On the modelling of
evolutionary algorithms

P A. N. Bosman, D. Thierens

UU-CS-1999-11

On The Modelling Of Evolutionary Algorithms

Peter A.N. Bosman
peterb@cs.uu.nl

Dirk Thierens
Dirk. Thierens@cs.uu.nl

Department of Computer Science, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

Abstract

Creating general systems and development
environments for evolutionary algorithms
(EAs) brings many advantages in both devel-
opment and usage. A few of them have been
built with different views on issues that are at
the heart. In this paper we show that some of
these issues are both common and nontrivial.
With at the background a new system called
EA Visualizer, we provide general solutions
to those issues. Furthermore, we discuss the
requirements and provide good insights in the
modelling of EAs. We show how to overcome
hard problems so as to achieve a high level of
useability and flexability.

1 Introduction

In both implementations as well as theories, a more
explicit and mechanical setting has been rising of late
in Evolutionary Computation. Some repositories and
libraries have been created [2, 4, 5, 6, 7, 8], provid-
ing frameworks in which EAs can be developed with
both more ease and uniformity. In research lessons are
learned from prior experiments and enhancements are
made to design EAs that are competent.

As proof is hard to come by when working with EAs,
visualizing results is essential to being confident about
theories. When the evolutionary process is made in-
teractive and the viewing continuous, the best of con-
trol is achieved over the execution and theories can be
stressed very well. Furthermore, a general framework
for developing EAs results in both ease and uniformity.
Thus, a very useful tool is a system in which

1. information resulting from an EA, both during
its run and at its termination can be visualized
continuously as well as interactively and

2. development of new algorithms is done by coding
new instances of components that are placed in a
general framework.

The latter argument keeps us from having to write
code for the entire EA. It allows us to merely define
instances of parts from an at the outset defined algo-
rithm. Alongside this we define views that visualize
the required information. The instances can then be
put together to create an actual EA and the views can
be placed for visualization. This way we can both vi-
sualize theories in a powerful way and disregard a large
amount of overhead in implementing a new EA.

Issues such as these have led to the development of a
Java program named FA Visualizer. This paper con-
tains information on the requirements and shows what
problems are likely to be encountered in the creation of
any such system. These problems are not uncommon
or trivial. Using the design of the FA Visualizer, we
also present possible solutions, moving beyond meth-
ods and approaches provided by other studies [3, 5].

The remainder of this paper is organized as follows.
In section 2 we describe the requirements for creating
such a system. Section 3 presents our approach to the
modelling of EAs. In section 4 we then describe the
problems that one encounters and present solutions as
used in the FA Visualizer. Section 5 briefly introduces
this new system, after which in section 6 we propose
topics of further possible research. Finally, in section 7
we present our conclusions.

2 Requirements analysis

Creating large software systems is always done in a
number of steps. Here we restrict ourselves to the re-
quirements analysis. We discuss the three most im-
portant aspects, but also briefly point out other topics
of importance in the creation of a general EA system.

2.1 Modelling EAs

First of all, we must question ourselves what EAs are.
One approach, as presented by Leonhardi et al. [5],
is to go from optimization and leave details on EAs
unspecified. We then move to design a general system
in which the algorithms are almost unrestricted. For
instance we would then only have representations and
operators. The operators are not specific such as a
Recombinator or Mutator, but of a general type (eg.
operator or not). An algorithm would then be defined
as a sequence of operators to apply to a population
or its members. In such a case, we move away from
the modelling of EAs since the EAs are still to be pro-
grammed without a general model. Our approach is
to look closer at evolutionary computation and take
out the most general aspects. In this way we allow to
define EAs through components that are common. We
thereby put the focus on EAs instead of optimization,
clarifying what EAs are in the system and how they
can be composed.

