Operational semantics for
agent communication
languages

R. M. van Eijk, E S. de Boer,
W. van der Hoek,].-]. Ch. Meyer

UU-CS-1999-08

Operational Semantics for Agent Communication
Languages

Rogier M. van Eijk Frank S. de Boer Wiebe van der Hoek
John-Jules Ch. Meyer
Utrecht University, Department of Computer Science
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands
{rogier, frankb, wiebe, jj}@cs.uu.nl

Abstract

In this paper, we study the operational semantics of agent communication languages. We
develop a general multi-agent programming language for systems of concurrently operat-
ing agents, where each agent has a mental state consisting of beliefs and goals, and the
interaction between the agents proceeds via a rendezvous communication mechanism. We
will thereby build upon well-understood concepts from the object-oriented programming
paradigm as object classes, method invocations and object creation. The formal seman-
tics of the language is given by means of transition rules that describe its operational
behaviour. Moreover, the operational semantics closely follow the syntactic structure of
the language, and hence give rise to an abstract machine to interpret the language.

1 Introduction

The research on agent-oriented programming has yielded a variety of programming languages
for multi-agent systems, each of which incorporates a particular mechanism of agent commu-
nication. Many of these communication mechanisms are based on speech act theory, which
has originally been developed as a model for human communication. A speech act is defined
to be an action that a speaker performs in order to convey part of its mental state to the
hearer that the act is directed to. This notion has been fruitfully adopted in agent communi-
cation languages as KQML [11] and FIPA-ACL [1], which prescribe the syntax and semantics
of a collection of speech act-like messages, each of which is comprised of a performative, a
content and some additional parameters as the sender and receiver of the message. Like in
speech act theory, they are used to convey information about the sender’s mental state and
additionally, to give rise to an update of the mental state of the receiver. For instance, there
is a message that can be used by a sender to inform that it believes a particular formula to
be true as well as a message that can be employed to request some actions to be performed.
Both agent communication languages assume an underlying communication mechanism that
proceeds via asynchronous message-passing.

As was indicated by Cohen and Levesque (cf. [5]) communicative acts should be considered
as attempts of the sending agent to get something done from the receiving agent. An important
consequence of this view is that there is no guarantee that the receiving agent will actually
act in accordance with the purposes the sending agent has attributed to the message. That
is, it is very well possible that a receiving agent will simply ignore the message or that it

will do the opposite of what is requested for. Hence, in giving semantics to messages one
should not confuse the effects that a message has on the receiving agent with the subsequent
reactions taken by the receiver that it brings about. For instance, one could easily be tempted
to describe the meaning of an ask(y) message as that upon its reception, the receiving agent
should respond with a confirm(y) message in the situation it believes the formula ¢ to be
true, and with a disconfirm(y) message if it this is not the case. In our opinion however,
the reactions towards a message are not to be considered as part of the semantics of the
message, but are rather consequences of the characteristics of the receiving agent. The point
we advocate in this paper, is to describe the semantics of messages solely in terms of the
effects they have on the mental state of the receiving agent, without giving any references to
the possible subsequent reactions. For instance, the meaning of an ask(p) message would be
that upon its reception the receiving agent administrates that it is asked whether it believes
o to hold. It will be on the basis of its altered mental state that the agent will subsequently
decide what actions to perform. This behaviour is however in no way considered to be part
of the semantics of the message.

1.1 Types Of Communication

In the research on intelligent agents, it is common practice to think of an agent as an entity
having several different mental attitudes. These attitudes are divided into a category of in-
formation attitudes which are related to the information an agent has about its environment
such as belief and knowledge, and secondly, a class of pro-attitudes which govern the actions
that the agent performs in the world and hence, concern the agent’s motivations. Examples of
the latter category of attitudes are goals, intentions and commitments (cf. [18]). Our previous
work on communication in multi-agent systems has been centred around the agents’ informa-
tion attitudes (cf. [8, 7, 9]). A central topic in this study was the issue of information-passing,
which constitutes a form of communication in which agents exchange first-order information
among each other. In this report, we take our framework one step further by additionally
taking into account agent communication that concerns the pro-attitudes. That is, besides
passing information about the multi-agent system, agents also communicate with each other
about their motivations. In particular, we will focus on the motivations that directly stem
from communication, and refer the reader to [13] for details on non-communicative motiva-
tions.

With respect to agent communication that concerns the motivational attitudes a distinc-
tion can be made between two different types of interaction. The first category comprises
communication that concerns properties of the agent system, which are not to be considered
as to give information about the current agent system but rather as specifications of a pursued
configuration of the the agent system. An example of a communicative act that falls in this
category is the KQML message achieve(a, 3, ¢), which denotes a request of the agent « to
the agent (8 to accomplish a state in which ¢ is true. This type of communication is however
outside the scope of the current paper; we will study it in a future refinement where we take
into account agent expertise in the form of a vocabulary or signature. In this setting, its
expertise determines the kind of requests the agent can deal with.

The other category is given by communication that involves executable programming
code to change the agent system; i.e. the communication concerns implementation rather
than specification, or in other words, is procedural of nature instead of being declarative. An
example of a communicative act in this category is the FIPA-ACL message (i, request(j,a)),

which denotes a request of the agent ¢ directed to the agent j to execute the action a. This
type of interaction is similar to that of higher order communication, which is studied in the
field of concurrency theory. In this paradigm, programs themselves are considered as first
class communication data that can be passed among the processes in the system (cf. [15]).
Upon reception of a program, the receiving process integrates it in its own program and
subsequently resumes its computation. Although communication of mobile code gives rise
to a very powerful computation mechanism, it also gives rise to a wide range of problems
especially with respect to safety and security issues in computer systems, like for instance the
unauthorised access to and manipulation of sensitive data and services (cf. [16]).

In this paper, we will not follow the road of higher order communication, but adopt
a more traditional communication mechanism that has been fruitfully employed in various
distributed programming paradigms. It amounts to the idea that rather than accepting and
executing arbitrary programs, a process specifies a collection of programs that other processes
can request it to execute.

1.2 Rendezvous and Remote Procedure Call

In the field of concurrency, there is the classical notion of a rendezvous, which constitutes a
communication mechanism in which one process 8 executes one of its procedures on behalf
of another process a (cf. [3]). In particular, a rendezvous can be viewed upon as to consist
of three distinct steps. First, there is the call of a procedure of 8 by «. This is followed by
the execution of this procedure by 8, where the formal parameters are replaced by the actual
parameters provided by «, while the execution of the calling process « is suspended. Finally,
there is the exchange of the result of executing the procedure back to «, which thereupon
resumes its execution. It follows that a rendezvous comprises two points of synchronisation.
First, there is the call with the exchange of the actual procedure parameters from the caller
to the callee and secondly, there is the communication of the results back from the callee to
the caller

The notion of a rendezvous is almost equal to that of a remote procedure call (RPC) (cf.
[4]). The difference between the two notions lies in the fact that for an RPC an entirely new
process is created that takes care of the call, whereas in the case of a rendezvous the call is
handled by the called process itself (cf. [3]). This implies that in the former case different
procedure calls can be handled simultaneously, whereas in the latter case the calls are taken
one at a time.

