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Abstract

This paper describes a number of design issues and programming paradigms that a�ect

the development of Cgal, the computational geometry algorithms library. Genericity of the

library is achieved by concepts such as templates, iterators, and traits classes. This allows

the application programmer to plug in own types of containers and point types, for example.

The paper gives an explanation of these concepts and examples of how they are used.

1 Introduction

Geometric algorithms are used in many application domains. People in areas like computer graph-
ics, robotics, geographic information systems and computer vision are more and more realizing that
concepts and algorithms from computational geometry can be of importance for their work. Com-
putational geometry is the subarea of algorithms design that deals with the design and analysis
of algorithms for geometric problems involving objects like points, lines, polygons, and polyhe-
dra. The �eld has, over the past twenty years, developed a rich collection of solutions to a huge
variety of geometric problems including intersection problems, visibility problems, and proximity
problems. See textbooks [PS85, Mul93, O'R94, dBvKOS97, BY98] or a handbook [GO97] for an
overview. The standard approach taken in computational geometry is the development of exact,
provably good and eÆcient solutions to problems.

However, implementing these algorithms isn't easy. As a result, many useful geometric algo-
rithms haven't found their way into practice yet. The most common problems are the dissimilarity
between fast 
oating-point arithmetic normally used in practice and exact arithmetic over the real
numbers assumed in theoretical papers, the lack of explicit handling of degenerate cases in these
papers, and the inherent complexity of many eÆcient solutions. Therefore, the computational ge-
ometry community itself has started to develop a well-designed library: Cgal, the Computational
Geometry Algorithms Library [CGA].

The Cgal library contains a number of di�erent parts. The elementary part of the library (the
kernel) consists of primitives, constant storage size geometric objects (such as points, lines, and
spheres) and predicates on them (such as orientation test for points, intersection tests). The next
part of the library contains a number of standard geometric algorithms and data structures such
as convex hull, smallest enclosing circle, and triangulation. The last part of the library consists of
a support library for example for I/O, visualization, and random generators.

�This work is supported by the ESPRIT IV LTR Project No. 21957 (CGAL). This report is a revised version of
the paper presented at the Eurographics Workshop on Programming Paradigms in Graphics, Budapest, Hungary,
8 September 1997
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2 Design issues

Rather than building a `geometric gems' repository, where everybody can contribute to, we decided
to design a library. Although the Graphics Gems Repository [Gem] is a big success, the code must
often be changed in order to adapt it to the users' own needs. With Cgal we want to provide a
foundation for application programs that is suÆciently generic to be usable in many di�erent areas
without the need to adapt the code. Developing such a foundation must be done in a consistent
way in order to make it reliable, eÆcient, open, etc. To be able to cope with the complexity of
the developing process, we have decided to build a consistent library by a number of institutes.

Cgal is developed for di�erent groups of users, both in academia and in industry. There are
the researchers working in computational geometry itself who want to use the library to more
easily implement and test their own algorithms. There are users in related areas, with substantial
knowledge of computational geometry who want to use geometric algorithms in their application
areas. There are developers with little computational geometry knowledge, who want to use Cgal
in, possibly commercial, applications. All these groups of users have rather di�erent demands. To
please all of them, we have made a number of design decisions, some of which are described below.

2.1 Robustness

Especially in the �eld of computational geometry, robustness of software is of vital importance.
In geometric algorithms, many decisions are based on geometric predicates. If these predicates
are not computed correctly (for example due to round-o� errors), the algorithm may easily give
incorrect results. There are di�erent notions of robustness [DSB92, For89]. For some algorithms,
strategies exist to deal with inexact predicates. However, in general this is very diÆcult to achieve.
One way to deal with robustness problems is to perform exact arithmetic, which implies exact
geometric computation [Sch96].

