
Applications of the Generic Programming Paradigm in the

Design of CGAL �

Herv�e Br�onnimann1 Lutz Kettner2 Stefan Schirra3

Remco Veltkamp4

1 INRIA Sophia-Antipolis, France, Herve.Bronnimann@sophia.inria.fr
2 ETH Z�urich, Switzerland, kettner@inf.ethz.ch

3 Max-Planck-Institute for Computer Science, Saarbr�ucken, Germany, stschirr@mpi-sb.mpg.de
4 Dept. Computer Science, Utrecht University, The Netherlands, Remco.Veltkamp@cs.uu.nl

Abstract

We report on the use of the generic programming paradigm in the computational geometry

algorithms library cgal. The parameterization of the geometric algorithms in cgal enhances

exibility and adaptability and opens an easy way for abolishing precision and robustness

problems by exact but nevertheless eÆcient computation. Furthermore we discuss circulators,

which are an extension of the iterator concept to circular structures. Such structures arise

frequently in geometric computing.

1 Introduction

cgal is a C++ library of geometric algorithms and data structures. It is developed by several sites
in Europe and Israel. The goal is to enhance the technology transfer of the algorithmic knowledge
developed in the �eld of computational geometry to applications in industry and academia.

Computational geometry is the sub-area of algorithm design that deals with the design and analysis
of algorithms for geometric problems involving objects like points, lines, polygons, and polyhe-
dra. Over the past twenty years, the �eld has developed a rich collection of solutions to a huge
variety of geometric problems including intersection problems, visibility problems, and proximity
problems. See the textbooks [15, 23, 18, 21, 6, 1] and the handbook [10] for an overview. The
standard approach taken in computational geometry is the development of provably good and
eÆcient solutions to problems. However, implementing these algorithms is not easy. The most
common problems are the dissimilarity between fast
oating-point arithmetic normally used in
practice and exact arithmetic over the real numbers assumed in theoretical papers, the lack of ex-
plicit handling of degenerate cases in these papers, and the inherent complexity of many eÆcient
solutions. As a result, many useful geometric algorithms have not found their way into the many
application domains of computational geometry yet. Therefore, a number of institutions from the

�This work is partially supported by the ESPRIT IV LTR Projects No. 21957 (CGAL) and 28155 (GALIA),
and by the Swiss Federal OÆce for Education and Science (CGAL and GALIA).
Simultaneously published as technical report at INRIA Sophia-Antipolis, ETH Z�urich, and MPI Saarbr�ucken.
Submitted for publication in proceedings of the Dagstuhl workshop on Generic Programming to be published by
Springer in the LNCS series. Copyright will be transferred to Springer Verlag upon acceptance.

1

computational geometry community itself has started to develop cgal [22]. The availability of
a software-library can make a tremendous di�erence. If there is no need anymore to implement
the geometric algorithms from scratch, the e�ort of experimenting with the solutions developed
in computational geometry is lowered.

The major design goals for cgal include correctness, robustness,
exibility, eÆciency and ease of
use [7]. One aspect of
exibility is that cgal algorithms can be easily adapted to work on data
types in applications that already exist. The design goals, especially
exibility and eÆcient robust
computation, led us to opt for the generic programming paradigm using templates in C++ [19],
and to reject the object-oriented paradigm in C++ (as well as Java). In several appropriate places,
however, we make use of object-oriented solutions and design patterns. Generic programming with
templates in C++ provides us with the help of strong type checking at compile time, and also has
the advantage that it doesn't cause runtime overhead. In the sequel we give examples of the use
of the generic programming paradigm in cgal.

2 Generic Programming in Geometric Computing

One of the hallmarks of geometry is the use of transformations. Indeed, geometric transformations
link several geometric structures together [6, 1]. For example, duality relates the problem of
computing the intersection of halfplanes containing the origin to that of computing the convex
hull of their dual points. The Voronoi diagram of a set of points is also dually related to its
Delaunay triangulation, and this triangulation can be computed as a lower convex hull of the
points lifted onto a paraboloid in one dimension higher.