The rendezvous communication mechanism has been adopted in the concurrent program-
ming language POOL (cf. [2]), which constitutes a semantically well-understood object-
oriented programming language to program systems of concurrently operating objects. An
object in the language is an entity that is assigned a unique identifier to distinguish it from
the other objects in the system, a program that governs its behaviour and finally, a collection
of methods that it can invoke itself as well as can be invoked by the other objects, the latter
proceeding via a rendezvous communication mechanism.

In this paper, we outline a framework for agent communication that builds upon these
object-oriented features underpinning the language POOL. The most important aspect to
be accounted for is the shift from computing with expressions and values as in POOL to
computing with information. That is, rather than that computations are performed in the
context of a local state that maps variables to their associated values, one of the characteristics
of the agent-oriented programming paradigm is that computations are performed relative to

a mental state consisting of attitudes as beliefs and goals. One of the immediate implications
of this is that in adopting concepts from the object-oriented language POOL the place of
expressions is to be filled in by information, which we assume to be expressed in a first-order
language.

The remainder of this paper is organised as follows. In section 2, we give a formalism of
deriving conclusions form first-order information stores. This is used in section 3, in which
a general multi-agent programming language is defined for systems of agents that interact
with each other by means of a rendezvous communication scheme. Its semantics that is
subsequently defined in terms of a transition system, give a clear operational description
of the programming language. We study the relation of the framework with the existing
agent communication languages KQML and FIPA-ACL in section 4. Finally, we round off in
section 5 by suggesting several issues for future research.

2 First-order Information

In this section, we recapitulate a mechanism of inferring conclusions from first-order infor-
mation stores, which accounts for conclusions that contain free variables (cf. [10]). The idea
of the inference of a formula ¢ from an information store B is that any free variable in ¢ is
substituted by a closed term such that the resulting formula is a classical consequence of B,
which means that it is derivable via the classical first-order consequence relation. We start
by defining signatures, formulae and substitutions.

Definition 1 (Signatures, formulae and substitutions)

e A signature L is a tuple (R, F), where R is a collection of predicate symbols and F a
collection of function symbols.

e The set Var is a collection of variables with typical elements z, y and z, while ForVar
is a collection of variables that range over formulae, with typical element p.

e The set Ter(L) of terms over L is inductively defined by: Var C Ter(L) and secondly, if
t1,...,tx € Ter(L) and F € F of arity k then F'(t1,...,tx) € Ter(L). A term is closed
if it contains no variables from Var.

e The sets For(L), Que(L) and OpenQue(L) are defined to be the smallest sets S that
satisfy the clauses (1,2), (1,2,3) and (1,2,3,4) given below, respectively.

(1) if t1,t9,...,tx € Ter(L) and R € R of arity k then (¢; = t2), R(t1,...,t) € S,

(2) if p,1p € S and = € Var then —p, o A, Jzp € S

(3) ifz € Var and ¢ € S then 7zp € S

(4) ForVar C S

The connectives V, —, <> and 3 can be defined in terms of —, A and V in the usual
way. We assume that ¢, 1) are typical elements of For(L£) and Que(L) and v is a typical
element of OpenQue(L).

e Finally, the set Sub(L) is defined to be the set of formulae of the form z = ¢, where
z € Var and t is a closed term in Ter(L). The term ¢ is referred to as a witness for .
Additionally, a set T' C Sub(L) is called a substitution.

The set For(L) consists of the standard first-order formulae, while the set Que(L) introduces
an extra quantifier 7 to bind variables. A formula of the form 7z denotes that x is a variable
in ¢ that is to be substituted by a witness.! Additionally, the formulae in the set OpenQue(L)
can contain variables, which are placeholders that can be substituted by formulae in Que(L).

We will not consider substitutions in the classical sense, which also comprise equalities as
z = f(f(y)), but only those that involve equations between variables and closed terms.

We remark that we will sometimes be a bit loose in the notation of formulae and sets
of formulae; i.e. whenever convenient we will let a set {v1,...,v,} of formulae represent the
formula vy A --- A vy, or a formula v represent the set {v}.

Definition 2 (Properties of substitutions)

o A substitution I' C Sub(L) is said to be unambiguous if there do not exist x € Var and
distinct t1,t9 € Ter(L) with (z =t1), (z =12) €T

e Secondly, I' C Sub(L) is complete for a formula ¢ € Que(L) if for each variable z € Var
that is bound by a quantifier 7 in ¢ there exists ¢ € Ter(L) such that (z =1¢) €T

Definition 3 For each 1) € Que(L) and ' C Sub(L) that is unambiguous and complete for
1, we define the function ® by induction on the structure of :

° P(tl,...,tk)®F=P(t1,...,tk)

—p) @' ==(p®T)

1 ANp2) T = (p1 ®T) A (2 ®T)

(
(
(Fzp) @T =3Jz(p@T)
(

Trp) @ =3z(z =t A (p®T)), where (z =t) €T

The function ® is used to substitute the variables that are bound by a quantifier 7 in the
formula 1) by the values given by I'. For instance, 7zP(z) ® {z = a} equals 3z(P(z) Az = a).

Definition 4 (The ordering <)
Let F denote the classical first-order entailment relation on P(For(L)) x P(For(L)). The
relation < is defined as follows:

PV S UF-Pand P U,

for all sets of formulae ®, ¥ C For(L).

The relation < gives rise to an ordering of sets of formulae in terms of their logical strength;
i.e. if ® < U we say U is logically stronger than ®.

'In [10], we additionally introduce a quantifier ! that has a similar meaning; i.e. a formula of the form
lzp also denotes that x is a variable in ¢ that is to be substituted by a witness. The difference between
both quantifiers is that in the former case x is to be substituted by a witness that has yet to be established,
whereas in the case of the quantifier ! it is to be substituted by an already established witness. The interplay
of both quantifiers gives rise to a mechanism of using variables outside the scope of the formula they have
been introduced in, which is an important feature to model conversations between agents. For instance, the
variable z introduced in the formula ?z¢ is subsequently referred to in the formula !z. To keep things a little
simple here, we restrict ourselves to the quantifier ?.

