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Abstract

When building a Bayesian belief network, usually a large number of probabilities
have to be assessed by experts in the domain of application. Experience shows that
experts often are reluctant to assess all probabilities required, feeling that they are
unable to give assessments with a high level of accuracy. We argue that the elicita-
tion of probabilities from experts can be supported to a large extent by iteratively
performing sensitivity analyses of the belief network in the making, starting with
rough, initial assessments. Since it gives insight into which probabilities require a
high level of accuracy and which do not, performing a sensitivity analysis allows for
focusing further elicitation efforts. We propose an elicitation procedure in which,
alternatingly, sensitivity analyses are performed and probability assessments are re-
fined, until satisfactory behaviour of the belief network is obtained, until the costs of
further elicitation outweigh the benefits of higher accuracy, or until higher accuracy
can no longer be attained due to lack of knowledge.

*The investigations were (partly) supported by the Netherlands Computer Science Research Foundation
with financial support from the Netherlands Organization for Scientific Research (NWO).



1 Introduction

Bayesian belief networks are widely accepted in artificial-intelligence research as intuitively
appealing, valuable representations of knowledge, tailored to domains in which uncertainty
is predominant [Pearl, 1988]. A Bayesian belief network basically is a concise representa-
tion of a joint probability distribution, consisting of a qualitative part and an associated
quantitative part. The qualitative part of the network encodes the variables of importance
in the domain that is being represented, along with their influential interrelationships. The
strengths of the relationships between the variables are quantified by conditional probabil-
ities. These probabilities constitute the quantitative part of the network. An increasing
number of knowledge-based systems nowadays builds on the framework of Bayesian belief
networks for knowledge representation and inference, thereby demonstrating the useful-
ness of belief networks for addressing real-life problem domains; applications range from
medical diagnosis, prognosis, and treatment planning, to probabilistic information retrieval
[Andreassen et al., 1987, Heckerman et al., 1992, Bruza & Van der Gaag, 1994].

Bayesian belief networks are usually constructed with the help of domain experts. Expe-
rience shows that, although it may require considerable effort, building the qualitative part
of a belief network is quite practicable. In fact, building the qualitative part has parallels
to designing a domain model for a more traditional knowledge-based system. To a large
extent, therefore, well-known knowledge-engineering techniques can be employed for this
purpose [McGraw & Harbison-Briggs, 1989, Studer et al., 1998]. Unfortunately, similar
observations do not hold with regard to the quantitative part of a Bayesian belief network.
Constructing the quantitative part is generally considered a far harder task, not in the least
because it tends to consume much more time. It amounts to assessing various conditional
probabilities for the variables represented in the belief network’s qualitative part. Although
for most domains of application abundant probabilistic information is available from lit-
erature or from statistical data, it often turns out that this information is not directly
amenable to encoding in a belief network [Druzdzel & Van der Gaag, 1995, Jensen, 1995].
Medical literature, for example, often reports conditional probabilities of the presence of
symptoms given a disease, but not always the probabilities of these symptoms occurring
in the absence of disease; moreover, conditional probabilities for unobservable intermedi-
ate disease states are usually lacking in the literature. The majority of the probabilities
required will therefore have to be assessed by domain experts. The problems encoun-
tered when eliciting probabilities from experts are widely known [Tversky et al., 1982];
an expert’s assessments may for example reflect various biases and may not be properly
calibrated. Acknowledging these problems, in the field of decision analysis various dif-
ferent techniques have been developed for the elicitation of well-calibrated probabilities
from experts [Von Winterfeldt & Edwards, 1986]. These techniques, however, tend to be
quite time-consuming. As for a belief network generally a large number of probabili-
ties is required, employing these techniques may not be feasible. For probability elicita-
tion for Bayesian belief networks, therefore, supplementary techniques are being sought
[Druzdzel & Van der Gaag, 1995, Van der Gaag et al., 1999].

Experience with eliciting probabilities from domain experts for a Bayesian belief net-



work shows that experts often are reluctant to assess all conditional probabilities required
[Van der Gaag et al., 1999]. At least part of their uneasiness stems from their feeling that
they are compelled to give exact numbers having a high level of accuracy while they know
they are unable to. In general, however, not every probability assessment will require the
same level of accuracy to arrive at satisfactory behaviour of the knowledge-based system
that is being developed; some probabilities have more impact on the system’s behaviour
than others. For gaining detailed insight into the level of accuracy that is required for the
various conditional probabilities of a Bayesian belief network, a sensitivity analysis can be
performed [Morgan & Henrion, 1990].