A modular decomposition of EAs results in a descrip-
tion that consists of components. The system uses
these components and passes the required data be-
tween them. By doing this, a high level of expand-
ability i1s created as each component can have a mul-
tiple of instances. The user never has to redefine the
entire process, but only to implement new instances
such as an actual mutation operator. Note that this is
done independent of the other components. For usage,
the desired instances are selected to be part of the EA
without any changes to the structure of the system.

A drawback is that by specifying any general frame-
work other than that of total freedom, the EAs that
can be created are of a certain form. Thus we must en-
sure that the expressional power of the modular frame-
work is great, which we elaborate upon in section 3.

2.2 Visualizing information

In order to establish a flexible and expandable visu-
alization part as well, this part should be separated
from the EAs as much as possible. This perspective
leads to a Model-View—Controller (MVC) type of ap-
proach in which the model (the EA) is separated from
the view (the visualization part) and the system itself
is controlled by the controller (the main system). For
expandability, we require a modular structure based
upon separate views for the visualization part.

Establishing continuous visualizations means that the
system will have to transfer information from the mod-
el to the controller after each generational step. Every
generation, all views should be updated by the system

with the new data. It 1s then left to the views to decide
if they need to display new information.

The level of interactivity with the system poses a prob-
lem. Allowing a direct influence on the EA through the
views makes the MVC separation harder to establish
and presents the user with more tricky system details.
The viewing part should however receive all informa-
tion from the model as we cannot know in advance
what a view is going to visualize. This information
includes the instances for the components in the EA.
This allows to interactively alter EA parts, as long as
the views can receive input. By doing so, the possible
level of interaction extends from altering view char-
acteristics to having an influence on the current EA
without seriously harming the MVC property.

2.3 Running EAs

Because of their random aspect, EAs belong to the
class of probabilistic algorithms. We can never rely on
the performance of these algorithms in one single run.
Experiments with EAs should therefore always be per-
formed a multiple of times and the results combined.

Not only are continuous and interactive visualizations
a great tool to learn about and research EAs, they are
also a way to quickly satisfy intuitions. Using the sin-
gle run version also prevents wasting computing time
over a multiple of runs on wrong settings. Still for a
thorough investigation, the user will want to be able
to perform a multiple of runs. Therefore, any general
system for EAs is not complete without the capability
to run an EA a multiple of times.

At the same time it i1s common practice to vary pa-
rameters or strategies. Thus the availability of multi-
ple runs should be accompanied by the possibility to
run algorithms with different settings. However, as we
shall see in section 4, automating this is quite complex.

2.4 An overview of the requirements

So far we have analysed what is fundamentally re-
quired in order to build a general system for EAs. We
now summarize the requirements, introducing other
topics of importance as well.

1. The system should have a modular structure. The
most flexible parts must be decomposed so that
they are easily expanded. This means that

(a) visualization is done by views that are imple-
mented as separate classes just as

(b) the instances for the components of the EA
are implemented separately.

2. The views should be capable of processing user
input at the least by using a mouse pointing de-
vice, making the visualization interactive.

3. The system should transfer everything that could
be of interest from the model to the views. This
allows the interaction to have a direct influence on
the EA and allows views to be general or specific.

4. The EA should be described by a general frame-
work that is a decomposition of the evolutionary
process. It must hold a great amount of expres-
sional power, but needs not to be defined for all
specific cases, making it too complex.

5. The system should be capable to run EAs a single
run as well as a multiple amount of runs. In each
of the multiple runs, a multiple of combinations
of parameters or strategies must be settable.

6. The system should be self-contained through the
containment of an easy to use extensive help sys-
tem. This help system must be expandable for
every other part of the system that is expandable.

7. The implementation should be such that admin-
istration of all parts that can be expanded is done
in a mechanical way so that it can be automated,
leading to an editor version that allows for easy
editing and expanding of the system.

8. The implementation should be done in a language
that will allow the system to run on as many dif-
ferent platforms and operating systems as possi-
ble. This will allow for users working on different
platforms to exchange parts of the system.

