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Abstract— The convergence speed of building blocks de-
pends on their marginal fitness contribution or on the
salience structure of the problem. We use a sequential
parameterization approach to build models of the differen-
tial convergence behavior, and derive time complexities for
the boundary case which is obtained with an exponentially
scaled problem (BinInt). We show that this domino conver-
gence time complexity is linear in the number of building
blocks (O(l)) for selection algorithms with constant selection
intensity (such as tournament selection and (y,\) or trun-
cation selection), and exponential (O(2!)) for proportionate
selection. These complexities should be compared with the
convergence speed for uniformly salient problems which are
respectively (O(v1)) and (O(lInl)). In addition we relate this
facetwise model to a genetic drift model, and identify where
and when the stochastic fluctuations due to drift overwhelms
the domino convergence, resulting in drift stall. The com-
bined models interrelate the strong convergence of salient
building blocks and the stochastic drift of less salient ones.

Keywords— Convergence time complexity, domino conver-
gence, drift stall, sequential parameterization modeling.

I. INTRODUCTION

The novice evolutionary algorithmist often notices an in-
teresting fact about the problems he or she tries to solve.
Building blocks with higher marginal fitness contribution—
salient building blocks—converge before those with lower
marginal fitness. Moreover, there comes a point in time—
and fitness scale—when strong convergence runs out of
steam, and low salience building blocks drift to substantial
convergence at random with a resulting high probability
of error. Yet, while such experiences are commonplace for
even the rank beginner, little modeling has taking place to
understand the details of the timing and quality of con-
vergence in such cases. Moreover, the lack of analytical
understanding has slowed or hampered the design to over-
come the nemesis of drift stall.

In this paper, we partially remedy this unsatisfactory
state of affairs by first creating a simple model of domino
convergence that accounts for the theoretical time to cor-
rectly converge a building block of specified salience. In
particular, we analyze a problem with exponential scal-
ing (the binary integer or BinInt problem), although the
method and parameterization adopted may be applied to
problems of arbitrary fitness distribution. We then use
this ideal model, a model of drift convergence times, and
dimensional reasoning to predict the point at which drift
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stall should occur. Computational experiments verify these
modeling efforts to within a calibration constant of the pre-
dicted values. Extensions to the work and ramifications of
the modeling for GA design are considered.

II. BACKGROUND

The BinInt problem has an exponential scaled salience
or fitness structure, and is defined as:

1
f(z) = Zxﬂl’i z; € {1,0},
i—1

where [ is the string length and z; the alleles. The salience
of one particular gene is higher than the combined marginal
fitness contributions of all the following genes. The out-
come of a competition between two arbitrary strings is thus
uniquely determined at the most significant locus where the
two strings have opposite alleles. For instance if we have
two strings il: 11110000 and i2: 11001100 and the fitness
contributions decrease from left to right, then the compe-
tition is fully determined at the third position where il has
allele 1 and i2 has allele 0. As a consequence, we should ex-
pect the genes to converge sequentially starting those with
highest salience and finishing with those of lowest salience.
The fitness signal of the less salient genes is so low as com-
pared to the signal of the more salient genes, that they can
only feel any selection pressure when the more salient ones
are (almost) fully converged. On the contrary the more
salient genes are not hampered much by the signals of the
low salience genes, so the collateral noise for them is very
low and they converge very fast.

The BinInt problem was introduced in (Rudnick, 1992)
and he called the sequential convergence phenomenon
domino convergence due to its resemblance with a falling
row of domino stones. Rudnick’s study looked at two
things: first he showed the existence of a convergence win-
dow. This window is a set of contiguous genes that have
started to converge but have not yet fully converged. The
more salient genes are already fully converged while the
genes at the other side of the convergence window did not
start to converge yet. Figure 1 shows a plot of this conver-
gence behavior. The second result of Rudnick’s study was
the analysis of the convergence stall due to mutation: when
using mutation at a fairly high rate the lower salient genes
do not fully converge since the selective pressure acting on
these genes is counterbalanced by the disruptive effect of
the mutation operator.

