
Time and Bit Optimal Broadcasting on Anonymous

Unoriented Hypercubes

Stefan Dobrev�, Peter Ru�zi�cka�, Gerard Tely

Abstract

We consider broadcasting on asynchronous anonymous totally unoriented N -
node hypercubes. First we generalize a technique, introduced in [3], for partial
broadcasting and orientation. Using this technique we develop a broadcasting al-
gorithm on unoriented hypercubes that uses only linear number of bits and runs
in optimal time. This gives a positive answer to the question raised in [7] whether
O(N) bits are su�cient for broadcasting on unoriented N -node hypercubes. It is
also an improvement over the previous algorithms from [3, 1] both in time and bit
complexities.

As an application of broadcasting, we develop an algorithm for computing iden-
tities of all nodes in unoriented hypercubes with linear number of messages. (The
question was stated in [7]). This allows every subset of nodes (such as covers,
independent sets, etc) to be determined in O(N) messages.

1 Introduction

Broadcasting is one of the most fundamental tasks in parallel and distributed computing.
One node of the network, called the source, has a message which has to be transmitted
to all other nodes.

First, consider arbitrary networks. On the one hand, anonymity of the network does
not have signi�cant impact on the message complexity of the broadcasting problem, be-
cause the symmetry is already broken. Distinct identities of nodes can be computed from
the source in asymptotically the same message complexity as the broadcasting in anony-
mous networks [10]. Thus broadcasting on non{anonymous networks cannot be done
asymptotically better than in the anonymous case.

On the other hand, the message complexity of broadcasting strongly depends on the
amount of topological information available at nodes. If links of a network are globally
consistently labeled, forming sense of direction [4, 11], broadcasting is possible using only

�Institute of Informatics, Faculty of Mathematics and Physics, Comenius University, Bratislava, Slo-
vakia. E-mail: fdobrev, ruzickag@dcs.fmph.uniba.sk. Research supported by EU Grant No. INCO-COP
96-0195 "ALTEC-KIT" and VEGA 1/4315/97. Contact author: Peter Ru�zi�cka

yDepartment of Computer Science, Utrecht University, Utrecht, The Netherlands. E-mail: ger-
ard@cs.uu.nl. Research supported by ESPRIT Long Term Research Project 20244 (Project ALCOM
IT: Algorithms and Complexity in Information Technology.)

1

linear number of messages w.r.t. the number of nodes [5]. But if a network is unoriented
(i.e. without sense of direction), then the lower bound for broadcasting is linear in the
number of edges [5]. This lower bound is achievable by the naive broadcasting algorithm,
in which a node immediately spreads the message to all neighbours except to the one from
which it received it.

While this strategy cannot be improved on general networks, broadcasting algorithms
might exploit the knowledge of special topologies to reduce the number of messages. For
example, on the complete unoriented network the broadcasting is trivially accomplished by
sending a message from the source to all its neighbours. On other topologies the situation
is not so simple. It was stated as an open question (see [11], cf. also [6]) whether there
exists a broadcasting algorithm on unoriented N{node hypercubes using O(N) messages
in the worst case. This question was positively answered only recently in [3] and [1],
where two di�erent linear message algorithms for broadcasting on unoriented anonymous
hypercubes were presented. However, both algorithms use messages of size O(logN),
bringing the total bit complexity to O(N logN). A question was raised in [7] whether
O(N) is indeed su�cient for bit complexity of broadcasting on unoriented hypercubes.
Moreover, these algorithms work in non{optimal time. While the algorithm from [1, 2]
needs O(log2N) time units, time complexity of the algorithm from [3] is O(N= log4N).

We will present an algorithm for broadcasting on unoriented anonymous hypercubes
with the total bit complexity O(N) in the worst case, thus giving the positive answer to
the above question. Our algorithm runs in optimal time logN , thus improving both bit
and time complexities of the previous algorithms.

As an application, we design an algorithm for computing identities of all nodes in
unoriented hypercubes with linear number of messages, which gives an answer to the
question raised in [7]. This also allows every subset of nodes (such as covers, independent
sets, etc) to be determined in O(N) messages. And last but not least, this gives a linear
message simulation of hypercubes with natural vertex identities on a model of anonymous
hypercubes with a leader. Hence, linear message broadcasting algorithm on hypercubes
with precomputed identities [8] works also on unoriented anonymous hypercubes in the
same complexity.