The basic idea of performing a sensitivity analysis of a Bayesian belief network is to
systematically vary initial assessments for the network’s conditional probabilities over a
plausible interval and study the effects on the behaviour of the system being developed.
Some probabilities are likely to show a considerable effect, while others will hardly reveal
any influence. For the less influential probabilities, the initial assessments may suffice. For
the more influential probabilities, however, refinement of the initial assessments may be
worthwhile. For these probabilities, for example, elaborate elicitation techniques may be
applied to obtain a more accurate assessment. Given the limited and costly time of experts,
attention can thus be focused on the probabilities to which the system’s behaviour shows
the highest sensitivity. As assessments are refined, the belief network under construction
may again show various different sensitivities. To gain insight in these, possibly new,
sensitivities, the network can once again be subjected to a sensitivity analysis. Based
upon these observations, we propose a procedure for eliciting probabilities that builds
upon the idea of stepwise refining probability assessments. The procedure sets out with the
elicitation of initial, probably highly uncertain, assessments for all conditional probabilities
required for the belief network under construction. Starting with these initial assessments,
a sensitivity analysis of the network is performed, upon which the assessments for the most
influential probabilities are refined. Iteratively performing sensitivity analyses and refining
probabilities is pursued until satisfactory behaviour of the belief network is obtained, until
the costs of further elicitation outweigh the benefits of higher accuracy, or until higher
accuracy can no longer be attained due to lack of knowledge.

We would like to note that, when performed straightforwardly, a sensitivity analysis
of a Bayesian belief network may require considerable computational effort. The com-
putational burden involved, however, can be reduced to a large extent by exploiting the
probabilistic relationships among the variables that are represented in the belief network
under study. These relationships allow for distinguishing between conditional probabili-
ties that may influence the system’s behaviour and those that cannot. In addition, these
relationships induce simple mathematical functions describing the network’s behaviour in
terms of its conditional probabilities [Coupé & Van der Gaag, 1998]. Nevertheless, iter-
atively performing sensitivity analyses of a Bayesian belief network with respect to all
potentially influential probabilities will remain computationally expensive. Considering
that these analyses are performed only when constructing and validating a belief network,
their computational burden is well outweighed by their benefits in probability elicitation.

In this paper, we outline sensitivity analysis of Bayesian belief networks and discuss



its use in probability elicitation. In Section 2, we introduce the formalism of Bayesian
belief networks. We address the construction of a belief network in Section 3. In Section
4, we illustrate the technique of sensitivity analysis. In Section 5, we detail our elicitation
procedure exploiting sensitivity analysis as an aid for belief-network quantification. In
Section 6, we address the computational issues involved in performing a sensitivity analysis
of a Bayesian belief network. The paper ends with some conclusions and directions for
further research in Section 7.

2 Bayesian belief networks

Informally speaking, a Bayesian belief network is a representation of domain knowledge. It
consists of a qualitative part and an associated quantitative part. The network’s qualitative
part takes the form of an acyclic directed graph, or digraph, for short. Each node in this
digraph represents a domain variable that takes its value from a finite set of discrete values.
In this paper we will restrict the discussion to binary variables, taking one of the values true
and false; our results, however, are generalised straightforwardly to account for variables
taking their value from larger discrete sets. If a variable V' has the value true, we will
write v; the notation —v is used to indicate that V = false. The arcs in the network’s
digraph represent influential relationships among the represented variables. The tail of an
arc indicates the cause of the effect at the head of the arc. Absence of an arc between two
variables means that these variables do not influence each other directly.

For our running example we consider the following fragment of (fictitious and incom-
plete) medical information, adapted from [Cooper, 1984]; the example is meant for illus-
trative purposes only.

“Consider a primary tumour with an uncertain prognosis in an arbitrary pa-
tient. It is known that the cancer can spread to the brain and to other
sites. We are interested in the course of the cancer within the next three
years, especially with regard to the development of a brain tumour and
its associated problems. The probability of a metastatic cancer developing
from the primary tumour is estimated to be 0.2. The probability that the
metastatic cancer will be in the brain is also estimated at 0.2. Also in the
absence of metastatic cancer, there is a small probability of development of
a (primary) brain tumour; this probability is assessed to be 0.05.

Metastatic cancer may be detected by an increased level of serum calcium. In
fact, serum calcium will be increased with probability 0.8 in the presence of
metastatic cancer and only with probability 0.2 in the absence of metastatic
cancer. It is estimated that a patient will fall into a coma within the next
three years with probability 0.8 in the case that a brain tumour is present
and/or the level of serum calcium is increased. Otherwise, there is only
a probability of 0.05 of falling into a coma. Severe headaches are likely to



develop both with a brain tumour, with probability 0.8, and without a brain
tumour, with probability 0.6.”

In this fragment of information, five variables are identified: the presence or absence of
metastatic cancer in a patient (indicated by MC), the presence or absence of a brain tumour
(B), an increased level of serum calcium (ISC'), a patient falling into a coma within the next
three years (C), and the presence or absence of severe headaches (SH). The relationships
among these variables are encoded in the digraph depicted in Figure 1. The graph for
example reflects, by means of the arc B — SH, that the presence of a brain tumour is a

possible cause of severe headaches.

Figure 1: The digraph of an example Bayesian belief network, encoding information con-
cerning the presence of a brain tumour and its associated problems in an arbitrary patient
(the meanings of the variables are given in the text).

The absence of the arc MC — (' in the digraph shown in Figure 1 indicates that the
presence or absence of metastatic cancer does not directly influence whether or not a patient
will fall into a coma within the next three years. Metastatic cancer influences coma only
indirectly, through brain tumour and increased total serum calcium. Once the presence
or absence of a brain tumour and the level of serum calcium have been established in a
patient, the presence or absence of metastatic cancer no longer influences the probability
of this patient falling into a coma. Metastatic cancer and coma therefore are conditionally
independent given brain tumour and increased total serum calcium. For further details
on the independences that are read from a belief network’s qualitative part, we refer the
reader to [Pearl, 1988].