In this paper we analyze the convergence time complex-
ity of the BinInt problem because it contrasts nicely with
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Fig. 1. Domino convergence window: the proportion of optimal allele
values at each gene shown at different generations ¢. Experiment
used tournament selection, uniform crossover, a string length 50,
and initial optimal alleles proportion of pp = 0.1 .

the convergence behavior of the OneMax or BitCounting
problem. In the OneMax problem all genes are equally
salient and the convergence is uniform for all genes. Analy-
sis has shown that the convergence complexity on the One-
Max problem for constant selection intensity algorithms is
of order (O(V/1)), and of order (O(/Inl)) for proportion-
ate selection (Miihlenbein and Schlierkamp-Voosen, 1993;
Thierens and Goldberg, 1994; Miller and Goldberg, 1995;
Béck, 1995; Blickle and Thiele, 1995). The convergence
complexity on the problems with power-law distributed
salience structure are somewhere in between these two ex-
tremes, but their modeling is left for further work.

The convergence models of the OneMax problem were
based on the computation of the selection differential S(t)
for different selection algorithms. The selection differential
S(t) is the difference between the mean fitness of the parent
population at generation ¢ and the population mean fitness
at generation t. The selection intensity I(t) is defined as
the scaled selection differential where the scale factor is the
standard deviation o(t) of the population fitness.
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1~ SO _ PO -7
o(t)
In the OneMax problem all genes are equally salient and
the expected proportion of optimal alleles at each genera-
tion is equal for the entire string, which allows a straightfor-
ward modeling of the convergence time complexity. How-
ever for problems with a non-uniform salience structure
we need to incorporate the sequential convergence charac-
teristics. In the next section we discuss such a modeling
approach.

III. MODELS

A key factor in the convergence of problems with a non-
uniform distribution of building block fitness contributions
is the sequential population takeover by the building blocks
in domino order from most salient to least salient. To
model this we introduce a sequential parameter A € [0, /]

that defines the dividing line between the building blocks
that have been properly converged and those that have not.
Thus, when A = 0 all the bits are assumed to be at there
initial random state, when A = £ all bits are assumed to
be converged to the correct value, and when A is at some
intermediate value the A most salient values are assumed
to be converged correctly, and the remaining £ — A values
are assumed to be at initial values.

In general the )\ parameter specifies a certain property
that becomes fulfilled by the building blocks in a sequential
way: the more salient a building block is, the faster it will
fulfil the property. In this paper we let X represent the fully
converged genes, but one should notice that it is possible to
choose other sequential properties: for instance in niched-
based GAs one could choose to let A represent the building
blocks that have attained a proportion equal to n./c, where
n. is the number of niches, and n the population size.

Here we build a model for the BinInt problem by se-
quential parameterizing the genes that are fully converged
at generation ¢. Using this parameterization we then cal-
culate the increase in population mean fitness from one
generation to the next as a function of our parameter .

The domino convergence specifies three different regions
of the chromosome: the fully converged region, the conver-
gence window, and the region where genes have not felt any
selection pressure yet. In order to simplify the modeling we
only consider the two major regions: the fully converged
part and the part where no convergence has taken place
yet. Figure 1 plots experimental domino convergence val-
ues showing that the convergence window is only a few
genes wide so its impact on the calculation of the mean
and variance of the population fitness is very small, and
will certainly not offset our results concerning the conver-
gence time complexities.

Suppose we have a string of length | where the A most
significant genes are fully converged and the remaining [ — A
genes have not been subjected to any selection pressure
yet. Starting from a randomly initialized population - and
ignoring genetic drift for the moment - the proportion of
optimal alleles in the non-converged region is simply 0.5.

The mean fitness p(\) is thus given by:

1
Z §2l7i
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where we have substituted ! — ¢ by j and made use of the
equation 2;;(} 2 =2"—1.

The fitness variance when A genes are converged can be
calculated as:
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where we have made use of the equations Z?:o j= @

and 377 j? = w. The second step is obtained
by recognizing that the variance is only determined by the
non-converged region which has an equal proportion of al-
leles 0 and 1. The fitness function is just the binary integer
representation so we simply have to take the average of all
(squares of the) integers from 0 to 2!=* — 1.

