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Abstract

We develop an algorithm for solving a system of diophantine equations
with lower and upper bounds on the variables. The algorithm is based on
lattice basis reduction. It �rst �nds a short vector satisfying the system
of diophantine equations, and a set of vectors belonging to the null-space
of the constraint matrix. Due to basis reduction, all these vectors are
relatively short. The next step is to branch on linear combinations of the
null-space vectors, which either yields a vector that satis�es the bound
constraints or provides a proof that no such vector exists. The research
was motivated by the need for solving constrained diophantine equations as
subproblems when designing integrated circuits for video signal processing.
Our algorithm is tested with good results on real-life data, and on instances
from the literature.

Subject classi�cation: Primary: 90C10. Secondary: 45F05, 11Y50.

1 Introduction and problem description

We develop an algorithm for solving the following integer feasibility problem:

does there exist a vector x 2 ZZn such that Ax = d; 0 � x � u? (1)

We assume that A is an integral m � n matrix, where m � n, d an integral
m-vector, and u an integral n-vector. This is an NP-complete problem; in the
absence of bound constraints, it can be solved in polynomial time.

The research was motivated by a need for solving such problems when de-
signing integrated circuits (ICs) for video signal processing, but the problem is
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central in discrete optimization and linear algebra, and has several interpreta-
tions and applications. Examples are the Frobenius problem that was recently
considered by Cornu�ejols, Urbaniak, Weismantel and Wolsey [5], and the \mar-
ket split problem" considered by Cornu�ejols and Dawande [4].

The main ingredients of our algorithm are as follows. First we choose a
lattice that seems particularly useful for our problem. We write down an initial
basis that spans the given lattice and apply Lov�asz' basis reduction algorithm,
as described in the paper by Lenstra, Lenstra and Lov�asz [11], to the initial
basis. We will refer to this algorithm as \the basis reduction algorithm". The
parameters of the initial basis are chosen such that the reduced basis contains
one vector xd satisfying Axd = d, and n � m linearly independent vectors
satisfyingAx = 0. If the vector xd satis�es the bounds, then we are done, and if
not, we observe thatA(xd+�x) = d for any integer multiplier � and any vector
x such that Ax = 0. Hence, we can branch on integer linear combinations of
vectors satisfying Ax = 0 in order to obtain a vector satisfying the diophantine
equations as well as the lower and upper bounds, or a proof that no such vector
exists.

The test instances from the IC-design were di�cult to tackle by linear pro-
gramming (LP) based branch-and-bound due to the characteristics of the input.
In order to explain the structure of these instances we brie
y explain the origin
of the problem in Section 2. There, we also describe the Frobenius problem and
the market split problem. In Section 3 we give a short description of the basis
reduction algorithm and a brief review of the use of basis reduction in integer
programming. In Section 4 we introduce a suitable lattice for our problem (1),
and provide an initial basis spanning that lattice. We also derive structural
properties of the reduced basis. Our algorithm is outlined in Section 5. We
tested the algorithm on the IC design problem, the Frobenius instances of Cor-
nu�ejols et al. [5], and on some market split instances as described by Cornu�ejols
and Dawande [4]. Our computational experience is presented in Section 6.

2 Background and Applications

In one of the steps of the design of ICs for video signal processing one needs to
assign so-called data streams to processors. A data stream is a repetitive set of
arithmetic operations. The attributes of a data stream are the starting time of
the �rst execution, the number of repetitions expressed as a so-called iterator
vector, and the period of repetition. One can view a data stream as a set of
nested loops. The outer loop has an iterator i0 : 0 � i0 � I0. The following loop
has iterator i1 : 0 � i1 � I1, and so forth. The periodicity corresponding to a
loop is the time interval between the start of two consecutive iterations of that
loop.

2



Example 1 Consider the following data stream in \loop form".

for i0 = 0 to 1 f10g
for i1 = 0 to 2 f2g

do <expression>;

The numbers within the braces indicate the period of the loops. We assume
that the execution of the expression takes at most one unit of time. The cor-
responding data stream has a period vector p = (p0; p1)

T = (10; 2)T , and an
iterator vector i = (i0; i1)

T . The bounds on the iterator vector are: 
0
0

!
�

 
i0
i1

!
�

 
1
2

!

The data stream on a time scale is illustrated in Figure 1. Here, we assume that
the starting time s = 5.

5 10 15

i0: 1

i1: 1 20

0

0 1 2

Figure 1: A data stream.

The dotted lines indicate the time at which the outer loop iterates, and the solid
lines when the inner loop iterates, and hence the time at which the execution
of the expression begins.

An important di�erence between a loop in a computer program and a data
stream is that, in the latter, the outer loop does not necessarily start a new
iteration immediately after the inner loop has �nished. The advantage with a
stream is that one can compute the precise time at which a certain iteration
begins. When constructing an assignment of multiple streams to one or more
processors the following con
ict detection problem occurs: check whether there
is any point in time at which operations of two di�erent streams are carried
out simultaneously. If such a point in time exists, then the streams should
not be assigned to the same processor. Consider an arbitrary data stream f .
Let if = (if0; if1; : : : ; ifk)T be the iterator vector of the stream. The itera-
tor vector lies between upper and lower bounds, 0 � if � If . Let pf de-
note the period vector and sf the starting time of the stream. The point in
time at which execution if of data stream f begins is expressed as t(if ) =
sf + pTf if : The con
ict detection problem can be formulated mathematical-
ly as the following integer feasibility problem: Given data streams f and g,
do there exist iterator vectors if and ig such that

sf + pTf if = sg + pTg ig ; and such that 0 � if � If ; 0 � ig � Ig?
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This problem is a special case of problem (1) with m = 1.
The Frobenius problem is de�ned as follows: given nonnegative integers

