Linkage information
processing in distri-
bution estimation
algorithms

P A. N. Bosman, D. Thierens

UU-CS-1999-10

Linkage Information Processing
In Distribution Estimation Algorithms

Peter A.N. Bosman
peterb@cs.uu.nl

Dirk Thierens
Dirk. Thierens@cs.uu.nl

Department of Computer Science, Utrecht University

P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

Abstract

The last few years there has been an increas-
ing amount of interest in the field of distri-
bution estimation optimization algorithms.
As more techniques are introduced, the vari-
ety in tested distribution structures increas-
es. In this paper we analyze the implications
of the form of such a structure. We show
that learning the linkage relations alone and
using them directly in a distribution estima-
tion algorithm to generate new samples is not
sufficient for building competent evolutionary
algorithms. The information needs to be pro-
cessed to identify and use the building blocks.

1 Introduction

Any reasonable optimization problem has some struc-
ture. Knowing and using this structure can aid the
search for the optimal solution. It is for this reason
that the design of evolutionary algorithms (EAs) has
been focusing on learning problem structure since the
introduction of the genetic algorithm (GA). Most im-
portant in this quest for structure usage is the notion
of linkage. In binary representation, linkage means the
structural cohesion of the bits in the coding string with
respect to the search space. Holland [8] recognized the
use of adapting the linkage between the genes and pro-
posed the inversion operator to accomplish this. Un-
fortunately the inversion operator has turned out to
be too slow and is not included in most GAs. Nev-
ertheless, ignoring the need for proper building block
processing reduces the exploitation of problem struc-
ture. This leads to exponential growth in population
size requirements for solving deceptive problems [12].
Insights into deceptive problems and linkage by Gold-
berg have led to new GAs, with the mGA [7] as one

of the first. Of more recent time, very good results

have been achieved with advanced algorithms that use

linkage, such as the GEMGA by Kargupta [3].

Recently there has been an increasing amount of inter-
est in the use of probability density estimators (PDEs).
Instead of exchanging information between individu-
als, these methods regard entire populations at once.
From the population statistics are derived and used
when generating new individuals. Determining these
statistics is done according to some probability densi-
ty structure. This structure itself or its contents are
mostly adapted during the search. The use of such a
structure should aid in capturing the problem struc-
ture. When the right contents for the structure have
been found, the algorithm can sample better at the
right locations. The implications that follow from the
structure used are the topic of interest in this paper.

Estimation of distributions can be separated into two
parts, namely model selection and model fitting. Se-
lecting the right model regards finding the right net-
work with the right topology (distribution structure).
Fitting the model regards the fitting of the data at
hand into the model and thus finding the values for
the parameters in the network (distribution probabili-
ties). This separation is used commonly because of the
difficulty of model selection. This difficulty 1s found in
the amount of possible networks, which is very large
and grows exponentially with the amount of variables.

It is the implications of model selection we investi-
gate here. In other words, if we don’t have a good
description of the required network, we want to know
the implications of using some other structure for the
network instead. We do not set out to describe a new
algorithm for optimization or new techniques for learn-
ing distributions. Instead, we show that even though
the linkage information might be properly incorporat-
ed in some structure, we show that the way in which
this information is stored and used is very important.

The remainder of this paper is organized as follows.

In section 2 we provide an introduction to optimiza-
tion algorithms using PDEs by presenting previous
work in this field. These algorithms have come to be
called estimation of distribution algorithms (EDAs)
by Mihlenbein [9]. More specific representation is-
sues and possibilities are stated in section 3. Also in
this section we analyze the implications of the differ-
ent structures for the probability distributions. In sec-
tion 4 we present our supporting experiments. We dis-
cuss the implications of our findings in section 5 and
finally present our conclusions in section 6.

2 Previous work

Many extensions have been made to the classical GA
for different purposes. One of the most involved ex-
tensions regards the linkage concept. This extension
leads to some variation of the selection-recombination
GA, whereas the EDAs are a completely different view.
Even though we wish to focus on the use of PDEs, we
do wish to mention two more GA type of algorithms,
namely the GEMGA [3] and the BBF-GA [13]. Both
of these algorithms use correlations between bit—values
and fitness to find linked bits and process building
blocks. This is done by flipping individual bits and
observing changes in fitness contribution. Based on
this information, linkage sets (GEMGA) or crossover
masks (BBF-GA) are constructed that are respected
during the evolution process. Most important is the
acknowledgement that some bits are linked together
and should be processed as blocks. This i1s attempted
to be achieved implicitly in the EDAs described next.

