.e. utilities can be expressed as a utility function:

U : Cw(U) - R

where C7(7) denotes the set of possible instantiations of parents of the value node U. In
Figure 3 it is expressed that any decision concerning the best treatment for a patient will be
based on the combined assessment of treatment alternatives (surgery in combination with a
chemotherapy-radiotherapy schedule), and five-year survival (5-YEAR-RESULT). Since a value
node represents the utilities of the variables corresponding to the nodes directly linked to the
value node, it has no outgoing arcs.

As for probabilistic networks, the graph representation only denotes the qualitative rela-
tionships between variables; it must be supplemented with a quantitative representation to
obtain an influence diagram. Various algorithms to evaluate influence diagrams are available,
e.g. the algorithms proposed by Shachter [18] and Cooper [19]; the result of evaluation is an
optimal sequence of decisions, a decision strategy, obtained by computation of the maximum
expected utility (MEU) of every decision D € D(G) given particular evidence E:

ME =
U(D | B) = max > u(c)Pr(c|d, B)
c€Cr(m)

where possibly D € 7(U), and where the evidence E includes previous decisions. The reader
is referred to [18] for a more detailed discussion on influence diagrams.



Pretreatment Treatment Posttreatment
Variables Variables Variables
age (AG) chemotherapy (CR) | bone-marrow depression (BM)
bulky disease (BD) radiotherapy (CR) | early result (ER)
clinical stage (CS) surgery (SU) gastric hemorrhage (HE)
clinical presentation (CP) | combination gastric perforation (PE)
general health status (GH) | therapy (CR) immediate survival (IS)
histological post-CT&RT survival (PC)
classification (HC) post-surgical survival (PS)
5-year result (5Y)
therapy adjustment (TA)

Table 1: Selected variables (abbreviated names).

2.2 Development of the gastric NHL decision model

The design of a structure for a decision-theoretic network model is usually such as to incorpo-
rate clinical experience as well as to reflect results from the medical literature. In principle, it
is possible to construct such models automatically from a database with patient data. In prac-
tice, this is seldom done, due to the prohibitive amount of data and the huge computational
resources required. Several researchers, however, have demonstrated that it is feasible to use
subjective information, in addition to information drawn from the medical literature, as a basis
for the design of decision-theoretic models (e.g. [20], [21], and [22]). Decision-support systems
that include extensive domain models, at least partially based on subjective information,
are also called expert systems [23]. Decison-support systems incorporating decision-theoretic
models are therefore also known as decison-theoretic expert systems [21, 24].

In this section, the successive steps in the design of the gastric NHL model are reviewed.
In the construction of the model, it has been assumed that the model will only be used for
patients in whom the diagnosis primary gastric NHL has been confirmed histologically.

2.2.1 Identification of relevant variables

The selection of variables for a decision-theoretic network is influenced by the adopted view
on the medical domain concerned. Often, knowledge about (patho)physiological mechanisms
is used to guide the process of gathering relevant variables (cf. [25, 26]). For the gastric NHL
model, however, we have chosen to incorporate only those variables into the model that are
widely used by clinicians. The relevance of most of these variables is supported by literature
on prognostic factors in primary gastric NHL [6, 9, 10].

First, the information used in the clinical management of primary gastric NHL was sub-
divided in pretreatment information, i.e. information that is required for treatment selection,
treatment information, i.e. the various treatment alternatives, and posttreatment informa-
tion, i.e. side effects, and early and long-term treatment results for the disease. The selected
variables are presented in Table 1. The chosen subdivision of the variable ‘age’ into twelve
intervals was based on the literature. It is said that a patient has ‘bulky disease’ if tumour size
exceeds 10 cm in maximal diameter as observed endoscopically, or if there is invasive growth
into surrounding tissues or organs. The variable ‘clinical stage’ is according to the Ann Arbor
classification with Musshoff’s modification for NHL, with as possible values I, 11y, I1o, ITI, and



IV [27]. This variable expresses severity of the disease, where the prognosis for patients in
stage I is usually favourable and for patients in stage IV is rather grim. The variable ‘clinical
presentation’ summarises the presence of particular gastric complications due to NHL at the
time of presentation. Possible values are: ‘hemorrhage’, ‘perforation’, ‘obstruction’, and a
variety of non-acute symptoms and signs, such as dyspepsia and weight loss, referred to by
the value ‘none’. Hemorrhage must be acute and be of sufficient significance to warrant blood
transfusion. The variable ‘general health status’ represents the general health condition of
the patient; possible values are: ‘good’ (WHO index 0 and 1), ‘average’ (WHO index 2) and
‘poor’ (WHO index 3 and 4). Histological classification is assumed to be based on the re-
cent MALT concept of gastrointestinal NHL, with subdivision into low-grade and high-grade
malignancy [28].