Definition 5 (Minimal Unifiers)

o A substitution A C Sub(L) is called a unifier for the pair (®,¥), if ® - (¥ ® A), for all
® C For(L) and ¥ C Que(L).

e Additionally, A is called a minimal unifier if there is no unifier A’ with A’ < A.

We use the notation ® Fa ¥ to denote that A is a minimal unifier for (®, ¥).

For instance, the substitution {z = a} is a minimal unifier for (®, ¥), where & is given by
{Vz(P(z) = Q(z)),P(a), P(b)} and ¥ equals {?zQ(x)}, and so is the substitution {z = b}.
This example shows that minimal unifiers are not necessarily unique.

Finally, let Assign denote the set of functions ForVar — Que(L), which map formula
variables to formulae, with typical element §. We define a function - of type (OpenQue(L) X
Assign) — Que(L) such that v - 8 yields the formula v in which all formula variables have
been replaced by the formula given by the function 6.

Definition 6 We define v - 8 by induction on the structure of v, where we assume that 6 is
defined for all formula variables in v.

° p-0=0(p)
o P(ty,...t)-0=P(ty,...1)

(
(

e (zyp)-0=3Tz(p-0)
(

We use the notation 8{¢/v} to denote a function that yields ¢ on the input v and the value
yielded by the function € on all other inputs. Additionally, we will let {} denote the function
that is undefined for all inputs.

For instance, we have that Jz(x = a A p1 A p2) - @ where 0 = {}{P(a)/p2}{—Q(a)/p1}, is
equal to the formula 3z(x = a A =Q(a) A P(a)).

3 A Formal Framework

In this section, we define a general programming language for multi-agent systems that covers
the basic ingredients to describe the operational semantics of agent communication languages.
In particular, we assume that a multi-agent system consists of a dynamic collection of agents
in which new agents can be integrated, and where the interaction between the agents proceeds
via a rendezvous communication scheme. Each agent is assigned a mental state comprised of
a belief state and a goal state that can be inspected and updated. Additionally, an agent is
assumed to be an instance of an agent class that defines the methods the agent can invoke
itself as well as can be called by other agents in the system. Finally, the behaviour of an agent
is governed by a program consisting of the standard programming constructs of sequential
composition, non-deterministic choice, parallel composition and recursion.

3.1 Syntax

Definition 7 (Preliminaries)

The set Ident denotes the set of agent identifiers with typical elements «, 8 and v, Meth
denotes the collection of methods with typical element m, - denotes an entailment relation to
infer conclusions from belief states and o is an operator to update belief states. Additionally,
the collection Goal is comprised of goal states with typical element G. A goal state is a set of
tuples of the form m(epy,...,¢,) = «, where m is a method name in Meth and ¢4, ..., p, are
formulae and « is an agent identifier in Ident, which represents a goal to execute the method
m with actual parameters 1,..., ¢, and where a denotes the agent that the result of the
execution is to be sent to.

Definition 8 (Syntaz of programming language)
The programming language is defined by the following BNF-grammar.

a=p<+ v | p<+ a | test(v) | update(v) | send(tz.v,m(vi,...,v,)) |
m(vi,...,vp) | accept(my,...,my) | handle(mq,...,m,) | integrate(C,S)

Su=a;S | S1+8y | S1 & Sy | skip
C = {my,...,mn}

A= (a,8,(B,G),0)

X u={Aq,..., An}

where z € Var, a € Ident, p € ForVar, {v,v1,...,vn} C OpenQue(L), 0 € Assign,
{m,m1,...,mp} C Meth, B C For(L) and G € Goal.

If an action is of the form p < v it denotes the assignment of the formula v to the formula
variable p, while an action of the form p < a stands for the assignment of the result of
executing the action a to p. The action test(v) denotes the test whether the formula v follows
from the belief state, while the action update(v) represents the update of the belief state with
v. An agent executes the action send(1z.v,m(v1,...,v,)) to send the agent x that satisfies
the formula v a request to execute the method m with the actual parameters vy,...,v,
and to subsequently wait for the result. We remark that the agent z is not required to be
unique. An agent executes the action m(vy,...,v,) to invoke this method itself. The action
accept(my, ..., my) denotes the acceptance of a request to execute a method in mq,...,my,
while the action handle(my, ..., m,) is employed to select an invocation of one of the methods
mi,..., My from the goal state and to subsequently execute it. The difference between both
actions is that the former fills the goal state whereas the latter empties it. Finally, the action
integrate(C, S) is used to integrate an instance of the agent class C in the agent system, which
thereupon will start to execute the statement S.

A statement is either the sequential composition a;S of an action and a statement, the
non-deterministic choice S7 + S between two statements, the parallel composition S & So
of two statements or an empty statement skip. A class C' is defined by a set of methods. An
agent A consists of an identifier « that distinguishes it from all other agents, a program S
that governs its behaviour, a mental state (for which we will use the symbol A) consisting of
a belief state B, a goal state G and a function # that maps formula variables to formulae.
Implicitly, we assume that each agent is an instance of an agent class, which means that the

methods the agent can invoke are those that are defined in its class. Finally, a multi-agent
system X is a set of agents.

3.2 Operational Semantics

In this section, we define the operational semantics of the programming language.

3.2.1 Transition Systems

An elegant mechanism of defining the operational semantics of a programming language is
that of a transition system. Such a system, which was originally developed by Plotkin (cf.
[14]) constitutes a means to formally derive the individual computation steps of a program.
In its most general form a transition looks as:

P,oc — P o

where P and P’ are two programs and o and o’ are some stores of information. The transition

denotes a computation step of the program P which changes the store of information o to o,

where P’ is identified to be the part of the program P that still needs to be executed.
Transitions are formally derived by means of transition rules of the form:

! ! /! !
P,oy — P00 --- P,,0p — P,,0,
P,o — P o'

Such a rule denotes that the transition below the line can be derived if the transitions above
the line are derivable. Sometimes, we will write transition rules with several transitions below
the line. They are used to abbreviate a collection of rules each having one of these transitions
as its conclusion. A rule with no transitions above the line is called an aziom. A collection
of transition rules defines a transition system.

The advantage of using transitions systems is that they allow the operational semantics
to closely follow the syntactic structure of the language. As an effect, if we view the config-
urations P, o as an abstract model of a machine then the transitions specify the actions that
this machine can subsequently perform. In fact, this machine would act as an interpreter for
the language.

3.2.2 Rules For Actions

In this section, we start the definition of a transition system for our programming language.

It consists of rules of the form:
XUY — XuY'

XuzZ —XuZz
where the agent system X is required to be disjoint from the agent systems Y, Y’, Z and Z'.
We will however abbreviate these rules to:

Y — Y
7 — 7!

