Non-Redundant Genetic Coding of Neural Networks

Dirk Thierens
Department of Computer Science
Utrecht University
PO Box 80089, 3508 TB Utrecht
The Netherlands
dirk.thierens@cs.ruu.nl

Abstract

Feedforward neural networks have a number of func-
tional equivalent symmetries that make them difficult
to optimise with genetic recombination operators. Al-
though this problem has received considerable attention
in the past, the proposed solutions have all a heuris-
tic nature. Here we discuss a neural network genotype
representation that completely eliminates the functional
redundancies by transforming each neural network to
its canonical form. This transformation is computation-
ally extremely simple since it only requires flipping the
sign of some of the weights, followed by sorting the hid-
den neurons according to their bias. We have compared
the redundant and the non-redundant representation on
the basis of their crossover correlation coefficient. As
expected the redundancy elimination results in a much
higher crossover correlation coefficient, which shows that
more information is now transmitted from the parents
to the children. Finally, experimental results are given
for the two spirals classification problem.

1 Introduction

Several authors have shown that single hidden layer feed-
forward neural networks are universal approximators for
any continuous mapping. Unfortunately these existence
proofs give very little guidance on how to construct a
good network for a specific problem. The network design
problem can be decomposed into two subtasks. First we
have the problem of network architecture: how many
hidden layers do we need, how many neurons should we
use in each hidden layer, and what connectivity will give
us an optimal performance? Second we have the prob-
lem of weight determination: how do we determine the
connection weights once we have chosen a particular net-
work topology?

The network design problem can easily be defined as
an optimisation problem, and therefore one can use a
genetic algorithm to try to solve it. Using a GA requires

to define a genotype coding of neural networks: unfor-
tunately the existence of a structural-functional redun-
dancy in the neural network representation hampers the
application of the genetic recombination operators. This
problem has also been called the competing conventions
problem (Schaffer, Whitley & Eshelman, 1992).

Several authors have recognised this redundancy prob-
lem but the proposed solutions have either a heuristic
nature (Hancock, 1992; Radcliffe, 1993; Thierens et al.,
1993), or they have severely reduced and even elimi-
nated the role of crossover in the genetic algorithm (de
Garis, 1990; Parisi, Cecconi & Nolfi, 1990; Whitley et al.,
1990), or the problem is just ignored (Maniezzzo, 1994),
or finally claims have been made that the genetic algo-
rithm is not suited for searching the weight space and one
should use evolutionary programming techniques since
they only use mutation (Fogel, Fogel & Porto, 1990; An-
geline, Saunders & Pollack, 1994).

In this paper we give a simple non-heuristic proce-
dure to transform multi-layer perceptrons such that the
structural-functional redundancy problem is eliminated.
Section 2 reviews the representational redundancy issue.
Section 3 discusses the actual neural network transfor-
mation. Section 4 compares the redundant and non-
redundant coding by computing their crossover correla-
tion coefficients and their performance on the two spirals
classification problem.

2 Background

The functional mapping implemented by a multi-layer
perceptron is not unique to one specific set of weights.
For a network with a single hidden layer, the map-
ping from the m-dimensional input vector X to the p-
dimensional output vector Y is defined as (using the hy-
perbolic tangent tanh as transfer function):

Y = tanh(Wtanh(VX))

where Vis the (n,m)-dimensional matrix of weights from
the input layer to the hidden layer, and W the (p,n)-
dimensional matrix of weights from the hidden layer to
the layer.

Obviously we can generate a number of structurally
different neural nets that have the same input-output
mapping. What characterises these networks is that
they all are a member of a finite group of symmetries
defined by two transformations. (Sussmann,1992; Chen,
Lu, & Hecht-Nielsen, 1993). Any member of this group
can be constructed from any other member by a se-
quence of these transformations. The first transforma-
tion is a permutation of hidden neurons. Interchanging
the hidden neurons including their incoming and outgo-
ing connection weights does not change the functional
mapping of the network. The second transformation
is obtained by flipping the weight signs of the incom-
ing and outgoing connection weights of a hidden neu-
ron. Since tanh is an odd symmetric function this sign
flipping leaves the overall network mapping unchanged.

