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Abstract

In the k-level uncapacitated facility location problem, we have a set of demand points where
clients are located. The demand of each client is known. Facilities have to be located at given
sites in order to service the clients, and each client is to be serviced by a sequence of k different
facilities, each of which belongs to a distinct level. There are no capacity restrictions on the
facilities. There is a positive fixed cost of setting up a facility, and a per unit cost of shipping
goods between each pair of locations. We assume that these distances are all nonnegative and
satisfy the triangle inequality. The problem is to find an assignment of each client to a sequence
of k facilities, one at each level, so that the demand of each client is satisfied, for which the sum
of the setup costs and the service costs is minimized.

We develop a randomized algorithm for the k-level facility location problem that is guar-
anteed to find a feasible solution of expected cost within a factor of 3 of the optimum cost.
The algorithm is a randomized rounding procedure that uses an optimal solution of a linear
programming relaxation and its dual to make a random choice of facilities to be opened. We
show how this algorithm can be derandomized to yield a 3-approximation algorithm.

1 Introduction

In the classical single-level uncapacitated facility location problem, we want to decide where to
locate facilities, and to which open facility each client should be assigned, so as to minimize the
total cost of setting up the facilities and of servicing the clients. In the k-level uncapacitated facility
location problem, each client must be serviced by a sequence of k different facilities. This problem
has applications, for instance, in more complex logistical systems where central depots ship goods
through smaller depots, and further down the hierarchy, to the clients. We refer to Kaufman, Vanden
Eede & Hansen [10], Van Roy & Erlenkotter [14], Tcha & Lee [13], Barros [2], and Aardal, Labbé,
Leung & Queyranne [1] for further applications of multi-level location problems, as well as optimiza-
tion algorithms and heuristic approaches. Since the k-level problem is NP-hard even if k = 1, an
approximation algorithm is useful in order to quickly find feasible solutions of good quality.

It was observed already in the 1970’s that the linear relaxation of the so-called “strong” integer
programming formulation of the 1-level problem provides values close to the integer optimum value,
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and so it was natural to hope to find an approximation algorithm with a good performance guaran-
tee, based on this relaxation. In practice, the dual-ascent based heuristic by Erlenkotter [7] produces
excellent solutions, but in the worst case this algorithm performs arbitrarily poorly. We shall say
that an algorithm for a particular optimization problem is a p-approximation algorithm if it is a
polynomial-time algorithm that is guaranteed to find a feasible solution of objective function value
within a factor of p of the optimum. For the 1-level problem where the objective is to maximize the
“profit” of servicing the clients, a (1 — %)—a,pproximation algorithm was developed by Cornuéjols,
Fisher & Nemhauser in 1977 [5], but for the version where we want to minimize the total cost, a
constant performance guarantee remained elusive until recently. In 1997, Shmoys, Tardos & Aardal
[12] considered the special case in which the service costs satisfy the triangle inequality, and gave
a 3.16-approximation algorithm based on the linear relaxation for the 1-level problem. This perfor-
mance guarantee was improved by Guha & Khuller [9] to 2.408, and later by Chudak & Shmoys
[3, 4], who presented a 1.736-approximation algorithm. These algorithms are based on the linear
relaxation as well. We give a 3-approximation algorithm for the k-level facility location problem,
which is the first constant performance guarantee for any k > 2. (This improves on a preliminary
version of this result, a 3.16-approximation algorithm for just the 2-level case [12]; the other results
of this conference paper [12] will be published in a separate journal paper.)

For a more extensive overview of algorithmic results for various facility location problems we
refer to Cornuéjols, Nemhauser & Wolsey [6], Shmoys et al. [12], and Chudak [3].