(a1; : : : ; an) with gcd(a1; : : : ; an) = 1, �nd the largest integer d that cannot be
expressed as a nonnegative integer combination of a1; : : : ; an. The number d is
called the Frobenius number. Here, the values of the variables xj indicate the
nonnegative integer combination. In this case the upper bounds on the variables
are equal to in�nity. The instances considered by Cornu�ejols et al. [5] were also
hard to solve using LP-based branch-and-bound. They developed a test set
approach that was successful on their instances.

In the market split problem studied by Cornu�ejols and Dawande [4], a com-
pany with two divisions supplies retailers with several products. The goal is
to allocate each retailer to one of the divisions such that division one con-
trols 100ci%, 0 � ci � 1, of the market for product i, and division two controls
(100�100ci)%. Here, n is the number of retailers andm the number of products.
The coe�cient aij is the demand of retailer j for product i, and the right-hand
side coe�cient di is determined as bcid

0
ic, where d

0
i is the total amount of prod-

uct i that is supplied to the retailers. The decision variable xj takes value 1 if
retailer j is allocated to division one and 0 otherwise. The question is: \does
there exist an allocation of the retailers to the divisions such that the desired
market split is obtained?" In this version of problem (1) the upper bounds on
the variables are all equal to 1. Cornu�ejols and Dawande generated instances
of the market split problem that are provably hard for LP-based branch-and-
bound. It is worth noting that there is an optimization version of this problem
as well. If a market split such as described above is not possible, then one would
like to �nd an assignment of the retailers to the divisions such that the devia-
tion from the desired split is minimized. Here, we only deal with the feasibility
version.

When solving a feasibility problem such as (1) by LP-based branch-and-
bound, in particular two di�culties often seem to arise. First, the search tree
may become large. The larger the upper bounds on the variables are, the worse
the growth in the tree size typically becomes. Second, round-o� errors may
occur if the di�erence in the sizes of the input numbers is large. The size of
the branch-and-bound tree may also be sensitive to the objective function that
is used. For our problem (1) an objective function does not have any meaning
since it is a feasibility problem; as long as we either �nd a feasible vector,
or are able to verify that no feasible vector exists, the objective function as
such does not matter. The problem is that one objective function may give
an answer faster than another, but which one is best is hard to predict. An
objective function also introduces an aspect to the problem that is not natural.
Round-o� errors occur quite frequently for the instances related to the con
ict
detection problem, since the coe�cients of some of the variables are very large
(� 107). The special characteristics of these instances { some very large and
some relatively small coe�cients and a very large right-hand side coe�cient d
{ are due to the di�erence in periodicity of the nested loops. This di�erence is
explained by the composition of a television screen image. The time between
two pictures is 40 ms, and the time between two lines and between two pixels
are 64 �s and 74 ns respectively. Since the output rate of the signals has to
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be equal to the input rate, we get large di�erences in periodicity when the
data stream corresponds to operations that have to be repeated for all screens,
lines and pixels. Due to the large di�erence in the magnitude of the coe�cients
we often observe that the LP-based branch-and-bound algorithm terminates
with a solution in which for instance variable xj takes value 4:999999, simply
because the standard implementations do not allow for greater precision. If
one would round xj to xj = 5:0, then one would obtain a vector x such that
ax 6= d. It is obviously a serious drawback that the algorithm terminates with
an unsubstantiated claim that a solution exists.

To overcome the mentioned de�ciencies we have developed an algorithm
based on the basis reduction algorithm. The motivation behind choosing ba-
sis reduction as a core of our algorithm is twofold. First, we work directly with
arbitrarily sized integers, which avoids the round-o� problems. Second, basis re-
duction �nds short, nearly orthogonal vectors belonging to the lattice described
by the given basis. In our case we obtain a short vector xd satisfying Axd = d

and m � n vectors satisfying Ax = 0. Given the lower and upper bounds on
the variables, we can interpret problem (1) as checking whether there exists a
short vector satisfying a given set of diophantine equations. Furthermore, our
algorithm is designed for feasibility problems. A useful by-product of our al-
gorithm is that it yields an alternative formulation of problem (1) in terms of
a full-dimensional polytope. Such a description could also be obtained by for
instance deriving the Hermite normal form of the matrix A, but that typically
creates large (but polynomially bounded) numbers. A full-dimensional polytope
is useful if one wants to apply the algorithm of Lenstra [12], or of Lov�asz and
Scarf [14].

3 Basis reduction and its use in integer program-

ming

We begin by giving the de�nition of a lattice and a reduced basis.