For a network with a single hidden layer of n neu-
rons there are a total of n! permutations. Similarly we
can choose any combination of the n hidden neurons to
flip their weight signs so there are Y . (1) = 2" struc-
turally different but functionally identical networks gen-
erated by this transformation. Since the two transforma-
tions are independent of each other, there are a total of
2"n! functional equivalent but structurally different net-
works. In (Sussmann, 1992; Chen, Lu, & Hecht-Nielsen,
1993) it is proven that all the functionally equivalent
neural networks are compositions of hidden node per-
mutations and sign flips.

For the traditional local weight optimisation algo-
rithms this redundancy poses no problem since they
only look in the immediate neighbourhood of the cur-
rent point of the search space. Global optimisation
algorithms however will try to explore the whole con-
nection weight search space and this is a factor 2"n!
bigger than it really ought to be. For the genetic al-
gorithm the problem is not only one of scale but also
of crossover efficiency: functional equivalent near op-
timal networks often give rise to totally inappropriate
networks after straightforward recombination because
their weight structure is only equivalent up to a certain
amount of transformations.

In the next section we give a simple non-heuristic pro-
cedure to transform multi-layer perceptrons such that
the structural-functional redundancy problem is elimi-
nated.

3 Non-redundant genetic coding

In the previous section we have seen that all functional
equivalent multi-layer perceptrons form a finite group of
networks that can be transformed into each other by a
composition of hidden node permutations and sign flips.
The functional redundancies can thus be eliminated if we
transform each neural network to a canonical form that
has a unique representation in each functional equiva-
lence class. This non-redundant representation can be
achieved in a number of ways. For instance to elimi-
nate the hidden node redundancy we can simply flip the
signs of the bias weight, the incoming and the outgoing
weights of each hidden neuron whenever the number of
positive incoming and outgoing weights of a neuron in
the hidden layer is less than the number of negative in-
coming and outgoing weights. Alternatively, we might
flip the signs whenever the bias weight is negative, so
only hidden neurons with a positive bias are allowed in
the non-redundant neural network representation, thus
reducing the 2" functional equivalent neural networks
to just one representative of the group. Because of its
extreme simplicity we will use the last approach here.

The second redundancy can be found at the level of
each hidden layer and is caused by the permutation of
the hidden nodes in each layer. To eliminate this redun-
dancy we rearrange all hidden neurons in each layer such
that the bias weights are sorted in ascending order. This
way the n! functional equivalent networks are eliminated
and since the sort process does not interfere with the pre-
vious sign flipping all the 2"n! equivalent networks are
transformed to a single group representative.

The genotype-phenotype mapping is now a one-to-one
mapping: each neural network within a functional equiv-
alence class has now one unique genotype. These unique
genotypes can now be recombined by the crossover oper-
ator since the competing conventions problem has been
eliminated. To summarise, the following transforma-
tions are made to each neural network before they are
recombined:

Neural network transformation:

1. V hidden neurons:
if (bias < 0)
flip signs of each node weight
2. V hidden layer:
sort neurons in increasing bias order

4 r IS °
< o
IS
. .o, °
IS + .
+ + °
° N °
2 + o°0 ° o N ©
o N ° +
+ ° AR ° °
+
° " o o *, o +
o i v
> 0 0
T
+ ° °
° O + +
+ + 0°<>Qo 4 + °
° + + +
. N L °
2 o LU R R
. o °
LN L e +
+ ° N
+ +
4 * + +
. .

Figure 1: Training data for the two spirals classification
problem.

4 Computational results

4.1 Two spirals classification problem

Since the number of functional equivalent neural net-
works is equal to 2™n! for n hidden neurons, the effect of
the representational redundancy on the genetic search
will be more pronounced when the number of hidden
neurons is high. We have tested the non-redundant geno-
type on the well known two spirals classification prob-
lem. The task is to learn to discriminate between two
sets of training points which lie on two intertwined spi-
rals in the x-y plane (see Figure 1). This is especially
demanding for neural networks with non-local transfer
functions such as multi-layer perceptrons, and requires
a relatively large number of hidden neurons.