For this kind of problem, the relevance of generic programming is obvious. Much like the problem
of �nding a minimum element in a sequence, the use of a geometric algorithm such as computing
the convex hull can have many applications via geometric transformations. In this setting, the
algorithm does not operate on the original objects but on their transformed version, and the
primitives used by the algorithm must also be applied through the same transformation. This is
achieved in cgal through the use of traits classes.1

Another hallmark of geometric programming is the multiple choice of representations of a geomet-
ric object. Naturally, some representations are more suited to a particular problem. In computing
Delaunay triangulations or minimum enclosing circles, for example, a circle will likely be repre-
sented implicitly as the circumcircle of three points. Other representations would include a pair of
center and squared radius (this is the default representation in cgal). In most problems, a point
would be represented by its coordinates, either Cartesian or homogeneous. Another choice, more
suited to boolean operations on polygons for instance, might be as an intersection of two lines:
such a representation is stable when performing an arbitrary number of boolean operations.

Finally, geometric computing has been successful in abstracting several paradigms of its own. For
example, the sweep paradigm is used to compute arrangements of lines of segments, triangulations
of polygons, and Voronoi diagrams. Randomized incremental algorithms have been abstracted in
a framework [5, 1] that uses few primitives. Geometric optimization problems have brought forth
the generalized LP-type problems that have been so hugely successful in computing minimum
enclosing circles and ellipses, distances between polytopes, linear programs, etc. In all three cases,
one can write the skeleton of an algorithm that will work, given the appropriate primitives. The
user then has to supply only those primitives via a traits class.

Algorithms in cgal are generic, they work with a variety of implementations of predicates and

1In cgal, the term `traits class' is used in a more general setting than associating related type information to
built-in types, which is the original usage [20].

2

representations of geometric objects. In the next subsection, we argue that generic programming
is especially relevant to geometric computing.

3 Traits Classes and the cgal Kernel

We brie
y recall the main elements of the design [7] of the cgal kernel [3]. The two basic
representation classes in the cgal kernel are CGAL_Cartesian and CGAL_Homogeneous. They
provide basic geometric types like Point_2 and Segment_2. Instead of a dense class hierarchy,
these types are organized as a loosely coupled collection. For example, PointC2 is a model for the
abstract concept of a point (with internal representation as Cartesian coordinates). A model of a
concept is an implementation that ful�lls the requirements of this concept. A typedef declaration
in the corresponding representation class Cartesian links Cartesian::Point_2 with PointC2.

Genericity is extended by templating all these classes by the number type used to store the
coordinates. This allows to tailor the kernel to the application, especially regarding robustness and
precision concerns as described below in Section 6. The concept of a geometric kernel is currently
extended to contain the predicates and constructions on the basic kernel objects. A kernel is a
model of the concept of a geometric kernel as de�ned by the cgal Reference Manual [3]. With
this design, a model of a geometric kernel can be passed as a traits parameter to the algorithms
of the cgal basic library, as described in section 5. This does not exclude users to provide an
interface to their own library as a model of a cgal kernel. For example, there are adaptations of
the
oating-point and the rational geometry kernel of leda [16].

4 Data Passing by Iterators and Circulators

A prominent example of the generic programming paradigm is the Standard Template Library
(stl) accompanying the C++ standard. Algorithms interact with container classes through the
concept of iterators, which are de�ned through a set of requirements. Each container class is
supposed to provide a model for an iterator. The algorithms are parameterized with iterators,
and can be instantiated with any model that ful�lls the iterator requirements. So, containers
and algorithms are kept independent from each other. New algorithms can be developed without
knowing any container class, and vice versa.

For example, a range of points can be fed into an algorithm by providing two forward iterators
first and beyond. They de�ne a range [first,beyond), if applying a �nite number of times the
operator ++ to first makes that first == beyond. The range refers to the points starting with
*first up to but not including *beyond. The iterator beyond is said to point `past the end' of the
range. An application programmer need not copy the data from a favorite container into another
container in order to feed it to the algorithm, as long as the container provides iterators. Inside
the algorithm the points are addressed by advancing the iterator, independent of the particular
container type.