The variables ‘chemotherapy’, ‘radiotherapy’, and ‘combination therapy’ were combined
into one variable with name ‘CT&RT-SCHEDULE’ (abbreviated to CR) with possible values:
chemotherapy (CT), radiotherapy (RT), chemotherapy followed by iceberg radiotherapy (CT-
next-RT), and neither chemotherapy nor radiotherapy (none). Possible values for the variable
‘surgery’ are: ‘curative’, ‘palliative’ or ‘none’, where curative surgery means total or partial
resection of the stomach with the complete removal of locoregional tumour mass.

The variable ‘bone-marrow depression’ denotes bone-marrow depression due to chemother-
apy or radiotherapy, necessitating treatment adjustment. The variables ‘gastric hemorrhage’
and ‘gastric perforation’ represent the corresponding complications, solely due to therapeu-
tic intervention. The variable ‘early result’ stands for the endoscopically verified result of
the treatment, six to eight weeks after treatment. Possible outcomes of this variable are:
complete remission, partial remission, no change or progressive disease according to standard
WHO criteria. The variable ‘5-year result’ represents the patient either or not surviving
five years following treatment. The remaining variables in the table will be discussed in
Section 2.2.2.

A number of clinical centres are presently investigating the effects of H. pylori eradication
on gastric NHL. Recent clinical experience indicates that low-grade gastric NHL can com-
pletely regress after cure of H. pylori infection [5]. However, there is still insufficient clinical
experience with combination therapies, and the period of follow-up of patients treated for H.
pylori infection is too short to warrant inclusion of H. pylori treatment as a variable in the
decision-theoretic model. As an indication of possible future extension, this decision variable
was added to the final model, together with variables indicating the presence of H. pylori in
the patient, and the result of treatment for H. pylori. This model is discussed further in the
discussion.

2.2.2 Identification of relationships among variables

Next, the structure of the gastric NHL model was determined, using causality as the pri-
mary modelling concept, supplemented with knowledge of probabilistic dependency between
variables. Information concerning the (in)dependencies among variables was derived from the
literature and from clinical experience. For example, it is known that the clinical stage of gas-
tric NHL depends on the patient’s age; histological grading of obtained tumour tissue, on the
other hand, does not influence the clinical stage directly. Directed graphs were used as visual
aids in the representation of these relationships. During the design process, several nodes in
the graph became very complicated, i.e. too many arcs entered these nodes. Since the number
of probabilities that must be assessed is proportional to the product of the number of possi-
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Figure 4: Complete influence diagram for the treatment of gastric NHL.

ble values for each of the variables involved, as determined by the number of incoming arcs
of each node, probabilistic assessment can easily become unfeasible. To solve this potential
problem, a small number of extra nodes was inserted into the graph in accordance with clin-
ical practice, such as ‘therapy adjustment’, ‘post-CT&RT survival’, ‘post-surgical survival’
and ‘immediate survival’, summarising the effects of other variables. This technique is known
as ‘divorcing multiple parents’ [29]. The variable ‘post-CT&RT survival’ represents not dying
due to gastric hemorrhage or perforation, during the first eight weeks following treatment
with chemotherapy or radiotherapy. The variable ‘post-surgical survival’ has a similar mean-
ing with respect to surgery. The variable ‘immediate survival’ combines the possible effects
of the two treatment decisions. These intermediate variables enabled a significant reduction
in the number of incoming arcs in the graph, thus facilitating quantitative assessment.

The influence diagram resulting from this design process is shown in Figure 4. The value
node present in the diagram was actually added in the last stage of the design process, to be
discussed below.

2.2.3 Qualitative assessment of uncertainty and logical relationships

After the structure of the decision-theoretic model was established, it was necessary to gather
probability tables and utility information, to obtain a probabilistic network and influence
diagram, respectively. Although a database with data of a relatively small number of patients
(n = 137) with gastric NHL was available from the Netherlands Cancer Institute to assess
probabilistic information, it was decided to employ this database in the evaluation of the



| AGE | Pr(GHS | AGE) |

10-69 | good > average > poor
70-79 | average > good > poor
80-89 | average > poor > good
> 90 | poor > average > good

Table 2: Qualitative ordering of probabilities, used for assessment.

resulting network (see Section 2.2.6). The main reason for this was that therapeutic views
have changed significantly during the past few years. For example, only a few years ago,
radiotherapy was the treatment of choice for most patients with gastric NHL, where today,
the role of chemotherapy has increased, and radiotherapy is frequently administered following
chemotherapy. Hence, for many of the variables in the database it was known beforehand
that they would be biased.

It is widely known that it is much easier to assess qualitative relationships between proba-
bilities for particular values of variables, such as ordering relationships, than the probabilities
themselves [30]. Such qualitative probabilistic information is often highly accurate. There-
fore, the first step in the collection of probabilistic information has been the gathering of such
qualitative information, using various techniques. Firstly, the logical relationships between
variables were identified. Logical relationships yield probabilistic information with complete
certainty, i.e. with probability 1 or 0; usually, logical information will not be a major source
of inaccuracy in a model.