Elimination of the structural redundancies from the
genotype representation ensures that the crossover oper-
ator transmits more information from the parent strings
to the offspring. This information preservation can be
quantified by comparing the crossover correlation coef-
ficient for the redundant and non-redundant genotype
coding.

In the next paragraph we compute the crossover cor-
relation coefficient on the two spirals problem, and in
Section 4.3 we look at the effect of the redundancy elim-
ination on the actual neural network training process.

4.2 Crossover correlation coefficient

The crossover correlation coefficient is a statistical fea-
ture expressing how correlated the fitness landscape ap-
pears to the crossover operator (Manderick, de Weger,
& Spiessens, 1991). The fitness landscape is defined by
the combination of the fitness function and the specific
genotype coding. The idea is that the more correlated a
landscape appears to be for a specific operator the more
efficient the GA search will be because the higher the

correlation coefficient the more information is transmit-
ted from the parents to the children.

To calculate the crossover correlation coefficient px
one randomly generates a large number of parents, ap-
plies the crossover operator to obtain the offspring and
computes the correlation coefficient as:

cov(Fy,)
o(Fy)o(F,)

where F}, and F, are respectively the random variables
representing the mean fitness of each parent and off-
spring pair, cov(Fy, F¢) is the covariance between F), and
F,, and o(F},) and o(F,) are the standard deviations.

pX(FIhFC):

Previous studies used the crossover correlation coeffi-
cient to compare different crossover operators for a given
genotype coding (Manderick, de Weger & Spiessens,
1991; Mathias & Whitley, 1992). Here we take the oppo-
site approach: instead of comparing different crossover
operators, we fix the crossover operator and compare
the genotype representation. We have used one-point
crossover that is restricted to exchange complete hidden
neurons (see below). Since the fitness landscape is deter-
mined by the combination of the fitness function and the
specific genotype coding, the crossover correlation coef-
ficient px can also be used to see how well the crossover
operator can transmit information from parents to off-
spring for different genotype codings.

Table 1 shows the crossover correlation coefficient px
of the redundant and the non-redundant genotype cod-
ing for two different neural network topologies: the first
has one hidden layer with 15 hidden neurons, while the
second has two hidden layers, respectively with 15 and
5 hidden layers.

The crossover correlation coefficient is computed by
recombining 2500 randomly generated parent pairs. The
same parents and the same crosspoint is taken for
the two network representations, the only difference is
that for the non-redundant genotype the parents are
first transformed into non-redundant form before being
crossed. Clearly the crossover correlation coefficient px
for the non-redundant neural network representation is
much higher, indicating that crossover transmits much
more information from the parents to the children, and
thus will lead to a more efficient GA search.

4.3 Hybrid GA+BPX algorithm

Comparing the crossover correlation coefficients of the
redundant and non-redundant coding shows that by
eliminating the structural redundancies from the geno-
type representation, the recombination of neural net-
works becomes more efficient.

| NNs | redundant | non-redundant |
2-15-1 0.456 0.892
2-15-5-1 0.598 0.903

Table 1: Crossover correlation coefficient px for the re-
dundant and non-redundant neural network genotype
representation. Results are computed for networks with
one hidden layer of 15 neurons, and for two hidden layers
with respectively 15 and 10 hidden neurons.

To see the effect on the actual learning process we
have tested both genotype codings with a hybrid genetic-
backpropagation algorithm. Genetic algorithms work
well when meaningful substructures can be recombined
by the crossover operator. For neural networks these
meaningful substructures are formed by the hidden neu-
rons, so we restrict crossover to exchange only the in-
coming weights and bias of each neuron as a whole. The
incoming weights and bias of each neuron thus cannot be
separated by the crossover operator. This way the hy-
brid GA+BPX algorithm decomposes the optimisation
task into two subtasks: a combinatorial search of en-
tire hidden neurons by the genetic algorithm and a local
gradient search of the neuron’s weights by the backprop-
agation algorithm.

