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Abstract

Selection algorithms used in evolutionary
computation can be characterized according
to two features: pure versus elitist selec-
tion schemes, and generational versus steady-
state selection schemes. Recently the con-
cept of selection intensity has been shown to
be a convenient quantitative measure of the
selection pressure of pure generational repro-
duction methods. Here we will discuss how
this measure can also be used for elitist and
steady-state selection mechanisms. A second
goal of the paper is to generalise the Elitist
Recombination genetic algorithm such that
its selective pressure can be tuned, and to
compute the selection intensity of the pro-
posed method. Finally we conclude by com-
puting the selection intensity of a reproduc-
tive scheme where both fitness biased par-
ent selection and fitness biased replacement
is used.

1 INTRODUCTION

All search algorithms can be characterized by the
way they handle the so-called exploitation-exploration
tradeoff. Exploitation refers to the tendency of the al-
gorithm to steer its search direction by the information
it has obtained in previous steps, while exploration in-
dicates how and how much search will be dedicated to
new, unexplored parts of the search space. In evolu-
tionary search algorithms the exploitation of accumu-
lated information is done by the selection mechanism,
while the exploration of new regions of the search space
is accounted for by the variation operators, namely
crossover and mutation. The tradeoff between ex-
ploitation and exploration is mainly determined by the

selective pressure or the relative proportion of indi-
viduals that are selected from the pool of individuals
created by the variation operators. This selective pres-
sure can conveniently be quantified by computing the
selection intensity of the selection mechanism.

The exploitation-exploration balance is also influenced
by the way the selection phase and the variation phase
are connected. In the standard genetic algorithm the
two phases are completely independent of each other:
selection picks out the better individuals and varia-
tion creates new offspring from them. There is no
competition between the parents and the children so
the offspring replaces the parents irrespective of their
fitness values, and all individuals have a life time of
exactly one generation. In contrast to this pure se-
lection scheme there is also the elitist selection scheme
where the offspring have to compete with their parents
to gain admission to the new population. One advan-
tage of the elitist scheme is that good solutions once
found are never lost unless even better solutions are
created. In the pure selection scheme the parents are
always thrown away, so there is a distinct possibility
that valuable information is lost.

This paper is organized as follows. In the next section
we review the selection intensity concept and discuss
its use in elitist and steady-state genetic algorithms.
We also give a short review of the theory of order
statistics. Section 3 presents the generalised version
of the Elitist Recombination GA, and computes its se-
lection intensity when implemented as a generational
and as a steady-state algorithm. Section 4 shows the
computation of the selection intensity for a replace-
ment based strategy.



2 BACKGROUND

2.1 SELECTION INTENSITY

A convenient way to quantify the selection pressure of
a selection scheme is by computing its selection inten-
sity I. This concept originates from the field of quan-
titative genetics (Bulmer, 1985; Falconer, 1989), and
has been introduced into the evolutionary computation
community by Miihlenbein and Schlierkamp-Voosen
(1993) who computed the selection intensity for trun-
cation (or (i, A)) selection. The selection intensity for
tournament selection (with tournament size s = 2) was
calculated by Thierens and Goldberg (1994b), and im-
portant generalizations were made by Béck (1995) and
by Miller and Goldberg (1995) using the theory of or-
der statistics. Blickle and Thiele (1995) derived the
selection intensity for linear and exponential ranking.

Quantitative genetics studies the inheritance of those
differences between individuals that are quantitative
rather than qualitative. Quantitative differences have
a continuous nature such as the height or the weight of
the human body, whereas qualitative variation is mea-
sured in discrete units or categories such as eye color or
blood type. To characterize the evolution of the quan-
titative differences the following concepts are defined.
The selection progress or response to selection R(t) is
defined as the difference between the mean fitness of
the population at generation ¢ + 1 and the population
mean fitness at generation ¢. The selection differential
S(t) is the difference between the mean fitness of the
parent population at generation ¢ and the population
mean fitness at generation t. Assuming that the pop-
ulation fitness is normally distributed N(f,0?) we can
scale the selection differential by the standard devia-
tion o (t). This scaled selection differential is called the
selection intensity I(t) and is dimensionless since the
standard deviation has the units in which the selection
response is expressed:
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Standardizing the normal distribution (f = 0,0 = 1)
shows that the selection intensity I is simply the ex-
pected average fitness of the population after applying
the selection scheme to a population with standard-
ized normal distributed fitness (N (0,1)). The relation
between the response to selection R and the selection
differential S is given by the heritability h2:

R(t) = h?S(1),

or

R(t) = W*a(t)I(2).