2 The k-level uncapacitated facility location problem

Let D be the set of demand points. Each client j € D must be assigned to precisely one facility at
each of the k levels. Let F! be the set of sites where facilities on level I, 1 <1 < k may be located.
We denote the set of all such sites, UF_, F', by F. The cost of setting up facility at site i is f;. We
assume that f; > 0 for each ¢ € F. Whenever we use the the expression “facility ¢” we mean “facility
at site 4”. The cost of shipping between points ¢,5 € F'U D is equal to c;;. Throughout this paper,
we make the following assumptions on the service costs:

® c;; >0, foreachi,j € FUD;
® c;j = cj;, for each i,j € FU D, i.e., the service costs are symmetric,
o ¢, < cjj + cji, for each 4, j,k € FU D, i.e., the service costs satisfy the triangle inequality.

We shall use p to denote a sequence of facilities i; € F!, 1 = 1,..., k, and shall refer to p as a path
of facilities. The set of all possible paths is denoted by P. Each client must be assigned to precisely
one path p € P. The total service cost incurred by assigning client j to path p = (41,42, ..,%k) is
equal to Cpj = Ciyis + Cigyis T ==+ Cir_y,i, + Cin j-

Let z,; be equal to 1 if client j is assigned to path p, and 0 otherwise. Furthermore, let y;
be equal to 1 if facility ¢; is open at level I. If we relax the constraints that x,; € {0,1}, for each
p € Pand j € D, and y;, € {0,1}, for each iy € F!, [ = 1,...,k, we obtain the following linear
programming relaxation of the k-level uncapacitated facility location problem:

k
ZLP = mlnz Z filyil + Z Z CpjTpj (1)

=1 4;€F! pEP jED

subject to
Z zp;i =1, for each j € D, (2)
peP
prj—yi,go, foreach j€ Dand iy € F',1=1,...,k, (3)
pipdi



zp; >0, for each p€ P, and j € D, 4)
yi, > 0, foreachi; € F', 1 =1,...,k. (5)

In the integer programming formulation, constraints (2) impose that each client is assigned to pre-
cisely one path. To interpret constraints (3), fix a client j, and a facility i; on level I. No assignment
of client j to a path using facility ; is possible unless facility 4; is open. If y;, is equal to 0, then the
sum of all assignment variables for client j to use paths containing facility 4; must also be 0. The
upper bounds z,; < 1 are not necessary in the model due to the combination of constraints (2) and
(4). Similarly, we do not need to state the constraints y;, < 1 explicitly since the sum in constraints
(3); 2= ppi, Tpj» is bounded from above by the sum in constraints (2), >° . p Zp; = 1, and since we
assume that the fixed cost f;, > 0, for each i; € F'.

Let v; and w;, ; denote the dual variables corresponding to the primal constraints (2) and (3),
respectively. The dual problem corresponding to the linear programming relaxation is given below:

ZLp = maxz v; ©)

JED
subject to
Yj — Z Wiy,j < Cpj for each p € P, and j € D, (7)
WEp

Z wiyj < firs for each 1 <[ < k, and i; € F!, ®)
JED
wiy,j 2 0, for each 1 <1<k, € F', and j € D. )

Since the dual has a polynomial number of variables, we can use the ellipsoid algorithm to solve
this linear program in polynomial time, given a polynomial-time separation algorithm [8]. In other
words, we must design a polynomial-time algorithm that, given (v, w), either concludes that (v, w) is
feasible, or else outputs a constraint that is violated by it. Constraints (8) can be checked explicitly
(since there are only a polynomial number of them). For each j € D, the constraints (7) can be
checked by a straightforward shortest path computation. Since the dual linear program can be solved
in polynomial time, the primal can also be solved in polynomial time.

In the analysis of our algorithm, we will use the following lemma, in order to bound the value of
the service cost of a feasible integer solution.

Lemma 1 Let (Z,3) and (U,w), respectively, be optimal solutions to the primal and dual linear
programs. Then ZT,; > 0 implies that cp; < U;, for each p € P and j € D.