The influential relationships that are represented in the qualitative part of a Bayesian
belief network generally are probabilistic in nature. To describe the ‘strengths’ of these
relationships, several conditional probabilities are provided. For each node in the network’s
digraph, the probabilities of its values are specified, conditional on the various possible com-
binations of values for its immediate predecessors in the graph. For our running example,



we have the following probabilities:

p(me) = 0.20 p(c | b,isc) = 0.80

p(c | —b,isc) =  0.80
p(b | me) = 0.20 p(c | b,—isc) = 0.80
p(b | —-mec)= 0.05 p(c | —b,—isc) = 0.05
p(isc | me¢) = 0.80 p(sh | b) = 0.80
p(isc | -mc) = 0.20 p(sh | =b) = 0.60

From the conditional probabilities specified for node ISC, it is readily seen that knowing
whether or not metastatic cancer is present has a considerable influence on the probability
of an increased level of serum calcium in an arbitrary patient: the relationship between
metastatic cancer and increased total serum calcium is a fairly strong dependence. On the
other hand, severe headaches are expressed as being quite common in both patients with
and without a brain tumour; severe headaches therefore have a low predictive value for
the presence or absence of a brain tumour. From the conditional probabilities specified
for node C, we see that in the absence of both a brain tumour and an increased level of
serum calcium, there is only a very small probability of a patient falling into a coma. The
presence of either one of these causes in an arbitrary patient, however, suffices to render
the probability of this patient falling into a coma in the near future quite high. Note that
the two causes do not contribute to this probability independently: if one of the causes is
present, then the presence of the other cause has no further influence on the probability of
a patient falling into a coma. The two causes are said to exhibit a (negative) synergistic
influence on their common effect.

The probabilities associated with the qualitative part of a Bayesian belief network
constitute the network’s quantitative part. An important property of the belief-network
formalism is that a network’s quantitative part defines a unique joint probability distribu-
tion that respects the independences that are portrayed by the network’s qualitative part
[Pearl, 1988]. In our examples, we will write Pr to denote the probability distribution that
is defined by a belief network. To explicitly distinguish between the probabilities that are
derived from the distribution and the conditional probabilities that are specified in the
network’s quantitative part, we will write p to denote the latter probabilities.

So far we have treated the probability assessments of a Bayesian belief network as
exact point probabilities. For most applications, however, the initially obtained assess-
ments will be quite uncertain. To capture this uncertainty, each probability assessment is
supplemented with a plausible interval that defines a range of values in which the ‘true’
probability lies with reasonable certainty. For our example belief network, for instance,
we assume the plausible interval (0.75 — 0.85) for the assessment p(isc | mc) = 0.80 for
the probability of an increased level of serum calcium in the presence of metastatic cancer,
indicating that 0.75 < p(isc | mc) < 0.85 with reasonable certainty. In the sequel, we will
use the following plausible intervals for the various assessments of our example network:



p(me) : (0.1 —0.35) p(c | b, isc) (0.6 —0.9)
p(c|—b,isc):  (0.75 —0.85)
p(b | mc) : (0.05 — 0.5) p(c | b, —isc) (0.65 — 0.85)
p(b | —me): (00— 0.25) p(c|—b,—isc): (0—0.1)
p(isc | me) 1 (0.75 — 0.85) p(sh | b): (0.65—0.9)
p(isc | =mce) @ (0.15 —0.3) p(sh | —b) : (0.45—0.7)

The plausible intervals for the assessments that are initially obtained for a belief network’s
conditional probabilities can be quite large. Upon refining the various assessments, as
proposed in the sequel, the plausible intervals involved typically become smaller.

To conclude, associated with the belief-network formalism are procedures for comput-
ing probabilities of interest from a belief network and for processing evidence, that is,
for entering evidence into the network and subsequently computing the revised probabil-
ity distribution given the evidence [Pearl, 1988, Lauritzen & Spiegelhalter, 1988]. These
procedures are the basic building blocks for reasoning with a Bayesian belief network.
The details involved are not relevant for the present paper and therefore are not reviewed
here. We would like to note, however, that the belief-network formalism accommodates
for various types of reasoning, among which are diagnostic and prognostic reasoning.

3 Building a Bayesian belief network

Building a Bayesian belief network for a domain of application involves various tasks. First,
the variables that are of importance in the domain are identified, along with their values.
Since a belief network, as any model, necessarily is a simplification of reality, well-founded
decisions have to be taken as to which variables and values should be included in the net-
work and which may be omitted. The important variables and values are typically identified
with the help of experts in the domain under study. We would like to emphasise that this
task is not reserved for building Bayesian belief networks, but instead is quite common in
engineering knowledge-based systems in general, for which purpose several methodologies
and techniques are available [McGraw & Harbison-Briggs, 1989, Studer et al., 1998]. Once
the variables of importance have been identified, the construction of the qualitative part
of the belief network commences. For acquiring the topology of the network’s digraph,
domain experts are interviewed. In the interviews, the concept of causality is generally
used as a heuristic guiding principle. Elicited causalities are expressed in graphical terms
by taking the direction of causation for directing arcs. Building on the concept of causality
has the advantage that domain experts may express their knowledge in either causal or
diagnostic direction. Since they are allowed to express their knowledge in a form they
feel comfortable with, the experts’ statements and, hence, the qualitative part of a belief
network, tend to be quite robust [Druzdzel & Van der Gaag, 1995]. The task of eliciting re-
lationships among variables from domain experts once again has parallels with engineering
knowledge-based systems in general.