The calculations of the mean and variance of the fitness
as a function of the number of converged genes A allows
us to derive dynamical models of the convergence process
under different selection schemes. First we will consider
selection schemes with a constant selection intensity (e.g.
tournament selection, (u,\) or truncation selection, and
rank based selection). Thereafter we will look at propor-
tionate selection which has a variable selection intensity.

A. Constant selection intensity I

Selection schemes with constant selection intensity I
cause an increase of the population mean fitness from one
generation to the next which is equal to the product of
the selection intensity with the standard deviation of the
population fitness:

per1(A) — pe(A) = 0e(A) 1.

Plugging in the above computed expressions for the fitness
mean and variance results into:

-1 A A 21—
—9l=1 (9= A+ _9=Ae) — I
( )=
or
I
27N = (1 — =) 27,
( \/§)

Initially (¢ = 0) none of the genes are converged, so Ag = 0
and therefore:

VT
27 =1 \/3]'

Calculating ¢ in function of A; finally gives us:

po_ —Im2

In [1 — %]

Clearly the number of generations ¢ until convergence is a
linear function of the gene position in the string. For in-
stance in case of tournament selection with a tournament
size two the selection intensity is I = 1/4/m and the ex-
pected number of generations until the entire string would
be converged (A\; = 1) is:

—In2

In [1 - \/%]
So if the length of the string is 50 we expect complete
convergence after approximately 88 generations. Note that
the constant factor should not be taken too literally: this
kind of modeling gives us the dimensional relations, and
constant factors can be calibrated by experimental results.
The model does show however that the convergence time
for constant selection intensity algorithms is linear in the
problem length.

t= 1=1.761.

B. Variable selection intensity I

Contrary to the order-based selection schemes, propor-
tionate selection has a variable selection intensity I and the
mean fitness increase after one generation is given by:

_ ot
i1 (A) — pe(A) = lti()\) .

Plugging in our equations for the mean and variance now
results into:
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where we have dropped the term —2~! in the denominator.
For ease of notation we let 27 = u:

1 u?

32 —'Ut‘
This difference equation can be approximated by the cor-
responding differential equation:

Ut41 — U =

dug 1 u}
dt 32—y
or
E = 3 +1n ur + C.
3 Ut
The boundary condition is given by ¢ = 0, Ag = 0 and
ug = 0 so the integration constant becomes C = —2, or:

t=3 2" -\ In2-2).

Recognizing that the constant and linear term are very
small compared to the exponential term we finally get:

t=6-2".

The convergence time for proportionate selection is thus
an exponential function of the string length as opposed
to the linear law for the constant selection intensity algo-
rithms !



IV. GENETIC DRIFT

In the previous section we have build a model for the
domino convergence of different selection algorithms. The
model is a facetwise model in the sense that it only looked
at the impact of exponentially scaled gene fitness contri-
butions on the convergence time complexity. By defini-
tion, facetwise models only look at a limited number of
aspects or facets of a problem, and we therefore expect
their range of application to be limited. In the domino
convergence the less salient genes do not feel any selec-
tion pressure for a number of generations, and the above
model simply assumes that their allele proportion will re-
main unchanged. However in a finite-sized population the
proportion of alleles fluctuates due to stochastic sampling
errors, So even in the absence of any selective pressure,
the genes will eventually become fixated at one particu-
lar allele. This phenomenon is called genetic drift and has
been studied extensively in the population genetics liter-
ature (see for instance Crow & Kimura, 1970), and also
in the context of genetic algorithms (Goldberg & Segrest,
1987; Asoh & Miihlenbein, 1994). Those studies showed
that the expected time for a gene to converge due to ge-
netic drift - using random sampling with replacement - is
proportional to the population size N:

tarigt =c N

where the constant ¢ depends on the initial allele propor-
tion. For instance a gene with two alleles with initial pro-
portion equal to 0.5 has an expected convergence time ¢gy; ¢
equal to 1.4 N. Note that this is the expected or mean
convergence time and a single trial can show a significantly
different value because the variance in the drift process is
quite large.