In the following example, min_encl_circle is template-parameterized with a forward iterator:

template <class ForwardIterator>

Circle

min_encl_circle(ForwardIterator first, ForwardIterator beyond)

{ ... }

3

The concept of iterators in stl is tailored for linear sequences. In contrast, circular sequences
evolve naturally in many combinatorial and geometric structures. Examples are polyhedral sur-
faces and planar maps, where the edges emanating from a vertex or the edges around a facet form
a circular sequence.

Since circular sequences cannot provide eÆcient iterators, we have introduced the new concept of
circulators in cgal. They share most of the requirements with iterators, while the main di�erence
is the lack of a past-the-end position in the sequence. Appropriate adaptors are provided between
iterators and circulators to seat circulators smoothly into the framework of stl. We give a short
introduction to circulators and discuss advantages and disadvantages thereafter.

The following example illustrates the use of a circulator in a generic function contains that tests
whether a certain value exists in a circular sequence. As usual for circular structures, we use a
do-while loop to reach all elements in the speci�c case c == d.

template <class Circulator, class T>

bool contains(Circulator c, Circulator d, const T& value) {

if (c != NULL) {

do {

if (*c == value)

return true;

} while (++c != d);

}

return false;

}

Three circulator categories are de�ned: forward, bidirectional and random-access circulators.
Given a circulator c, the operation *c denotes the item the circulator refers to. The opera-
tion ++c advances the circulator by one item and --c steps a bidirectional circulator one item
backwards. For random-access circulators c+n advances the circulator n times. Two circulators
can be compared for equality.

Circulators have a di�erent notion of reachability and ranges than iterators. A circulator d is
called reachable from a circulator c if c can be made equal to d with �nitely many applications of
the operator ++. Due to the circularity of the data structure this is always true if both circulators
refer to items of the same data structure. In particular, c is always reachable from c. Given
two circulators c and d, the range [c,d) denotes all circulators obtained by starting with c and
advancing c until d is reached, but does not include d for d 6= c. So far it is the same range
de�nition as for iterators. The di�erence lies in the use of [c,c) to denote all items in the circular
data structure, whereas for an iterator i the range [i,i) denotes the empty range. As long as
c != d the range [c,d) behaves like an iterator range and could be used in stl algorithms. For
circulators however, an additional test c == NULL is required that returns true if and only if the
data structure is empty. In this case the circulator c is said to have a singular value.

Supporting both iterators and circulators within the same generic algorithm is just as simple as
supporting iterators only. This and the requirements for circulators are described in the cgal

Reference Manual [13].

The main reason for inventing a new concept with the same goals as iterators is eÆciency. An
iterator is supposed to be a light-weight object { merely a pointer and a single indirection to
advance the iterator. Although iterators could be written for circular sequences, we do not know
of an eÆcient solution. The missing past-the-end situation in circular sequences can be solved
with an arbitrary sentinel in the cyclic order, but this would destroy the natural symmetry in the

4

structure (which is in itself a bad idea) and additional bookkeeping in the items and checking in
the iterator advance method reduces eÆciency. Another solution may use more bookkeeping in the
iterator, e.g. with a start item, a current item, and a kind of winding-number that is zero for the
begin()-iterator and one for the past-the-end situation. Though the concept of circulators allows
light-weight implementations, the cgal support library provides adaptor classes that convert
between iterators and circulators (with the corresponding penalty in eÆciency), so as to integrate
this new concept into the framework of stl.

A serious design problem is the slight change of the semantic for circulator ranges as compared to
iterator ranges. Since this semantic is de�ned by the intuitive operators ++ and ==, which we would
like to keep for circulators as well, circulator ranges can be used in stl algorithms. This is in itself
a useful feature, if there would not be the de�nition of a full range [c, c) that an stl algorithm
will treat as an empty range. However, the likelihood of a mistake may be overestimated, since
for a container C supporting circulators there is no end() member function, and an expression
such as sort(C.begin(), C.end()) will fail. It is easy to distinguish iterators and circulators
at compile time, which allows for generic algorithms supporting both as arguments. It is also
possible to protect algorithms against inappropriate arguments with the same technique, though
it is beyond the scope of cgal to extend stl algorithms.