After the qualitative part of a Bayesian belief network has been constructed, its quanti-
tative part is specified. Quantifying a belief network’s qualitative part amounts to assessing
various conditional probabilities for the represented variables. The assessment of all prob-
abilities required tends to be, if not the hardest, then certainly the most time-consuming
task in building a belief network. Although for most domains of application abundant
probabilistic information is available from literature, it rarely turns out to be directly
amenable to encoding in a belief network [Druzdzel & Van der Gaag, 1995]. Medical lit-
erature, for example, often reports conditional probabilities of the presence of symptoms
given a disease, but not always the probabilities of these symptoms occurring in the ab-
sence of disease; moreover, conditional probabilities for unobservable intermediate disease
states are usually lacking. If literature does not provide sufficient and reliable probability
assessments, estimates may be obtained from statistical data. Experience shows, however,
that even if comprehensive data collections are available, they very seldom contribute to
the entire quantification task [Jensen, 1995, Korver & Lucas, 1993]. In a medical data
collection, for example, unobservable intermediate pathophysiological states are typically
not recorded. As a consequence, a large number of probabilities remain to be assessed by
domain experts.

The field of decision analysis offers various techniques for the elicitation of judgemental
probabilities from experts [Von Winterfeldt & Edwards, 1986, Morgan & Henrion, 1990).
We briefly review the two techniques that are most often used for eliciting probabilities
for Bayesian belief networks. The simplest technique is the use of a numerical probability
scale. A probability scale is a horizontal or vertical line with the endpoints denoting a 0%
and a 100% chance, respectively, and a few numerical anchors in between, for example to
denote a 50% chance; Figure 2 illustrates the basic idea. For each probability required, a

0 50 100

Figure 2: A numerical scale for probability elicitation.

domain expert is asked to indicate his or her assessment on a separate scale. In communi-
cating a probability to be assessed to a domain expert, the probability is often transcribed
verbally in terms of frequencies. The expert is asked to envisage one hundred cases with
a specific context and assess the number of cases that exhibit a certain characteristic. For
our example belief network, for instance, the domain expert may be asked to envisage
a population of one hundred arbitrary patients with metastatic cancer and to assess the
number of patients from among this population who will show an increased level of serum
calcium upon examination. Experience shows that the use of a probability scale along with
the frequency method provides experts little to go by and may result in highly inaccurate
probability assessments [Van der Gaag et al., 1999].

A more elaborate technique for the elicitation of judgemental probabilities is the use of
reference lotteries. A domain expert is presented with a choice between two lotteries, one
of which pertains to a probability to be assessed and the other one serves as a reference.



The reference lottery yields a desired reward with probability p and a less desired outcome
with probability 1 — p. The second lottery yields the same desired reward if a specific case
exhibits a certain characteristic and the less desired outcome otherwise. For our example
belief network, the domain expert is presented, for instance, with a choice between a
reference lottery and the lottery that yields $10,000 if a specific patient with metastatic
cancer upon examination shows an increased level of serum calcium and $1 if the level
of serum calcium is not increased in this patient; Figure 3 depicts this choice between
lotteries. The domain expert is asked to adjust the value of p in the reference lottery until

P $10,000

—C)

1-p $1

serum calcium increased

$10,000

—CO)

serum calcium not increased

$1

Figure 3: An example reference lottery, tailored to assessment of the conditional probability
of the presence of an increased level of serum calcium in a patient with metastatic cancer.

he or she is indifferent between the two lotteries. The resulting value of p then is taken
to be the conditional probability that had to be assessed. Experience shows that the use
of reference lotteries for eliciting probabilities from domain experts may avert to at least
some extent the problems of bias and poor calibration that are typically found in human
probability assessment. The use of lotteries, however, tends to be quite time-consuming
and, in fact, often turns out to be infeasible for probability elicitation for belief networks
as a result of the large size and complexity of a network in the making.