This paper is organized as follows. In section 2 we give graph theoretic preliminaries
concerning the hypercube and present computational model. In section 3 we introduce a
technique for e�cient partial broadcasting and orientation on unoriented hypercubes. In
section 4 we present new broadcasting algorithm, prove its correctness and estimate its
time and communication complexities. In section 5 we present a linear message algorithm
for computing identities of processors.

2 Preliminaries

2.1 The hypercube

An n-dimensional hypercube is an undirected graph Qn consisting of N = 2n vertices and
1=2Nn edges.

Vertices are represented by binary strings of length n. For two vertices, their Hamming

2

distance is the number of positions on which they di�er. There is an edge between two
vertices i� their Hamming distance is 1. Qn is regular of degree n and has diameter n.

The following notation will be used:

� ei for i = 1; : : : ; n is a bit vector representing 0i�110n�i. Vectors ei are called unit
vectors.

� vi denotes the i{bit of v, where v is n-bit binary string.

� and, or and � denote bitwise and, or and exclusive or on n bit binary strings,
respectively.

� Q(v; ei1; : : : ; eil); 1 � l � n, is a sub-hypercube containing vertices v � �1ei1 �
: : :� �leil, where �i 2 f0; 1g and eij are distinct unit vectors. ei1 ; : : : ; eil are called
generators of Q(v; ei1; : : : ; eil).

� Let E be any subset of the set of unit vectors and EC be its complement, then
Q(v;E) and Q(v;EC) are called orthogonal.

Proposition 2.1 The following properties on Qn hold:

1. Every pair of distinct vertices of Qn have either 0 or 2 common neighbours.

2. Vertices u and v in Qn have 2 common neighbours i� their Hamming distance is 2.
If u and v have the same number of 1's in their representation, these neighbours are
u and v and u or v.

3. Each vertex in Qn is unambiguously determined by any triple of its neighbours.

4. For all v in Qn and all l-tuples (ei1 ; : : : ; eil); 1 � l � n, of distinct unit vectors there
exists a unique isomorphism � of Q(v; ei1; : : : ; eil) to Q(0

n; e1; : : : ; el) such that v is
mapped to 0n and each eij is mapped to ej.

A dominating set of a graph G is a set D of vertices such that every vertex of G belongs
to D or is adjacent to a vertex from D. We say that the dominating set D is perfect i�
each vertex has exactly one neighbour (including itself) in D.

Proposition 2.2 If n = 2k�1 then there exists a perfect dominating set of size 2n=(n+1)
in Qn.

Proof. Let X be the identity of a vertex x written as the binary row matrix n� 1. Take
Dn = fxjAX = (0; : : : ; 0)Tg, where A is the k�n binary matrix, in which the i-th column
is the binary representation of the number i, for i = 1; : : : ; n. All computations are in Z2

(modulo 2).
Let AX = Y for some vertex x. Interpret Y as the binary number y. If y = 0, then

x 2 Dn, otherwise consider x0 = x + ey. Then x0 is the neighbour of x that lies in Dn:
AX 0 = A(X + Ey) = AX + AEy = Y + Y = (0; : : : ; 0)T . 2

3

Proposition 2.3 For each n there exists a dominating set Dn of size at most 2n+1=(n+1)
in Qn.

Proof. Take Dn = D0
n \ D1

n, where D
0
n = fxjAX = (0; : : : ; 0)Tg and D1

n = fxjAX =
(1; 0; : : : ; 0)Tg. A is the matrix from the previous proposition.

Let AX = Y for some vertex x. Interpret Y as the binary number y. If y < n, then
follow as in the previous proposition. If y > n, then
ip the most signi�cant bit of y to
get y0. Now y0 < n, since y < 2n. Consider x0 = x + ey0 . Then AX 0 = AX + AEy0 =
Y + Y 0 = (1; 0; : : : ; 0)T , thus x has the neighbour x0 in D1

n. 2

2.2 The model

The computational model is a standard model of asynchronous distributed computing on
point{to{point networks [10]. Every message will be delivered in a �nite but unbounded
time. FIFO requirements on links are not necessary.