A first move toward using PDEs in optimization is
found in PBIL by Baluja and Caruana [1]. Here the
population is replaced by a single probability vector
that describes for each bit the chance that it is set to
1. The bits are regarded independently of each other,
so PBIL only regards first order statistics. Higher or-
der statistics, through which linkage can be expressed,
were used in the framework known as MIMIC [4] by De
Bonet, Isbell and Viola as one of the first. Here, sec-
ond order statistics are expressed through conditional
probabilities. This algorithm first generates a random
population. Until the termination condition is met,
the algorithm then derives certain empirical probabili-
ties from the population and constructs a new distribu-
tion for the binary variables in a solution string. The
distribution structure used in MIMIC is no more com-
plex than a chain. Denoting bit i as discrete variable
X; (X = XoX;...Xn_1), this distributions equals:

n—2

p(X) = (] p(x;

=0

ij+1))p(Xjn—l)

Here, all j; are different, implying that the density
structure is a network in which the nodes are located
in a chain of dependencies as can be seen in figure 1. To
learn the chain, the j; have to be determined. In MIM-
IC an O(n?) greedy algorithm is employed to minimize
the entropy values in the Kullback-Liebler divergence:

n—2

T(X) = (Y h(X;

=0

ij+1)) + h(Xjn—1)

According to this distribution and the empirical prob-
abilities, new strings are then generated and added to
the population, after which selection is applied.

Figure 1: Example of the chain structure used by

MIMIC: p(Xo|X3)p(X5]X1)p(X1]X4)p(Xa|X2)p(X2)

The use of the greedy algorithm and the limited
structure for the distribution is restrictive in learn-
ing the appropriate relations for a problem. Baluja
and Davies [2] presented an improvement. In their
approach, nodes in the network are allowed to have
multiple children, but still a single parent:

p(6) = (T] X3 X)p(X;.)

Using this structure with e; € {jiy1...jn—1}, there is
no longer need for a greedy algorithm. Now the di-
vergence can be minimized exactly in O(n?) time. An
example of the structure used can be seen in figure 2.

Figure 2: Example of the tree distribution structure:
P(Xo|X3)p(Xs] X1)p(Xa| X1)p(X2|X1)p(X1)

A similar view on EDA algorithms is found in the
UMDA and BMDA [11] by Miihlenbein (Univariate
and Buwariate Marginal Distribution Algorithm re-
spectively). The UMDA uses the most general struc-
ture for univariate distributions, which is the variables
X; themselves. Similarly, BMDA uses the most gener-
al structure for bivariate distributions, which is a set
of disjoint trees. We could thus say that MIMIC and
the improvement over it are special versions of BMDA.

Next to these two special EDA algorithms, the FDA [9]
by Mihlenbein is of importance. In this algorithm a
complete factorization of the distribution is taken as
input and used to build the network structure:

pX)=Je(TIX T TTX e T]X)

7 Xeb; Xee; Xebo

Where ¢; = s; Nd;i_1, b; = s; \ di_q, d; = U;‘:l Sj
and the s; make up the factorization as input sets
with [Js; = {Xo, X1,...,Xn}. Using an actual fac-
torization for the problem at hand, FDA can very ef-
ficiently perform optimization. In FDA, the estima-
tion of distributions is clearly separated into model
selection and model fitting. Model selection is left to
the user as the sets s; have to be specified that deter-
mine the network. Model fitting 1s then done entire-
ly by FDA. The results on FDA tell us that on the
one side given a right distribution structure, the prob-
lem can be solved efficiently. However, it also tells us
that in that case the UMDA and BMDA algorithms
might be too restrictive because of the type of rela-
tions allowed in the network. This is obvious since
FDA can use joint probabilities directly over multiple
variables as depicted in figure 3 instead of something
like p(Xo| X1)p(X1|X2)p(X2)p(Xa| X5)p(Xs).