While the use of lotteries for probability elicitation on the one hand tends to be infea-
sible for quantifying a Bayesian belief network, the use of a probability scale on the other
hand tends to yield assessments that are too much inaccurate. The use of a probability
scale, nonetheless, serves to yield an assessment, be it an inaccurate one, for every con-
ditional probability required. In the sequel, we will argue that these assessments may be
used as a starting point for further refinement. We will propose an elicitation procedure in
which, starting with uncertain assessments, sensitivity analyses of a belief network in the
making are performed and assessments are refined alternatingly. Our elicitation procedure
builds upon plausible intervals capturing the uncertainties in the various assessments as
described in the previous section. Various techniques are available for acquiring plausible
intervals with probability assessments [Morgan & Henrion, 1990]. The simplest technique



is to elicit the plausible intervals directly with the probability assessments from domain
experts. An expert is asked to envisage one hundred cases with a specific context and
provide a lower bound and an upper bound on the number of cases that exhibit a cer-
tain characteristic; these bounds are selected so that the expert is relatively certain that
the true number of cases exhibiting the characteristic lies between the bounds. Plausible
intervals thus obtained may not be very robust. It is not clear, for example, whether to
interpret these intervals as 90%, 95%, or 100% confidence intervals. To obtain more robust
plausible intervals, more elaborate techniques are available. These techniques once again
tend to be quite time-consuming and therefore are not reviewed here.

4 Sensitivity analysis

Sensitivity analysis is a general technique for studying the effects of the uncertainties in the
parameters of a mathematical model on this model’s outcome [Morgan & Henrion, 1990,
Habbema et al., 1990]. For a Bayesian belief network, sensitivity analysis provides for ex-
ample for studying the effects of the uncertainties in the assessments for the network’s
conditional probabilities on a probability of interest. There are various different types of
sensitivity analyses. For a belief network, the simplest type of sensitivity analysis amounts
to systematically varying the assessment for one of the network’s probabilities while keep-
ing all other assessments fixed. Such an analysis serves to reveal the effect of just the
conditional probability whose assessment is being varied, on a probability of interest. A
sensitivity analysis in which a single assessment is varied, is termed a one-way sensitivity
analysis. In a two-way sensitivity analysis of a Bayesian belief network, two probability
assessments are varied simultaneously. In addition to the separate effects of variation of
the two assessments, a two-way sensitivity analysis reveals the joint effect of their variation
on a probability of interest. In essence, it is also possible to systematically vary more than
two probability assessments at the same time. The results of such an analysis, however, are
often hard to interpret. In this paper, we will therefore restrict the discussion to one-way
and two-way sensitivity analyses.

We illustrate performing a one-way sensitivity analysis of our example belief network.
We begin by taking the probability of falling into a coma, Pr(c), for our probability of
interest. By doing so, we assess the robustness of the prognosis of falling into a coma for
an arbitrary patient with a primary tumour. Such an analysis may be useful in predicting,
for example, the expected number of patients that will fall into a coma within the next
three years in a population of patients with primary tumours. We address the one-way
analyses with respect to the assessments for the conditional probabilities p(b | mc), p(isc |
mc), and p(isc | —mc), respectively. The results of these three analyses are shown in
Figure 4. Figure 4(a) shows that systematically varying, from 0 to 1, the assessment for
the probability p(b | mc) of the presence of a brain tumour given, with certainty, that a
patient has a metastatic cancer, has a negligible effect on the probability of interest Pr(c):
the prior probability of a patient falling into a coma within the next three years increases
from 0.31 to 0.34, approximately. Figure 4(b) shows that varying the initial assessment
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Figure 4: A one-way sensitivity analysis of the example belief network from Figure 1.
The effects of varying the assessments for the probabilities p(b | mc), p(isc | mc), and
p(isc | =mc), respectively, on the prior probability Pr(c) are shown; the plausible intervals
for the assessments are indicated by shading.

for the probability p(isc | mc) of an increased level of total serum calcium conditional on
the presence of a metastatic cancer has a somewhat stronger effect on the probability of
interest: Pr(c) now ranges from 0.22 to 0.34. From Figure 4(c), to conclude, it is seen
that varying the assessment for the probability p(isc | =mc) of an increased level of total
serum calcium in the absence of a metastatic cancer has an even stronger effect on Pr(c):
the prior probability of a coma ranges from 0.21 to 0.78. Note that the three analyses
reveal a linear relationship between the probability assessment that is being varied and the
probability of interest.

The three example analyses and their results have so far been discussed without taking
into consideration the plausible interval of the probability assessment that is being varied.
To decide whether or not further elicitation efforts are worthwhile for the three assessments,
their plausible range of values needs to be considered, however. By including the plausible
interval for a probability assessment into a one-way sensitivity analysis, a plausible effect
of this assessment on the probability of interest is yielded. The sensitivity analysis may
now show, for example, that a probability assessment that is not very influential yet is
rather uncertain can have a stronger effect on the probability of interest than a probability
assessment that is very accurate and quite influential. For the three probability assess-
ments under study for our example belief network, the plausible intervals are indicated in
Figure 4 by shading. The figure shows that plausible variation of the assessment for the
conditional probability p(isc | =mc) has the strongest effect on the probability of interest
Pr(c). It may therefore be worthwhile to try and obtain a more accurate assessment for
this conditional probability. Varying the assessments for the probabilities p(b | mc) and
p(isc | me), respectively, within their plausible intervals results in a rather small effect on
the probability of interest. We recall from Figure 4 that the effect on Pr(c) of varying
the assessment for p(b | mc) from 0 to 1 is smaller than the effect of varying p(isc | mc)
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from 0 to 1. By taking the plausible intervals into consideration, however, variation of the
assessment for p(b | mc) has the stronger plausible effect. Especially since the plausible
interval for this assessment is quite large, further elicitation efforts may better be directed
at the probability p(b | mc) than at the probability p(isc | mc). We will return to this
observation in Section 5.