5 Generic Geometric Algorithms using Traits classes

Also at a higher level, cgal uses traits classes. In algorithms, primitives are encapsulated in
traits classes, so that application speci�c primitives and specialized versions can be plugged in.
To illustrate this, consider the problem of computing the minimum enclosing circle of a set of
points. This problem is generally motivated as a facility location problem, or in robotics, as how
to anchor a robot arm so as to minimize its range under the constraint that it must reach all
speci�ed locations, modeled as points.

Suppose now that those points are at di�erent heights and that the robot arm can slide along a
vertical axis. To test whether a number of points in space can be reached by this robot arm, it is
possible to compute the smallest enclosing vertical cylinder, and check whether the radius is not
larger than the length of the robot arm. For the sake of simplicity we ignore possible collisions.

The smallest enclosing circle is calculated in the two-dimensional plane, but the points are three-
dimensional. Of course we could make a version of the smallest enclosing circle algorithm that
operates on three-dimensional points, but generates the two-dimensional circle. This is against
the principle of code reuse, one of the hallmarks of modern programming. Alternatively, we could
perform the projection explicitly, generate two-dimensional points, apply the two-dimensional al-
gorithm, and maintain the correspondence between the three-dimensional and the two-dimensional
points if needed. This requires extra bookkeeping and space, and is not so elegant.

In general, the smallest enclosing circle algorithm can treat points in an abstract way using pred-
icates like side_of_bounded_circle(p,q,r,test) to test if the point test lies on the bounded
side (inside), on the unbounded side, or on the boundary of the circle through p, q and r (as-
suming p, q and r are not collinear). So, the algorithm can be parameterized by point type and
predicates. cgal does this: the point type and predicates are put into what cgal calls a traits
class. In the following example, the algorithm min_encl_circle is template-parameterized with
the ForwardIterator and the Traits class:

template <class ForwardIterator, class Traits>

Circle

5

min_encl_circle(ForwardIterator first, ForwardIterator beyond,

Traits traits)

Rather than explicitly working with a cgal point type, the algorithm internally works with
traits::Point_2. Likewise, instead of using a global function for the side_of_bounded_circle
(p,q,r,test) predicate, it uses a function object which is accessible through a member func-
tion of the traits class. This function object provides the operator() (traits::Point_2 p,
traits::Point_2 q, traits::Point_2 r, traits::Point_2 test).

template <class ForwardIterator, class Traits>

Circle

min_encl_circle(ForwardIterator first, ForwardIterator beyond,

Traits traits) {

typedef traits::Point_2 Point_2; // local type for points

for (; first != beyond; ++first) {

// ... using traits.side_of_bounded_circle()(p, q, r, test)

}

// return result

}

An application programmer can use any point type by de�ning an appropriate traits class My_traits
with a proper My_side_of_bounded_circle:

struct My_side_of_bounded_circle {

bool

operator()(My_point *p, My_point *q, My_point *r, My_point *test)

{ ... }

};

struct My_traits {

typedef My_point Point_2;

typedef My_side_of_bounded_circle Side_of_bounded_circle;

Side_of_bounded_circle side_of_bounded_circle() const {

return Side_of_bounded_circle();

}

} my_traits;

The use of a member function to access the predicate allows to pass additional data from a traits
object to the predicate object in order to in
uence the predicate's behavior. The smallest enclosing
circle algorithm can be invoked with this traits class:

vector<My_point> points(num);

Circle min_encl_circle(points.begin(), points.end(), My_traits());

In this way, specialized predicates can be used that work on 3D points, but evaluate the orientation
on projections of those points, leaving the algorithm itself unchanged. cgal uses traits classes
for algorithms and for data structures throughout the basic library, and provides traits classes for
common use, such as the two cgal kernels and projections of them, or the leda geometry kernels.
A default argument even hides the mechanism of the traits classes from inexperienced users.