The underlying topology of the network is anonymous unoriented hypercube graph
Qn. Anonymity means that processors do not have distinct identities. n - bit strings
representing vertices in the previous subsection will be called identities of processors. At
the beginning, only the source processor knows its identity { 0n.

Each processor can distinguish its links by uninterpreted labels e1; : : : ; en. However,
this labeling is arbitrary at each processor and labels are thus without any topological
meaning.

We are primarily interested in bit { complexity, i.e. the number of bits communicated
in the worst case. The worst case refers to the worst messages delays and to adversary
decisions concerning choices of yet unused links { if a processor sends a message on an
unused link, the actual link (from the set of yet unused links) is chosen by the adversary,
as all yet unused links look alike to the sender.

Time complexity is de�ned as the total execution time of the algorithm in the worst
case, assuming that delays on links are bounded by one time unit.

We are considering the problem of broadcasting. At the beginning there is a single
active processor { source of an information. Other processors will become active only
after receiving a message. At the end of the computation we require each processor to
have received the information. The cost of transmitting the information is not counted
into the bit complexity, we count only the overhead of the broadcasting algorithm. The
more appropriate notion for our problem would be wake up with single initiator.

3 Partial broadcasting and orientation

De�nition 3.1 Let M be a subset of vertices of Qn and s be some vertex in M . De�ne
M s

i = fvjv 2 M; d(v; s) = ig, where d(x; y) is Hamming distance of x and y.1 Let LM =
maxfijMi 6= ;g.

We say that M is a computable mask from s i� for all v 2 M at least one of the
following conditions is true:

1We will use Mi instead of Ms

i
when s is obvious from the context.

4

1. v 2M0 (v = s),

2. v 2M1 (v is a neighbour of s),

3. v 2Mk and v has at least three neighbours in Mk�1,

4. v 2 Mk and v has two neighbours x and y in Mk�1. Let v0 be the second common
neighbour of x and y. Then v0 2Mk�2.

If s = 0n, we say that M is a computable mask.

The following statements follow easily from the previous de�nition:

� Union of computable masks from s is a computable mask from s.

� Q(s;E) is a computable mask from s for any set of generators E.

3.1 The basic partial broadcasting and orientation

The following algorithm A1 is used to perform partial broadcasting and orientation on a
given computable mask M .

Algorithm A1 :

Mask M and source vertex s are �xed and known to all vertices.

Messages used:
(You are:, x) and (I'm, x)
where x is n bit binary string.

Variables used at vertex v:

� Namev: n { bit binary string containing the identity of v. Initial value is empty,
only s knows its identity.

� Labelv(h): labels of links incident to v, initial value is empty. Exceptions are links
from s leading to vertices in M , which have their correct labels.

Algorithm in the starting vertex s:

For all links h:
if s� Labels(h) 2M then

Send(You are:, s� Labels(h)) on link h;

Algorithm in a vertex v:

Upon receiving a message (You are:, x) on link h:

Namev := x;
Labelv(h) := x� s;
if Namev 2M then

Send(I'm, Namev) on all links except h;

5

Upon receiving a message (I'm, x) on link h1:

if Namev = empty then
Wait for the second message (I'm, y); farrived on link h2g
Compute identities w1 and w2 of the two common neighbours

of x and y.
if x 2Mk�1 and y 2Mk�1 and w1 2Mk�2 and w2 2Mk then

Namev := w2;
else

Wait for the third message (I'm, z); farrived on link h3g
Namev := the unique vertex that has neighbours x, y and z;

�

if Namev 2M then
Wait for I'm messages from all your predecessors in M ;
Send(I'm, Namev) to all neighbours;

�
�

Each vertex that has computed its name computes labels of links within M :

For each link h on which (I'm, x) has been received:
Labelv(h) := x�Namev;

Proposition 3.2 If M is computable from s and s knows labels of all links leading to its
neighbours in M , then the algorithm A1 computes

1. identities of all vertices in M ,

2. link labels for each link between vertices in M .

Proof.