2.2 Generality

The applications of the Cgal library will be very heterogeneous, with very di�erent requirements.
To make the library as general as possible, C++ templates (parameterized data types) are heavily
used. This enables the user to choose an appropriate number type for doing computations and
to choose the representation type of points and other geometric primitives. It is even possible to
replace a Cgal data type with a user de�ned one.

2.3 EÆciency

A computational geometry library must be eÆcient to be really useful. Whenever possible, the
most eÆcient version of an algorithm is used. Clearly, a library algorithm cannot be the best
solution for every application. Therefore, sometimes multiple versions of an algorithm are supplied.
For example, this will be the case if dealing with degenerate cases is expensive, or when for a
speci�c number type a more eÆcient algorithm exists (in which case it will be implemented as a
C++ specialization). Another (C++ level) decision that has been made in favor of eÆciency is that
geometric objects do not share a common base class with virtual methods.

2.4 Ease of use

Generality and ease of use are not always easy to combine. The abundant use of templates seems
to make the library diÆcult to use for people who just want to do something simple with it.
Through C++ typedefs, the use of templates can be e�ectively hidden to the novice user. It is
not possible to guarantee that the user will never see templates at all (for example the templates
will sometimes become visible in error messages of the compiler or during low level debugging).
Developing computational geometry applications is in general very diÆcult because of problems
with inaccuracies and degeneracies. To handle a number of these problems, the algorithms in the
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library contain many pre and postcondition checks. By setting a compiler 
ag, these checks will
be performed, which can be a great help when debugging an application.

2.5 Visualization

Functionality for visualization is not part of the geometric objects themselves. Naturally, it is not
an intrinsic property of, say, a sphere, that it can be converted to OpenGL format. In providing
functionality for visualization, we aim for uniformity and openness. Uniformity means that all
kinds of visualization is approached in the same way. This is achieved through expressing I/O
in terms of C++ streams in a support library. Openness means that any user can supply other
streams for other visualization tools than provided by the Cgal support library [FGK+96].

Apart from the above mentioned design issues, there are several others that apply to a library
like Cgal [FGK+96, Ove96, Sch96]. In order to meet those di�erent goals, Cgal is set up in a
very generic way. Algorithms in Cgal are generic, they work with a variety of implementations of
predicates and representations of geometric objects. This allows to easily interchange components
as long as they have the same syntax. Genericity could have been achieved through inheritance
and virtual functions. However, we opted for writing template code as it has the advantage
that it doesn't cause runtime overhead. The next sections present the use of templates, operator
overloading, the Standard Template Library, and traits classes in Cgal.

3 Templates

The template mechanism of C++ allows to write code that is parameterized by types. The template
parameters are place-holders for types [Lip92]. C++ allows to write class templates as well as
function templates. Templates can be used to avoid duplication of code of classes and functions,
for instance when code only di�er by the underlying arithmetic.

An example of generic code in the Cgal kernel is the way di�erent representations and arith-
metics can be used by means of templates. One can choose between representations of the geomet-
ric objects based on representation of points by Cartesian coordinates and representations based
on homogeneous coordinates. For both representations you can choose various number types. For
example, an application programmer can de�ne a Cartesian representation class instantiated by
the C++ built-in type double:

typedef CGAL_Cartesian <double> RepClass;

Alternatively, you could de�ne a homogeneous representation class instantiated by the Leda type
integer:

typedef CGAL_Homogeneous <integer> RepClass;

The number type integer provided by Leda represent arbitrary large integers [MNU]. Homo-
geneous coordinates allows to reduce many computations to calculations over the integers, since
divisions can be avoided.