0 (1)

Variables grouped together

Figure 3: Example of factorized structure used by

FDA: p(Xo, X1, X2)p(X4|X3)p(X3)

The most recent approach, named BOA, was proposed
by Pelikan, Goldberg and Canti-Paz [10]. In BOA,
Bayesian networks are used in which each node can
have a maximum of k successors, allowing variables
now to be dependent on sets of variables as illustrat-
ed 1n figure 4. It is now possible to identify complete
building blocks through joint probabilities just as in
FDA. In contrast to FDA however, BOA does have a
learning mechanism for the network structure. Learn-
ing the network structure, which is model selection,
is the only issue left for all presented EDAs except
for FDA. Therefore, keeping in mind we wish to in-
vestigate the effects of model selection, FDA is more
appropriate to use here. This shall become clear in
the next section, where we first investigate the PDE
structures at hand.

Figure 4. Example of a Bayesian network structure:
p(Xo| X1, Xo, X3, Xa)p(X1| X2, X3, Xa)p(X2| X3, Xa)-
p(X3]Xa)p(X4) = p(Xo, X1, Xa, X5, X4)

3 Representation issues

As we wish to investigate the implications of model se-
lection, we must regard the structure of the probability
distribution used in an EDA. In the previous section
we already saw a few different possibilities. We can
distinguish two types of networks for those structures
that differ, namely the Bayesian network of order k&
and the network in FDA. In the Bayesian network of
order k, each node has at most k successors. It i1s easy
to see that the chain used by MIMIC is a special ver-
sion of a Bayesian network with & = 1. The great
improvement in using Bayesian networks is that the
form of the network is otherwise unrestricted and that
the graph does not have to be connected. In structure
recognition, this means that it 1s possible to express
the building blocks completely separate from each oth-
er. This is impossible when for instance using MIMIC.

The structure in FDA can be different in that proba-
bilities do not have to be expressed conditionally. It 1s
possible to directly group variables together in a joint
distribution. This reduces the need for a large k£ as is
obvious from figure 3. How exact and efficient FDA
might be however, its practical use is constrained be-
cause of the factorization of the problem that 1s re-
quired a priori. On the other hand, having noted
how efficient FDA can be, it 1s desirable to be able
to identify building blocks in a joint distribution. In a
Bayesian network with large enough k£ however, it is in-
deed possible to model this as shown in figure 4. This is
possible because H?:_(Jl (Xl Xit1, Xigz, .o, Xno1) =
p(Xo,X1,...,Xn-1). In other words, the structure
used in FDA can be written as a Bayesian network.
This reduces the amount of arcs required in the net-
work greatly as can be seen in figure 4.

So it seems that using Bayesian networks with a good
way of learning the network topology would be a per-
fect substitute for the exact FDA. The problem lies
however in the factor k. Learning the desired network
is known as the k—learn problem and has been shown
to be NP—complete [5]. In other words, we cannot ex-

pect to find the optimal network in polynomial time.
Using heuristics is the only practical approach [10]. At
this point we can question ourselves if we can also suf-
fice with less complicated and perhaps less competent
networks in learning these well instead of approximat-
ing higher order networks.

In order to answer this question, we should first realize
the trajectory we want the algorithm to follow. First,
we want to incorporate the correlations between the
bits and the search space in the algorithm. This 1s of
course done by finding the right network as the prob-
ability distribution. Through this we wish to express
the linkage information for the problem. All EDAs so
far implicitly assume that higher order building block
problems can then be solved. This is because direct-
ly from the probability distribution more samples are
generated. However, this does not need to be the case
at all. Consider for instance the following trap func-
tions:

fr) = { —=o(z)+1-d if o) <1
1 if o(z) =1

Here o(z) stands for the amount of ones in substring z
of length [. The maximum value of 1 is achieved for a
string with [ones and the suboptimum of 1—d is found
for a string with [zeros. When d goes to 0, the prob-
lem becomes fully deceptive for some value of d. This
means that all schemata of an order smaller than [lead
to the suboptimum (deceptive attractor) [6]. The fit-
ness function consists of concatenating m such blocks
of [bits in length. Clearly, the building blocks for
this fitness function are located at positions (0417, 1+
il,...,1—=14il),7 € {0,1,...,m—1}. The order of the
bits within each block is unimportant, so using for in-
stance the chain on the first block, a distribution such
as p(Xo|X1)p(X1]X2)p(X2|X3)p(X3|X4)p(X4) would
seem to suffice. In this case any ordering of the vari-
ables in the chain would be evenly proper. Using mul-
tiple building blocks implies a different distribution:

m—1 1-2
p(X) = [T (TT p(Xs4atl Xjpir4))p(Xigryi=1)
i=0 j=0

However, when using MIMIC, the independent chains
have to be linked together because we can only use a
single chain, implying a distribution such as p(X) =
(H?:_(f p(Xi|Xi41))p(Xn-1). Here we have introduced
dependencies across the building block boundaries. A
first observation could therefore be that in order to ex-
actly identify building blocks, a completely connected
chain is insufficient. On the other hand, the only dif-
ference in the distribution is that p(X;;—1) is replaced
by p(Xi—1|Xs) forie {1,2...,m—2}.