We now address a two-way sensitivity analysis of a Bayesian belief network. In a two-
way sensitivity analysis, two probability assessments are varied simultaneously to reveal
their joint effect on a probability of interest. We illustrate performing a two-way sensitivity
analysis for our example belief network. For our probability of interest, we once again take
the prior probability Pr(c) of an arbitrary patient with a primary tumour falling into a coma
within the next three years. We address the analysis with respect to the assessments for
the conditional probabilities p(b | mc) and p(isc | me). The result of the analysis, varying
the assessments under study from 0 to 1 simultaneously, is shown in Figure 5. The contour

Pr(c)

0.344

1.00

p(isc | mc)

0.00 0.20 0.40 0.60 0.80 1.00

p(b | mc)

Figure 5: A two-way sensitivity analysis of the example belief network. The joint effect
of varying the assessments for the conditional probabilities p(b | mc) and p(isc | mc)
simultaneously on the prior probability Pr(c) is shown by contour lines.

lines in the figure connect the combinations of values for the two probability assessments
that result in the same value for the probability of interest Pr(c). The distance between
two contour lines indicates the variation necessary in the two assessments to shift the
probability of interest from one contour line to another. If the contour lines are very close
to one another, then a small variation in the probability assessments under study suffices
to have a strong effect on the probability of interest; if, in contrast, the contour lines are
further apart, then the probability of interest is not very sensitive to variation of the two
assessments. We observe from Figure 5 that the distances between the contour lines differ,
indicating that varying the assessments for p(b | mc) and p(isc | me) simultaneously has
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a joint effect on the probability of interest beyond the effects of their separate variation;
this joint effect is due to the synergistic influence of the variables B and ISC on the
variable C outlined before in Section 2. We further observe that the contour lines are
closer to one another in the lower left part of the figure than in the upper right part. If the
assessments for the conditional probabilities p(b | mc) and p(isc | mc) are both quite small,
therefore, their variation will have a stronger effect on the probability of interest than if
the initial assessments have a higher value. To variation within the plausible intervals of
the assessments p(b | mc) = 0.2 and p(isc | mc) = 0.8, as indicated by shading in Figure 5,
the probability of interest shows a relatively low sensitivity. We further observe that the
absolute effect of their joint variation on Pr(c) is not too strong.

In addition to the analysis discussed before, we address another two-way analysis of
our example belief network, this time pertaining to the assessments for the conditional
probabilities p(b | mec) and p(isc | =mc). The result of this analysis is shown in Figure 6.
We observe from the figure that the contour lines, once again indicating values for the
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Figure 6: A two-way sensitivity analysis of the example belief network. The joint effect
of varying the assessments for the conditional probabilities p(b | mc) and p(isc | —mc)
simultaneously on the prior probability Pr(c) is shown by contour lines.

probability of interest Pr(c), are equidistant. Equidistance of contour lines indicates that
simultaneously varying the probability assessments under study has no joint effect on the
probability of interest beyond the effects of their separate variation. The two-way analysis
therefore does not provide any information in addition to the information yielded by one-
way analyses for the separate assessments.

In the sensitivity analyses for our example belief network described so far, we have
taken for the probability of interest a prior probability. A sensitivity analysis with re-
spect to a prior probability of interest allows for assessing the quality and robustness of a
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Bayesian belief network in its reflecting a prior probability distribution for the domain of
application. In the presence of case-specific observations, however, a belief network may
show very different sensitivities. To reveal these sensitivities, a sensitivity analysis may be
performed with respect to a posterior, or conditional, probability. Such an analysis allows
for validating the network’s behaviour for specific cases or profiles, for example, profiles of
typical patient populations in a medical application.

For our example belief network, we have once again performed a one-way sensitivity
analysis, this time taking for the probability of interest the posterior probability Pr(b | sh)
of the presence of a brain tumour in a patient who is known to suffer from severe headaches.
By doing so, we assess the robustness of the diagnosis of a brain tumour for an arbitrary
patient with a primary tumour who is suffering from severe headaches. We address the
one-way analyses with respect to the assessments for the probabilities p(mc), p(b | =mc),
and p(sh | —b), respectively. The results of these analyses are shown in Figure 7. Note
that, in contrast with the one-way analyses discussed before, the analyses for the posterior
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Figure 7: A one-way sensitivity analysis of the example belief network. The effects of
varying the assessments for the probabilities p(mc), p(b | —=mc), and p(sh | —b), respectively,
on the posterior probability Pr(b | sh) are shown.

probability of interest reveal a non-linear relationship between the probability assessment
that is being varied and the probability of interest.