Next, geometric primitives can be declared with the chosen representation class, for example
a three-dimensional vector:

typedef CGAL_Vector_3 <RepClass> MyVector;

MyVector vec1;

Within the Cgal kernel, there exists an interface class for each of the primitives, such as for
example the three-dimensional vector CGAL_Vector_3, and the three-dimensional aÆne transfor-
mation CGAL_Aff_transformation_3, which are template parameterized with a representation
class R:
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template <class R>

class CGAL_Vector_3 : public R::Vector_3

{ ... }

template <class R>

class CGAL_Aff_transformation_3 : public R::Aff_transformation_3

{ ... }

The representation class parameter R can be instantiated with the available classes CGAL_Cartesian
or CGAL_Homogeneous. Within both representation classes, Vector_3 is mapped onto an imple-
mentation class. For CGAL_Cartesian, this implementation class of the vector is called CGAL_VectorC3:

template<class NT>

class CGAL_Cartesian

{

public:

typedef CGAL_VectorC3<NT> Vector_3;

typedef CGAL_Aff_transformationC3<NT> Aff_transformation_3;

}

The implementation classes remain hidden for the application programmer, who just works with
MyVector. The representation classes themselves are template parameterized by a number type
NT, for example the C++ double, the Leda type integer, or number types from the Gnu Multiple
Precision Arithmetic Library [Gra96].

The reason to use representation classes this way, is to have all types and operations that
depend on a particular mathematical representation de�ned within a single class. A user could
de�ne own representation classes, for example based on other coordinate systems (such as polar,
complex, or Pleucker coordinates), or other primitive representation schemes (such as implicit
functions, or NURBS).

4 Operator overloading

Points, vectors, and plane equations behave di�erently under aÆne transformations [Tur90]. We
use the strong typing and operator overloading mechanism of C++ to hide the details of di�erent
transformation properties in the transformation class. For example, a point can be translated, but
a vector cannot. The three-dimensional aÆne transformation CGAL_Aff_transformation_3<R>,
de�nes the operator () on a point and a vector separately:

template <class R>

class CGAL_Aff_transformation_3 : public R::Aff_transformation_3

{

CGAL_Point_3<R>

operator()(const CGAL_Point_3<R> &p) const

{

return R::Aff_transformation_3::transform(p);

}

CGAL_Vector_3<R>

operator()(const CGAL_Vector_3<R> &v) const

{

return R::Aff_transformation_3::transform(v);

}

}
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For CGAL_Cartesian<NT> as the representation class R, transform is mapped to the transform
of CGAL_Aff_transformationC3<NT>, which implements the transformation of a point as a full
matrix multiplication, but the transformation of a vector ignores the translational part.

Additionally, type checking detects the incorrect use of operations such as the addition of two
points, instead of the addition of a point and a vector. No type cast is provided to convert between
points p and vectors v. Instead, a symbolic origin o is introduced, and the expressions v = p� o

and p = o+ v are legal. Internally, operator overloading maps these calls to hidden type casts for
eÆciency.

5 Standard Template Library

STL, the Standard Template Library [MS96], is part of the forthcoming C++ standard, and free
implementations of it are available [STL]. Its main components are containers, algorithms, itera-
tors, and function objects. STL provides a framework and a programming paradigm which was
adopted by the Cgal project.

An iterator is some kind of pointer to an object in a container (e.g. an array, or a list). Iterators
must satisfy a number of requirements. Any object that satis�es these requirements is an iterator.
It must be possible to go to the next element (advance the iterator) and to get to the object to
which the iterator points (dereferencing). For C++ arrays the iterators are just pointers. For other
types of containers, it should be possible to obtain iterators to the �rst and to one position beyond
the last element. There is a limited number of di�erent sets of requirements, de�ning di�erent
types of iterators: forward, bidirectional, random access, input, and output iterator. Because of
the prescribed syntax that an iterator must obey, it is possible to write just one implementation
of an algorithm that works for all iterators providing some minimal functionality. The algorithm
then traverses through containers using iterators. This allows to write algorithms that operate on
containers that are not yet de�ned but will provide the required iterators.

For example, a range of points can be fed into a convex hull algorithm by providing two
forward iterator first and beyond. They must de�ne a range [first,beyond), which means
that applying a �nite number of times the operator `++' to first makes that first == beyond.
The range refers to the points starting with *first up to but not including *beyond. The iterator
beyond is said to point `past the end' of the range.