In domino convergence the genes that are not yet reached
by the convergence window do not feel any selective pres-
sure, and their allele proportions are changing solely by
genetic drift. If we want to converge to the optimal string
with high probability then the domino convergence has to
reach the least salient genes before they converge due to
drift. If on the other hand the convergence time ¢conyergence
as computed in the domino model is larger than the drift
time t4r;5¢, then the stochastic fluctuations overtake the
convergence due to selection, and a drift stall will occur.

We can predict where in the string the drift stall will
start by equating the time models for the domino conver-
gence and the drift model, or tgrifs = tconvergence- For
proportionate selection this leads to:

1.4N ~ 6 -2V

or
A\~ —2.1+1.44InN,

while for the constant selection intensity algorithms, we

have:

1.4N ~ _ —2 2*
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Fig. 2. Dimensional predictions made by the models: domino con-

vergence is linear (resp. exponential) in the number of genes for
tournament (resp. proportionate) selection, while the drift model
predicts a constant generations upper boundary.

or

I
M~x~—2In|l-—|-N.
[ \/3]

The domino convergence complexity models predict a
linear convergence speed for the constant selection inten-
sity methods and an exponential rate for proportionate se-
lection. At the same time the drift model predicts that
there is an upper boundary at the convergence time for
all genes that have not felt any selection pressure by then.
This boundary is proportional to the population size and
independent of the gene position. Figure 2 plots the model
predictions, and in the next section we will experimentally
verify them.

V. EXPERIMENTAL VERIFICATION

To validate the predictions made by the facetwise models
we have counted the number of generations it takes before
each of the genes fully converges. Results are averaged
over 50 independent runs. First we look at proportionate
selection which has a variable selection intensity I, then
we use tournament selection as the representative of the
constant selection intensity algorithms.

1. Proportionate selection.

We have implemented proportionate selection with roulette
wheel selection: a parent is picked with probability f;/f,
copied into the mating pool, and replaced into the origi-
nal population. Figure 3 shows the gene convergence for a
string of length [ = 20, and a population size of N = 250.
The domino convergence model predicts an exponential
convergence curve, teonvergence = 0 * 2%, while the drift
model predicts an average convergence by drift after about
tarire = 1.4 N = 350 generations. Combining the two mod-
els we expect that domino convergence is valid for the first
z = log, % = 5.9 genes, and from there on the drift model
specifies the convergence time.

It is clear form figure 3 that the predictions by the models
and the experimental values coincide very well.
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Fig. 3. Domino convergence model, drift model, and roulette wheel
selection results.

2. Tournament selection.

In a second set of experiments we applied tournament selec-
tion (with replacement) on a string of length I = 200 with
a population size N = 50. Figure 4 shows the results for
tournament sizes s = 2 and s = 4. The model predictions
are again found in the experiments: a linear convergence
complexity of the most significant genes, and a constant
convergence time due to genetic drift.

Two things about the drift boundary might seem sur-
prising: first the average number of generations is substan-
tially lower than the value predicted by the drift model
(tarife = 1.4 N = 70 generations), and second the drift
time is different when using different selection intensities.
A plausible cause for this might be that the least salient
genes are simply hitchhiking with the more salient ones.
To see the effect of this we run a set of experiments where
no longer entire strings are selected to enter a tournament,
but now we generate each time a new string by randomly
copying an allele from the population at the corresponding
gene position. So the created strings will get an allele-
1 with probability equal to the proportion of alleles-1 in
the population at that gene position. This way the alleles
are selected independently from each other and less salient
genes cannot simply hitchhike with more salient ones. Fig-
ure 5 plots the results for tournament size 2 together with
experimental drift values. These drift values are obtained
by generating strings from the population as above but
no tournament selection is used afterwards. We see that
the convergence time and drift stall without hitchhiking
is higher and closer to the theoretical and experimental
drift values. Even without hitchhiking the number of gen-
erations to convergence for the least salient genes is still
somewhat below the pure drift values. A closer look at
the experiments revealed that even for these long strings
(1=200) a small fraction of tournaments still gets decided at
the least salient genes, resulting in a lower average number
of generations to convergence.