For generational selection schemes the selection inten-
sity I can immediately be used to quantify the selective
pressure. However for steady-state and elitist selection
schemes we need to be more precise:

1. In a steady-state GA the offspring of two selected
parents are immediately placed into the popula-
tion. Strictly speaking we cannot apply the selec-
tion intensity concept because there is no popula-
tion of selected parents where we can calculate the
population mean fitness increase. To make com-
parisons with the generational schemes meaning-
ful we define the selection intensity I for steady-
state selection schemes as the expected average
fitness of the population (of size n) after n chil-
dren have been generated (this is after n/2 mat-
ings) starting from a population with standard-
ized normal distributed fitness (N (0, 1)).

2. In elitist selection schemes the offspring competes
with the parents to be included in the next gen-
eration (or in the current population for an eli-
tist steady-state algorithm). Because of this in-
tertwining of parents and children we can only
measure the response to selection R and not the
selection differential S or the selection intensity
I. If however the heritability factor A2 is 1 then
R and S are equal and the selection intensity I
can now easily be computed and measured. A
straightforward way to make the heritability fac-
tor h? equal to 1 is simply to take a copy of the
parents as children.

With these additional assumptions we can calculate
the selection intensity for steady-state and elitist se-
lection schemes. In the next section we will first give
a short review of the theory of order statistics.

2.2 ORDER STATISTICS

The theory of order statistics describes the statistical
properties of a set of random variables that are or-
dered according to their value. Since most selection
schemes are based on the relative order of the individ-
uals according to their fitness value, order statistics is
a very useful analytical tool in evolutionary computa-
tion (Back, 1995a, 1995b; Miller & Goldberg, 1995).

Assume we take a random sample of size n of a pop-
ulation with a certain distribution probability, and we
sort the sample in increasing order of magnitude:
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The ith order statistic is the random variable X;.,, that
represents the distribution of the corresponding value



Zin- The probability density function p;.,(x) of the
ith order statistic X;.,, gives the probability that the
1th ranked individual of a sample of size n will have a
value equal to z. Call P(z) the cumulative distribution
function of z. Then the probability density function
Pin(x) is given by:

pinte) =1

n—1
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which is the probability that one particular sample has
value x (= p(z)), times the probability that from the
remaining n— 1 samples exactly i —1 have a value lower
than or equal to z, or (7)) P(z)i! (1 — P(z))",
times the number of samples n. The expected value
u;., Of the ith order statistic X;., is thus:
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Since the selection intensity is defined by applying the
selection procedure on a population with standardized
normal distributed fitness N(0,1), we need to com-
pute the order statistics for this case. The probability
density function p(z) becomes
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and the cumulative distribution P(x) is

(z) = /_ Oo 6(2)da.

The probability density function p;.,(z) of the ith or-
der statistic X;.,, is thus given by:

n—1
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while the expected value u;.,, of the ith order statistic
becomes:
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3 ELITIST RECOMBINATION

3.1 ELITIST RECOMBINATION GA

Elitist Recombination is an evolutionary algorithm
where the children compete with their parents to be

included in the next population (Thierens & Goldberg,
1994a). There is no separate selection and recombina-
tion phase but only a competition in each family, which
typically consist of two mating parents and their two
offspring®. The best two of each family survive and are
included in the next population. A number of advan-
tages of elitist recombination can be noted (Thierens
& Goldberg, 1994a; van Kemenade et al., 1996). First,
good solutions are never lost during the search process.
Second, elitist recombination is less sensitive to un-
dersized populations than tournament selection with
standard recombination. For a tournament size s = 2
the selection intensity of both mechanisms is never-
theless the same. Third, there is no need to choose a
particular value for the crossover probability p.. Off-
spring can only replace their parents when they are fit-
ter so choosing p. = 1 has no deleterious effect on the
growth of building blocks. Fourth, elitist recombina-
tion is extremely simple to implement and well suited
for parallel GA implementations. Finally, elitist re-
combination is ideal to be used in hybrid GAs where
the genetic algorithm’s global search is combined with
the local search approach of more classical optimiza-
tion algorithms to obtain the best of both worlds.