To conclude, we have performed a two-way sensitivity analysis of our example belief
network with respect to the posterior probability of interest Pr(b | sh). We address the
analysis of varying the assessments for the conditional probabilities p(b | =mc) and p(sh | b)
simultaneously. The result of this analysis is shown in Figure 8. Note that the contour lines
are closest to one another in the lower right part of the figure, indicating a high sensitivity
of the posterior probability of interest to high values for the probability p(b | =mc) and
low values for the probability p(sh | b). For variation, within the plausible intervals of
the initial assessments p(b | —=mc) = 0.05 and p(sh | b) = 0.8, as indicated by shading in
Figure 8, however, the probability of interest is relatively stable.
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Figure 8: A two-say sensitivity analysis of the example belief network. The effect of varying
the assessments for the conditional probabilities p(b | =mc) and p(sh | b) simultaneously,
on the posterior probability Pr(b | sh) is shown by contour lines.

5 Sensitivity analysis and probability refinement

Sensitivity analysis of a Bayesian belief network provides for studying the effects of the
uncertainties in the various probability assessments of the network on a probability of
interest, as demonstrated in the previous section. Studying these effects can to a large
extent serve to support the elicitation of probabilities, as it gives detailed insight into the
level of accuracy that is required for the various probabilities of the network and as a result
provides for focusing further elicitation efforts. We envisage an elicitation procedure in
which, alternatingly, sensitivity analyses are performed of a belief network in the making
and probability assessments are refined; our procedure is summarised in Figure 9. We
elaborate on the various different steps of the procedure separately.

In the first step of the elicitation procedure, initial assessments are acquired for all
conditional probabilities for a belief network in the making. As we have argued before,
for most domains of application, experts will have to provide the majority of these initial
assessments. Applying an elaborate elicitation technique, such as the use of reference
lotteries, for this purpose may in this phase of the construction of the belief network be too
much time-consuming to be practicable; also, it would take much more effort than probably
necessary, as for several probabilities less accurately obtained assessments will suffice. The
first step of the elicitation procedure therefore aims at acquiring assessments within a short
period of time. To this end, in a limited number of interview sessions, experts are asked to
assess all probabilities required off the top of their heads, for example using a numerical
probability scale. In addition, they are asked to indicate plausible intervals along with their
assessments. These intervals should be pessimistic rather than optimistic to ensure that
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Is anew assessment cost-eff ective? stop

Figure 9: A procedure for probability elicitation for Bayesian belief networks.

the uncertainties in the various different assessments are not underestimated. We would
like to note that, since they are allowed to express the uncertainties in their assessments,
experts will tend to be less reluctant to provide numerical statements than when they feel
compelled to give exact numbers. Instead of eliciting all probabilities required from domain
experts, initial assessments, for at least some of these probabilities, may be obtained from
data, if available. If the data at hand is known to be imperfect, incomplete, or biased,
then the assessments derived should be supplemented with fairly large plausible intervals
to capture the uncertainties involved.

The probability assessments obtained in the first step of the elicitation procedure will
in general be highly uncertain, that is, these assessments will and should have consider-
ably large plausible intervals. For some of the probabilities, these initial assessments will
nonetheless suffice. Other probabilities, however, will require assessments with a higher
level of accuracy. The second step of our elicitation procedure is aimed at uncovering the
latter probabilities. For this purpose, the belief network in the making is subjected to
various sensitivity analyses. In these analyses, every single probability assessment for the
network is varied, as is every pair of assessments. The effects of varying these assessments
within their plausible intervals are studied with respect to one or more prior probabili-
ties of interest as well as several posterior probabilities of interest. From these analyses,

16



the probability assessments that induce the largest plausible effects are identified. We
would like to note that, if performing all these sensitivity analyses tends to be too much
time-consuming to be practicable, the analyses can be restricted to a moderate number of
assessments. To this end, experts may be asked to indicate the probability assessments
that are the most likely to affect a probability of interest or, alternatively, to indicate a
number of conceptually related probability assessments.

In the second step of the elicitation procedure, various probability assessments have
been identified that induce a considerably large plausible effect on a probability of interest.
These assessments are potential candidates for further refinement. In the third step of the
procedure, the extent to which these assessments can actually be refined is determined.
The extent to which a probability assessment lends itself to further refinement depends on
the current uncertainty in the assessment, indicated by the width of its plausible interval,
and on the elicitation techniques used to arrive at the assessment. A probability assess-
ment with a rather small plausible interval obtained from applying elaborate elicitation
techniques may not lend itself to further refinement. An assessment that is not yet very
certain, on the other hand, may be more easily improved upon. Refinement of such an
uncertain assessment, however, is only actually possible if reliable sources of probabilistic
information remain to be explored; examples of such sources of information include fur-
ther literature search, the use of a panel of experts, the use of more elaborate elicitation
techniques, and the study of data, for instance collected in a prospective study. From
among the potential candidates for further refinement, therefore, the assessments are iden-
tified that have a considerable plausible interval and for which yet unexplored sources of
probabilistic information are available.

The probability assessments that have been selected in the third step of the elicitation
procedure are assessments that can be refined. To actually refine these assessments, an
investment of time and money is required. Not for every assessment may this investment
be worthwhile, however. In the fourth step of the elicitation procedure, therefore, it is
investigated for each of the selected assessments whether refinement is cost-effective. The
cost-effectiveness of refining a probability assessment is determined by weighing the costs in
terms of money and time to be invested with the benefits of higher accuracy. The benefits
of having an assessment of higher accuracy in the belief network in the making may be a
higher accuracy of a computed probability of interest and an improved performance more
in general. For example, for a belief network that is to be used for diagnostic purposes,
performance may be measured as the percentage of correctly diagnosed cases. Refining a
probability assessment for this network would only be worthwhile if it would increase the
number of correct diagnoses. Once a belief network in the making exhibits satisfactory
overall behaviour, refining assessments may be found to be no longer cost-effective.