De�nition 1 A subset L � IRn is called a lattice if there exists a basis b1;b2; : : : ;bl
of IRn such that

L = f
lX

j=1

�jbj : �j 2 ZZ; 1 � j � lg: (2)

Gram-Schmidt orthogonalization is a transformation that derives orthogonal
vectors b�j ; 1 � j � l from independent vectors bj ; 1 � j � l. The vectors
b�j ; 1 � j � l and the real numbers �jk ; 1 � k < j � l are determined from
bj ; 1 � j � l by the recurrence

b�j = bj �
j�1X
k=1

�jkb
�
k (3)

�jk = (bj)
Tb�k=(b

�
k)

Tb�k: (4)

Let jj jj denote the Euclidean length in IRn. Lenstra, Lenstra and Lov�asz [11]
used the following de�nition of a reduced basis:
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De�nition 2 A basis b1;b2; : : : ;bl is called reduced if

j�jkj �
1

2
for 1 � k < j � l (5)

and

jjb�j + �j;j�1b
�
j�1jj

2 �
3

4
jjb�j�1jj

2 for 1 < j � l: (6)

The vector b�j is the projection of bj on the orthogonal complement of
Pj�1

k=1 IRbk,
and the vectors b�j +�j;j�1b

�
j�1 and b

�
j�1 are the projections of bj and bj�1 on

the orthogonal complement of
Pj�2

k=1 IRbk. The purpose with the reduced basis
is to have short basis vectors that are nearly orthogonal. Moreover, the �rst
basis vector should be an approximation of the shortest vector in the lattice.
To ascertain whether these goals have been reached, the Gram-Schmidt vectors
are used as a reference. Note that the Gram-Schmidt vectors do not necessarily
belong to the lattice. In this light we shall interpret conditions (5) and (6).
Inequality (5) states that the vectors bj ; 1 � j � l are nearly orthogonal in
the following sense. If �jk is small, then either the vectors bj and b

�
k are almost

orthogonal, or bj is relatively short compared to b�k. Consider the case where
k = j � 1, and suppose that bj is short compared to b�j�1, which implies that
b�j is short compared to b�j�1 as jjb

�
j jj � jjbj jj. Assume we interchange bj and

bj�1. Then the new b�j�1 will be the vector b
�
j +�j;j�1b

�
j�1, which will be short

compared to the old b�j�1, i.e., condition (6) will be violated. This implies that
the order of the basis vectors b1; : : : ;bj is wrong with respect to the criterion
that we want the �rst basis vector of the reduced basis to be an approxima-
tion of the shortest vector in the lattice. The constant 3

4 in inequality (6) is
arbitrarily chosen and can be replaced by any �xed real number 1

4 < y < 1.
Lov�asz' basis reduction algorithm [11] is a polynomial time algorithm that �nds
a reduced basis for a lattice given an initial basis. The algorithm consists of a
sequence of size reductions and interchanges as described below. For the precise
algorithm we refer to [11].
Size reduction: If for any pair of indices j; k : 1 � k < j � l condition (5) is
violated, then replace bj by bj � d�jkcbk, where d�jkc = d�jk �

1
2e.

Interchange: If condition (6) is violated for an index j; 1 < j � l, then inter-
change vectors bj�1 and bj .

Basis reduction was introduced in integer programming by H.W. Lenstra,
Jr. [12], who showed that the problem of determining if there exists a vector
x 2 ZZn such that Ax � d can be solved in polynomial time when n is �xed.
Before this result was published, only the cases n = 1; 2 were known to be
polynomially solvable. The idea behind Lenstra's algorithm can be explained
considering a two-dimensional polytope. Suppose that this polytope is \thin"
as illustrated in Figure 2. If it extends arbitrarily far in both directions, as
indicated in the �gure, then an LP-based branch-and-bound tree will become
arbitrarily deep before concluding that no feasible solution exists. It is easy to
construct a similar example in which a feasible vector does exist. So, even if
n = 2, an LP-based branch-and-bound algorithm may require arbitrarily many
iterations. What Lenstra observed was the following. Assume that we start
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Figure 2: A thin polytope in ZZ2.

with the full-dimensional polytope X 2 IRn and that we consider the lattice
ZZn. The problem is to determine whether there exists a vector x 2 (X \ ZZn).
We refer to this problem as problem P . We use bj = ej ; 1 � j � n as a basis
for the lattice ZZn, where ej is the jth column of the n � n identity matrix.
To avoid working with a thin polytope we apply a linear transformation � to
X to make it appear \regular". Problem P is equivalent to the problem of
determining whether there exists a vector x 2 (�X \ �ZZn). The new polytope
�X has a regular shape but the basis vectors �ej are not necessarily orthogonal
any longer, so from the point of view of branching the di�culty is still present.
We can view this as having shifted the problem we had from the polytope to
the lattice. This is where basis reduction proves useful. By applying the basis
reduction algorithm to the basis vectors �ej , we obtain a new basis b̂1; : : : ; b̂n
spanning the same lattice, �ZZn, but having short, nearly-orthogonal vectors. In
particular it is possible to show that the distance between any two consecutive
hyperplanes H + kb̂n; H + (k + 1)b̂n, where H =

Pn�1
j=1 IRbj and k 2 ZZ, is

not too short, which means that if we branch on these hyperplanes, then there
cannot be too many of them. Each branch at a certain level of the search tree
corresponds to a subproblem with dimension one less than the dimension of
its predecessor. In Figure 3 we show how the distance between hyperplanes
H + kb̂n increases if we use a basis with nearly orthogonal vectors instead of a
basis with non-orthogonal ones.