The larger problem is in the combination of proba-
bilities. Taking the independent chains that fit the
building blocks for instance, any settings of the bits in
one block is a combination of I chances. For the prob-
lem suggested, the optimum is reached when all bits
are set to 1. Even if all chances are 0.9 for instance,
the probability that bits 0...7 (1 € {0,1,...l1—1}) ina
block are set to 1 equals 0.9+!. For i = 4, this already
equals 0.59049. The chances have to be very close to
1 in other words to succeed. Selection will drive the
better blocks out of the population when good com-
binations can’t be made fast enough because of such
composition of chances.

This problem will also be present when using for in-
stance the better fitting tree, even though the problem
can be reduced. A better fitting distribution such as
p(XQ|X4)p(X1|X4)p(X2|X4)p(X3|X4)p(X4) could be
used for each block. Here X4 1s thus the root of a tree
with height 1. Given again all chances of 0.9 at setting
bits to 1, the root is set to 1 with chance 0.9 and all
other bits are then set to 1 with chance 0.9%2 = 0.81,
which is significantly better. Still however, the block is
not processed as a whole. Note that the entire block is
still set to one with probability 0.97 for [bits. In gen-
eral it can be expected that for deceptive problems,
selection will drive the good blocks out of the popu-
lation too fast in order for any correct structure and
probabilities to still be learned.

The two commonly accepted remedies for the prob-
lem at hand are to increase the population size and
to reduce the selection pressure (or some other means
to maintain diversity longer). However, increasing the
population size will not help when the distribution es-
timation 1sn’t effective in the first place. On the other
hand, when it is effective, increasing the population
size will help. The larger the population, the less co-
incedental it will be that there are a few good blocks.
In the case of inadequate relation learning, the infor-
mation will be lost in selection and not be regenerated.
When relation learning is adequate, the blocks will
be regenerated in time, preventing that they are ex-
punged from the population. Furthermore, with a non
deceptive problem, the good blocks will not be driven
out by selection quickly and there will be enough time
to find the right relations. All that is then required
is the proper mixing of blocks. Reducing selection
pressure will not help either. In fact, increasing the
pressure will be better because without selection the
initial statistics are based upon a random population
and the next population is just another random pop-
ulation because no selection was applied. A too high
selection ratio on the other hand might drive the good
blocks out of the population all too fast.

The trajectory of finding correlations, placing them in
some probability density structure, expressing linkage
information through this and then solving higher order
building block problems is thus not expected to be
followed by using just any density structure. In other
words, just as was the case for the variants of the GA
and is still the case in research, we need to identify
building blocks and use them as blocks. Even when the
linkage information for a block is expressed by a chain,
not acknowledging that the bits need to be processed
as a block will keep the algorithm from solving higher
order building block problems. In the next section we
will present experiments that justify this viewpoint.

4 Experiments

In order to provide supporting results for the claim
in the previous section, we test one strategy and use
different distribution structures. For a higher order
deceptive building block problem, we should then see
that optimization can only be achieved when the build-
ing blocks can be processed as a whole. Using struc-
tures such as the chain or the tree will fail to capture
the building block structure and not be able to perform
optimization. Furthermore, we can simulate the best
case scenario for MIMIC by fixing the distribution at
the best possible chain using FDA. The issue is that
building blocks cannot be processed, however good the
linkage information, so even fixing the distribution at
the best possible chain will not help. Instead of moving
up from MIMIC toward better algorithms, we can go
from the FDA and degrade the algorithm. By slight-
ly perturbing the perfect distribution for the problem,
it is stressed again that the most important thing is
processing the building blocks if after perturbation the
problem is still optimized. At the same time we wish to
show the influence of the population size and selection
ratio. For this, we present the results with the pop-
ulation size on the horizontal axis and perform tests
for different selection ratios. Finally, we also wish to
test the problem both as fully deceptive and as non-
deceptive. To do this we use the trap functions with
d = 0.2 and d = 0.8 respectively. The experiments in
this section were all executed in the general EDA and

FDA fashion [9]:

1. Generate a random population of N individuals.
2. Select 7N individuals with 0 < 7 < 1.

3. Update the distribution with selected individuals.
4

. Generate a new population of N individuals using
the new distribution.

ot

Incorporate the best individual from the previous
generation (elitism).