In most systems, the larger obstacle for quick usage is
that coding is still required in order to get something
working [4, 5, 6, 7, 8]. The use of GUIs as a system
would resolve this problem, which was acknowledged
for instance by L. Dekker [2, 3]. None of these sys-
tems however have a fully integrated use of such GUIs
through an editor as well as the running system. Such
integration greatly improves useability. Most systems
have no general view part, which prohibits a quick
gain in insights. Almost all systems are coded in only
partially portable languages, which prohibits general
use. Finally, there is to our knowledge no other system
available with a general multiple runs facilitation.

3 Decomposition of EAs

We are to create a general framework in which we iden-
tify components that have a clear and distinct func-
tionality. The decomposition we present here has been
implemented in the EA Visualizer and has been found
to be a powerful one. Specific details on the derivation

can be found elsewhere [1]. Here we only present this
decomposition to get a feel for what such a modelling
looks like. Note that it is possible for a system with
other goals to have a different decomposition.

Figure 1 shows an intuitive description of the gener-
ational step in EAs in our decomposition. Applica-
tion of components such as Mater, Recombinator and
Mutator are classical. The implementation of the se-
lection mechanism is achieved by two selection phas-
es and one replacement phase. We have a Replacer
component that merges in some way the contents of
the current population with a collection of offspring
genomes. We also have a Selector component, which
is used twice. It is used once at the beginning to se-
lect the parent genomes. It is then used again at the
end to select the genomes that are to finally survive.
This leads to only one new component, of which two
possibly different instances are used.

When denoting the algorithm depicted in figure 1 by
evolve(P(t)) where P(t) is the population at genera-
tion ¢, the full meta algorithm according to the de-
composition can be stated as in figure 2. Not all com-
ponents can be derived immediately from the above.
As the description so far only regards the dynamics,
we might overlook important parts in the background
such as the fitness function or the genotype. Iden-
tifying these components, the decomposition used in
the FA Visualizer consists of the twelve components
presented in figure 3.

The proposed decomposition is quite expressionally
powerful. Elsewhere [1] it has been shown that not on-
ly does this decomposition allow for a modelling of the
classic GA| it is also well suited for algorithms such as
the mGA, the fmGA, the GEMGA and the LLGA as
well as other evolutionary approaches such as MIMIC,
evolution strategies and problem specific variants such
as approaches for the TSP. Furthermore, commonly
used add—ons for EAs can easily be incorporated such
as elitism, crowding, preselection and sharing.

4 Common problematic issues

In this section we regard common problematic issues
one is confronted with in design and implementation.
Even though the issues are general to all systems, the
solutions presented are exactly the ways in which they
are implemented in the EA Visualizer.

4.1 Dependencies

The most common problem is the combinations of in-
stances for the components. This problem arises be-

Population

(") = Genome

‘ (After) Selector

Population

Figure 1: Fine grained decomposition of the generation
step in EAs.

t=0

initialize(P(t))

evaluate(P(t))

while not terminate(P(t)) do
P(t+ 1) = evolve(P(t))
evaluate(P(t + 1))
t=t+4+1

od

Figure 2: Coarse grained decomposition of EAs, the
full algorithm.

Genotype Population | Fitness Function
Similarity Selector Mater
Recombinator | Mutator Hybrid Searcher
Replacer Terminator | PRNG

Figure 3: The twelve components in the decomposition
used in the FA Visualizer.

cause some components use others. In most decompo-
sitions, this means that the operators and data struc-
tures pose such a problem. In our framework in sec-
tion 3, there is for instance a problem between the
Recombinator and the Genotype, because we can’t use
one—point crossover for binary strings on TSP tours.
Neither can we use a binary mutator on an evolution
strategies tuple. This requires us to restrict the con-
struction of EAs to legal combinations of instances.

A solution to this problem is to identify some of the
components as dependency imposing. Such a compo-
nent is used by another component. What instances
for a component are available thus depends on what
kind of dependency components are installed. In our
decomposition these components are Genotype, Fit-
ness Function, Population and Similarity. Respecting
this dependency imposing stucture, the user can be
forced to select only legal combinations. For each in-
stance information is stored regarding what instances
for each dependency imposing component this instance
is allowed to be selected with. Every time an instance
is selected for one of the dependency imposing compo-
nents, a filter can be called upon to filter the lists of
available instances for all components.