1. We will prove Proposition 3.2 by induction on the distance from s.

A vertex v computes its identity in the following cases:

� After receiving message You are: : In this case identity is correctly computed
because the source s knows labels of links to vertices in M1. This is the �rst
step of induction.

� After receiving two messages (I'm, x) and (I'm, y) from x and y in the same
layer: This case applies only if w1, the common neighbour of x and y in the
previous layer, is also in M . By induction, the computed names of x and y are
correct, and because each vertex waits for messages from all its predecessors
before announcing its name, w1 has already computed its name (or w1 = s).
It follows that w2 is the correct name for v.

6

� After receiving three I'm messages : Its identity is unambiguously given in
this case. Identities that came in these messages are correct by induction
hypothesis.

We have proved that vertices correctly compute their identities. The fact that
indeed each vertex 2M computes its identity can be easily proved by induction on
the distance from s from the computability of M .

2. This follows from the fact that each vertex inM computes its identity and announces
it, together with handling of these messages by the algorithm.

2

Proposition 3.3 The algorithm A1 uses at most njM j messages of size O(n) bits.

Proof. Each vertex in M sends at most n messages of size O(n) bits each. Vertices
outside M do not send messages. 2

Proposition 3.4 Time complexity of A1 is LM + 1.

Proof. By induction on the distance from the s: Vertex v 2 Mk computes its name not
later than at the time k. The +1 term stands for computing the labels of the last links.
2

3.2 Bit{e�cient partial broadcasting algorithm

The algorithm A1 does not communicate e�ciently, because each vertex v sends its whole
identity to all its neighbours. During the computation only some vertices really need the
identity of v. The basic scheme is to send just Hello messages and only vertices which
are really interested in your full identity will ask you for it. A vertex v needs to learn
identities of only two or three of its neighbours to be able to compute its identity.

Algorithm A2 :

Messages used { Hello, Who are you? and messages of A1

Variables used at vertex v { as in A1

Algorithm in the starting vertex s is the same as in A1

Algorithm in a vertex v:

Upon receiving a message (You are:, x) on link h:

Namev := x;
if Namev 2M then

Send(Hello) on all links except h;

Upon receiving the �rst Hello message on link h1:

7

Wait for the second Hello message; farrived on link h2g
Send Who are you? on h1 and h2;
Wait for (I'm, x) and (I'm, y) on h1 and h2, respectively.
Compute identities w1 and w2 of the two common neighbours of x and y.
if x 2Mk�1 and y 2Mk�1 and w1 2Mk�2 and w2 2Mk then

Namev := w2;
else

Wait for the third Hello message ; farrived on link h3g
Send Who are you? on h3;
Wait for (I'm, z) on h3;
Compute Namev as the unique vertex that has neighbours x, y and z;

�

if Namev 2M then
Wait until you receive Hello messages from all your predecessors in M ;
(Wait until you have received k Hello messages, where k is the number
of your predecessors in M .)
Send(Hello) to all neighbours;

Upon receiving Who are you? message on link h:

Send(I'm, Namev) on h

Proposition 3.5 IfM is a computable mask from s and s knows labels of all links leading
to its neighbours in M , then the algorithm A2 correctly computes identities of vertices in
M .

Proof. Follows the same line as the proof of A1. The only substantial di�erence is that
A2 at vertex v tests the condition that it received Hello messages from all its predecessors
in M by counting these messages, while A1 can do this by testing identities. Note that
A2 can't be fooled by Hello messages from successors of v, because successor must receive
a Hello from v to proceed and send its Hello. 2

Proposition 3.6 The algorithmA2 uses O(njM j) messages containing totally O(n(jM j+
jM 0j)) bits, where M 0 is the set of all vertices of Qn { M that have at least two neighbours
in M .

Proof. We charge constant-bit messages (Hello and Who are you) to sender and long
((I'm, x) and messages (You are:, x)) to receiver. Each vertex in M [M 0 is charged O(n)
bits, because each vertex in M sends O(n) messages and each vertex in M [M 0 receives
at most 3 long messages. 2

Note that if M = Q(v;E) then M 0 = ;.

Proposition 3.7 Time complexity of A2 is 1 + 3(LM � 1).