4.3.1 Elitist recombination GA

The specific GA implementation used is the elitist re-
combination GA because it is ideally suited for hybrid
GA algorithms and it has the same selective pressure as
the well known tournament selection scheme (Thierens
& Goldberg, 1994). The elitist recombination GA inter-
twines the selection and recombination phase by holding
a competition between the mating parents and their off-
spring. This local elitist mechanism ensures that popu-
lation members can only be replaced by better solutions,
and since strings are not copied by a separate selection
process there is no danger of premature convergence as is
the case with some of the more traditional elitist strate-
gies.

Elitist Recombination GA:

1. initialise population
2. V generation
(a) randomly shuffle population
(b) V mating pair:
e generate two offspring

¢ keep best two of the four
individuals

The elitist recombination GA allows us to integrate
the local search algorithm in an elegant way. Every gen-
eration the population members are locally optimised for
a few steps, and are then recombined to generate new
offspring. Before the children compete with the parents
to enter the population they also are locally optimised.
Due to the elitism the local search is automatically fo-
cused on the current best solutions: good solutions are
generally harder to replace by the children and will re-
main in the population for a number of generations thus
receiving more local optimisation steps. Bad solutions
are replaced very quickly so no expensive gradient search
is wasted on them. In the worst case the problem, its
coding and the crossover operator are totally incompat-
ible, so recombination and the subsequently local search
never produce any children better than their parents. As
a result no new solutions will ever enter the population
and the hybrid algorithm reduces to a multistarted local
search algorithm where the starting points are simply
the initial random population.

4.3.2 Accelerated backpropagation

The weight gradient optimisation is done using the ac-
celerated backpropagation algorithm (BPX) which uses
a momentum and adaptive learning rate (Vogl, Mangis,
Rigler, Zink & Alkon, 1988). The parameters were set
to their default value (momentum = 0.9, initial learning
rate = 0.01, learning rate increase factor = 1.05, learn-
ing rate decrease factor = 0.7 and maximum error ratio
= 1.04). The neurons had a hyperbolic tangent trans-
fer function and were initialised by the Nguyen-Widrow
procedure which places the linear part of the hyperbolic
tangent function within the input space region where
training data are present (Nguyen & Widrow, 1990).

4.3.3 Experimental results

To test the non-redundant neural network representa-
tion we compare it with the redundant representation
starting from the same initial population of 30 neural
networks. At each generation the parents are optimised
by the accelerated backpropagation algorithm for 100
epochs and the children for 200 epochs.

Figure 2 plots the sum-squared error (SSE) of the best
and mean performing neural network in the population
at each generation. As expected from the crossover cor-
relation measurements training is faster when using the
non-redundant genotype representation: for instance af-
ter 25 generations the error of the best network in the
non-redundant population is more than 10 times lower
than the error of the best redundant neural net. A simi-
lar observation is made for the population average error.

These experimental results are of course very limited.

best non-redundant -+--
best redundant -+

mean non-redundant

mean redundant -

100 -

10 ¢

SSE

.
o,
+.
.
o
-y

0.1 ¢ “q\

>
0,
®eo00,

‘Meaeo@eww
0.01 LS

0 5 10 15 20 25 30 35 40 45 50
generations

Figure 2: Sum-squared error of the best and the mean
performing neural network in the population at each gen-
eration when solving the two spirals classification prob-
lem with the hybrid GA+BPX algorithm.

In future work we plan to do a more fully experimental
analysis for the two-spirals problem and other bench-
mark problems. In addition it is important to study the
effect that the local gradient search has in the overall
optimisation task.

5 Conclusion

Feedforward neural networks have a number of func-
tional equivalent symmetries that make them difficult to
optimise with genetic recombination operators. We have
shown how neural networks can be coded such that the
functional redundancies are completely eliminated. The
genotype coding is obtained by transforming the net-
works to their canonical form. This transformation is
computationally extremely simple since it only requires
flipping the sign of some of the weights, followed by sort-
ing the hidden neurons according to their bias. We have
compared the redundant and the non-redundant repre-
sentation on the basis of their crossover correlation coef-
ficient. As expected the redundancy elimination results
in a much higher crossover correlation coefficient, which
shows that more information is now transmitted from
the parents to the children.