6. If termination condition is not met, go to step 2.

Updating the distribution is done by using a strategy
as found in MIMIC or Baluja and Davies for instance.
In other words, we override the selection framework
that is normally used, which is just a variation of the
selection framework above. When using the approach
by Baluja and Davies, we disable the estimator array
by setting the initial value ¢;;,;; and the decay factor o
both to 0. Termination occurs when all individuals in
the population are equal. All tests were combined over
30 independent runs. Furthermore, the test function
used is the trap function as presented in the previous
section with [= 5, m = 10 (string length is thus 50)
and we use d = 0.2 or d = 0.8. All figures show the
percentile of building blocks correct upon termination
along the vertical axis and the population size, which
was increased in steps of 50, along the horizontal axis.

In a first test, we investigate the implications of using
the chain and the tree structure. We want to test these
structures using learning techniques to find the actual
topology of the networks. To be more precise, we test
MIMIC and the approach by Baluja and Davies with
7 = 0.5. From figure 5 it follows that both approaches
indeed cannot succeed in finding the optimum value
when the problem is fully deceptive. Furthermore the
results show that indeed when distribution estimation
is successful, an increasing population size contributes
to its success. However, when it is not successful (de-
ceptive problem), an increasing population only stim-
ulates its downfall. For d = 0.8, the algorithms show
better results, but optimization is still not achieved.
Other tests have shown that the 50% truncation ratio
is still too strict for these algorithms to solve the non
deceptive problem. So in the remainder, we shall em-
ploy 20% and 80% truncation ratios. Furthermore the
two tested algorithms learned the topology of the net-
work. This is the harder part of the problem, which 1s
model selection. To show the implications of selecting
the right type of model only, we shall in the remain-
der fix these distributions. This means that steps that
adapt the network structure or topology in the EDAs
are simply skipped. Only the empirical probabilities
are determined and used to generate new individuals.
The network itself is fixed on beforehand. In other
words, we shall from now on regard the best case sce-
nario for using a certain network model by choosing
the best possible topology of the network on before-
hand. Methods that learn this topology can then only
provide worse results. We shall use the FDA to inves-
tigate such fixed distributions by choosing the right
sets s;.

— MIMIC,d=02 BéD, d=02 ---MIMIC, d=038 --BéD,d=038
0

0.9
0.8
0.7
0.6
0.5
0.4

[+] SRS O R R

0.2
0.1

TS0 0 0 310 B T T 10 B R ([1)

0.0 00,0
0.0

Figure 5: Percentile BBS correct for MIMIC and Balu-
ja & Davies.

In a second test, we use the FDA to test the best
possible chain of dependencies by specifying the sets
s; to be {i—1,4} for i > 0 and {0} for i = 0. This will
then lead to a probability distribution used in FDA
equal to p(X) =]9()(0)(1_[?:_11 p(Xi|X;-1)). Note that
the linkage information is actually expressed because
the bits in the individual blocks are directly linked.
The only thing is that bits between blocks are linked
in a single position as well. To this end, we can alter
the sets s; to be {i — 1,i} for (mod 5) # 0 and {i}
otherwise, which will give us a probability distribution
that models a chain for each building block separately:
p(X) = T1750" p(X0) (TTizs P(Xj4] X 4i-1)).

- Chains --- Factorized

0.0 000 500 000 W00 000 W00 0.0

Figure 6: Percentile BBS correct for FDA variants,
d=02,7=0.2.

All figures showing results for both the complete chain
as well as the individual chains (figures 6 through 9)
show that there is no significant difference between
the two chain approaches. This means that separat-
ing the building blocks is not the most important is-
sue. From all figures it also shows that identifying
and using as such the individual building blocks s
important. The tests that did succeed are namely
the ones using the sets s; = {5i,5i + 1,...51 + 4}
for i € {0,1,...,m — 1}. These sets are complete-
ly disjoint and the resulting probability distribution

— Chain - Chains --- Factorized

0.0 000 500 000 W00 000 W00 0.0

Figure 7: Percentile BBS correct for FDA variants,
d=08,7=0.2.