The concept of holding a competition between the par-
ents and their offspring has appeared in a number of
papers although quite interestingly the reason for in-
troducing this family competition has been different
in each case. Mahfoud (1992) proposed an algorithm
called deterministic crowding where a parent competes
with his most similar child according to a genotypic
(or phenotypic) distance measure. This resulted in a
crowding algorithm with little stochastic replacement
errors. In latter work he also made use of the family
competition approach to design a genetic algorithm
that incorporated the principles of simulated anneal-
ing by holding the parent-child competition according
to the Metropolis acceptance criterium (Mahfoud &
Goldberg, 1992; Mahfoud & Goldberg, 1995).

Culberson (1993) proposed the Genetic Invariance Ge-
netic Algorithm (GIGA) where the pair of children
competes with the parent pair. By replacing both par-
ents by their offspring, the number of alleles in the
population remains constant.

Finally Altenberg (1994) suggests upward-mobility se-
lection where a recombinant offspring is only placed in
the population when it is fitter than its parents. Al-
tenberg’s aim is “to put deleterious and near-neutral

'Note that it is straightforward to use Elitist Recombi-
nation with multiparent recombination. With g-ary recom-
bination q offspring are created and the family competition
is now held between the q parents and q children.



recombinations on an equal footing, thus preventing
the proliferation of code that trades-off its evolvability
value for an ability not to produce deleterious effects”.
Upward-mobility selection and Elitist Recombination
are basically equivalent implementations of the family
elitism idea.

In this paper we would like to generalise the Elitist
Recombination GA so that its selective pressure can
be tuned. Although one could immediately propose a
number of mechanisms to obtain an increased selection
pressure, care has to be taken in order to preserve the
characteristics of the algorithm:

e First, we need to preserve the family elitism: the
children have to compete directly with their par-
ents.

e Second, it should be impossible for individuals to
make copies of themselves. Consequently we can-
not increase the selective pressure by interchang-
ing regular tournament selection with elitist re-
combination.

e Third, every individual should have a reasonable
chance of becoming selected as parent, because
this is the only way that they can be replaced by
a better individual. As a result we cannot increase
the selection pressure by biasing the parent selec-
tion according to their fitness. The higher the
selective pressure the less probable it would be-
come that weak individuals are selected, so they
only rarely have to compete to stay in the popu-
lation. This would mean that we have virtually
reduced the population size.

In accordance with the above constraints we propose
to generalise the Elitist Recombination GA as follows:
the first parent is selected according to its fitness by
holding a tournament of size s and picking the best
individual; the second parent is simply chosen at ran-
dom. In the next section we will compute the selection
intensity of this generalised Elitist Recombination GA.

3.2 SELECTION INTENSITY

The generalised Elitist Recombination algorithm se-
lects one parent at random while the other parent is
selected according to its fitness. This biased selection
is done by holding a tournament between s randomly
chosen individuals. The most fit within the tourna-
ment becomes the fitness biased parent and gets mated
with the randomly chosen parent. The winners of the
family competition go to the next generation when us-
ing a generational scheme, or they are placed in the

current population when using a steady-state scheme.
First we will compute the selection intensity for the
generational scheme.

3.2.1 Generational Elitist Recombination

To compute the selection intensity we need to calculate
the expected fitness value of the parents. The best fit
parent is the one with the highest fitness of the s indi-
viduals in the tournament plus the randomly selected
parent. Since the tournament members are also ran-
domly selected, the expected value of the fittest parent
is the (s + 1)** order statistic of the random sample of
size s + 1, or fs41:5+1. Recalling our assumption that
the two children are just copies of the two parents it is
obvious that the two best of the family are the fittest
parent and its copy.