For the integer programming problem P , Lov�asz and Scarf [14] developed an
algorithm that, as Lenstra's algorithm, uses branching on hyperplanes. Instead
of using a transformation � to transform the polytope and the initial basis
vectors, and then applying a basis reduction algorithm, their algorithm pro-
duces a \Lov�asz-Scarf-reduced" basis by measuring the width of the considered
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Figure 3: (a) Non-orthogonal basis. (b) Nearly orthogonal basis.

polytope in di�erent independent directions. Lov�asz and Scarf's de�nition of a
reduced basis is a generalization of the de�nition given by Lenstra et al. [11].
Cook, Rutherford, Scarf and Shallcross [2] report on a successful implementa-
tion of the Lov�asz-Scarf algorithm. Cook et al. were able to solve some integer
programming problems arising in network design that could not be solved by
traditional LP-based branch-and-bound.

Basis reduction has also been used successfully when trying to �nd solutions
to subset sum problems that arise in cryptography. This is another application
of problem (1) in which the matrix A consists of one row only. Here, the mes-
sage that the \sender" wants to transmit to the \receiver" is represented by
a sequence x 2 f0; 1gn of \bits". The receiver knows a sequence of numbers
a1; : : : ; an, and instead of sending the actual message x, the sender sends a
number d = ax. Once the receiver knows d he can recover the message x by
solving the subset sum problem ax = d. Here, the equation ax = d is known
to have a solution, and the receiver knows certain secret information, called a
trapdoor, about the aj-coe�cients. Lagarias and Odlyzko [10] considered the
lattice in IRn+1 spanned by the following basis:

B =

 
I(n) 0(n�1)

�a d

!

Here, I(n) denotes the n-dimensional identity matrix, and 0(p�q) denotes the
p� q-matrix consisting of zeros only. They observed that the vector x satis�es
ax = d, if and only if the vector (xT ; 0)T = B(xT ; 1)T belongs to the lattice.

Lagarias and Odlyzko applied the basis reduction algorithm to the basis
B and checked if any of the reduced basis vectors were of the form (xT ; 0)T ,
with x 2 f0; 1gn. If such a vector is found then x solves ax = d. There is no
guarantee that the algorithm �nds a feasible vector x, but the authors show
that for \almost all" instances that satisfy n= log2(maxj aj) < 0:645, a feasible
vector is found. Several similar bases have been considered later as input to
algorithms for trying to �nd solutions to subset sum problems. Schnorr and
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Euchner [15], for instance, used the basis

B =

0
B@ diag(2)(n�n) 1(n�1)

na nd

0(1�n) 1

1
CA

where diag(2)(n�n) is the n � n-matrix with twos along the main diagonal
and zeros otherwise. Here, a lattice vector v 2 ZZn+2 that satis�es jvn+2j =
1; vn+1 = 0 and vj 2 f�1g for 0 � j � n, corresponds to a feasible vector
xj =

1
2 jvj � vn+2j; 0 � j � n. Schnorr and Euchner [15] proposed an algorithm

based on basis reduction that for \almost all" subset sum problem instances
with n= log2(maxj aj) < 0:9408 �nds a feasible vector. The algorithm uses the
above basis as input. For further details on �nding feasible solutions to sub-
set sum problems arising in cryptography we refer to the above references and
to the papers [6], [16], and [9]. A recent application in cryptography is due
to Coppersmith [3] who uses basis reduction to �nd small integer solutions to
a polynomial in a single variable modulo N , and to a polynomial in two vari-
ables over the integers. This has applications to some RSA-based cryptographic
schemes.

Integer programming and cryptography are not the only application of lat-
tice basis reduction. A prominent application is factoring polynomials with
rational coe�cients. Lenstra et al. [11] developed a polynomial-time algorithm
based on basis reduction for �nding a decomposition into irreducible factors of
a non-zero polynomial in one variable with rational coe�cients. In extended
g.c.d.-computations, basis reduction is used by for instance Havas, Majewski
and Matthews [8]. Here, the aim is to �nd a short multiplier vector x such that
ax = d, where d = gcd(a1; a2; : : : ; an).

In our algorithm we use a basis that is similar to the bases used by Lagarias
and Odlyzko [10], and by Schnorr and Euchner [15]. The important di�erences
between the approach described above and our approach are the following. First
the question that is posed is di�erent. We do not know a priori whether our
instances have a feasible solution or not, and we want to solve the feasibility
problem, i.e., if a feasible solution exists we want to �nd one, and if no feasible
solution exists this should be veri�ed. Hence, we propose a branching algorithm
as described in Section 5. We also use two large constants N1 and N2 to \force"
the basis reduction algorithm to �nd interesting vectors as described in section
4. Moreover, our algorithm can handle systems of linear diophantine equations.

4 Structure of initial and reduced basis

Here we consider a lattice that is suitable for our problem (1):

does there exist a vector x 2 ZZn such that Ax = d; 0 � x � u?

The ith row of the matrix A is denoted by ai. Without loss of generality we
assume that gcd(ai1; ai2; :::; ain) = 1 for 1 � i � m, and that A has full row
rank. We formulate an initial basis B that generates this lattice and derive
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structural properties of the reduced basis B̂ obtained after applying the basis
reduction algorithm to B.

The lattice L � IRn+m+1 we consider contains vectors

(x1; : : : ; xn; N1y;N2(a1x� d1y); : : : ; N2(amx� dmy))
T , (7)

where y is a variable associated with the right-hand-side vector d, and N1 and
N2 are integer numbers. The basis B given below spans the lattice L.