6

6 Generic Programming eases EÆcient Robust Geometric

Computing

Since the �eld of computational geometry has its roots in theoretical computer science, algorithms
developed in computational geometry are designed for a theoretical machine model, the so-called
real RAM model [23]. In a real RAM, exact computation with arbitrary real numbers is assumed
(with constant cost per arithmetic operation). In practice, however, the most popular substitution
for computation with real numbers in scienti�c computing is
oating-point computation. Floating-
point arithmetic is fast, but not necessarily exact. Depending on the type of geometric problem
to be solved, implementations of theoretically correct algorithms frequently produce garbage, or
crash, due to rounding errors in
oating-point arithmetic. The reason for such crashes with

oating-point arithmetic are inconsistent decisions leading the algorithms into states they never
could get into with exact arithmetic [12, 24]. Exact computation has been proposed to resolve
the problem [27]. This approach is appealing, since it lets an implementation behave exactly as
its theoretical counterpart. No redesign for a machine model that takes imprecise arithmetic into
account is necessary. Fortunately, exact computation in the sense of guaranteeing correct decisions
is, at least in principle, possible for many geometric problems. It is, however, also known to be
expensive in terms of performance. In this section we discuss how parameterization opens the way
for a�ordable eÆcient exact computation.

In many cases, geometric algorithms are already described in layers. Elementary tasks are encap-
sulated in geometric primitives. As described above, implementations of geometric algorithms in
cgal are generic with respect to the concrete implementation of geometric primitives. A traits
class speci�es the concrete types that are actually used. Most interesting with respect to the
precision and robustness issue are geometric predicates, e.g. checking whether three points form
a left turn. Naturally, the correctness of the overall algorithm depends on the correctness of the
primitive operations.

cgal provides generic implementations of such primitive operations that allow one to exchange
the arithmetic. Both currently available cgal kernels, CGAL Cartesian and CGAL Homogeneous,
are parameterized by a number type. The actual requirements on the number type parameter
vary with the primitive. For example, division operations are avoided in most primitives for the
homogeneous kernel. Thus, a number type need not have a division operation in order to be used in
an instantiation of a template for such a geometric primitive. For the majority of the primitives in
cgal, the basic arithmetic operations +;�; �; and = suÆce. For some other primitives, a number
type must also provide a square root operation. A number type model must not only provide
the arithmetic operations in the syntactically correct form, the available arithmetic operations
must also have the correct semantics. Concerning the syntax of the operations on a number type,
operator overloading is assumed. This makes the code highly readable.

Strictly speaking, a number type should be a model for the mathematical concept of a real number,
just in accordance with the assumptions made in the abstract machine the geometric algorithm
was developed for. However, there is no such valid model. Fortunately, in practice, the numerical
input data for a geometric primitive are not arbitrary real numbers, but restricted to some subset
of the real numbers, e.g. the set of real numbers representable by an int or a double. In such a
situation, a concrete model for a number type is useful, if it provides the correct semantics for the
relevant arithmetic operations restricted to the possible set of operands. Less strictly speaking, it
suÆces if the primitive computes the correct result.

C++ has several built-in number type models. There are signed and unsigned integral types and

oating-point types. In general, they all fail to be valid models for the mathematical concepts of
integers and real numbers, respectively. Due to rounding errors and over- or under
ow, basic laws
of arithmetic are violated. There are also various software packages [11, 2] and libraries [16, 14]

7

that provide further models of number types, e.g. arbitrary precision integral types. A very useful
model for geometric computations is the number type leda real [4, 16]. This type models a
subset of algebraic numbers. leda reals subsume (arbitrary precision) integers and are closed
under addition, subtraction, multiplication, division, and k-root operations. Invisible to the user,
this number type uses adaptive computation to speed up exact comparison operations.

In order to be useful as a library component, there should be a handy description of the set
of permissible inputs, for which an instantiation of the template code of a geometric primitive
works. For example, a description like `Instantiated with double, this primitive gives the correct
result for all those inputs where rounding errors do not lead to incorrect decisions during the
evaluation of the primitive' is by no means useful. For number types guaranteeing exact decisions,
a useful description is easy, however. Admittedly, there is no satisfactory solution to this issue for
potentially inexact number types yet.