References

1. Angeline P., Saunders G. & Pollack J., An Evolutionary
Algorithm that Constructs Recurrent Neural Networks.
IEEFE Transactions on Neural Networks, Vol. 5, No. 1
pp-54-65, 1994.

2. Chen A., Lu H. & Hecht-Nielsen R., On the Geometry
of Feedforward Neural Network Error Surfaces. Neural
Computation, Vol.5 pp.910-927, 1993.

10.

11.

12.

13.

14.

15.

16.

17.

. de Garis H. Genetic Programming: modular neural evo-

lution for Darwin machines. Proceedings of Interna-
tional Joint Conference of Neural Networks. 1990.

. Fogel D.B, Fogel L.J. & Porto V.W., Evolving neural

networks. Biological Cybernetics, Vol. 63, 1990.

. Hancock P., Recombination Operators for the Design

of Neural Nets by Genetic Algorithm. Parallel Problem
Solving from Nature PPSN-II. eds. R. Maénner & B.
Manderick. pp.441-450. North-Holland, 1992.

. Manderick B., de Weger M. & Spiessens P., The Ge-

netic Algorithm and the Structure of the Fitness Land-
scape. Proceedings of the Fourth International Con-
ference on Genetic Algorithms. eds. R. Belew & L.
Booker. pp.143-150. Morgan Kaufmann, 1991.

. Maniezzzo V. Genetic Evolution of the Topology and

Weight Distribution of Neural Networks. IEEE Trans-
actions on Neural Networks Vol. 5, No. 1, 1994.

. Mathias K. & Whitley D., Genetic Operators, the Fit-

ness Landscape and the Traveling Salesman Problem.
Parallel Problem Solving from Nature PPSN-II. eds. R.
Maéanner & B. Manderick. North-Holland, 1992.

. Nguyen D. & Widrow B., Improving the learning speed

of 2-layer neural networks by choosing initial values of
the adaptive weights. Proceedings of the International
Joint Conference of Neural Networks, Vol3 1990.

Parisi D., Cecconi F. & Nolfi S., Econets: neural net-
works that learn in an environment. Network 1 pp.149-
168, 1990.

Radcliffe N., Genetic set recombination and its appli-
cation to neural network topology optimisation. Neural
Computing and Applications, Vol.1 pp.67-90, 1993.

Schaffer J.D., Whitley L.D. & Eshelman L.J, Combi-
nations of genetic algorithms and neural networks: A
survey of the state of the art. Proceedings of COGANN-
92 International Workshop on Combinations of Genetic
Algorithms and Neural Networks eds. L.D. Whitley and
J.D. Schaffer. IEEE Computer Society Press, 1992.

Sussmann H.J.; Uniqueness of the Weights for Mini-
mal Feedforward Nets with a Given Input-Output Map.
Neural Networks, Vol.5 pp.589-593, 1992.

Thierens,D. & Goldberg,D.E., Elitist Recombination:
an integrated selection recombination GA. Proceedings
of the IEEE World Congress on Computational Intelli-
gence, Vol.1 pp.508-512, 1994.

Thierens D., Suykens J., Vandewalle J., & De Moor B.,
Genetic Weight Optimization of a Feedforward Neural
Network Controller. Proceedings International Confer-
ence on Artificial Neural Networks and Genetic Algo-
rithms. eds. Albrecht R., Reeves C., & Steele N. pp.658-
663. Springer-Verlag, 1993.

Vogl T.P., Mangis J.K., Rigler A.K., Zink W.T. & Alkon
D.L., Accelerating the Convergence of the Backpropa-
gation Method. Biological Cybernetics Vol.59, 1988.

Whitley L.D., Starkweather T. & Bogart C., Genetic Al-
gorithms and Neural Networks: optimizing connections
and connectivity. Parallel Computing Vol.14, 1990.