The generational Elitist Recombination scheme places
these two individuals into the next generation and then
repeats the process until the entire next population is
complete. The expected population mean fitness in-
crease is thus pi541.541 which is also the selection inten-
sity I because the standard deviation of our starting
population is 1:

I= Ms+1:541

In table 1 we have shown the selection intensity I for
different tournament sizes s.

Table 1: Selection intensity I for different tournament
sizes s of generational Elitist Recombination

s 1 2 3 4 5
I]056 0.85 1.03 1.16 1.27

3.2.2 Steady-state Elitist Recombination

Contrary to the generational method, the steady-state
Elitist Recombination scheme replaces the winners of
the family competition immediately back into the pop-
ulation. The two parents are thus replaced by the two
winning individuals. As in the generational scheme
the two winners will be the fittest parent and its child
copy, so the algorithm reduces to replacing the least
fit parent by a copy of the best parent. This replace-
ment will increase the population mean fitness with
(tn — ) /n where pp (1) is the expected fitness value
of the best (least) fit parent and n the population size.

Recall that the selection intensity for steady-state
schemes was defined as the population mean fitness
increase after n children have been generated, so the
selection intensity of the steady-state Elitist Recombi-



nation algorithm becomes:
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As explained in the above section the expected value
of the best parent is simply:

Mh = Hs+1:s+1-

To compute the expected value of the least fit parent
we need to calculate the probability density function
of the least fit parent:

pi(x) = (@) (1 = Ps:5(2)) + ps:s(2) (1 — ().

The first term computes the probability that the least
fit parent is the randomly selected parent. The prob-
ability that the randomly selected parent has a fit-
ness value x is ¢(z) since the population has a stan-
dard normalized fitness distribution. The probability
that the fitness biased parent - this is the winner of
the tournament - has a fitness value higher than z is
1 — Ps.4(x), with Ps.4(x) the cumulative distribution
function of the sy, order statistic of a random sample
of size s. The probability density function of the sy
order statistic is

Ps:s(w) = 58(2)° ' §(2)

so the cumulative distribution Ps.s(z) becomes

Pya(z) = / " o (@)
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The second term in the probability density function of
the least fit parent expresses the probability that the
least fit parent is the fitness biased parent or the win-
ner of the tournament. The probability that the win-
ner of the tournament has a fitness value z is pg.5(x),
and the probability that the randomly selected parent
has a fitness value higher than z is 1 — ®(z), with ®(z)
the cumulative distribution function of standard nor-
mal distribution. Integrating the probability density
function p;(x) gives us the expected value of the least
fit parent:

“+oo
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In table 2 we compute the selection intensity values
for a number of tournament sizes by numerically inte-
grating the above equations.

Table 3 compares the computed selection intensities
with their experimental value. The experimental val-
ues are obtained from measuring the fitness increase on

Table 2: Selection intensity I for different tournament
sizes s of Steady-state Elitist Recombination

S| Hh I

-0.56 0.56 0.56
-0.28 0.85 0.56
-0.18 1.03 0.61
-0.13 1.16 0.65
-0.10 1.27 0.69

U W N =

the bit-counting (or one-max) problem with a string
length [ = 50 and a population size n = 500. The
selection intensity I is then:
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with p(t) the proportion of 1-bits. For the generational
case the fitness increase Af is measured between the
random initialized population and the first generation.
In the steady-state case the fitness increase A f is taken
after n offspring are generated. Results are averaged
over 50 runs.

Table 3: Selection intensity I and the experimental
value for generational and steady-state Elitist Recom-
bination

exrp erp
Ige" Igen Isteady Isteady

0.56 0.57 | 0.56 0.56
0.85 0.85 | 0.56 0.56
1.03 102 | 0.61 0.59

1.16 1.16 | 0.65 0.65
1.27 127 | 0.69 0.68
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4 SELECTION BY REPLACEMENT

The selection pressure is typically tuned by a fitness
biased selection of the parents. An alternative is to
tune the selective pressure by a fitness biased selec-
tion of the individuals that should be replaced. Exam-
ples of GAs with a replacement strategy are Genitor
(Whitley,1989), Syswerda’s GA (Syswerda, 1991), Es-
helman’s CHC (Eshelman, 1991) and (u + \) (Bick,
1991). The first two are steady-state implementations
while the latter two are generational.