— Chain - Chains --- Factorized

0.0 000 500 w0 00 D R 1000
50 0

Figure 8: Percentile BBS correct for FDA variants,
d=02,7=0.38.

is p(X) = H;nzgl p(Xsi, X5ig1, ..., Xsipa). Using this
distribution, the building blocks are completely pro-
cessed as a whole. As a result, as can be seen from the
figures, all problems are successfully optimized. Other
series of tests have been portrayed with 100 bits and
blocks of 5, which have provided the same results.

Third and finally, we have tested FDA with almost the
same digjoint sets s; that have proven so successful.
These tests are to emphasize the fact that identifying
and processing as a whole the complete building blocks
is most important. Instead of directly using these sets
however, we have added a perturbing element. The
amount of perturbation is determined by a perturba-
tion factor (. To show that the chain itself is not the
problem, but the fact that the building blocks are not
processed as a direct whole, we convert the perfect
distribution to a chained distribution. However, we
do keep the building blocks themselves intact. This is
done by adding to set s; the first ¢ elements of set s;_1
for each 7 > 0. This leads to the distribution

p(X) = p(Xo, X1,..., Xq)
m—1
L2 p(Xsi, Xsig, ooy Xsigal
Xs(i=1) Xs(i=1)41, - -+ X5(i-1)4¢-1)

— Chain - Chains --- Factorized

00T 1500 00.0 0.0 000 0.0 400.0

Figure 9: Percentile BBS correct for FDA variants,
d=08,7=0.38.

In figures 11 and 10 it is shown that the perturbated
algorithm even to a factor { = 4 still optimizes the
problem. Clearly it becomes harder to find the opti-
mum, but most importantly, given a large enough pop-
ulation, the problem will still be solved. This is con-
trary to what we observed for the chain. Once again,
this emphasizes the fact that processing the building
blocks as a whole is required to optimize the problem.
Our tests indicate that the EDAs are sensitive to un-
precise block recognition, but that this is not a crucial
factor. What is crucial is the fact that what has to be
processed as a whole is the building blocks. In other
words, the linkage information found has to be exploit-
ed in the form of using the building blocks in order to
find competent EDAs.

- Perturbation=2 --- Perturbation=3 --- Perturbation = 4

— Perurbation=1
0

00T 1500 00.0 0.0 000 0.0 400.0

Figure 10: Percentile BBS correct for perturbed FDA,
d=102,7=0.2.

5 Discussion

Using linkage information has been acknowledged to
be of importance. Finding building blocks is the main
issue. Once the building blocks are known, they can
be searched more efficiently and be mixed together.
Such was already the attempt of algorithms such as the
mGA [7] and the fmGA. A good approach is therefore

— Perurbation=1 - Perturhation=2 --- Perturbation=3 --- Perturbation = 4

00T 1500 00.0 0.0 000 0.0 400.0

Figure 11: Percentile BBS correct for perturbed FDA,
d=08,7=0.2.

to first search for the building blocks, filter them and
then respect them in a mixingstage. Such an approach
has been taken by some algorithms so far [3, 13] with
very good results.

In the EDAs, linkage information is expressed through
the probability distribution. This distribution is then
immediately used to produce new individuals. The
filtering and mixing stages are thus combined all to-
gether. It has become clear however that unless the
building blocks are properly identified, optimization
will fail. Most importantly, even though the linkage
information is well expressed, not identifying building
blocks will trouble optimization. For instance when
using the second order chain of dependencies with the
best possible distribution, either in a complete chain
or in separate chains, optimization of deceptive prob-
lems with higher order building blocks fails. Directly
using the linkage information degrades the potential
of the methods. Note that the more sophisticated net-
works that can model complete building blocks have
the same problem, unless the building blocks are iden-
tified and used. This means that the approach using
Bayesian networks [10] of order k for instance requires
a good learning algorithm. Without that, the proper
network topology is not found and the building blocks
are still not processed correctly.

We do note that in this paper we have only discussed
tests over a single problem. Even though the results
are encouraging, verification on other problems is de-
sired. Also we should bear in mind the no free lunch
theorem for search [14], telling us that there have to be
problems on which the described algorithms perform
bad. The problem described however has a clear struc-
ture. We are thus focusing on such problems, meaning
our results remain valid in that domain.