In the transition system, besides agent configurations, which are of the form (a, S, A, 6), we

will employ configurations that are of the form («, a, A, 8) and (o, ¢, A,) in which the second

element of the tuple is not a statement but an action a or a result ¢ of executing an action.
We start with the rules that deal with actions.

Definition 9 (Transitions for formula variables)
Let ¢ = v - 6, we have the following transitions:

{{o,p = v,A,0)} — {{a,p < ¢,A,0)}

{{o, test(v), A, 0)} — {(o, test(p), A, 0)}

{{c, update(v), A, 0)} — {(c, update(p), A,)}

{{a,send(izv,...), A, 0)} — {{e,send (1., ..), A, 6)}
{{a,send (... m(...,v,..)),A,0)} — {(a,send(...,m(....p,...)),A,0)}

{{a,m(...,v,...),A,0)} — {{a,m(...,p,...),A,0)}

These six transitions describe the substitution of formula variables in the formula v €
OpenQue(L) by their associated value given by the function 6.

Definition 10 (Transition rules for assignment)

{{aya,A,0)} — {{a,p,A',0')}
{{a,p+a,A,0)} — {{a,p <, A, 0")}

{la,p < 0, A, 0)} — {{a, 0, A, 0{p/p})}

The first rule states how the transition for p <— a can be derived from the transition for a,
viz. the result ¢ of executing a is assigned to the formula variable p. The second rule then
shows that the assignment p < ¢ results in an update of € such that it yields ¢ for the input
p- We take the result of executing p < ¢ to be ¢ in order to model nested assignments as for
instance p’ < (p <), which assigns ¢ to both p and p'.

Definition 11 (Transition for test)
Let S = {Ay,...,A,} be the set of distinct minimal unifiers for the pair (B, ¢). We have the
following transition:

{({a,test(p), A, 0)} — {(o,9,A,0)},

where A = (B, G). We distinguish the following options for :
1. a substitution A, where A € S
2. a formula ¢ ® A, where A € S

3. the formula A, ;c,,(¢ ® Ay)

The choices above model different interpretations of the test statement. The first is one in
which the result of the test is taken to be a derivable minimal unifier, provided that such a
unifier exists. It is either the empty substitution denoting that the formula ¢ is a classical

consequence of the belief state, or a non-empty substitution defining a witness for each variable
in ¢ bound by a quantifier ?. For instance, the following transition is derivable:

{{a,test(?zP(z)),A,0)} — {{(a,z =a,A\,0)}

where A = (P(a) A P(b),G). Note that this transition is not necessarily unique, as shown by
the following transition that is derivable as well:

{<aate5t(?$P(m))aA10>} — {<a7$ = baA10>}

The second option is to apply the derived substitution to ¢ and yield this formula as the
result of test. In this case, the transition looks like:

{{a, test(?zP(z)),A,0)} — {(c, P(a),A,0)}

Finally, there is the option to yield an exhaustive description comprised of all instances of the
formula ¢. The transition is then given by:

{{a,test(?zP(x)),A,0)} — {{a, P(a) A P(b),A,0)}

We refer to the first option as the substitution interpretation, while the latter two are called
the derive-one and the derive-all interpretations, respectively. Unless indicated otherwise, we
will in this paper assume that the derive-one interpretation is in force.

Definition 12 (Transition for update)

The transition for updates amounts to the incorporation of the formula ¢ in the agent’s belief
state. It is required that ¢ is a formula in For(L), that is, it does not contain the quantifier
7. We will not go into the details of the operator o, we assume it to be a parameter of the
framework (see [12] for more details on belief revision). We take the formula true as the result
of the update.

Definition 13 (Transition for sending a message)
Provided that Bj b{;—q,}7z¢ holds we have the transition:

{{a1,send(tz.0, m(p1,---,0n)), A1,01), (aa,accept(...,m,...), Ao, b2)} —
{{1, wait(ag), Ay, 61), (oo, true, A, 62)}

where A1 = (Bl, Gl) and AQ = (BQ, GQ) and AIQ == (BQ, G2 U {m((pl, P ,(,Dn) = Otl})

In the classical notion of a rendezvous, the computation step of the agent ay that follows
the first synchronisation, would be the execution of the method invocation m(pi,...,vn)-
However, as mentioned before, a crucial characteristic of agent-oriented programming is that
computations are performed relative to a mental state. Hence, the decision to execute the
method invocation should be based upon this state rather than that it is executed without
any regard for the agent’s current beliefs and goals. This is why the invocation m(p1, ..., ¥p)
is not executed immediately but added to the agent’s goal state, along with the identifier oy

10

representing the agent that the result of the invocation is to be sent back to. The construct
wait(as) is not part of the syntax of the programming language. It denotes that the agent «y
is waiting for the agent ay to return the result of the invocation and is used to simplify the
operational description of the rendezvous communication scheme.?

Finally, the construct tz.¢0 denotes a witness for x such that ¢, which we require to be
an element of For(L), is true for it. In the above transition the condition By Fi;—q,}7Z¢p
requires the witness for = to be a. For instance, we have the derivation { Agent(a2)} Fiz=a,}
7z Agent(z), where the predicate Agent(z) is used to express that the agent z is part of the
multi-agent system (see also definition 17).

Definition 14 (Transition for method invocation)
If m is a method declared by m(p1,...,pn) :— T we have the transition:

{{la,m(p1,...,0n),A,0)} — {{a,S = a,A,0)},

where S equals T[p1/p1,*+,%¥n/pn], which denotes the body statement T of m in which
the actual parameters ; have been simultaneously substituted for the formal parameters p;.

Note that in comparison with standard concurrent programming, the parameter-passing
mechanism in our framework is rather high-level, as formulae themselves constitute first-
class values with which methods can be invoked. The construct S = « denotes that the
result of executing the statement S should be sent back to the agent a.

Definition 15 (Transition for handling goals)
If m(p1,---,9n) = B € G, and m is declared as m(p1,...,pn) :— T then:

{{a, handle(...,m,...),A,0,)} — {(a, S = B,\,0)},

where S =T[p1/p1, -, on/pn] and A = (B,G) and A' = (B,G \ {m(p1,...,0n) = B})

The presence of goal states yields the need for a mechanism that controls the selection and
execution of goals, which is a mechanism that is not present in the traditional concurrent
language POOL. The above transition reflects a straightforward approach in which one of
the invocations of a method m is taken from the goal state and identified to be subsequently

executed.

Definition 16 (Transitions for returning the result)

{<alawait(a2)7A1701)7 <C¥2, p = a17A2792>} —
{<a15<10aA1591>3 <C¥2, tT‘Ue’,AQ,92>}

{{la, 0= a, A, 0)} — {{, A, 0)}

2To keep things a little simple, we assume that the agent a; cannot concurrently invoke more than one
method of the agent s, which implies that the result of the method invocation will be substituted for this
occurrence of the wait(az) construct and not for another occurence somewhere else in the program. Without
this assumption we would need to associate with each rendezvous a unique identifier that is maintained along
the computation steps of the rendezvous.