To illustrate the modeling of selection intensity for re-
placement strategies we consider a rather general and
easy to tune selection scheme that combines the fitness



biased parent selection with the fitness biased replace-
ment. The algorithm chooses s individuals at random
from the population, selects the best two individuals
from this set as parents, generates two children, and let
them compete with the two worst of the tournament.

Applying the order statistics formula from section 2
it becomes straightforward to compute the selection
intensity. First we calculate the probability density
function of the best, second best, worst, and second
worst individuals in a sample of size s:

Ps:s(z) = 3(I>(.:l:)s_1¢(:1:),
Ps—1:5(z) = 5(s — 1)@(2)°7*(1 — &(2))h(2),
prs(@) = s(1 - @(x))"  (z),
and
P2:s(@) = 5(s = 1)@(2) (1 — &(2)) " $(2).
while their expected value is given by

uva=s [ T 8@ g(a)da,
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Note that since 1 — ®(z) = ®(—=z) and ¢(z) = ¢(—=x)
we have

Uj:s = —Ug—j41:s

Uy:s = —Us:s
U2:s = —Us—1:5 .

or

To calculate the selection intensity we have to distin-
guish three cases depending on the size of the tourna-
ments:

1. For tournament sizes s > 4 the best two individu-
als replace the worst two, so the selection intensity
1 is given by

I = 1 ((uszs + Us—lzs) - (Ulzs + UQ:S))

2
Us:s + Us—1:5

2. When the tournament size s = 3 the second best
individual is also the second worst so the expected
average fitness increase is now

1
I = 2 (us:3 — u1:3)

us:3

3. Finally for a tournament size s = 2 the best indi-
vidual replaces the second best which gives
1

I = 2 (u2:2 — u1:2)

= U2

Table 4 shows the values of I for tournament sizes from
2 to 10. Experimental values were again obtained for
the bit-counting function with stringlength [ = 50 and
population size n = 500. Results are averaged over 50
runs.

Table 4: Selection intensity and the experimental value
for the fitness biased selection and replacement

Us:s Us—1:5 I Ieep
0.56 - 0.56 0.55
0.85 0.85 0.83

1.03 029 132 1.30
116 050 1.66 1.61
1.27 064 191 1.84
135 076 211 207
142 085 227 221
1.49 093 242 232
1.564 1.00 254 2.46
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5 DISCUSSION

The aim of this paper was to show how the concept
of selection intensity can be used for steady-state and
elitist evolutionary algorithms. A second goal was to
generalise the Elitist Recombination GA such that its
selective pressure can be modified.

Computing the selection intensity of different GA im-
plementations is useful to quantify the selective pres-
sure of the proposed algorithm. Previous work showed
how the selection intensity can also be used to predict
the dynamical behavior or the convergence process of
the GA (Miihlenbein and Schlierkamp-Voosen, 1993;
Thierens and Goldberg, 1994b; Bick, 1995; Miller and
Goldberg, 1995; Blickle and Thiele, 1995). This dy-
namical modeling is however limited because it as-
sumes that the heritabilty h? is equal to one (as in
the one-max problem), so the selection differential S
is equal to the response to selection R.



In future work we plan to compare the heritability of
Elitist Recombination with that of tournament selec-
tion and traditional recombination on more difficult
functions than the one-max problem. We believe that
it is exactly here that the benefit of family elitism can
be shown.

6 CONCLUSION

We discussed the application of the selection intensity
measure on elitist and steady-state selection mecha-
nisms. We also proposed a generalization of the Eli-
tist Recombination genetic algorithm and computed
its selection intensity. A second illustration of the se-
lection intensity computation was made by quantify-
ing the selective pressure of a reproductive method
where both fitness biased parent selection and fitness
biased replacement are used. In addition to the exist-
ing work on selection intensity for generational selec-
tion schemes, we believe that the work in this paper
illustrates how the selection intensity of most evolu-
tionary algorithms can be computed.
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