Proof. By induction on the distance from s, similarly as for A1. A2 will proceed with at
most 3 time units per one layer, with the exception of the �rst layer which takes at most
one time unit. 2

8

3.3 Applications { optimal computable masks for special target

sets

General scheme of broadcasting from the vertex s to some target set of vertices T is the
following:

� Choose a set M , M � T , such that M is computable from s. It is desirable to make
M as small as possible.

� Make sure that s knows labels of links leading to its neighbours in M .

� Use A1 (A2) to broadcast on M .

One particular case is to inform a single vertex v at the distance d about its identity.
(See e.g. the algorithm FarSend() in [3].) Because of Proposition 2.1 it is su�cient to
consider the case s = 0n, v = 1d0n�d.

Lemma 3.8 (FarSend) There exists a computable mask M of size 1+ d(d+1)=2 which
contains the vertex v = 1d0n�d.

Proof. It is easy to verify that M = f0i1k0n�i�kj 0 � k � d, i + k � dg is such a mask.
2

Let Mjd denote M \ f0; 1gd0n�d. The mask used in the previous lemma is indeed
optimal.

Lemma 3.9 Let M be any computable mask that contains vertex 1d0n�d, then jMjdj �
1 + d(d+ 1)=2.

Proof. By induction on d. For d = 1 the condition trivially holds, because M must
contain both the source and the target vertex.

General case: The vertex 1d0n�d must have at least two predecessors x and y in Md�1.
We may assume x = 1d�10n�d+1 and y = 01d�10n�d. From induction hypothesis applied
on x we get jMjd�1j � 1 + d(d � 1)=2. It holds y =2 Mjd�1, because y has 1 at position
d. Since identity of a vertex is determined as bitwise or of its predecessors (this holds
only for the source 0n), y has a predecessor y0 with 1 at position d. We may apply this
argument on y0 and so on until we get down to 0d�110n�d. This means that there is a
chain of d � 1 vertices y; y0; y00; : : : ; 0d�110n�d that are not in Mjd�1. However, all these
vertices must be in Mjd, otherwise y =2 Mjd. Hence we get jMjdj � 1 + jMjd�1j + d� 1 �
1 + 1 + d(d� 1)=2 + d� 1 = 1 + d(d+ 1)=2. 2

Another useful task is to orient a vertex v consistently with the source s. (See e.g.
the algorithm FarOrient() in [3].) While this can be trivially done using a mask of size
O(nd2), the following lemma shows how to do it using a mask of size O(nd).

Lemma 3.10 (FarOrient) There exists a computable maskMOrient of size nd+n�2d+2
containing the target set S(1d0n�d; 1). Here S(x; r) denotes the sphere with centre x and
radius r.

9

Proof. Take MOrient = M 0 [M 00 [M 000 where M 0 = f0i1k0n�i�kj 0 � i + k � dg,
M 00 = f1k0d�k0j10n�d�j�1j 0 � k � d, 0 � j < n� dg and M 000 = f1i0j1d�i�j0n�dj i > 0,
j > 0, i+ j < dg. 2

This mask is close to optimality.

Lemma 3.11 If M is a computable mask containing S(1d0n�d; 1), then jM j � nd+ n�
d(d+ 1)=2 + 1.

Proof. The proof uses the same ideas as the proof of Lemma 3.9. 2

This lower bound di�ers from the upper bound only by the term jM 000j.
Combining previous results with d � n, we get that any vertex can be reached (or

oriented) using O(n3) messages and O(n4) bits, which is optimal when using A1.

4 The broadcasting algorithm

We will follow the outline of the algorithm from [1]. The main di�erence lies in application
of A1 and A2 for partial broadcasting on sub{hypercubes instead of "jo{jo" technique
from [1, 2].

The broadcasting algorithm BR works in two stages:

STAGE I: A1 is launched with the mask M1 = [v2Dk
MOrient(v) from the source,

where Dk is a perfect dominating set of Q(0n; e1; : : : ; ek). k is chosen to be of the
form 2r � 1 for some integer r, while being as close as possible to n=2. Clearly
n=3 � k � 2n=3.