Note that for proportionate selection the hitchhiking ef-
fect does not show up because the convergence speed is an
order of magnitude slower.
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Fig. 4. Domino convergence model, drift model, and tournament

selection results for tournament sizes s = 2 and s = 4.
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Fig. 5. Domino convergence model, drift model, and tournament
selection (s = 2) with uniform and population based crossover.

VI. EXTENSIONS

This paper has given for the first time a simple model of
the interrelation between convergence sequence, drift stall,
time complexities, and the effect of the salience distribu-
tion of problems. We have limited the full analysis to the
BinInt problem but is should be clear that the sequential
parameterization modeling approach can also be applied to
problems with other salience distributions. One immedi-
ate extension we are pursuing is to model the convergence
time complexities for problems with a power-law fitness
scale. Those models should not give any surprising results
as their time complexities are bounded between the times
given here (O(!) for constant selection intensity algorithms,
and O(2!) for proportionate selection), and the convergence
times for the uniformly salient problems like the OneMax
problem (resp. (O(+v/1)) and (O(IInl))).

The modeling approach taken here is to build simple
facetwise models and then interrelate them in a dimen-
sionless way (Goldberg, Deb, & Thierens, 1993). An im-
portant extension is to include the effect of building block
disruption: both the Binlnt and the OneMax allows us to
study the effects of the fitness or salience distribution on



the convergence speed, while bracketing the influence of
building block survival and disruption. Incorporating this
in the work done so far requires a straightforward facetwise
model of building block propagation and mixing, and then
interrelating this with the models given here.

A complementary approach might look at less facetwise
modeling and try to build more integrated and accurate
models. These more sophisticated models should be seen
as an additional tool in understanding the complex behav-
ior of our evolutionary algorithms. While one expects them
to give more accurate predictions, they also might be less
intuitively clear, so whatever model the evolutionary algo-
rithmist uses will depend on his goals for using them in the
first place.

VII. RAMIFICATIONS

In this paper we have identified and modeled the radical
shift in convergence behavior when the reliable convergence
of salient building blocks is overtaken by the stochastic
fluctuations on the less salient building blocks. This un-
derstanding is very important to the GA designer as it
clarifies what part of the marginal fitness contributions of
his problem are processed fast and reliably in an implicit
parallel way, and what part is under the nemesis of drift
stall. In simple genetic algorithms the processing of salient
building blocks is taken care of by the selection and recom-
bination tandem, while the less salient building blocks have
a high probability of being lost by the time selection and
recombination can process them. In simple GAs we can
only hope that mutation will bring them back, which is a
slow serial process and the higher the building block order,
the more time this will require.

The serial processing of mutation is much slower than the
rapid implicit parallel processing power of selection and re-
combination. A number of extensions to the simple genetic
algorithm can be devised to overcome the problem of drift
stall. The key factor is to ensure that the diversity of the
less salient building blocks is preserved long enough in or-
der to buy time for the selection-recombination operators
to reach this level of fitness scale. Different mechanisms for
keeping the diversity are known: for instance dominance-
diploidy, adaptive mutation, and recently a very interesting
mechanism was introduced by Harik, called the probabilis-
tic expression (Harik, 1997). Further work will need to
study the convergence time complexities of these extended
GAs.

VIII. CONCLUSIONS

Problems with a non-uniform distribution of the
marginal fitness contribution of building blocks typically
result in a temporal differentiated convergence behavior.
The more salient building blocks converge rather fast, while
the least salient ones only start to converge considerably
when their ’big brothers’ are almost done. An upper
boundary case to this phenomenon occurs with an exponen-
tially scaled salience structure, of which the BinInt problem
is the prototypical example. We have applied a sequential
parameterization approach to model this domino conver-

gence, and showed that the time complexity is linear in the
number of building blocks (O(1)) for selection algorithms
with constant selection intensity, and exponential (O(2'))
for proportionate selection. These complexities should be
compared with the convergence speed for uniformly salient
problems which are respectively (O(v1)) and (O(l1nl)).
In addition we have noticed that in a finite sized popula-
tion the time for the less salient building blocks to wait
to converge is limited because of genetic drift. Combining
the domino convergence model and the genetic drift model
by dimensional reasoning, we have identified where and
when the stochastic fluctuations due to drift overwhelms
the domino convergence, resulting in drift stall.
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