Choosing a more powerful number type is only one way to get reliable primitive operations for
cgal algorithms. An alternative is to make special implementations for the primitives, which
use evaluation strategies di�erent from the default templates. A number of techniques for exact
implementation of geometric primitives have been suggested, e.g. [8, 26]. Alternative implementa-
tions can be provided within the cgal kernel framework as explicit specializations of the template
primitives for certain number types. Furthermore, primitives can be implemented independently
from the cgal kernel and can be used directly in traits class models. Finally, existing geome-
try kernels can be easily used with cgal algorithms. For example, there are adaptations of the

oating-point and the rational geometry kernel of leda.

7 Concluding Remarks

The generic design o�ers a lot of
exibility. Figure 1 shows a bar chart with (typical running
times for) various geometry kernels in a planar convex hull computation. The geometry kernels
di�er not only in their eÆciency, but also in their e�ectiveness with respect to exact geometric
computation. The number of stars on the left in Fig. 1 is an indicator for the power of the kernels
to produce correct results in the predicates. The predicates in the kernels without any star are
potentially unreliable. In the kernels with one star, the predicates are reliable, if the numerical
data passed to the predicates are integers (of bounded size). The predicates in a kernel with two
stars also make correct decisions for numerical data represented as double precision
oating-point
numbers.2 The reliability of the kernels with one or two stars is based on the assumption that the
numerical data passed to the predicates are exact. This assumption might not hold anymore for
numerical data computed by primitive operations in those kernels, for example the coordinates
of an intersection point. The rat leda geometry kernel has three stars, because it gives correct
result even with cascaded rational computations. Since the number type leda real guarantees
exact decisions for a superset of the rationals as described above, all kernels parameterized with
number type leda real have four stars.

There are signi�cant di�erences in the performance, ranging from fairly slow arbitrary precision
integer arithmetic via fast, exact kernels based on adaptive evaluation to very fast, but poten-
tially unreliable
oating-point arithmetic. For further discussion of the various kernels and their
performance we refer to [25].

2provided that neither over
ow nor under
ow occurs in the internal computation.

8

C<float> 0.20

C<double> ++ 0.23

leda 0.34

* C<CGAL_S_int<32> > 0.27

* C<CGAL_S_int<53> > 2.27

C<doubledouble> 0.89

C<CGAL_Interval_nt> 1.17

*** rat_leda 0.66

**** C<leda_real> 2.08

** C<CGAL_Expanded_double> 1.71

** C<double> Ed Pred. 0.30

* C<leda_integer> 1.99

* C<CGAL_Gmpz> 6.30

H<double> 0.25

* H<leda_integer> 6.26

**** H<leda_real> 4.37

S<float> 0.12

S<double> ++ 0.17

S<doubledouble> 0.84

**** S<leda_real> 2.01

V<float> 0.53

V<double> ++ 0.61

**** V<leda_real> 2.84

Figure 1: Running times of a cgal implementation of the Graham-scan algorithm with di�erent
geometry kernels. The kernels labelled C< > and H< > are instantiations of the Cartesian and
homogeneous cgal kernels resp., with the number type argument in angle-brackets. Both use
reference counting [17]. The goal is to speed up copying operations at the cost of an indirection
in accessing data. The kernels labelled S< > use Cartesian coordinates as well but no reference
counting. The kernels labelled V< > are similar to the S< > kernels, but more Java-like: all access
functions are virtual and not inlined. Finally, leda and rat leda are adaptations of the
oating-
point and rational geometry kernels resp. of leda. In the C<double>++ kernel, some primitives are
specialized and use a slightly more robust computation in the primitives. Furthermore, the code
for number type CGAL S int<N> is explicitly specialized. The primitives for CGAL S int<N> assume
that the Cartesian coordinates, which are internally maintained as doubles, are integers with at
most N bits. In the specializations, a static
oating point �lter [9] is used. The �lter is based on
the assumption of the integrality and the size of the numbers. If the �lter fails, primitives are re-
evaluated with arbitrary precision integer arithmetic. C<double> Ed Pred uses special primitives
based on [26]. cgal provides di�erent inlining policies. Here, for all cgal kernels, the level of
inlining was increased with respect to the default in the current release.

9

References

[1] J.-D. Boissonnat and M. Yvinec. Algorithmic Geometry. Cambridge University Press, UK,
1998. translated by H. Br�onnimann.