Secondly, we have collected information about qualitative probabilistic relationships be-
tween values of variables, represented by a number of tables. Table 2 shows the qualitative
information that has been used in the assessment of the following conditional probability
table:

Pr(GENERAL-HEALTH-STATUS | AGE)

For example, the following ordering: good > average > poor for patients with age between
10 to 69 years old, means:

Pr(GENERAL-HEALTH-STATUS = good | AGE = 10-69) >
Pr(GENERAL-HEALTH-STATUS = average | AGE = 10-69) >
Pr(GENERAL-HEALTH-STATUS = poor | AGE = 10-69)

The tables with qualitative information proved extremely valuable in validating the numerical
probabilities, which were assessed later on, because these numerical values could be checked
agains this qualitative information.

2.2.4 Numerical probability assessment

After all qualitative information concerning the local probability distributions for the variables
in the model was collected, the probabilities were assessed numerically. Various techniques
were employed to render subjective, numerical assessment of the probabilities feasible.
Unconditional prior probabilities, such as for the variables AGE, and CLINICAL-PRESENT-
ATION, were assessed in an iterative fashion. Probabilistic information so far as found in the
literature on primary gastric NHL was collected. This probabilistic information was refined



further to reflect clinical experience at the Netherlands Cancer Institute. Note that these
unconditional probabilities are likely to require reassessment for other clinical centres.

For the nodes in the network with incoming arcs, conditional probabilities had to be
assessed. Unfortunately, these conditional probabilities could, almost without exception, not
be found in the medical literature. To ease the assessment, a distinction was made between
probabilistic nodes with a small number of incoming arcs (less than four) and the nodes
EARLY-RESULT and 5-YEAR-RESULT, which each have six incoming arcs. The assessment of
the conditional probabilities for the former non-complicated nodes, and the latter complicated
ones, will be discussed separately.

The conditional probabilities for nodes with a small number of incoming arcs were assessed
by distributing the probability mass among the various values of the variable corresponding to
the node, where each time the values of the conditioning variables were kept fixed. The result-
ing probabilities were next checked against the tables with qualitative information previously
collected. For example, the qualitative information concerning the variable CLINICAL-STAGE
expressed that

Pr(CLINICAL-STAGE = I | AGE = 10-29) = Pr(CLINICAL-STAGE = IIy | AGE = 10-29)

which was used as a qualitative constraint for the assessment of four conditional probabilities.

The two more complicated nodes, EARLY-RESULT and 5-YEAR-RESULT, were assessed using
a special additive model. First, the conditional probabilities were assessed by conditioning on
four to five of the six variables for the value of the variable EARLY-RESULT, which would yield
the largest probability in most cases. For the variable EARLY-RESULT, the value ‘complete
remission’ (CR) was chosen as such. Next, the remaining probability mass was distributed
among the remaining values for the variable EARLY-RESULT, again conditioning on the same
variables. Finally, for both variables, the entire conditional probability table was computed by
means of a computer program, that used the following additive model to compute probabilities
Pr(A|C), based on partially specified information with respect to collections of variables with
values in a given set V:

(1) for each C € V: Pr(A|C) =P(A|C);

(2) for each C € p(A)\V, where C contains a value for each variable in A:

Pr(A|C) = > Pr(A|C")

c'ccCc,C'eVv
vC"ev,c"cc:C"pcC’

where p(A) denotes the power set of the set of all variables with their values, A, and P
denotes the partial specification of the probabilistic information. Note that according to this
additive model, the most specific probabilistic information available is always used as a basis
for calculating probabilities.

2.2.5 Refinement of the joint probability distribution

For the initial validation of the assessed joint probability distribution of the influence dia-
gram, as discussed above, the probabilistic part of the influence diagram was extracted and
examined. The two decision nodes, CT&RT-SCHEDULE and SURGERY, were converted to prob-
abilistic nodes for which prior probability distributions were supplied, based in experience at
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the Netherlands Cancer Institute. Using a probabilistic reasoning algorithm mentioned in
Section 2.1, the prior marginal probabilities of this network were computed; the result is
shown in Figure 5. A more compact screen version of the same probabilistic network, which
will be used in the following, is shown in Figure 6. The accuracy of the assessments was
investigated by comparing this prior probability distribution and the posterior distribution
produced by the system by entering certain values for variables, with the clinical experi-
ence at the Netherlands Cancer Institute, and information from the literature. Data from
a number of imaginary patients were processed by the system, and the resulting posterior,
marginal probability distributions were again examined. A small number of adjustments in
the probabilities were made, in all cases after reexamination of the literature.