4.2 Parameters

It is common practice to be able to vary for in-
stance the population size and the string length for
the genomes. For each instance we should therefore
realize that 1t might have parameters for which values
need to be entered. At this point we should separate
the notion of parameter from parameter value. A pa-
rameter 1s the structure that defines what values can
be set under what name. It can be compared to a typed
variable in programming languages. The actual value
for it is what is used at runtime. So for a Selector
instance a parameter named selection size could be of
type integer, whereas a value for it could be 100.

For each instance, the amount and type of parameters
must be known. For a uniform system, we require a
general parameter structure. The issue is to separate
the instances from their parameters. As we shall see
lateron, only through such loose coupling we are able
to solve more advanced system flexability issues.

Our approach is to create parameter components that
can be used by both the system and by the instances.
For any instance, the parameters are specified as a list
of parameter components. The system knows how to
display them and once the values are entered, they can
be shipped to the instance and there set.

4.3 Multiple runs

The system must be capable of running EAs a multiple
of times. In our general setting however, facilitating
this neatly is complex. At first glance, this might not
seem to be the case because making a self coded GA
run iterated is no more difficult than adding another
loop to the code. This i1s however required for each
type of test anew whereas a general model will prevent
this. Furthermore, constructing a general approach
helps in finding solutions to whatever loops required
when coding them directly.

The simplest approach for the general case is to al-
low the user to create an amount of single run algo-
rithms that are consequetively run a specified amount
of times. This is far from desirable as it happens all
too quickly that we wish to test all population sizes
between 2 and 200 with a step of 4, which would re-
quire the definition of 49 EAs. Furthermore, we have
then not even varied other settings as well.

A much better approach is to allow for the varying of
settings. The parameter values must then be varyable
so that the influence of a parameter can be inspect-
ed. In order to test different strategies, we must be
able to test different instances for a single component.
We must however not forget that we have dependen-
cy tmposing components. This implies that we cannot
test a multiple of instances for those components in
a single specification. Otherwise we might get incon-
sistencies within the dependencies that are imposed.
Also, we might want to enumerate sets of parameters
or instances simultaneously (for instance amount of
genomes to select and population size). Thus we need
to be able to avoid crossproducts between settings.

To be able to install a multiple of instances for the
dependency imposing components, we can allow for
a multiple of multiple runs to be specified. Each of
these multiple runs can be run a specified amount of
times for each combination of parameter values and
instances. In each such multiple run, the instances for
the dependency imposing components are fixed, but
their parameters are varyable. The instances for the
other components can be selected with respect to the
dependencies now imposed. For each instance, a mul-
tiple of parameter values can be entered. Because the
parameter structure was isolated, a special facilitation

Sngle Runs
-~"|___Genotype Instance
. Population Instance
Single Fitness Function Instance
Run . Parameter 1
EA Replacer Instance Parameter 2
o Terminator Instance .
PRNG Instance .
Parameter n
Multiple Runs
Multiple
Multiple
Run
EA
Multiple Multiple Multiple Multiple
Run —= Run [—= Run = +++ —= Run —I
EA EA EA EA

Fixed Dependency
Imposing Components
/__Other Components ',

— Genotype Instance
Population Instance
Fitness Function Instance
Similarity Instance

Recombinator Instance —{ Recombinator Instance —=Recombinator Instance —=1!

Mutator Instance !

I e

'\ |_Terminator Instance ——!
PRNG Instance —=

Parameter 1]!