B =

0
B@ I(n) 0(n�1)

0(1�n) N1

N2A �N2d

1
CA (8)

The basis vectors are given columnwise, and the basis consists of n+ 1 vectors
bj = (b1j; : : : ; bn+m+1;j)

T ; 1 � j � n + 1. In the �rst draft of our paper [1]
we used one variable yi for each right-hand side coe�cient di. Laurence Wolsey
[18] observed that it is su�cient to add one variable y for the entire vector d.
We are indebted to him for allowing us to include this improvement here.

Proposition 1 The integer vector xd satis�esAxd = d if and only if the vector0
B@ xd

N1

0(m�1)

1
CA = B

 
xd
1

!
(9)

belongs to the lattice L, and the integer vector x0 satis�es Ax0 = 0 if and only
if the vector0

B@ x0
0

0(m�1)

1
CA = B

 
x0
0

!
(10)

belongs to the lattice L.

As we will show in Theorem 4, if there exists an integer vector that is a solution
to the system Ax = d, and if the numbers N1 and N2 are chosen large enough,
then the reduced basis will contain one vector of the form (xTd ; N1; 0

(1�m))T ,
and n �m vectors of the form (xT0 ; 0; 0

(1�m))T . Due to Proposition 1, we can
conclude that the vector xd satis�es the system Axd = d. Since basis reduction
�nds short vectors belonging to a given lattice, we may hope that the vector xd
is short in the sense that it satis�es the bounds. If not, we will show in Section
5 how we can add integer linear combinations of the vectors satisfying Ax = 0

to x in order to obtain a vector that satis�es the bounds as well if such a vector
exists.

Lemma 2 (Lenstra, Lenstra, Lov�asz [11]) Let � � Rn be a lattice with reduced
basis b1;b2; : : : ;bn 2 IRn. Let y1;y2; : : : ;yt 2 � be linearly independent. Then
we have

jjbjjj
2 � 2n�1maxfjjy1jj

2; jjy2jj
2; :::; jjytjj

2g for 1 � j � t: (11)
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De�nition 3 A matrix of full row rank is said to be in Hermite normal form if
it has the form (D; 0), where D is a nonsingular, lower triangular, nonnegative
matrix, in which each row has a unique maximum entry, which is located on the
main diagonal of D.

Lemma 3 Let U be the n � n unimodular matrix such that AU =
(D(m�m); 0(m�(n�m))) is the Hermite normal form of A. Consider the fol-
lowing n�m+ 1 vectors:

(xd;x
1
0; : : : ;x

n�m
0 ) = U

 
(D�1d)(m�1) 0(m�(n�m))

0((n�m)�1) I(n�m)

!
: (12)

The vector xd satis�es Axd = d and the vectors xj0; 1 � j � n�m are linearly
independent and satisfy Ax

j
0 = 0. The sizes of the vectors xd;x

1
0; : : : ;x

j
0 are

polynomially bounded in the sizes of A and d.

Proof: Evaluating Axd yields

Axd = AU

 
(D�1d)(m�1)

0((n�m)�1)

!
= (D(m�m); 0(m�(n�m)))

 
(D�1d)(m�1)

0((n�m)�1)

!
= d:

Let e
(n�m)
j be the jth column of the identity matrix I(n�m). For each vector xj0

we have:

Ax
j
0 = AU

 
0(m�1)

e
(n�m)
j

!
= (D(m�m); 0(m�(n�m)))

 
0(m�1)

e
(n�m)
j

!
= 0:

The linear independence of vectors xj0; 1 � j � n�m follows from the identity
matrix.

It is known that the matrix U is unique if A is a rational matrix of full
row rank, and that the sizes of U and of the Hermite normal form (D; 0) are
polynomially bounded by the size of A, see Chapter 5 of Schrijver [17]. Hence,
the vectors (12) are of sizes polynomially bounded by A and d.

Let b̂j = (b̂1j; : : : ; b̂n+m+1;j)
T ; 1 � j � n + 1, denote the jth vector of the

reduced basis B̂, obtained by applying the basis reduction algorithm to B.

Theorem 4 Assume that there exists an integral vector x satisfying the system
Ax = d. There exist numbers N01 and N02 such that if N1 > N01, and if
N2 > N1N02, then the vectors b̂j 2 ZZn+m+1 of the reduced basis B̂ have the
following properties:

1. b̂n+1;j = 0 for 1 � j � n �m,

2. b̂ij = 0 for n+ 2 � i � n+m+ 1 and 1 � j � n�m+ 1,

3. b̂n+1;n�m+1 = N1.

Moreover, the sizes of N01 and N02 are polynomially bounded by the sizes of A
and d.

11



Proof: We �rst determine N01. Let xd and x
j
0; 1 � j � n�m, be determined

as in equation (12). Let

vj =

 
x
j
0

0

!
for 1 � j � n�m;

and let

vn�m+1 =

 
xd
1

!
:

Next, de�ne vectors z1; : : : ; zn�m+1 as follows:

zj = Bvj =

 
vj

0(m�1)

!
for 1 � j � n�m;

zn�m+1 = Bvn�m+1 =

0
B@ xd

N1

0(m�1)

1
CA :

The vectors z1; : : : ; zn�m+1 are linearly independent and belong to the lattice
L (cf. vectors (10) and (9)).