2.2.6 Comparison with a clinical database

As mentioned in Section 2.2.3, a database with data from 137 patients with gastric NHL was
available for further examination of the designed probabilistic network. Since the treatment
policy for these patients has changed over the past few years, a major part of this database
was considered unsuitable for constructing a reliable probabilistic network. The remaining
part of the database contained data such as concerning age, which might have been used for
probabilistic assessment. However, since it was our plan to integrate information from various
literature sources with clinical experience in building the network, these data have not been
used either. Although considered unsuitable as a basis for probabilistic assessment of the
network, a comparison between a network with probabilistic information acquired from this
database and the network described in the previous sections was expected to yield additional
insight into the network’s accuracy.

The comparison between the two networks was carried out in terms of the prior marginal
probability distributions associated with individual nodes. It was expected that any sig-
nificant difference between the two marginal probability distributions of identically named
variables could be explained in terms of known biases in the database. For unbiased vari-
ables, approximate agreement between the associated marginal probability distributions was
expected. Since the size of the database was relatively small, only part of the cases required
for probabilistic assessment were included in the database. If none of the cases required
for assessing the probabilities for a variable were available, a uniform (conditional) proba-
bility distribution was assumed. Experimental evidence from the literature suggests that a
probabilistic network is relatively insensitive to probabilistic imprecision [31].

Let p; = Pr(V = v;) be the marginal probability for the value v; of variable V' in the
network described above; similarly, let p; = Pr'(V = v;) be the corresponding marginal
probability for the network that was learnt from the database. Note that it holds that:

n n n
0<> lpi — i < il + > Ipl =2

where | - | denotes the absolute value, and 7 is equal to the number of possible values of V
(n > 2). For the mean absolute difference in marginal probabilities m for a variable V', it,
therefore, holds that:

i lpi—wil
n

0<m=

11
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Hence, the largest absolute difference between the marginal distributions of identically named
variables in the two networks is at most equal to 2, and the mean absolute difference is at
most equal to 1.

In Figure 7, the total absolute difference between the marginal probability distributions of
the two networks is shown for each variable in the networks. Figure 8 shows the mean absolute
difference between the marginal probability distributions, where in this case the number of
possible values of the variables is also taken into account.

The probability distributions of the two treatment variables CT&RT-SCHEDULE (CR) and
SURGERY (SU) exhibited a major difference between the two networks, as expected before-
hand. It is a consequence of the evolution in treatment policy. The deviation of the variable
BM-DEPRESSION (BM) appeared to be unacceptably large as well. The probabilistic informa-
tion for this variable was derived from data concerning the presence of dose reduction in a
patient, an indirect and not completely accurate measure of bone-marrow depression. The
large differences between the marginal probability distributions for the variable THERAPY-
ADJUSTMENT (TA) is mainly caused by the lack of patient cases whom experienced all compli-
cations of treatment. The variables POST-CT&RT-SURVIVAL (PC), POST-SURGICAL-SURVIVAL
(PS), and IMMEDIATE-SURVIVAL (IS) participate in logical relations. The small differences
in the probability distributions for these variables are, therefore, entirely due to rounding
errors in floating point calculations. There were no patients included in the database with
a poor general health, which explains why the mean difference in marginal probability for
the variable GENERAL-HEALTH-STATUS (GH) exceeds 0.1. The conditional probability of the
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Figure 7: Total absolute difference between marginal probabilities of the learnt and estimated
probabilistic networks. The meanings of the abbreviated variable names are given in Table 1.

value OBSTRUCTION for the variable CLINICAL-PRESENTATION (CP) was estimated from infor-
mation concerning the presence or absence of vomiting in patients, which yields a significant
overestimation. The differences in the marginal probability distributions of the remaining
eight variables seem acceptable, however, given the distinct origins of the two probabilistic
networks. In general, this comparative evaluation confirms that the probabilistic information
incorporated in the network is fairly accurate.

2.2.7 Utility assessment

In order to obtain a complete influence diagram, a value node was added to the graph, and
the assessment of probabilistic information discussed above was succeeded by the assessment
of utility information for the value node. The following variables were marked out as being
of major importance in deciding about optimal treatment for a patient with gastric NHL:

e general health status;
e CT&RT schedule;

e surgery;

e 5-year result.

The influence diagram, which resulted by choosing these variables as a basis for utility assess-
ment, is shown in Figure 4. Utility assessment was carried out from the patient’s perspective.

Two different methods were employed for utility assessment, thus facilitating a critical
appraisal of the effects of alternative utility functions [17]:

e the direct scaling method, and

e the reference gamble method.
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Figure 8: Mean absolute difference between marginal probabilities of the learnt and esti-
mated probabilistic networks, taking the number of possible values of a variable into account.
The meanings of the abbreviated variable names are given in Table 1.