STAGE II: A2 is launched with the mask M(v) = fxjx 2 Qn; x1x2 : : : xk =
v1v2 : : : vkg from each v 2 Dk.

A1 and A2 were presented using implicit knowledge of M and s. Now we use more
invocations, so we must specify what is implicit now and how we use it. Each vertex knows
(from knowing n) M1, M = [M(v) and Dk. Messages of di�erent stages are marked by a
stage mark (i.e. by O(1) bits). We cannot a�ord to mark messages of di�erent invocations
of A2 in Stage II, but this is not the problem since these invocations do not interfere.

There are no vertices receiving messages from two di�erent invocations of A2, be-
cause there is no vertex in Q(0n; e1; : : : ; ek) with two neighbours in Dk. (Dk is a perfect
dominating set.)

Each vertex ofM(v) can decide to which invocation of A2 it belongs simply by looking
at the �rst k bits of the �rst (I'm, x) message it received, learning which v and M(v) to
use.

Proposition 4.1 (Correctness) The algorithm BR is a broadcasting algorithm on unori-
ented hypercubes.

Proof. First, note that the maskM1 is computable from 0n and eachM(v) is computable
from v.

10

It is su�cient to show that each vertex v has a neighbour in some M(v) { that means
that it receives Hello message.

Let v 2 Qn be arbitrary vertex. Take v
0 = v1v2 : : : vk0

n�k. Since v0 2 Q(0n; e1; : : : ; ek),
it has a neighbour x 2 Dk. Therefore v has a neighbour x0 = x1 : : : xkvk+1 : : : vn 2M(x).
2

Proposition 4.2 The algorithm BR broadcasts on unoriented N{ vertex hypercubes us-
ing O(N) bits.

Proof. Total bit cost of Stage I can be bounded by jDkj times the bit cost of orienting

one vertex, which is O(2k

k+1
� n4) 2 o(N).

Total bit cost of Stage II can be bounded by the number of invocations of A2 times
the cost of one such invocation:

O(2k

k+1
� n � 2n�k) = O(nN=(k + 1)) = O(N). 2

Time complexity of Stage I can be bounded by k+1. Similarly, Stage II works in time
3(n� k)� 1, summing to the total time 3n� 2k < 7=3n.

4.1 Bit{optimal broadcasting in time n

Note that we can apply A1 instead of A2 to achieve the algorithm that reaches optimal
time n, but its bit complexity will be N logN .

However, we could choose k = n�4 and use the previous approach. This would result
in an algorithm running in time k + 1 + 3(n� k)� 1 = n + 8, being still bit optimal. If
the root v at Stage II is at the distance d < n� 12 from the initiator, all vertices in M(v)
and their neighbours will be informed in time d + 1 + 3(n � k) � 1 = n � 12 + 12 = n.
There are O(n12:(n + 1):24) = O(n13) vertices that would be informed later than in time
n. These vertices can be informed directly in time n, using A1 with a mask containing
them all, in cost O(n4) per vertex, with the total added cost O(n17) 2 o(N).

The problem is that there may not be perfect dominating set Dn�4 of Qn�4. But we do
not need perfect dominating set as far as we get dominating set which can be partitioned
into the constant number of sets D0; : : : ; Dc such that invocations of A2 from vertices of
Di do not interfere. All we need is to mark an invocation of A2 from v by the index of
Di in which v lies.

One such dominating set is the dominating set from the Proposition 2.3.

5 Computing identities of all vertices

Bernard Mans [7] proposed an interesting question whether it is possible to compute
identities of all vertices in Qn using only linear number of messages. This could be of
special interest, since the orientation of the hypercube requires
(N logN) messages (see
[9]). The knowledge of identities of vertices allows to compute an orientation locally only
where it is needed, thus saving some communication.

It is indeed possible to compute an identity of every vertex using only linear number of
messages. For each vertex it is su�cient to learn identities of its three distinct neighbours.