Parameter 2 Parameter 2 Parameter 2 |

——————— Full contents of part : —

Contained within part Parameter n'”’ —=Parameter "’]I

Figure 4: Structure of single and multiple runs with
example instances and parameters.

might be implemented to this end. For one such mul-
tiple runs the links can be specified, indicating what
sets of parameters or instances must be enumerated
simultaneously. This is nontrivial, as not all combina-
tions are allowed to be linked as can be seen in figure 5.
The structure for instances and parameters are shown
in figure 4. It is obvious that the complexity of multi-
ple runs is far beyond that of single runs.

At this point a special enumerator can be called upon
to enumerate the settings in the proper manner. The
system will create a new single run EA and run it
for each set of settings. Creating the enumerator is
a difficult task as we amongst other things have to
respect the links that have been made. To this end,
we propose a solution in which all that can be varied in
a multiple run is appointed a counter. These counters
are enumerated just as would be a row of bits, with
the exception that every bit now has its own range
of values. A specific setting for these counters then
points to a setting for the parts in the EA.

Setting up the counters can be done in five phases.
First, room is made to incorporate counters. For ev-
ery component there should be a counter, as well as for
each parameter for each instance of each component.
For each set of linked items, we then appoint the same
counter to each member. In a third pass, we pass out
counters only for the sets of instances. This is required
because we don’t want to enumerate settings for com-
ponent instance 2 if instance 1 is currently installed.
Therefore we need to know what counters are associ-
ated with unlinked parameters only. The structure to
be enumerated is shown in figure 5. The remaining
counters are passed out in a fourth pass. In the final
pass, the counter arrays are set up and the amount
of combinations are counted. We have two types of
counter arrays, namely a normal one and a fast one,
where the fast counters are used for the parameters
and their values. Note that for every time we incre-
ment the normal counters (which happens when we
have run through the fast counters), we have to rede-
termine the fast counters and reset that array.

4.4 Visualizing information

Decoupling the visualization and the model allows us
to create EAs without concerning ourselves with the
gathering of data. This decoupling is established by
shipping all information from the EA to a data pro-
cessing part. We can now also disregard overhead
within the EA for gathering statistical information for
instance, which can now be done elsewhere. To this
end we must send enough information, but this is ad-
dressed by creating a single package with all instances
in the decomposition and their parameter values, the
generation counter and other meta variables such as
the chance at recombination and mutation. Also, all
intermediate steps of the latest generation must be in-
cluded (such as all genomes after recombination).

4.5 Useability

User interaction is in many systems text—based. The
useability of the system can however greatly be im-
proved by using graphical user interfaces (GUIs). Tt
for instance allows us to present the user with lists
of instances from which a selection has to be made.
These lists can be kept consistent with the dependen-
cies. This way EAs can be selected by simply “clicking
them together”, instead of having to write this out in
a textfile by hand and to use a parser to report errors.

By allowing the user to select the EA in this way, we
require to create instances at runtime. To keep the
system expandable and automated, we require to have
some tight structure in which this creation is done.

Instances Parameters Parameter
For For An Values For A
Components Instance Parameter
Instance Parameter | . ’ Value
Vaue
Component1 4 Instance Parameter value
Instance Parameter | -, Value
) --"|value
Instance |.-~"| Parameter | [vaue
Instance | =" . [Vaue| /|vdue
Component 2 Instance ‘ Parameter ‘) vaue| Vaue
Instance | >~.| Parameter | -/ |Value
e __|Vvalue
X1
Instance Parameter Vaue
Componenta | Instance | ’ Value 3
N Parameter
Instance N Vaue
><2
Instance xj 52
Component 4 Parameter Vaue
Instance
Value
K4
X3
ya
Instance Parameter Value
Instance Parameter |, Value
Component n Instance Parameter Value
Instance Parameter N Vaue
fffffff Contained within part
- = Link between parts
- >< = lllegal link between parts (impossible)
Illegal links:

1: Wrong arity, not the same amount of values to enumerate
2: Parameters values for one instance with all instances of the same component
3: Wrong arity, not the same amount of instances to enumerate

Figure 5: The structures to be enumerated and an
example of links between them.