In the following example, the �rst and past-the-end iterator of two containers, an array and
an STL vector, are fed into the CGAL convex hull algorithm:

typedef CGAL_Point_2 < RepClass > Point;

Point points1[num]; // array of Point-s

vector<Point> points2(num); // vector of Point-s

Point ch1[num], ch2[num]; // output array

// fill points1 and points2

...

CGAL_convex_hull_points_2(points1, points1+num, ch1);

CGAL_convex_hull_points_2(points2.begin(), points2.end(), ch2);

An application programmer need not copy the data from his favorite container to another
container in order to feed it to the algorithm, as long as his container provides iterators. Inside
the algorithm CGAL_convex_hull_points_2, the points are addressed by advancing the iterator,
independent of the particular container type:

template <class ForwardIterator, class OutputIterator>

OutputIterator CGAL_convex_hull_2( ForwardIterator first, ForwardIterator beyond,

OutputIterator result)
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{

for ( ; first != beyond; ++first )

{ ... }

return result;

}

6 Circulators

For inherently circular structures, such as the convex hull vertices of a triangulation, Cgal pro-
vides so-called circulators. Circulators are similar to iterators, but there is no past-the-end value,
because of the circularity. A container providing circulators has no end()-method, only a begin()-
method. For a circulator c, the range [c; c) denotes the sequence of all elements in the data
structure. By contrast, for iterators this range would be empty. A separate test for an empty
sequence has been added to the requirements of a circulator: for a circulator c, c==NULL tests
whether the data structure is empty or not. Just like iterators, there are di�erent types of cir-
culators, depending on the requirements they satisfy: forward, bidirectional, and random access
circulators.

For example, the method convex_hull() of the class CGAL_Delaunay_triangulation_2 re-
turns a circulator to walk on the convex hull. If delaunay is a properly declared and initialized
Delaunay triangulation, and start and cur are circulators of the right type, the following code
demonstrates a typical use of circulators:

start = delaunay.convex_hull();

if (start != NULL) // convex hull not empty

{ cur = start;

do

{

cout << *cur++;

} while (cur != start);

}

Because [c; c) denotes a full range if c is a circulator, but an empty range if it is an iterator,
adaptors are provided to convert circulators to iterator. The forward and bidirectional iterator
adaptors keep track of the number of rounds a circulator has done around the circular data
structure. It is zero for the begin-iterator and one for the end-iterator. It is incremented whenever
a circulator passes the begin position. Two iterators are equal if their underlying circulators
and number of rounds are equal. This is more general than necessary since the end-iterator is
not supposed to advance further, which is still possible here in a well de�ned way. The random
access iterator is not as 
exible: it cannot compute in constant time the number of rounds that
an addition operation implies, since it doesn't know the size of the circular data structure. The
random access iterator adaptor therefore expects that indexing assume no modulo computation
[FK98].

7 Traits classes

Suppose you are ray casting a three-dimensional polyhedron, and want to test if some bounding
volume is intersected by a ray, in order to avoid unnecessary complex intersection tests with
the whole polyhedron. Rather than using an axes parallel bounding box, you can use a tighter
bounding volume in the following way. The vertices of the polyhedron are transformed by a
viewing transformation that maps the perspective viewing volume to a parallel canonical viewing
volume [FvDFH90]. By the same transformation, each ray is mapped to a ray parallel to the
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Figure 1: Transformation from perspective viewing to a parallel viewing.

z-axis, but with di�erent origins, see Figure 1. The transformed vertices and the ray origin are
projected onto the xy-plane, and it is tested if the projected ray origin falls inside the convex
hull of the projected vertices. In this way, the three-dimensional intersection test is reduced to a
two-dimensional inside-polygon test.