11

If a computation of a method invocation has terminated with a result ¢ then the second
synchronisation of the rendezvous takes place, in which this result is communicated back
to the agent 1. The second rule deals with the case that the method invocation has been
executed on behalf of the agent itself.

Definition 17 (Transition for integration)
{(a, integrate(C, 5), A, 0)} — {{, Agent(B), A, 0), (B, 5,0,{})},

where 3 is a fresh agent identifier that does not occur in the agent system, () denotes the
empty mental state and {} the function that is undefined for any input.

The transition rule defines the integration of an instance of the agent class C. Tt shows how
the agent system consisting of the agent « is expanded with a new agent § that starts its
execution with the statement S where its initial mental state is defined to be the empty one.
The methods that the integrated agent can invoke are given by the methods of C. We will
postpone the integration of agents with non-empty mental states to the future extension of
the framework in which we take into account agent expertise in the form of a vocabulary or
signature. A possible approach is to let the integrated agent inherit those beliefs and goals of
its creator that are expressed in its expertise signature.

The result of the integration is formulated by the information Agent(3), which expresses
that the agent with identifier 8 is part of the multi-agent system.

3.2.3 Rules for Statements

Definition 18 (Transition rules for the construct S = [3)

{{,5,A,0)} — {{a, 5", A", 60")}
{{, 5= B,A,0)} — {{a,5" = B,7",0')}

{<Oé, Sa Aa 9)} — {(CY, ®, Ala 01>}
{(Oé, S = ﬂa A, 0>} — {<aa p = ﬂa Ala 01>}
The transition for the construct S = [can be derived from the transition for the statement S.
The first transition rule deals with the case that S does not terminate after one computation

step: S’ denotes the part of S that still needs to be executed, while the second rule deals with
the case that S terminates with a result ¢.

Definition 19 (Transition rule for sequential composition)

{{a,a,A,0)} — {(a,cp,A',ﬁ')}
{{a,a;S,A,0)} — {{a, S, \,0")}

The transition for the sequential composition of an action a and a statement S can be derived
from the transition for the action a. Note that the result ¢ of executing a is simply ignored,
because it (possibly) has already been processed in A’ and #'. For instance, we can derive the

transition {(a, (0 < ¢); 5, A,0)} — {{a, S, A, 0{p/p})}

12

Definition 20 (Transition rules for non-deterministic choice)

{{a, S1,7,0)} — {{a, S, A,0")}
{{a, S1 + S2,A,0)} — {(a, S}, A, 6')}
{{a, S2 + S1,A,0)} — {{a,S],A',0")}

{(Oé, SlaAa 9)} — {<Oé,(,0, A1701>}
{(CM, Sl + 527A59>} — {(CM, (,O,A,,9,>}
{<aa So + 81’A70>} — {<a7 QO’A170,>}

The transition for the non-deterministic choice S + T between two statements can be derived
from the transition of either S or T'. The second rule deals with the terminating case.

Definition 21 (Transition rules for internal parallelism)

{<aa SlaAa9>} — {<aa SiaA179,>}
{<Oé, Sl & S27A’9>} — {(Ot,Si & 827A1a01>}
{(CM, 52 & SlaA79>} — {(a’ SQ & SiaAlael)}

{{a, §1,7,0)} — {{o,, A", 0')}
{{a, 81 & S5, A,0)} — {(a, Sy, A, 0')}
{{e, 2 & S1,A,0)} — {{a, Sa, A',0')}

The internal parallel composition S & T of two statements is modeled by means of an in-
terleaving of the computation steps of S and 7. The second transition rule deals with the
terminating case, in which the result ¢ is ignored.

Definition 22 (Transition rule for skip statement)

{{a,skip, A,0)} — {{a, true, A, 6)}

The statement skip yields the result true and thereby leaves the mental state A and the
function # unchanged.

3.2.4 Example

Let us consider a small example that illustrates the transitions system developed in the previ-
ous sections, as well as hints at the introduction of inheritance mechanisms in the framework,
which is a topic that is outside the scope of the present paper and constitutes one of the issues
for future refinements.

Let X be an agent system (used in a library, for instance) consisting of a client agent
« and additionally two server agents 8 and <. Consider the situation that the client « is
looking for a biography of Elvis Presley and hence, asks the serving agent § for the name of
an appropriate document. After the reception of the request, the server § has the option to
examine its own information store (belief state) for the name of a suitable document, but as
this information is not available, it passes the question along to the other serving agent +.
This agent in turn inspects its information store, yielding the information that the document
b constitutes a biography of Elvis. Subsequently, this information is sent to the agent 8 that
in turn passes it back to a.

In this example, we introduce two agent classes: the class C) consisting of the methods

13

e answer :— (accept(ask) + handle(ask)); answer
e ask(p) :— test(p)

and the class Cy that inherits the methods from C7, where however the definition of the
method ask is specialised to

ask(p) :— test(p) + send(vz.Agent(x), ask(p))

The method answer is a recursive procedure in which in each round either a new ask-message
is accepted or an ask-message is selected from the goal state and subsequently executed.
Additionally, the first definition of the method ask corresponds to a test on the belief state,
while the second allows for the choice to send the message along to another agent.

We assume that the serving agent v belongs to the class C; and that § belongs to the
class Cy. Additionally, we use the predicate P to denote that a document is a biography of
Elvis Presley. Consider the following initial configuration of the agent system X:

{{a, p send(B, ask(?P(x))); update(p), A1, 1),
(B, answer, Ag, 03),
<’Ya answer, A37 03)}7

where A1 = (0,0), Ay = ({=P(a), Agent(vy)},0), A3 = ({P(b)},0) and 6 = 6, = 65 = {}.

The agent « thus asks the agent 3 for the information ?zP(z) and subsequently adds the
result, which is assigned to the formula variable p, to its belief state. The following constitutes
a derivable computation that starts with the above configuration.