In the direct scaling method, the possible clinical outcomes are assessed using a linear numer-
ical scale, promoting the assessment of these outcomes relative to each other. This methods
was applied twice. First, the position of the utilities of particular posttreatment outcomes, as
described by the four variables mentioned above, was assessed on a numerical scale ranging
from 0 (worst) to 1000 (best). The numerical values were next sorted; the resulting utility
function is depicted in Figure 9. Note that many clinical outcomes were considered equiva-
lent, as is reflected by their identical value according to the utility function. The sorted list
of utilities with associated clinical outcomes was closely examined. Furthermore, the optimal
treatment strategies generated by the system for a number of typical clinical patient cases
were reviewed. In this way, it was discovered that the contribution of five-year survival in the
numerical assessment had been underestimated. Part of the utilities were reassessed, again
using the direct scaling method; the resulting influence diagram was again evaluated by exam-
ining its generated therapeutic advice for a number of typical patients. The resulting second
utility function is also shown in Figure 9. Both utility functions display small incremental
increases in their function values, showing a more or less even spread of utilities over intervals
of the scale, indicating that further refinement may be required.

With the standard reference gamble method, every possible outcome is assessed in proba-
bilistic terms by determining the risk neutral equivalent of two uncertain outcomes, assuming
that the outcome being assessed occurs with absolute certainty. Hence, utility assessment is
not carried out in an incremental fashion. A utility function was designed, using the standard
reference gamble method; this third utility function is also depicted in Figure 9. Notice that
this last utility function reveals a bit more variation in its function values as compared to the
other two utility functions.

Results obtained by the reference gamble method are generally considered more accurate
than those resulting from the direct scaling method; the variation in the values of the last
utility function is due to the more subtle expression of differences among the various outcomes.
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Figure 9: Graphical plot of three utility functions.

The successive application of these two assessment methods promoted the convergence of the
utility-assessment process to a clinically faithful utility function. Finally, a fourth utility
function was defined, where only the five-year survival following treatment was adopted as
a basis for assessment. As the first utility function, this utility model was later discarded
because its generated therapeutic advice was systematically too drastic. Two utility functions
remained; of these, the function obtained by the reference gamble method was thought to
reflect patient’s preferences best.

The influence diagram and associated probabilistic network were eventually implemented
using an improved version of the Ideal probabilistic expert system shell [32]. Hence, the
decision-theoretic model of gastric NHL actually consists of two complementary, and closely
related, representations. The Ideal system offers a collection of reasoning algorithms and a
graphical user interface to display results of probabilistic reasoning.

3 Results

In this section, the clinical usefulness of the decision-theoretic model of gastric NHL is exam-
ened, and the results of a preliminary evaluation of the model are discussed.
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Figure 10: Prognostic prediction, assuming that the patient has been treated with radio-
therapy.

3.1 Clinical usefulness

The decision-theoretic model of gastric NHL (influence diagram and associated probabilistic
network) can be employed to answer a number of different clinical questions. Here, some
possible clinical uses of the model will be discussed.

3.1.1 Prognostic prediction

The probabilistic network for gastric NHL can be applied to the data of a specific patient,
yielding prognostic information about the patient, given particular patient features and ther-
apeutic decisions. For example, in Figure 10 all pretreatment variables have been entered. If
we assume that this patient will be treated with radiotherapy only, the probabilistic network
can be employed to indicate the future likelihoods of the various possible consequences (side
effects, remission, death, etc.) of the chosen therapy, given the clinical characteristics of the
patient. Others clinical questions can be explored along similar lines. Note that it is not
necessary that all patient data are available. It is even possible to leave the therapy choice
open, and to examine consequences of the ‘average’ therapy.

3.1.2 Selection of optimal treatment

By reverting to the original influence diagram in Figure 4, it is possible, using Shachter’s
reasoning algorithm described in Section 2.1, to determine which treatment is optimal for
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the patient introduced above. The treatment advice generated by the system depends on
the utility function reflecting patient preferences. Taking the two utility functions discussed
in Section 2.2.7, where the former was obtained by the direct scaling method and the latter
by the standard reference gamble method, yielded the same optimal treatment: radiotherapy
(20 Gy on the stomach followed by 20 Gy on the abdomen) with expected utility of 833 and
825 (on a scale from 0 to 1000), respectively. The small difference in expected utility can be
explained by the fact that for the utility function assessed by the standard reference gamble,
inconvenience to the patient from radiotherapy was rated higher than for the utility function
obtained by the direct scaling method.

Adoption of the utility function in which only the expected five-year survival following
treatment was taken into account yielded a more drastic treatment: chemotherapy followed
by radiotherapy with expected utility equal to 831. A utility equal to 1000 is associated with
a survival of five years or longer, and a utility of 0 with surviving less than five years, which
is interpreted as treatment failure.

Note that in this way alternative treatment strategies associated with various utility func-
tion can be examined. These alternatives are a result of differences in patient preferences.
Using the corresponding probabilistic network shown in Figure 5, the predicted prognosis for
a particular treatment for a specific patient can be examined, and used as a further guide in
clinical decision making.