In terms of building block filtering and mixing, it
would be interesting to investigate an approach that

uses an EDA to filter the building blocks. After this,
a GA could be used to mix the blocks. For instance,
assuming the relations can be learned through the cor-
relations, a position biased crossover operator (such
as one or two point crossover) could be used. The
GA with this operator is applied after the genes are
positioned next to each other according to the linkage
information. For the chain distribution this is straight-
forward. By doing so, we attempt to process the build-
ing blocks as a whole in a better way.

6 Conclusions

Using correlations between alleles such as in EDAs to
estimate probability distributions and using these in
optimization is a good way to find linkage informa-
tion. Directly using this linkage information in gener-
ating new individuals is however a troublesome issue
in EDAs. Even though simple structures are capable
of expressing linkage information, using them directly
does not imply that higher order building block prob-
lems can be solved. Whereas the variables of the build-
ing blocks are placed close together in the network, the
blocks are not identified as a whole. As a result of this,
the block processing is too slow and optimization will
not be successful.

The linkage information needs to be processed to iden-
tify the building blocks. Using the probability distri-
bution then found, an EDA with this distribution will
perform efficient optimization. So even though linkage
information is very important for exploiting problem
structure, building blocks need to be identified from
this information after which they must be used in or-
der to design competent EAs.

References

[1] S. Baluja and R. Caruana. Removing the genetics
from the standard genetic algorithm. Technical
report, Carnegie Mellon University, 1995

[2] S. Baluja and S. Davies. Using optimal dependen-
cy—trees for combinatorial optimization: Learning
the structure of the search space. In D.H. Fish-
er, editor, Proceedings of the 1997 International
Conference on Machine Learning. Morgan Kauff-
man publishers, 1997. Also available as Technical
Report CMU-CS-97-107.

[3] S. Bandyopadhyay, H. Kargupta, and G. Wang.
Revisiting the gemga: Scalable evolutionary opti-
mization through linkage learning. In Proceedings
of the IEEFE International Conference on FEvolu-
tionary Computation, pages 603-608. IEEE Press,

[10]

[12]

1998. Also available as Technical Report EECS-
97-004, Washington State University, Pullman.

J.S. De Bonet, C. Isbell, and P. Viola. Mimic:
Finding optima by estimating probability densi-
ties. Advances in Neural Information Processing,

9, 1996

D. Chickering, D. Geiger, and D. Heckerman.
Learning bayesian networks: Search methods and
experimental results. In Proceedings of the fifth
conference on Artificial Intelligence and Statis-
tics, pages 112-128. IEEE Press, 1995

K. Deb and D.E. Goldberg. Sufficient conditions
for deceptive and easy binary functions. Annals of
Mathematics and Artificial Intelligence, 10:385—
408, 1994

D.E. Goldberg, B. Korb, and K. Deb. Messy ge-
netic algorithms: Motivation, analysis and first

results. Complex Systems, 10:385-408, 1989

J.H. Holland. Adaptation in Natural and Artifi-
ctal Systems. Ann Arbor: University of Michigan
Press, 1975

H. Miihlenbein, T. Mahnig, and O. Rodriguez.
Schemata, distributions and graphical models in
evolutionary optimization. ftp://borneo.gmd.de/

pub/as/ga/gmd_as_ga-98_02.ps, 1998

M. Pelikan, D.E. Goldberg, and E. Cantu-Paz.
Linkage problem, distribution estimation and
bayesian networks. Also available as IliGAL
Report 98013. ftp://ftp-illigal.ge.uiuc.edu/pub/
papers/IliGALs/98013.ps.Z, 1998

M. Pelikan and H. Miuhlenbein. The bivariate
marginal distribution algorithm. In Advances in
Soft Computing — Engineering Design and Man-
ufacturing. Springer—Verlag, 1999

D. Thierens and D.E. Goldberg. Mixing in genetic
algorithms. In S. Forrest, editor, Proceedings of
the fifth conference on Genetic Algorithms, pages
38-45. Morgan Kaufmann, 1993

C.H.M. van Kemenade. Building block filtering
and mixing. In Proceedings of the IEEE confer-
ence on Bvolutionary Computation. IEEE Press,

1998

D.H. Wolpert and W.G. Macready. No free lunch
theorems for search. Santa Fe Institute Technical
Report SFI-TR-95-02-010. ftp://ftp.santafe.edu/
pub/wgm/nfl.ps, 1995