—

{{a, p < send(«, ask(?zP(z))); update(p), A1,01),
(0, (accept(ask) + handle(ask)); answer, Ag, 62),
(v, answer, Ag, 03)} —

{<C¥,p & Walt(ﬁ)? update(p), A17 91)1

<ﬂ7 answer, AIQ’ 92>a

(y, answer, A, 05)} —

where Ay, = ({—P(a), Agent(y)},{ask(?zP(z)) = a})

{{a, p wait(B); update(p), A1, 61),
(B, (accept(ask) + handle(ask)); answer, AL, 65),
(v, answer, Ag, 03)} —

{(05, p = Walt(IB)7 update(p), Ay, 01)1
(B, (test(?zP(z)) + send(1xz.Agent(z), ask(?zP(x))) = «a); answer, Ag, 65),
(v, answer, Ag, 03)} —

{{a, p < wait(3); update(p), A1, 01),

(0, (test(?xP(x)) + send(vx.Agent(z), ask(?zP(x))) = «); answer, Ag, 62),
(77, (accept(ask) + handle(ask)); answer, As, 03)} —

14

{{e, p < wait(B); update(p), A1, 01),

</8’ (Walt(IY) = CY), answer, AQa 02)5

(7, answer, A%, 03)} —

where Ay = ({P(b)}, {ask(?zP(z)) = (£})

{{a, p < wait(8); update(p), A1, 01),
(8, (wait(y) = «); answer, Ay, 02),
(77, (accept(ask) + handle(ask)); answer, A, 63)} —

{{a, p < wait(3); update(p), A1, 01),
(B, (wait(y) = «a); answer, Ag, 0s),
(7, (test(?zP(z)) = B); answer, A3, 03)} —

{{a, p < wait(0); update(p), A1, 61),
(8, (wait(y) = «); answer, Ay, 03),
(7, (P(b) = B); answer, A3, 03)} —

{{a, p < wait(B); update(p), A1, 61),
(B, (P(b) = a); answer, Ao, 6),
(77, answer, A3, 03)} —>

{{a, p <= P(b); update(p), A1, 61),
(6, answer, Ay, 0),
(v, answer, A3, 03)} —

{{a, update(p), A1, 6:{P(b)/p}),
(8, answer, Ay, B),
(v, answer, A3, 03)} —

{<a’ true, Alla 91{P(b)/p}>,
</87 answer’ A2’ 02)’

(v, answer, As, 05)} —>
where A} = ({} o P(b),0)

3.2.5 Rules For Failure

One important aspect we have not considered thusfar is that in the current system a method
invocation might fail. For instance, there is the action test(y) that yields such a situation in
case is not a consequence of the belief state.

The subsequent transitions deal with the situation of failure, for which we use a special
symbol . We extend the language OpenQue(L) with a new formula of the form L, which
will be used to express that a method invocation has failed.

Example 23
A way to deal with failure situations is given by the following statement:

p < send(a, m(v1,...,vy)); ((test(p <> L); S1) + (test(—(p <> L)); S2))

15

If the execution of send(a, m(v1,...,vy,)) results in a failure situation and hence, its result is
equal to L then S is subsequently executed and otherwise the statement Sy is executed.

Definition 24 (Failure rule for test)
If there is no substitution A € Sub(L) with B Fa ¢ then

{{a, test (), (B, G),0)} — {{@,6,(B,G),0)}

The transition defines the action test(yp) to fail in case the formula ¢ is not a consequence of
the belief state B.

Definition 25 (Failure rule for assignment)

{{a,a,A,0)} — {{,d,A,6)}
{{a,p +a,N,0)} — {{a,d,A,0)}

This and the following transition rules deal with the propagation of a failure. The rule for
assignment states that in case the action a leads to a failure then so does the action p + a.

Definition 26 (Failure rules for returning the result)
{<O‘1’ wait, Ay, 01)5 <052’ d = a1, A, 92)} —){<O‘1, 1, Ay, 01>a <a25 1, A, 02>}
{{a,0 = o, A, 0)} — {{a, L, A, 0)}

If a method invocation results in a failure then the result of the invocation is taken to be the
special formula 1.

Definition 27 (Failure rule for the construct S = ()

{{a, S, A, 0)} — {(a,d,A,0)}
{{a, S = B,A,0)} — {{a,0 = B,A,0)}

If the statement S results in a failure then it is to be propagated to the agent .

Definition 28 (Fuailure rule for sequential composition)

{{a,a,A,0)} — {{a,d,A,0)}
{{a,a;S,A,0)} — {{a,0,A,6)}

A sequential composition yields a failure in case the first action of this composition fails.

Definition 29 (Failure rules for non-deterministic choice)

{<O"SlaA’0>} — {<Oé,(5,A,9)} {<Ot, SZaA,9>} — {<O"5,A50>}
{{a, 81+ S2,A,0)} — {{a,6,A,0)}

This rule shows that a non-deterministic choice between two statements leads to a failure
situation in case both statements lead to such a situation.

Definition 30 (Fuailure rules for internal parallelism)

{{a, S1,A,0)} — {(,0,A,60)} {{,52,A,0)} — {{,0,A,6)}
{{a, 81 & S2,A,0)} — {(,0,A,6)}

The failure rule for internal parallelism is similar to that for non-deterministic choice.

16

4 Related Work

The research on multi-agent systems has resulted in the development of various agent com-
munication languages, none of which however has yet been assigned a satisfactory formal
semantics (cf. [17]). And it is this lack of having a clear semantics that in our opinion con-
stitutes one of the major hindrances for an agent communication language to become widely
accepted. In this section, we consider the relation of our framework with two of these lan-
guages, viz. the agent communication languages KQML and FIPA-ACL.

41 KQML

The Knowledge Query and Manipulation Language (KQML) provides a language for the
exchange of knowledge and information in multi-agent systems (cf. [11]), which has been
developed with the objective of being widely accepted as a standardisation for agent com-
munication. It defines the format of a collection of messages that are exchanged between
communicating agents: a KQML message is comprised of a performative that indicates the
purpose of the message, the actual content of the message expressed in some representa-
tion language and several optional arguments which describe meta-information that will be
used in routing the message. These optional arguments include the sender of the message,
the intended receiver of it, a name that identifies the message, the ontology that is used in
the content of the message and finally, the language in which the content of the message is
expressed.
The semantics of a KQML message are given by the following three ingredients:

1. a precondition on the mental state of the sending and the receiving agent that should
hold before the dispatch and reception of the message, respectively.

2. a postcondition on the mental state of the sending and the receiving agent that should
hold after the dispatch and reception of the message, respectively.

3. a completion condition that should hold after a conversation has taken place of which
this message was a constituent.

The language in which these conditions are expressed consists of logical combinations of
the following five operators: bel(«,) denoting that ¢ is in the knowledge base of « and
know(a, @), want(a, ¢) and intend(cq, @), standing for the fact that o knows ¢, wants ¢ and
is committed to ¢, respectively. Finally, there is an operator process(a, m) denoting that the
message m will be processed by the agent a.