[2] K. Briggs. The doubledouble home page. http://epidem13.plantsci.cam.ac.uk/~

kbriggs/doubledouble.html.

[3] H. Br�onnimann, S. Schirra, and R. Veltkamp, editors. CGAL Reference Manuals. cgal

consortium, 1998. http://www.cs.uu.nl/CGAL.

[4] C. Burnikel, K. Mehlhorn, and S. Schirra. The LEDA class real number. Technical Report
MPI-I-96-1-001, Max-Planck-Institut f�ur Informatik, 1996.

[5] K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geometry,
II. Discrete Comput. Geom., 4:387{421, 1989.

[6] M. de Berg, M. van Kreveld, M. Overmars, and Otfried Schwarzkopf. Computational Geom-
etry: Algorithms and Applications. Springer-Verlag, Berlin, 1997.

[7] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Sch�onherr. On the design of cgal, the
computational geometry algorithms library. Research Report MPI-I-98-1-007, Max-Planck-
Institut f�ur Informatik, 1998.

[8] S. Fortune. Numerical stability of algorithms for 2D Delaunay triangulations and Voronoi
diagrams. Int. J. Computational Geometry and Appl., 5:193{213, 1995.

[9] S. Fortune and C. Van Wyk. Static analysis yields eÆcient exact integer arithmetic for
computational geometry. ACM Transactions on Graphics, 15(3):223{248, 1996.

[10] J. E. Goodman and J. O'Rourke, editors. Handbook of Discrete and Computational Geometry.
CRC Press LLC, Boca Raton, FL, 1997.

[11] T. Granlund. GNU MP, The GNU Multiple Precision Arithmetic Library, 2.0.2 edition, June
1996.

[12] C. M. Ho�mann. The problems of accuracy and robustness in geometric computation. IEEE
Computer, 22(3):31{41, March 1989.

[13] L. Kettner. Circulators. In H. Br�onnimann, S. Schirra, and R. Veltkamp, editors, CGAL
Reference Manual. Part 3: Support Library. 1998.

[14] LiDIA-Group, Fachbereich Informatik, TH Darmstadt. LiDIA Manual A library for compu-
tational number theory, 1.3 edition, April 1997.

[15] K. Mehlhorn. Multi-dimensional Searching and Computational Geometry, volume 3 of Data
Structures and Algorithms. Springer-Verlag, Heidelberg, Germany, 1984.

[16] K. Mehlhorn, S. N�aher, M. Seel, and C. Uhrig. The LEDA User manual, 3.7 edition, 1998.
http://www.mpi-sb.mpg.de/LEDA/leda.html.

[17] S. Meyers. More E�ective C++. Addison-Wesley, 1996.

[18] K. Mulmuley. Computational Geometry: An Introduction Through Randomized Algorithms.
Prentice Hall, Englewood Cli�s, NJ, 1994.

[19] D. R. Musser and A. Saini. STL Tutorial and Reference Guide: C++ Programming with the
Standard Template Library. Addison-Wesley, 1996.

[20] N. C. Myers. Traits: a new and useful template technique. C++ Report, June 1995.

10

[21] J. O'Rourke. Computational Geometry in C. Cambridge University Press, 1994.

[22] M. H. Overmars. Designing the computational geometry algorithms library CGAL. In M. C.
Lin and D. Manocha, editors, ACM Workshop on Applied Computational Geometry, 1996.
Lecture Notes in Computer Science 1148.

[23] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-
Verlag, New York, NY, 1985.

[24] S. Schirra. Precision and robustness issues in geometric computation. In Handbook on Com-
putational Geometry. Elsevier Science Publishers, Amsterdam, The Netherlands, 1998.

[25] S. Schirra. A case study on the cost of geometric computing. To appear in proceedings of
�rst workshop on Algorithm Engineering and Experimentation (ALENEX'99).

[26] J. R. Shewchuk. Robust adaptive
oating-point geometric predicates. In Proc. 12th Annu.
ACM Sympos. Comput. Geom., pages 141{150, 1996.

[27] C. K. Yap. Towards exact geometric computation. Computational Geometry: Theory and
Applications, 7(1-2):3{23, 1997.

11