Proof: Consider the following set of complementary slackness conditions:
Zpj(cp; — 05 + Z W;, ;) =0, for each p€ P, and j € D, (10)
WEP

which must hold for any pair of optimal solutions to the linear program and its dual. If z,; > 0,
then cp; — 0+ 2, ¢, Wi,,; = 0, or equivalently, ¢,; + 37, o @4,,; = 0;. Since @;, ; > 0, we have that
Cpj < V5. |

3 The algorithm

We next present a randomized algorithm that produces feasible solutions of expected value no more
than 3 times the optimum value. After the description of the algorithm, we prove the claimed
performance guarantee, and then describe how the algorithm can be derandomized.



Description of the algorithm. We shall refer to the algorithm described below as Random Path.
We start by solving the linear programs (1) — (5) and (6) — (9) to optimality. We denote the optimal
solutions by (Z, 7) and (7, @), respectively. The aim of our algorithm is to construct so-called clusters
of facility and demand locations. Each cluster consists of a path of facility locations, and a set of
clients that are serviced uniquely by this path. Each cluster is centered at a certain demand point,
as described below. During the execution of our algorithm we maintain:

1. A feasible fractional solution (z,y). Initially, we set (z,y) := (Z,7)-
2. A set C of clusters. Initially, we set C := .
3. A set D of demand points that are not part of any cluster in C. Initially, D := D.

In each iteration, we choose a client j € D with minimum value of 9; + ¢;, where &; = > pep CpiTpj-
Let j; denote the client chosen in iteration t. Client j; is the center of the cluster Cy, which is com-
puted in the following way. Let P; be the set of paths of facilities that service client j; by any positive
fraction, i.e., P, = {p € P : z,;, > 0}. Also, let F} = {i; € F' : i; belongs to at least one path in P;},
foreachl =1,...,k,and F; = UF_ F}. Let T; = {j € D : 3z,; > 0 such that p contains at least one
facility in F;}. Notice that j; € T;. For an illustration of the sets P; and T;, we refer to Figure 1.
Let C; be the set of all clients in T; and all facilities in Fy, i.e., Cy = T; U F;.

f "\ : paths in P,

B : clients in T}

level k

level &

Figure 1: The paths in P;, the client j;, and the other clients in T}.

Next, choose a path p € P, with probability z, ;. Call the chosen path p;. Round all variables
{yi, }irep, to 1 and all variables {y;, }i,cr,—p, to 0. We assign each client in T} to the path p;; that
is, we set zp, ; = 1 for each j € T; and x,; = 0 for each j € T; and p € P, — {p:}. The situation
after rounding is illustrated in Figure 2. We now set D := D — T} and C := CU {C;}. We iterate this



B : clients in T}

level 1

Figure 2: The solution created by rounding within the cluster C;.

process until D = (). Notice that each client belongs to precisely one cluster in C when the algorithm
terminates.
We are now ready to prove the following theorem.

Theorem 2 The algorithm Random Path runs in polynomial time, and produces a feasible integer
solution whose expected total cost is no more than 3 times the optimum cost.

Proof: We first show that our algorithm produces a feasible integer solution. In the rounding step
of iteration ¢ we create a cluster by first choosing a certain client j; as a center. Then we randomly
choose one of the fractional paths p; € P;. Each variable y;, : 4; € p; is set to 1, and so all facilities
in path p; are open. Finally, we assign all clients in the set T; to the path p;. The assignment of
the clients in T} to the path p; is integer and feasible. No client in D — T} is fractionally serviced
by any of the facilities in F}, by definition, and so they are unaffected by the current rounding step.
Hence, a feasible fractional solution (z, ) is maintained during the execution of the algorithm. Upon
termination of the algorithm the solution (z,y) is integral.