An important feature of the framework is that the communication of a message is not
to be considered as an action that occurs in isolation, but that it takes place in the context
of a conversation being comprised of a sequence of communications. In this wider context,
the semantics of the KQML messages can be thought of as to define what constitutes a
correct conversation. That is, the precondition of a message determines the collection of
messages that are allowed to precede the message, while the postcondition lays down the
messages that are permitted to succeed the message. Additionally, in case the completion
condition is a logical consequence of the postcondition, the conversation can be identified to
have successfully terminated. For instance, the following sequence of message constitutes a
typical conversation:

advertise(q, 5, ask-if (3, a, ¢)), ask-if(8, a,¢) and tell(a, £, ¢)

17

In fact, as we will see it constitutes the sequential composition of two completed conversations.
Let us examine the constituents of this conversation in more detail. First, the pre-, post- and
completion conditions for a message advertise(a, 3, m) are as follows, where in this case m
is given by ask-if(8, o, ¢):

1. intend(a, process(a,m))

2. know(a, know (B, intend (o, process(a,m))))A

know (8, intend («, process (a,m)))
3. know(B, intend(a, process(a,m)))

The meaning of the message advertise(a, 3, m) amounts to letting the agent 8 know that «
has the intention to process the message m. Additionally, the fact that the completion con-
dition coincides with the postcondition, implies that this message constitutes a conversation
by itself.

In our framework, we have a slightly different mechanism: there is the primitive of the
form accept(myi, ..., my), which reflects the agent’s intention to accept a message that is in
the collection my, ..., m,. It has the advantage above the KQML message advertise(a, 3, m)
that it allows the set of acceptable messages to vary over time, as it only specifies the messages
that are currently accepted. That is, a subsequent occurrence of the primitive in the agent
program might specify a sub-, super- or even a completely disjoint set of acceptable messages.

Secondly, the conditions for a message ask-if (3, a,) are as follows:

L. Vyer(want(B, know(B8,4)))A

know (0, intend(«, process (a, m)))A
intend (o, process(a,m))

2. \/wep(mtend(ﬁ, know(8,1)))A
know(a, \/¢Er(want(5, know(ﬂ, ¢))))

3. \/wep(lmow(ﬁ, 1))

where m is given by ask-if (5, o, ¢) and I' equals {bel(c, @), bel(a,), mbel (o, @)}

The meaning of the message ask-if(3, a,) amounts to letting the agent o know that
[wants to know whether a believes ¢, believes = or does not believe . The second and
third conjunct of the precondition reflect the requirement that the message is to be preceded
by an advertise(a, 3, m) message. Additionally, the completion condition indicates that the
conversation of which this message is a constituent, has not successfully terminated until the
agent 4 knows one of the formulae in I'. As KQML abstracts away from the content language
of messages, it is not clear to us why the formula bel(a, —¢) is an element of the set T, as
it refers to an operator — in the content language (which in principle, does not need to be
present at all). In particular, if the agent § wants to know whether « believes —¢ it can use
the message ask-if(3, a, —p).

Thirdly, the conditions for the message tell(a, 3,) are as follows:

1. bel(a, p)A
know(a, want (8, know (S, bel (a, p))))A
intend (B3, know (3, bel (a, ¢)))

18

2. know(a, know (B, bel(a, v)))A
know (B, bel(cv, ¢))

3. know(B, bel(a, ¢))

The meaning of the message is to let the agent 8 know that « believes the formula ¢ to
be true. The first conjunct of the precondition states that a should indeed believe the for-
mula ¢, where the second and third conjunct should indicate that the message is to be
preceded by a message of the form ask-if(8, o, ¢). Here we see why it is so important to
have a formal framework to give semantics to a language: mistakes are easily made. The
postcondition \/,,cr(intend (B, know(B,v))) where T' = {bel(c, p), bel(a, =), bel(a, ¢)} of
the ask-if message, does not entail the precondition intend (8, know (8, bel(a, ¢))) of the tell
message. Hence, with this semantics the reception of an ask-if (£, o,) message is not suf-
ficient to be able to send a tell(q, 3, p) message. Additionally, the nesting of knowledge
operators seems to be quite arbitrary: it is unclear why the nesting of knowledge operators
in the postcondition is restricted to depth two, and for instance does not include a formula
as know (B, know (a, know (8, bel(a, ¢)))).

Our concern with defining the semantics of communication in the manner as employed
for KQML, is that it still does not yield an exact meaning of agent communication. The
KQML semantics is defined in terms of operators for which the semantics themselves remain
undefined. For instance, it is not clear what constitutes the exact difference between the
operators want and intend.

Moreover, in contrast to the approach employed in this paper, there is a gap between
the syntactic structure of the language and its semantics, which is due to the use of rather
high-level operators. In our framework however, the operational semantics closely follow the
syntactic structure of the language, which opens up the possibility of developing an interpreter
for the language on the basis of this operational description. This is due to the fact that the
configurations of an agent system can be seen as an abstract model of a machine, where its
transitions define the actions that the machine can perform. In fact this machine would act
as an interpreter for the language.

Thirdly, we believe that the KQML semantics impose too strong requirements on the
agents with respect to their reactions towards incoming messages. We believe that these
reactions are agent-dependent and hence should not be part of the semantics of messages.
For instance, in our framework, consider three different agents each having one the following
definitions of the method ask(p):

o ask(p) :— test(p) + test(—p)
e ask(p) :— p' < test(p); p" < —p'
e ask(p) :— send(iz.Agent(x), ask(p))

The first agent tests its belief state and checks whether it entails the formula p or its nega-
tion. This corresponds to the reaction imposed by the KQML semantics for the ask-if(p)
message. On the other hand, the second agent checks whether its belief state entails ¢ and
subsequently delivers the negation of what it believes to hold (note that the result of the
sequential composition of two actions is given by the result of the second action). In KQML
this reaction is simply ruled out. However, in our opinion this reaction is not a result of the
semantics of the message but of the characteristics of the receiving agent. We believe that

19

any reaction should be allowed, as for instance shown by the third agent, which simply passes
the message along to another agent and delivers the result that it receives from this agent.