This implies that we need some form of a Creator Ob-
ject that is capable of creating instances. Once selec-
tions are made, the creator object knows what runtime
objects to create for the selected items.

At this point, some parts come together as within such
a creator class we can place the information on the pa-
rameters for the instances, as well as their dependen-
cies. Thus, following this approach we can both offer
the user a friendly way to use the system as well as
enforce the solutions proposed in this paper.

4.6 Editing and expanding

Expandability is very important for the applicability
of the system. In the neat most way, this requires to
have a system editor. An undesirable approach would
be to guide the user through the implementation parts
and explain where to put what files and how to compile
them within the system. Creating an editor requires

software generation methods and strict protocols for
automation. Based upon the neat approaches taken in
this paper, creating such an editor becomes feasible.

The system should allow the user to create new in-
stances through coding them in some language. Also,
the parameter structure and the view system need to
be augmentable in this way. Furthermore for each new
instance, the specification of parameters, dependen-
cies and help pages must be facilitated. To make the
expansion complete, the availability of new instances
should be automated. We have already proposed Cre-
ator Objects in which such information is stored. Thus
a system update consists of regenerating these objects
so that they incorporate the new information.

5 An example: EA Visualizer

We now present the EA Visualizer [1], a system de-
signed and implemented conform to the issues dis-
cussed in this paper. It can be tested online through
an applet version or be downloaded at the FA Visual-
izer WWW site: http://www.cs.uu.nl/people/peterb/
computer/ea/eavisualizer/EAVisualizer.html

We only give a feel for the FA Visualizer through a
multiple runs example. The tests merely serve to be
an example of how modelling aspects as discussed in
this paper can come into being.

We set out to run a GA on a NK fitness landscape with
three recombination strategies over increasing popula-
tion sizes, combining results over thirty runs. We want
to use tournament selection and use the offspring as
the new population contents. One of the first steps
in entering this in the FA Visualizer, is the selection
of the instances for the dependency imposing compo-
nents as can be seen in figure 6.

2} Multiple Runs EA: Dependency Impasing Components

Evalution Strategies
Multi Valued Allele String

Genotype

ickley's Function

Fitness Function Einary St Eit Counting

Bi: TR Ll
Population
Apply | Cancel

Figure 6: Selecting the instances for the dependency
imposing components.

Next, instances can be added for the other components
and their parameters can be set as depicted in figure 7.
Figure 8 shows the settings for the tournament selec-

23 Mew Multiple Run EA Settings

Fitness Runction

Genotype Similarity Population

Parameters

Paraneters
M Remove

Earanete)

Parameters

Recoubinator

Murator

Parameters
ﬂl Renove
Errenscers
ﬂl Renove 4
e |

Before Selector

After Selector

Replacer

Terminator

Hybrid Searcher

I Recoubinacion Chances | Mucation Chances

Figure 7: Entering the settings for the multiple runs
EA.

2 election

Seleotion Fron 10 To [200 Tncrenen . o prey | (e [ewve | [es 1

oosnaneat. size e | w F Inezencns ¥ e | | [3
app1y | cancer

Figure 8: Entering the settings for tournament selec-
tion.

tion operator. Just as for the population size, we enter
to select amounts from 10 to 200 with steps of 10.

To let the offspring replace the contents of the pop-
ulation, we must select just as many genomes as the
population has. Therefore, no crossproduct enumera-
tions must be made between the population size values
and the selection size values. This is entered by spec-
ifying the links as shown in figure 9. The lower left
list contains all instances installed. The area on its
right contains the parameters for each such instance
once it is selected (and not linked yet). The linked
items are shown on the right, which in this case are
the population size and the selection size.

Having created the EA, we add some views for visual-
ization. Here we only add some graphs with statistics.
The running system is shown in figure 10. The up-
per two graphs show the fitness average and variance
of the best fitness value after each of thirty runs. The
lower two graphs show the average and variance values
for the amount of fitness evaluation calls. In all graphs
the solid, dotted and dashed lines represent one—point,
two—point and uniform crossover respectively.