We now need to prove that the algorithm has the claimed performance guarantee. Consider the
cluster C; created in iteration ¢. Although the algorithm updates the solution (z,y) throughout its
execution, at the start of iteration ¢, we have that x,; = Z,;, for each p € P, and j € D, and

i, = Ui, for each i; € F},1 =1,..., k. Hence, the expected fixed cost incurred in iteration ¢ is equal
to
k k
YO ST = D (D Eog) <D D fubi (11)
peEP; L1EP =1 4,eF} ppIi =1 4,eF}

where the inequality holds due to constraints (3).
Furthermore, the expected service cost for client j; is equal to

Z vaji'ﬁpvji = é]t ° (12)

pEPR;



To obtain a bound on the expected service cost for each client j € Cy, j # ji, we need to observe
what happens in the rounding step. Since client j belongs to the set T3, it is fractionally serviced
through at least one facility that is also fractionally servicing the center j; of cluster Cy. Let p be the
path that fractionally services j and that has at least one facility in common with a path p’' € P;.
Let facility i, be the facility with largest level index that belongs to both paths  and p'; see Figure
3. After rounding, client j is completely serviced by path p;. Due to the triangle inequality we can

facility i,

Jt

Figure 3:

bound the cost ¢, ; from above by the sum of the cost of traversing p from j to iy, and the cost
of traversing p' from i, to ji, and the cost of traversing all of p; from j;. Hence, by linearity of
expectation and the fact that the costs are nonnegative and symmetric, we can bound from above
the expected service cost for j by

Cpj + Cpr g + G < Uj + 05, + 8, < 205 + ¢, (13)
where the first inequality follows from Lemma 1, and the second inequality follows from the fact
that the choice of client j; ensures that ¢;, +v;, < ¢; + 0.

If we combine the expressions (11)—(13), then we conclude that the total expected cost for all
clusters in C is bounded by

k k
SO Faln A€ +20) =2 0+ > > fuli+ Y D CpiTpj = 3zLp-

=1 4,€F! JjED JjED =1 4,€F! JED pEP

The running time of the algorithm is dominated by the time required to solve the linear program-
ming relaxation and its dual. As noted above, these linear programs can be solved in polynomial
time by the ellipsoid algorithm. |

Derandomizing the algorithm. Since the expected cost of cluster C; created in iteration ¢ by
the algorithm Random Path is bounded by

k
DY fala + Y (@ +20y), (14)

I=1 j,cF} JET



there must exist a path in p, € P, such that the cost of cluster C; obtained by choosing path pj is no
more than the bound on the expected cost (14). Hence, in a derandomized version of our algorithm,
we can choose any path in iteration ¢ that yields a cost of cluster C; that is less than or equal to
the bound (14). One specific possibility is to evaluate the cluster cost for each path in P;, and take
the path that yields the minimum cost. If, for example, we assume that the solution (Z,) is an
extreme point solution of this linear program, then the number of positive variables z,; is at most
the number of constraints in this linear program. Thus, there are only a polynomial number of paths
to consider in each iteration.

Theorem 3 The derandomized version of Random Path is a 3-approximation algorithm.

4 Discussion

An interesting open question is whether the techniques used by Chudak & Shmoys to improve the
performance guarantee for the 1-level problem can be extended to the k-level problem as well. In our
algorithm, as well as in the algorithm of Shmoys, Tardos & Aardal [12], the value of the fixed costs of
the integer feasible solution does not increase, compared to the linear programming solution, so the
increase in total cost over zrp is all due to the bound on the service cost. Chudak & Shmoys gave a
more refined rounding procedure so that the service cost and the facility cost are better balanced.

A related question is to obtain a tight bound on the duality gap, the worst-case ratio between the
integer and fractional optimal values, for the k-level problem (and also the 1-level problem), given
different assumptions on the objective function.

It would also be interesting to investigate how our algorithm performs in practice. The most
substantial obstacle is the solution of the linear programming relaxation, but it would be interesting
to see if a cutting-plane approach to solving the dual linear program (and hence the primal) would
be possible with reasonable computation times. Such an approach might be further enhanced by
preprocessing the input to reflect the fact that most (expensive) paths are unlikely to be used in an
optimal primal solution. This approach has been successful, for example, in computational work on
the traveling salesman problem, where one typically includes only the ten shortest edges from each
vertex of the underlying graph in the initial formulation. Once this initial linear program has been
solved to optimality, one can compute the reduced cost of every excluded variable to verify whether
the current solution is optimal with respect to the complete set of variables.
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