The convex hull is calculated in the two-dimensional plane, but the polyhedron vertices are
three-dimensional. Of course we could make a version of the convex hull algorithm that operates on
three-dimensional points, but generates the two-dimensional points. This is against the principle
of code reuse, one of the hallmarks of object-oriented programming. Alternatively, we could
perform the projection explicitly, generate two-dimensional points, apply the two-dimensional
convex hull algorithm, and maintain the correspondence between the three-dimensional and the
two-dimensional points if needed. This requires extra bookkeeping and space, and is not so elegant.

However, the convex hull algorithm treats points in an abstract way, using predicates like
Less xy(p; q) to test if the Cartesian coordinates of p are lexicographically smaller than q, where
the x-coordinates are compared �rst (and if they are equal, then the y-coordinates are compared).
So, the algorithm can be parameterized by point type and predicates. Cgal does this: the point
type and predicates are put into a so-called traits class Traits. The real signature of the convex
hull algorithm is:

template <class ForwardIterator, class OutputIterator, class Traits>

OutputIterator CGAL_convex_hull_2(

ForwardIterator first, ForwardIterator beyond,

OutputIterator result, const Traits& ch_traits)

Rather than explicitly working with CGAL_Point_2 as the point type, the convex hull algorithm
internally works with Traits::Point_2. And instead of CGAL_lexicographically_xy_smaller
(CGAL_Point_2<R> p, CGAL_Point_2<R> q) as the Less xy(p; q) predicate, the algorithm uses
Traits::Less_xy (Traits::Point_2 p, Traits::Point_2 q):

template <class ForwardIterator, class OutputIterator, class Traits>

OutputIterator CGAL_convex_hull_2(

ForwardIterator first, ForwardIterator beyond,

OutputIterator result, const Traits& ch_traits)

{

typedef Traits::Point_2 Point_2;

typedef Traits::Less_xy Less_xy;

for ( ; first != beyond; ++first )

{ ... } // using Point_2 and Less_xy

return result;

}
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Less_xy is a function object, an object for which the operator () is de�ned.
An application programmer can use any point type by de�ning an appropriate traits class

My_traits with the proper Less_xy:

struct My_less_xy

{

bool operator()(My_point *p, My_point *q) const

{

if (...) return TRUE;

else if (...) return TRUE;

else return FALSE;

}

};

class My_traits

{

public:

typedef My_point *Point_2;

typedef My_less_xy Less_xy;

} my_traits;

The transformation of the points can be done implicitly in Less_xy. For computational eÆciency,
it could also be done explicitly once for every point, storing the result in a look-up table inside
the traits class. The convex hull algorithm can be invoked with this traits class:

vector<My_point> points(num); // My-point vector

vector<My_point> ch(num); // output vector

CGAL_convex_hull_points_2( points.begin(), points.end(),

back_inserter(ch), my_traits);

There is no need to explicitly provide a traits class. In Section 5, the algorithm used a default
traits class. In Cgal there are default traits classes for all template traits class parameters.
Only when the programmer wants to do something special, a traits class needs to be explicitly
provided. For a more extensive example of using traits classes in Cgal, see the Cgal getting
started document [GVW98].

8 Conclusions

Template parameterization of geometric objects, data structures, and algorithms by a class that
maps basic geometric objects to representation (Cartesian, homogeneous) and number types
(double, integer, etc.) allows to write generic code at a higher level. In this way, the ap-
plication programmer can choose to use fast 
oating point arithmetic, or exact arithmetic with
homogeneous coordinates, for example, changing just one line of code.

Algorithms and data structures are fully generic in the sense that they do not depend on
the concrete physical representation of the underlying primitives. To enhance adaptability and
reusability, Cgal algorithms and data structures are built on an abstract view of the primitives,
through the use of templates, iterators, and traits classes. This allows the application programmer
to plug a container type or application point type that is not yet known at the time of developing
the algorithm.

In this way, the Cgal library meets design goals such as robustness, eÆciency, and 
exibility.
The library is continuously being extended with additional algorithms and data structures that
are designed in the same way, so as to maintain a uniform look and feel.
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