Conponents Tnstences Added

Figure 9: Linking parameters to avoid crossproduct
enumerations.

Stamus: Evolving Generation: 0

ssssss

34,51 L 1. a2~

5.ms 7 1.254

1,263 0,735
0.0 |

s520.. Toes - . - 730025.

s213.0) i 437397.12)
291596.05) ety 2

107120 L 145795, 04)

1033,

5.6 27.0 3.0 45.0 4.0 63,0 7.0 810
10.0 Options| Legend
Total Maltiple Runst 1T

02 o 1004

Figure 10: The FA Visualizer system while it is run-
ning the multiple runs.

6 Possible future extensions

Extensions can be made in many ways and the pro-
gram is never finished. The system can for instance
always be expanded to contain more instances for the
components. We are however more interested in issues
with respect to general modelling. There are some is-
sues in that field that can still be visited.

The decomposition made does not explicitly allow for
multiple strategies in multiple populations using mi-
gration schemes to exchange results. It is interesting
to investigate how issues alter and what additional as-
pects might come into being when modelling this with-
out forcing it into a more specialized decomposition.

It would be most interesting to look at parallelization
of EAs. This would lead to additional modelling issues.
It would provide a great advantage because more com-
puting power could be applied. This issue deals with
the modelling of EAs and less with the system itself.
Aspects to the latter can thus remain unaltered as we
have proposed a highly modular system.

7 Conclusions

Designing a general development environment for EAs
brings many common and general problematic issues.

We have presented solutions to the most important
of these issues. Through our approaches it becomes
feasible to create system aspects of great complexity.
This in turn allows the user to work with EAs easier
and in a more powerful and flexible way.

At the heart lies a good decomposition of EAs. For
each new system this decomposition can be made ac-
cording to the desired properties. We have presented a
general framework in which most EAs can be modelled
and in which it 1s convenient to think about them. Be-
cause of the modular approach we presented, all pre-
sented solutions can be used for common problems en-
countered when creating any of such useful tools.

References

[1] P.A.N. Bosman. A general framework and develop-
ment environment for interactive visualizations of
evolutionary algorithms in java and using it to in-
vestigate recent optimization algorithms that use
a different approach to linkage learning. Utrecht
University gradudation paper INF-SCR-98-15.
http://www.cs.uu.nl/people/peterb/computer/
papers.html, 1998

[2] L. Dekker. Q—game genetic algorithm development
kit. http://www.cs.ucl.ac.uk/staff/L.Dekker/
pubs/qgameman.ps, 1995

[3] L. Dekker and J. Kingdon. Development needs for
diverse genetic algorithm design. In Genetic Algo-
rithms in Optimisation, Simulation and Modelling,

pages 9-26. TIOS Press, 1994

[4] J.J. Grefenstette. A user’s guide to genesis version
5.0. ftp://www.aic.nrl.navy.mil/pub/galist/src/
genesis.tar.Z, 1990

[6] A. Leonhardi, W. Reissenberger, T. Schmelmer,
K. Weicker, and N. Weicker. Development of
problem—specific evolutionary algorithms. In A.E.
Eiben, T. Back, M. Schoenauer, and H.-P. Schwe-
fel, editors, Parallel Problem Solving From Nature
V, pages 388-397. Springer—Verlag, 1998

[6] P.D. Surry and N.J. Radcliffe. Rpl2: A language
and parallel framework for evolutionary comput-
ing. In Y. Davidor, H.-P. Schwefel, and R. Manner,
editors, Parallel Problem Solving From Nature 111,
pages 628-637. Springer—Verlag, 1994

[7] H-M. Voigt, J. Born, and J. Treptow. The evolu-
tion machine manual 2.1. ftp://neisse.gfai.de/pub/
software/em/em-man.ps.Z, 1991

[8] M. Wall. Galib: A c++ library of genetic algorithm
components. http://lancet.mit.edu/ga/, 1998