Select N01 such that

N2
01 > 2n+mmaxfjjz1jj

2; : : : ; jjzn�mjj
2g = 2n+mmaxfjjv1jj

2; : : : ; jjvn�mjj
2g:

From Lemma 2 we have that

jjb̂jjj
2 � 2n+mmaxfjjz1jj

2; : : : ; jjzn�mjj
2g < N2

01 for 1 � j � n�m:

Suppose that b̂n+1;j 6= 0 for some j : 1 � j � n �m. Then jjb̂jjj
2 � b̂2n+1;j �

N2
1 > N2

01 as N1 divides b̂n+1;j , which contradicts the outcome of Lemma 2.

We therefore have that b̂n+1;j = 0 for 1 � j � n�m.
Next, select N02 such that

N2
02 > 2n+mmaxfjjv1jj

2; : : : ; jjvn�m+1jj
2g:

Due to Lemma 2, the following holds for the reduced basis vectors b̂j ; 1 � j �
n�m+ 1:

jjb̂j jj2 � 2n+m maxfjjz1jj2; : : : ; jjzn�m+1jj2g �
2n+mmaxfjjz1jj

2; : : : ; jjzn�mjj
2; N2

1 jjvn�m+1jj
2g =

2n+mmaxfjjv1jj2; : : : ; jjvn�mjj2; N2
1 jjvn�m+1jj2g �

N2
1 2n+mmaxfjjv1jj

2; : : : ; jjvn�mjj
2; jjvn�m+1jj

2g < N2
1N

2
02:

Suppose that b̂ij 6= 0 for some index pair i; j : n+ 2 � i � n+m+ 1; 1 � j �

n�m+1. Then jjb̂jjj
2 � b̂2ij � N2

2 as N2 divides b̂ij . As a consequence, jjb̂j jj
2 �

N2
2 > N2

1N
2
02, which contradicts the outcome of Lemma 2. We therefore have

that b̂ij = 0 for all i; j : n+ 2 � i � n+m+ 1; 1 � j � n�m+ 1.
Next, we prove Property 3. The vector zn�m+1 = (xTd ; N1; 0

(1�m))T =
B(xTd ; 1)

T belongs to L spanned by B. The lattice L is also spanned by the

12



reduced basis B̂, and hence the vector (xTd ; N1; 0
(1�m))T can be obtained as

(xTd ; N1; 0
(1�m))T = B̂(�1; : : : ; �n+1)

T . Properties 1 and 2 imply the following:

0�1 + � � �+ 0�n�m + b̂n+1;n�m+1�n�m+1 (13)

+b̂n+1;n�m+2�n�m+2 + � � �+ b̂n+1;n+1�n+1 = N1

and

0�1 + � � �+ 0�n�m + 0�n�m+1 (14)

+b̂i;n�m+2�n�m+2 + � � �+ b̂i;n+1�n+1 = 0 for all n+ 2 � i � n+m+ 1:

The last m rows of the basis B have rank m, since we assume that the
matrix A has full row rank. The reduced basis B̂ is obtained by applying a
series of elementary column operations to B. Such operations preserve rank,
and hence, the rank of the last m rows of B̂ is m as well. Consider the system
of m equations (14). The b̂ij-elements in these equations correspond to the last

m rows of B̂. For the sake of clearness we rewrite these equations below without
all elements b̂ij that are equal to zero.

b̂i;n�m+2�n�m+2 + � � �+ b̂i;n+1�n+1 = 0 for all n+ 2 � i � n +m+ 1:

This is an m�m system that according to the previous statement has rank m.
The only solution to this system is therefore �n�m+2 = � � � = �n+1 = 0: If we
use this solution in equation (13) we obtain b̂n+1;n�m+1�n�m+1 = N1, which

implies that b̂n+1;n�m+1 divides N1. Moreover, N1 divides b̂n+1;n�m+1 (cf. the

proof of Property 1). We can therefore conclude that b̂n+1;n�m+1 = N1.
To prove that the sizes of N01 and N02 are polynomially bounded by the

sizes of A and d we observe that jjzjjj2 = jjvjjj2 = jjxj0jj
2 for 1 � j � n �m,

and that jjvn�m+1jj
2 = jjxdjj

2 + 1. We then use Lemma 3 to obtain the result.

Notice that Theorem 4 says that the �rst n � m columns of the reduced
basis B̂ are of the form0

B@ x0
0

0(m�1)

1
CA ;

and that the (n�m+ 1)st column of B̂ is of the form0
B@ x

N1

0(m�1)

1
CA ;

cf. Proposition 1. The integers N1 and N2 can in practice be chosen considerably
smaller than the formulae in the proof of Theorem 4 indicate, since the upper
bound (11) on the length of the reduced basis vectors in most cases contains
a considerable slack. In our computational study we typically used the values
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N1 = 103 and N2 = 104. Also, note that the de�nitions of N01 and N02 are
independent of whether or not there exists a solution to Ax = d that satis�es
the bounds as well.