11

This can be done using three broadcasts with three disjoint dominating sets. Instead of
using A2 as in bit-optimal broadcasting, A1 will be used, so each vertex in the mask
will inform all neighbours about its identity. If one wants to run it in optimal time n,
messages should be appropriately marked by the index of particular broadcasting to avoid
collisions. All what is needed is to choose three disjoint perfect dominating sets D1, D2

and D3 of Q(s; e1; : : : ; ek). D2 can be obtained by
ipping the �rst bit of vertices in D1

and similarly D3 by
ipping the second bit. It is easy to see that D2 and D3 are perfect
dominating sets of Q(s; e1; : : : ; ek) (because D1 is) and are disjoint. (Because D1 is perfect
dominating set and thus all its vertices are at least three links apart.)

Putting these facts together, we computed identity of each vertex using O(N) messages
of size O(n) bits each. Since algorithm A1 was used, the computation time is n.

Total bit complexity is O(N logN) bits. However, this is optimal for this problem,
if we require O(N) number of messages. As the number of messages is bounded by
O(N), there must be a constant d such that at least N=2 vertices communicate on at
most d links. Each of these N=2 vertices should compute di�erent identity, based only
on the communication history. We get that there must be N=2 di�erent communication
histories on the constant number of links for each of these N=2 vertices, thus bringing up

(N logN) lower bound.

6 Conclusions

We have shown how to reduce the problem of reaching speci�ed target set T to the problem
of �nding the smallest computable mask that contains T . This is nontrivial problem and
it can challenging for many practical target sets. Another interesting question that arises
here is how the structure of T determines the size of the mask M .

We have seen that broadcasting on unoriented hypercubes can be done both in op-
timal time and optimal bit complexities. It would be interesting to �nd more classes of
graphs (another example is the class of chordal rings with logN chords leading to closest
neighbours in the ring [8]) with asymptotically more edges than vertices that will allow
such an e�cient broadcasting. This may be helpful in solving more general (and di�cult)
question: What are the structural properties that the class of graphs must possess to
allow linear message broadcasting? What are the properties that enforce non-linear lower
bound for broadcasting?

12

References

[1] Diks, K. { Kranakis, E. { Pelc, A.: Broadcasting in Unlabeled Networks. D�epartment
d'Informatique, Universit�e du Qu�ebec �a Hull, Technical Report, RR 96/12-5, Decem-
ber 1996.

[2] Diks, K. { Dobrev, S. { Kranakis, E. { Pelc, A. { Ru�zi�cka, P.: Broadcasting in Un-
labeled Hypercubes with Linear Number of Messages. Information Processing Letters
66, 1998, pp. 181{186.

[3] Dobrev, S. { Ru�zi�cka, P.: Linear Broadcasting and N log logN Election in Unoriented
Hypercubes. Proc. of the 4th International Colloquium on Structural Information and
Communication Complexity (SIROCCO'97), Carleton Scienti�c, 1997, pp. 53{68.

[4] Flocchini, P. { Mans, B. { Santoro, N.: Sense of Direction: Formal De�nitions and
Properties. Proc. of the 1st International Colloquium on Structural Information and
Communication Complexity (SIROCCO'94), Carleton Press, 1995, pp. 9{34.

[5] Flocchini, P. { Mans, B. { Santoro, N.: On the Impact of Sense of Direction on
Communication Complexity. Information Processing Letters 63 (1), 1997, pp. 23{31.

[6] Mans, B.: Broadcast, Traversal and Election in Unlabeled Hypercube. Proc. of the 3rd
International Colloquium on Structural Information and Communication Complexity
(SIROCCO'96), Carleton Press, Siena, Italy, June 1996, pp. 333{334.

[7] Mans, B.: Sense of Direction and Applications. Invited talk at the Research School'97
on "Compact Routing and Sense of Direction", Siena, Italy, June 1997.

[8] Peleg, D.: Personal communication at the Research School'97 on "Compact Routing
and Sense of Direction", Siena, Italy, June 1997.

[9] Tel, G.: Network Orientation. International Journal of Foundations of Computer
Science 5, 1994, pp. 23{57.

[10] Tel, G.: Introduction to Distributed Algorithms. Cambridge University Press, Cam-
bridge, 1994.

[11] Tel, G.: Sense of Direction in Processor Networks. In: SOFSEM'95, Theory and
Practise of Informatics, LNCS 1012, Springer{Verlag, 1995, pp. 50{82.

13