4.2 FIPA-ACL

Besides the language KQML there is a second proposal for a standard agent communication
language, which is developed by the organisation FIPA. This language, which we will refer to
as the FIPA-ACL, also prescribes the syntax and semantics of a collection of message types
(cf. [1]). The format of these messages is almost equal to that of KQML, while their semantics
are given by means of:

1. a precondition on the mental state of the sending agent that should hold prior to the
dispatch of the message

2. a representation of the effect that the sender can expect as a result of the dispatch

There are four primitive messages; viz. (i, inform(4, ¢)) and (i, confirm(3, ¢)) in which the agent
i tells the agent j that it believes the formula ¢ to hold and a message (%, disconfirm(j, ¢)) in
which the agent ¢ tells the agent j that it believes the negation of ¢ to hold. The difference
between the inform and confirm message is that the former is employed in case agent 7 has
no beliefs about the beliefs of j concerning ¢, i.e. it does not believe that j believes ¢ or its
negation or is uncertain about ¢ or its negation, whereas the latter is used in case ¢ beliefs
that j is uncertain about j. Thirdly, the disconfirm message is used for situations in which %
believes the negation of ¢ and additionally that j believes ¢ or is uncertain about ¢. This is
summerised in the table below, which also shows that the effect of informing ¢, confirming ¢
and disconfirming —¢ is the same.

primitive precondition effect
(1, inform (3, o)) Bip A=Bi(Bjp V Bj~pVUjp VUj=p) | B;
(1, confirm(j, ¢)) Bip N B;Ujp B;
(i, disconfirm(j,)) | Bi~p A Bi(Bjp V Ujp) Bj—p

The fourth primitive message is of the form (7, request(j,a)) in which i requests the agent
j to perform the action a. The condition for this message is that i believes that the agent
j will be the only agent performing a and that it does not believe that j has already an
intention of doing a. Additionally, the part of the precondition of a that concerns the men-
tal attitudes of ¢ should additionally hold. All other message are defined in terms of these
primitives together with the operators ; for sequential composition and | for non-deterministic
choice. An example of a composite message is (i, query-if(j, ¢)), which is an abbreviation for:
(1, request(g, (4, inform (%, ¢)) | (j, inform (i, —¢))). Analogous to KQML there remains a gap be-
tween the syntax of the communication language and the semantic description given in terms
of high-level modal operators as those for intentions, nested belief and uncertainty. We think
however that the operational model outlined in this paper, could act as a first step in the
development of an operational description of the FIPA-ACL.

20

5 Future Research

In this paper, we have outlined a basic programming language for systems of communicating
agents that interact with each other via a rendezvous communication scheme. In subsequent
research, we will study the extension of the framework with a notion of agent expertise in
the form of a vocabulary or signature together with the incorporation of object-oriented
features as subtyping and inheritance (cf. [6]). Inheritance would then not be restricted to
the inheritance of methods but could also involve the inheritance of (parts of) mental states.
Another issue is the study in what way the current framework could be used to develop
an operational semantic model for existing agent communication languages as KQML and
FIPA-ACL.

References

[1] Foundation For Intelligent Physical Agents. Fipa’97 specification part 2 — agent commu-
nication language. Version dated 10th October 1997.

[2] P.H.M. America, J. de Bakker, J.N. Kok, and J. Rutten. Operational semantics of
a parallel object-oriented language. In Conference Record of the 13th Annual ACM

Symposium on Principles of Programming Languages, pages 194-208, St. Petersburg
Beach, Florida, 1986.

[3] G.R. Andrews. Concurrent Programming, Principles and Practice. The Ben-
jamin/Cummings Publishing Company, Inc., Redwood City, California, 1991.

[4] A.D. Birrell and B. J. Nelson. Implementing remote procedure calls. ACM Transactions
on Computer Systems, 2:39-59, 1984.

[5] P. Cohen and H. Levesque. Communicative actions for artificial agents. In Proceedings
of the First International Conference on Multi-Agent Systems, 1995.

[6] L. Crnogorac, A.S. Rao, and K. Ramamohanarao. Analysis of inheritance mechanisms in
agent-oriented programming. In Martha Pollack, editor, Proceedings of 15th International
Joint Conference on Artificial Intelligence (IJCAI’97), pages 647-652, Nagoya, Japan,
1997. Morgan Kaufmann Publishers, Inc.

[7] R. M. van Eijk, F.S. de Boer, W. van der Hoek, and J.-J.Ch. Meyer. Information-
passing and belief revision in multi-agent systems. In J. P. M. Miiller, M. P. Singh, and
A. S. Rao, editors, Intelligent Agents V — Proceedings of 5th International Workshop on
Agent Theories, Architectures, and Languages (ATAL’98), volume 1555 of Lecture Notes
in Artificial Intelligence, pages 29-45. Springer-Verlag, Heidelberg, 1999.

[8] R.M. van Eijk, F.S. de Boer, W. van der Hoek, and J.-J.Ch. Meyer. A language for
modular information-passing agents. In K. R. Apt, editor, CWI Quarterly, Special issue
on Constraint Programming, volume 11, pages 273-297. CWI, Amsterdam, 1998.

[9] R.M. van Ejjk, F.S. de Boer, W. van der Hoek, and J.-J.Ch. Meyer. Systems of com-
municating agents. In Henri Prade, editor, Proceedings of the 13th biennial European
Conference on Artificial Intelligence (ECAI-98), pages 293-297, Brighton, UK, 1998.
John Wiley & Sons, Ltd.

21

[10]

[14]

[15]

[16]

[17]

[18]

R.M. van Eijk, F.S. de Boer, W. van der Hoek, and J.-J.Ch. Meyer. Open multi-agent
systems: Agent communication and integration. Technical report, Universiteit Utrecht,
Department of Computer Science, 1999.

T. Finin, D. McKay, R. Fritzson, and R. McEntire. KQML: An Information and Knowl-
edge Exchange Protocol. In Kazuhiro Fuchi and Toshio Yokoi, editors, Knowledge Build-
ing and Knowledge Sharing. Ohmsha and IOS Press, 1994.

P. Gardenfors. Knowledge in fluz: Modelling the dynamics of epistemic states. Bradford
books, MIT, Cambridge, 1988.

K.V. Hindriks, F.S. de Boer, W. van der Hoek, and J.-J.Ch. Meyer. A formal seman-
tics for an abstract agent programming language. In M.P. Singh, A. Rao, and M.J.
Wooldridge, editors, Proceedings of Fourth International Workshop on Agent Theories,
Architectures and Languages (ATAL’97), volume 1365 of LNAI pages 215-229. Springer-
Verlag, 1998.

G. Plotkin. A structured approach to operational semantics. Technical Report DAIMI
FN-19, Computer Science Department, Aarhus University, 1981.

B. Thomsen. A calculus of higher order communicating systems. In Conference Record
of the 16th Annual ACM Symposium on Principles of Programming Languages, pages
143-153, 1989.

V. Vigna, editor. Mobile Agents and Security, volume 1419 of Lecture Notes in Computer
Science. Springer Verlag, 1998.

M. Wooldridge. Verifiable semantics for agent communication languages. In Proceedings
3rd International Conference on Multi- Agent Systems (ICMAS’98), pages 349-356, Los
Alamitos, California, 1998. TEEE Computer Society.

M. Wooldridge and N. Jennings. Intelligent agents: theory and practice. The Knowledge
Engineering Review, 10(2):115-152, 1995.

22