Example 2 Consider the following instance of problem (1). Here m = 3;
n = 6: Determine whether there exists a vector x 2 ZZ6 such that

6x1 + x2 + 3x3 + 3x4 = 17
2x5 + x6 = 11

4x3 + 1x4 + 2x6 = 27

0 � x1 � 2; 0 � x2 � 3; 0 � x3 � 5; 0 � x4 � 2; 0 � x5 � 5; 0 � x6 � 14

The initial basis B for the lattice L for this instance is:

B =

0
BBBBBBBBBBBBBBBB@

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

0 0 0 0 0 0 N1

6N2 N2 3N2 3N2 0 0 �17N2

0 0 0 0 2N2 N2 �11N2

0 0 4N2 N2 0 2N2 �27N2

1
CCCCCCCCCCCCCCCCA

After applying the basis reduction algorithm to this basis we obtain:

B̂ =

0
BBBBBBBBBBBBBBBB@

0 1 1 0 0 0 1
�3 �3 0 �1 1 0 0
1 �1 2 5 0 �1 0
0 0 �4 1 0 1 �2
1 �1 1 4 0 �1 0

�2 2 �2 3 0 2 1

0 0 0 N1 0 0 0

0 0 0 0 N2 0 0
0 0 0 0 0 0 N2

0 0 0 0 0 N2 0

1
CCCCCCCCCCCCCCCCA

The vector xd = (0;�1; 5; 1; 4; 3)T (the �rst n = 6 elements of column n�m+
1 = 4) is a solution to the system of equations, whereas each of the vectors that
are formed by taking the �rst n elements of the �rst n�m vectors constitutes
a solution to Ax = 0. Note that the second element of the vector xd violates
its lower bound.

5 The algorithm

Here we discuss how we can use the properties stated in Theorem 4 to design
an algorithm for solving the feasibility problem (1). From Proposition 1 and
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Theorem 4 we can conclude that the �rst n�m+1 columns of B̂ are interesting
for our problem as they are of the form given in Proposition 1. From these
columns we in particular want to use the �rst n+ 1 elements. Hence, let B̂0 be
the matrix consisting of the �rst n+ 1 elements of the �rst n�m+ 1 columns
of B̂. The columns of B̂0 form a basis of the null-space ZZn+1 \ N(A;� 1

N1

d) =

f(x; y) 2 ZZn+1 : Ax� 1
N1

dy = 0g.

B̂0 =

 
X

(n�(n�m))
0 xd

0(1�(n�m)) N1

!
(15)

Notice that each column x
j
0 of the submatrix X0 satis�es Axj0 = 0. Hence,

x
j
0 2 ZZn\N(A) = fx 2 ZZn :Ax = 0g. In our algorithm we �rst check whether

the vector xd satis�es the lower and upper bounds. If yes, we are done. If any
of the bounds is violated we search for a vector that is feasible, or for a proof
that no feasible vector exists, by branching on linear integer multiples of the
columns of X0, i.e., vectors in N(A). Note that by adding any linear integer
combination of vectors in N(A), x�, to xd we obtain a vector xd + x� that
satis�es A(xd + x�) = d. For the feasible instances with m = 1 the search for
a feasible vector turned out to be particularly easy. To speed up the algorithm
for most of these instances we developed a heuristic as follows. Suppose that
we are at iteration t of the heuristic and that an integer linear combination of
t0 < t vectors of X0 has been added to vector xd. The vector obtained in this
way is called the \current vector". For simplicity we assume that only variable
xk of the current vector violates one of its bound constraints. At iteration
t we add or subtract an integer multiple �t of the column vector xt0 if the
violation of variable xk's bound constraint is reduced and if no other bound
constraints becomes violated. As soon as the value of xk satis�es its bounds,
we do not consider any larger values of �t. If the heuristic does not �nd any
feasible solution, we call an exact branching algorithm that branches on linear
combinations of vectors of X0. A summary of the complete algorithm is given
in Figure 4.

Example 2 (cont.) In our example we obtain

B̂0 =

0
BBBBBBBBBB@

0 1 1 0
�3 �3 0 �1
1 �1 2 5
0 0 �4 1
1 �1 1 4

�2 2 �2 3

0 0 0 N1

1
CCCCCCCCCCA

The second element of the vector xd = (0;�1; 5; 1; 4; 3)T violates its lower
bound. By subtracting the vector x10 = (0;�3; 1; 0; 1;�2)T from to xd, we ob-
tain the vector x = (0; 2; 4; 1; 3; 5)T that satis�es the equations as well as all
the bounds. Another possibility is for instance to add the vector �2x10 + x20
to xd, where x20 = (1;�3;�1; 0;�1; 2)T. This results in the longer vector
(1; 2; 2; 1; 1; 9).
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procedure main(A;d;u)
begin

store initial basis B;

compute B̂;

extract B̂0 from B̂;
if 0 � xd � u then return xd;

heuristic(B̂0);
if heuristic fails then

branch on linear combinations of columns j = 1; : : : ; n�m of the
submatrix X0;

return feasible vector x, or a proof that no such vector exists;
end

Figure 4: Algorithm 1.

6 Computational experience

We solved 23 instances of problem (1). Twelve of the instances were feasible
and eleven infeasible. The instances with names starting with \P" in Table
1 were obtained from Philips Research Labs, and the instances with names
starting with \F" are the Frobenius instances of Cornu�ejols et al. [5]. Here
we used the Frobenius number as right-hand side d. The two instances, with
names starting with \E", were derived from F3 and F4, and the \M"-instances
are market split instances that were generated according to Cornu�ejols and
Dawande [4]. They generated the aij-coe�cients uniformly and independently
in the interval [0; 99]. The di-coe�cients are computed as di = b12

Pn
j=1 aijc. It

should be noted that this formulae yield instances that are provably di�cult for
LP-based branch-and-bound, see [4]. An important purpose of these instances
was to stimulate the development of algorithms that use concepts di�erent from
traditional branch-and-bound.