3.1.3 Risk profiles

Above, we have essentially used the decision-theoretic model of gastric NHL for prognostic
assessment, where in the last case we have also determined the optimal treatment for a specific
patient. The same model, however, can also be used to reason in the reverse direction: it
is possible to start with the final results of treatment, and to generate probabilistic profiles
that fit these final results. For this purpose, we use again the purely probabilistic version of
the model. Consider for example the situation where we have been able to reach complete
remission after treatment, but were required to adjust treatment, resulting in death within
five years. The resulting profile is depicted in Figure 11.

3.2 Ewvaluation

There are various aspects of a computer-based system that may be evaluated, but the most
important is, of course, the accuracy of the model. It is well-known among researchers that a
rigorous evaluation of a decision-support system is difficult and time-consuming [33, 34, 35],
but nevertheless required to obtain a system that can be used in daily clinical practice. In
this section, a preliminary evaluation of the system is described. Evaluation of the system
was hampered by the lack of a large clinical database with data of patients, who have received
consensus treatment. As discussed in Section 1, no such database currently exists.

The developed influence diagram was evaluated by means of a blinded cross-validation
study. A database with data of 28 imaginary patients was compiled such as to reflect a wide
range of clinical pictures. The optimal treatment according to the influence diagram was first
computed for these patients using the two utility functions discussed in Section 2.2.7. There
was a complete agreement about optimal treatment for the influence diagram employing the
two different utility functions in 79% of cases, and disagreement in the remaining 21%.

The same pretreatment data of patients as entered into the system were also presented

18



BM-DEPRESSION
ol ]

CT&RT-SCHEDULE ves I |
[
[ —
GENERAL-HEALTH-STATUS ]
| —
wemcr E————— B — PERFORATION
cooo I - —
P —
HEMORRHAGE
no THERAPY-ADJUSTMENT
YES - NO E—
ves I
AGE
1019
w2
e EARLY-RESULT
o CLINICAL-STAGE o
P S R ] POST-CTERT-SURVIVAL
5051 [ S— o — Y a—
5559 Lo — ] I ves |
[ —
ool
M —
solll
e
Y
-0

I
\
\\ IMMEDIATE-SURVIVAL
BULKY-DISEASE e %
v _:I I‘

5 YEAR-| RESULT
AAAAA

POST-SURGICAL-SURVIVAL
| —

HISTOLOG\CAL CLASSIFICATION
wwwwwwww

SURGERY
NE

Figure 11: Risk profile for patients with therapy adjustment, complete remission, but death
within five years following therapy.

to both clinicians from the Netherlands Cancer Institute (NCI) involved in the development
of the system. Their therapeutic advice was recorded. In 59% and 54%, respectively, of the
patient cases their advice agreed with the advice generated by the system when supplied with
the utility functions obtained by the direct scaling and reference gamble methods, respectively.
This clinical advice, together with the advice generated by the influence diagram supplied
with the two different utility functions, was next reviewed by two experienced clinicians of
the Leiden University Hospital (Leiden UH) (one haematologist, JCK-N, and one radiation
oncologist, EMN). It was impossible for these clinicians to determine whether a particular
recorded treatment advice had been produced by the system or by their colleagues. They
were requested to select the treatment advice with which they fully agreed, if any. Treatment
decisions considered acceptable but suboptimal, could also be modified to reflect own clini-
cal practice and experience. If none of the recorded possiblities was considered acceptable,
their judgment was recorded as being in ‘disagreement’. The results of the evaluation are
summarised in Table 3.

As can be seen, the two specialists from Leiden University Hospital slightly favoured the
system supplied with the utility function obtained by the standard reference gamble over the
recorded clinical advice, although the difference is not statistically significant (P > 0.05).
The advice by the system that had been supplied with the utility function obtained by the
direct scaling method was judged to be least acceptable. Interestingly, the two medical
specialists from Leiden University were more positive about the system’s performance when
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Direct | Reference | Clinicians
Clinicians Scaling | Gamble of NCI
of Leiden UH n (%) n (%) n (%)
complete agreement | 15 (53) 19 (68) 17 (61)
agreement after
slight modification | 5 (18) 2 (7 5 (18)
disagreement 8 (29) 7 (25) (21)
Total (patients) 28 (100) | 28 (100) | 28 (100)

Table 3: Performance evaluation results: ‘direct scaling’ represents the influence diagram
with utility function obtained by the direct scaling method; similarly, ‘reference gamble’
represents the influence diagram with utility function obtained by the standard reference
gamble method (see text).

it was supplied with the utility function obtained by the reference gamble method than the
two NCI clinicians. However, again this difference is not statistically significant.

4 Discussion

A number of prognostic models of NHL, and of gastric NHL in particular, have been de-
veloped in the past. Examples of such models are those developed by Valicenti et al. [8],
by Radaszkiewicz et al. [9], and by Azab and colleagues [6]. These models are based on
univariate and multivariate analysis of data from patients with gastric NHL. Although these
statistical techniques are useful for identifying relevant prognostic factors, the resulting mod-
els are of limited value from a clinician’s point of view. As Wyatt and Altman have noted,
many medical prognostic models have never reached the stage of actual clinical use [36]. This
is unfortunate, because most of these models have been developed with the explicit goal of
supporting the clinician in dealing with difficult clinical problems. An important reason why
these prognostic models are not widely used in a clinical setting may be their restrictive
nature: they cannot be used in the process of selecting optimal treatment.