The information in Table 1 is interpreted as follows. In the �rst three
columns, \Instance", \m", and \n", the instance names and the dimension
of the instances are given. A \Y" in column \Type" means that the instance
is feasible, and an \N" that it is not feasible. In the two columns of LP-based
branch-and-bound, \LP B&B", the number of nodes and the computing time
are given. In the \# Nodes" column, 500; 000� means that we terminated the
search after 500,000 nodes without reaching a result. Two asterisks after the
number of nodes indicate that a rounding error occurred, i.e., that the round-
ed solution given by the algorithm did not satisfy the diophantine equation.
In both cases we do not report on the computing times since no result was
obtained. For the market split problem we terminated the branch-and-bound
algorithm after 54,000 seconds without any result. Hence, the 54; 000+ in the
\Time" column of LP B&B. In the three columns corresponding to our algo-
rithm, \Algorithm", the column \Heur." gives the number of vectors of X0 that
was used in the integer linear combination of vectors added to the vector xd by
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LP B&B Algorithm

Instance m n Type # Nodes Time (s) Heur. # Nodes Time (s)

P1 1 5 Y 420�� { 1 < 10�5

P2 1 5 Y 327 0.09 1 < 10�5

P3 1 4 Y 75 0.05 0 < 10�5

P4 1 5 Y 313�� { 1 < 10�5

P5 1 5 Y 231 0.11 2 < 10�5

P6 1 5 Y 313�� { 1 < 10�5

E1 1 6 Y 3,271 0.97 0 < 10�5

E2 1 7 Y 500; 000� { 0 < 10�5

F1 1 5 N 500; 000� { { 1 < 10�3

F2 1 6 N 500; 000� { { 5 0:01
F3 1 6 N 500; 000� { { 1 < 10�3

F4 1 7 N 500; 000� { { 1 0:01
F5 1 8 N 500; 000� { { 5 0:01

M1 5 40 N { 54; 000+ { 29,420 211.5
M2 5 40 Y { 54; 000+ { 21,890 131.8
M3 5 40 Y { 54; 000+ { 14,998 97.3
M4 5 40 N { 54; 000+ { 24,168 148,1
M5 5 40 N { 54; 000+ { 23,682 144.4

M6 6 50 N { 54; 000+ { 1,908,353 17,385.2
M7 6 50 Y { 54; 000+ { 535,079 4,051.6
M8 6 50 N { 54; 000+ { 2,032,090 16,037.6
M9 6 50 N { 54; 000+ { 1,759,106 13,175.0
M10 6 50 Y { 54; 000+ { 1,034,202 7,710.8

Table 1: Results of the computational experiments.

the heuristic in order to obtain a feasible solution. A zero in column \Heur."
therefore means that the vector xd was feasible. Notice that for every feasible
instance with m = 1, the heuristic found a feasible solution. For the feasible
market split instances the heuristic was not successful and hence we always used
exact branching. For the infeasible instances the heuristic obviously failed, and
therefore the sign \{" is given in the \Heur."-column. A one in the column \#
Nodes" means that we solved the problem in the root node by using logical im-
plications. The computing times are given in seconds on a 144MHz Sun Ultra-1.
For the LP-based branch-and-bound we used CPLEX version 4.0.9 [7], and in
our algorithm we used LiDIA, a library for computational number theory [13],
for computing the reduced basis.
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7 Discussion

Our results indicate that the instances are relatively easy once they are rep-
resented in a suitable way. Using the basis ej and branching on variables as
in LP-based branch-and-bound is clearly not a good approach here, but it is
the standard way of tackling integer programs. Using basis reduction seems to
give a more natural representation of the problem. Instead of representing the
problem in terms of multiples of 1, which is the case when we use unit vectors
as a basis, we obtain a scaling of the problem. For our instances the computing
times were short, and, contrary to standard LP-based branch-and-bound, we
avoid round-o� errors. It is also worth noticing that the infeasibility of instances
F1{F5, M1, M4 and M5 was quickly veri�ed using our algorithm. The instances
M6, M8 and M9 took longer to compute, but the time needed is still short rel-
ative to other methods that have been used. It should be mentioned here that
the market split instances up to size 5 � 40 can also be solved quickly by a
sorting algorithm, see Cornu�ejols and Dawande [4]. This approach is, however,
rather memory consuming and therefore does not seem to be practical for larger
instances. Another algorithm that was used by Cornu�ejols and Dawande was
based on group theory. This algorithm seems quite robust, but took an order
of magnitude longer time than our algorithm for the 5� 40 instances. For the
6� 50 instances the computing times were comparable.

Unlike the algorithms of H.W. Lenstra, Jr. [12], and of Lov�asz and Scarf
[14] our algorithm does not run in polynomial time for �xed n. After applying
basis reduction we obtain and x-vector that satis�es Ax = d,

x = xd +X0�; (16)

where �2 ZZn�m. By using this reformulation we can formulate our problem (1)
in the following equivalent way:

does there exist a vector � 2 ZZn�m such that �xd � X0� � u� xd? (16)

The polytope P de�ned by the linear inequalities of (16) is full-dimensional and
provides a \scaled" formulation of the original problem. There is no guarantee,
however, that the polytope P is not thin in certain directions, cf. Section 3. We
are currently investigating the e�ect of applying the generalized basis reduction
algorithm of Lov�asz and Scarf [14] to the polytope P . We are also studying
how to implement the algorithm by Lenstra [12]. For the test instances we
have considered here such an algorithm was not necessary, but in order to solve
larger instances of the market split problem we need a more re�ned branching
algorithm.
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