In contrast to other researchers, we have chosen to develop a computer-based expert
system, using the techniques of decision-theoretic networks, i.e. probabilistic networks and
influence diagrams, as a basis for a model of gastric NHL. The design of a medical decision-
theoretic network model is guided by the clinical experience of medical specialists, who are
capable of indicating the random variables that are of importance in medical decision making,
as well as the relationships, causally or otherwise, that hold between these variables. This
information, supplemented with information from the medical literature and from clinical
databases, offers a suitable foundation for building reliable decision-theoretic network models.
A decision-theoretic network yields an attractive medical model, because the contributions of
the various findings in dealing with a particular clinical problem are explicitly shown, a feature
not shared by conventional statistical methods. Another advantage is that a decision-theoretic
expert system can be employed by the clinician to explore many different clinical questions,
as illustrated by the various examples above. Although the technique has been introduced
fairly recently, a number of successful medical systems have already been developed, using
this technique (cf. [20, 21, 24]).

The present basis of the system discussed in this paper is clinical experience, supplemented
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Figure 12: Influence diagram for the treatment of gastric NHL, after adding treatment for
H. pylori infection.

with information gathered from the medical literature. Although it has been previously shown
that such information may be a sufficient basis for the development of a reliable decision-
support system [21], further improvement may be expected from adapting the underlying
decision-theoretic network model using data from a large, reliable clinical database. We
are currently planning to use data from the Netherlands Cancer Registry for improving the
system, as well as for evaluation of the underlying decision-theoretic network model. This
database, however, is inadequate for obtaining information about patients that have been
treated for infection with H. pylori. The clinical experience with this treatment, in particular
when combined with other treatment modalities, is currently insufficient for being included
in the final model. The existing clinical experience, however, could easily be added to the
model, by inserting three nodes into the influence diagram from Figure 4, yielding the influence
diagram shown in Figure 12.

Although the development of a system as described in this paper is time-consuming, it
has repeatedly been shown that computer-based decision support systems can improve health
care [37]. We believe that a computer-based system that assists clinicians in exploring difficult
clinical problems in a number of different ways, like the one presented in this paper, may aid
to further improvement of clinical care.
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den University Hospital, for their help in the evaluation of the model, and N. Weggelaar for
her practical assistance during the early stages of the project.

21



References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]
[15]

FEidt S, Stolte M, Fishcer R. Helicobacter pylori gastritis and primary gastric non-Hodgkin’s
lymphoma. J Clin Pathol 1994; 47: 436-439.

Wortherspoon AC, Doglioni C, Diss TC, Pan L, Moschini A, de Boni M, Isaacson PG. Regression
of primary low-grade B-cell gastric lymphoma of mucosa-associated lmphoid tissue type after
eradication of Helicobater pylori. Lancet 1991; 342: 575-577,

Wyatt JI, Rathbone BJ. Immune response of the gastric mucosa to Campylobactor pylori. Scan
J Gastroenterol 1988; 23 (suppl 142): 44-49.

Hussell T, Isaacson PG, Crabtree JE, Spenser J. The response of cells from low-grade B-cell
gastric lymphomas of mucosa-associated lyphoid tissue to Helicobacter pylori. Lancet 1993; 342:
571-574.

Bayerdorffer E, Neubauer A, Rudolph B et al. Regression of primary gastric lymphoma of mucosa-
associated lymphoid tissue type after cure of Helicobacter pylori infection. Lancet 1995; 345:
1591-1594.

Azab MB, Henry-Amar M, Rougier P, Bognel C et al. Prognostic factors in primary gastroin-
testinal non-Hodgkin’s lymphoma. Cancer 1989; 64: 1208-1217.

Shipp MA. Prognostic factors in aggressive non-Hodgkin’s lymphoma: who has “high-risk dis-
ease”? Blood 1994; 83(5): 1165-1173.

Valicenti RK, Wasserman TH, Kucik NA. Analysis of prognostic factors in localized gastric
lymphoma: the importance of bulk of disease. Int J Radiation Oncology Biol Phys 1992; 27:
591-598.

Radaszkiewicz T, Dragosics B, Bauer P. Gastrointestinal malignant lymphomas of the mucosa-
associated lymphoid tissue: factors relevant for prognosis. Gastroenterology 1992; 102: 1628—
1638.

Taal BG, Boot H, Van Heerde P, De Jong D, Hart GAM. Primary non-Hodgkin of the stomach:
endoscopic pattern and prognosis in low versus high grade malignancy in relation to the MALT
concept. Gut 1996; 39: 556-561.

Shipp MA, Harrington DP, Anderson JR, Armitage JO, Bonadonna G, Brittinger G, Cabanillas F,
Canellos GP, Coiffier B, Connors JM, Cowan RA, Crowther D, Dahlberg S, Engelhard M, Fisher
RI, Gisselbrecht C, Horning SJ, Lepage E, Lister A, Meerwaldt JH, Montserrat E, Nissen NI,
Oken MM, Perterson BA, Tondini C, Velasquez WS, Yeap BY. A predictive model for aggressive
NHL: The International Non-Hodgkin’s Lymphoma Prognostic Factors Project. N Engl J Med
1993; 329; 987.

Hermans J, Krol AD, van Groningen K, et al. International Prognostic Index for agressive non-
Hodgkin’s lymphoma, is valid for all malignancy grades. Blood 1995; 86: 1460-1463.

Gaag, LC van der. Bayesian belief networks: odds and ends. The Computer Journal 1996; 39:
79-113.

Jensen, FV. An Introduction to Bayesian Networks. London: UCL Press, 1996.

Pearl J. Probabilistic Reasoning in Intelligent Systems. San Mateo, California: Morgan Kaufman,
1988.

22



[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Lauritzen SL, Spiegelhalter DJ. Local computations with probabilities on graphical structures
and their application to expert systems. Journal of the Royal Statistical Society (Series B) 1987;
50: 157-224.

Sox HC, Blatt MA, Higgins MC, Marton KI. Medical Decision Making. Boston: Butterworths,
1988.

Shachter RD. Evaluating influence diagrams. Operation Research 1986; 34(6): 871-882.

Cooper GF. A method for using belief networks as influence diagrams. In: Proceedings of the 4th
Workshop on Uncertainty in Artificial Intelligence, 1988: 55—63.

Andreassen S, Woldbye M, Falck B, Andersen SK. MUNIN — A causal probabilistic network
for interpretation of electromyographic findings. In: McDermott, J, ed. Proceedings of the 10th
International Joint Conference on Artificial Intelligence, Los Altos, CA: Morgan Kaufmann,
1987: 366-372.

Heckerman DE, Nathwani BN. Towards normative expert systems: part II — probability-based
representations for efficient knowledge acquisition and inference. Methods Inf Med 1992; 31:
106-116.

Spiegelhalter DJ, Franklin RCG, Bull K. Assessment, criticism and improvement of imprecise
subjective probabilities for a medical expert system. In: Henrion M, Shachter RD, Kanal LN,
Lemmer JF, eds. Uncertainty in Artificial Intelligence 5. Amsterdam: North-Holland, 1990: 285—
294.

Lucas PJF, Gaag LC van der. Principles of Expert Systems. Wokingham: Addison-Wesley, 1991.

Heckerman DE, Horvitz EJ, Nathwani BN. Towards normative expert systems: part I — The
Pathfinder project. Methods Inf Med 1992; 31: 90-105.

Korver M, Lucas PJF. Converting a rule-based expert system into a belief network. Med Inf
1993; 18(3): 219-241.

Lucas PJF. Knowledge acquisition for decision-theoretic expert systems. AISB Quaterly 1996;
94: 23-33.

Musshoff K. Klinische Stadieneinteilung der Nicht-Hodgkin-lymphome. Strahlentherapie 1977;
153: 218-221.

Isaacson PG. Gastrointestinal lymphoma. Hum Pathol 1994; 25: 1020-1164.

Olesen KG, Kjaerulff U, Jensen F, Jensen FV, Falck B, Andreassen S and Andersen SK. A
MUNIN network for the median nerve — A case study on loops. Applied Artificial Intelligence
1989; 3: 301-319.

Wellman, MP. Fundamental concepts of qualitative probabilistic networks. Artif Intell 1990;
33(3); 257-303.

Pradhan M, Henrion M, Provan G, Del Favero B, Huang K. The Sensitivity of Belief Networks
to Imprecise Probabilities: an FExperimental Investigation. Report SMI-95-0595, Stanford CA:
Stanford University, 1995.

Srinivas S, Breese J. IDEAL: Influence Diagram Evaluation and Analysis in Lisp Documentation
and Users Guide. Palo Alto: Rockwell International Science Center, 1993.

Hilden J, Habbema JDF. Evaluation of clinical decision aids — more to think about. Med Inf
1990; 15: 275-284.

23



[34] Miller PL. The evaluation of artificial intelligence systems in medicine. Comput Programs Biomed
1986; 22: 5-11.

[35] Wyatt JC, Spiegelhalter DJ. Evaluating medical expert systems: what to test for and how? Med
Inf 1990; 15(3): 205-217.

[36] Wyatt JC, Altman DG. Commentary: prognostic models: clinically useful or quickly forgotten.
BMJ 1995; 311: 1539-1541.

[37] De Dombal FT, Dallos V, McAdam WA. Can computer-aided teaching packages improve clinical
care in patients with acute abdominal pain? BMJ 1991; 302: 1495-1497.

24