The probability assessments that have been identified in the fourth step of the elici-
tation procedure are known to induce a considerable plausible effect on a probability of
interest; moreover, any such assessment can be cost-effectively refined. For these assess-
ments, the entire elicitation procedure is recursively repeated. The probabilities concerned
are assessed anew in the first step of the next cycle of the procedure, using yet unexplored
sources of probabilistic information. Since the plausible intervals of the initial assessments
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for these probabilities do not underestimate the uncertainties involved, refinement is likely
to result in smaller plausible intervals for the new assessments. In the second step, once
again several sensitivity analyses are performed. These analyses should not only focus on
the new assessments, but also on previously investigated assessments as their effect on a
probability of interest upon variation may have changed as a result of the refinement of the
network. In addition, analyses may be performed with respect to assessments that have
not been investigated before. By recursively refining probability assessments, the perfor-
mance of the belief network in the making is likely to gradually improve. The elicitation
procedure is stopped as soon as the costs of further elicitation outweigh the improvement
in the network’s performance or higher accuracy can no longer be attained due to lack of
knowledge.

To conclude, we would like to note that, currently, little practical experience with the
elicitation procedure outlined above is available. We have performed a preliminary exper-
iment with the procedure in view of a Bayesian belief network for congenital heart disease
[Coupé et al., 1999]. Encouraged by the results from this experiment, we are currently im-
plementing the procedure in the construction of a decision-theoretic network for treatment
planning for patients with oesophageal cancer [Van der Gaag et al., 1999].

6 Computational issues

Straightforwardly performing all sensitivity analyses, as described in Section 5, for a
Bayesian belief network of realistic size can be quite time-consuming. In principle, ev-
ery probability assessment in the quantitative part of the network is varied systematically
as is every pair of probability assessments. For every probability, a number of deviations
from the initial assessment are investigated, twenty values per probability not being an
exception. For every value or pair of values under study, the probability of interest is com-
puted from the network. To give some impression of the number of network computations
that may thus be required, we address a one-way sensitivity analysis of three small realistic
belief networks. The well-known ALARM-network for patient monitoring contains 37 nodes,
for which 571 (non-redundant) probability assessments are specified [Beinlich et al., 1989).
The WiLSON-network is a network for the diagnosis of Wilson’s disease; it specifies 21 nodes
and 162 assessments [Korver & Lucas, 1993]. The vsDp-network, to conclude, provides for
prognostic assessment of children with a ventricular septum defect; this network comprises
38 nodes for which 807 probability assessments are specified [Peek & Ottenkamp, 1997].
If each assessment is varied from 0 to 1 in steps of 0.1, a one-way sensitivity analysis
of the ALARM-network requires 571 - 11 = 6281 network computations; the WILSON- and
vsD-networks require 1782 and 8877 computations, respectively. The computational bur-
den of performing all sensitivity analyses for a Bayesian belief network, fortunately, can
be reduced considerably. In general, not every assessment will be investigated in every
analysis, as we have argued before in the previous section. The computational burden
can in addition be further reduced by exploiting the probabilistic relationships among the
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variables that are represented in the network’s digraph. In this section, we elaborate on
the latter observation.

The digraph of a Bayesian belief network captures the influential relationships among
the represented variables, or conversely, the independences among these variables. Knowl-
edge of these independences allows for identifying probability assessments that upon vari-
ation cannot affect a probability of interest. For example, the non-ancestors of a network’s
node of interest that are not observed and do not have any observed descendants, cannot
exert any diagnostic influence on the probability of interest. Varying the probability as-
sessments for these nodes will therefore not have any effect on the probability of interest.
Also, case-specific observations entered into the network may effectively block influences
between nodes. In our example belief network, for instance, once the presence or absence
of a metastatic cancer has been established in a patient, varying the probability assess-
ments for the node modelling the level of serum calcium no longer has any influence on the
probability of a brain tumour. The nodes whose assessments upon variation may influence
a network’s probability of interest constitute this probability’s sensitivity set. A sensitiv-
ity set depends to a large extent on the case-specific observations that have been entered
into the network. Since the probability assessments for the nodes that are not included
in a sensitivity set under study cannot influence a network’s probability of interest upon
variation, these assessments can be excluded from the sensitivity analysis; the analysis can
thus be restricted to the sensitivity set. To give some impression of the size of a sensi-
tivity set, we address again the ALARM-, WILSON-, and vSD-networks. If no case-specific
observations have been entered, the ALARM-network reveals only three assessments from
among its total of 571 assessments to be influential; the WILSON- and vSD-networks reveal
6 and 151 influential probability assessments, respectively. After entering a typical patient
profile, the number of influential assessments increases to 54, 32, and 491, for the three
networks, respectively. For further details of the sensitivity set and its computation, the
reader is referred to [Coupé & Van der Gaag, 1998].

So far, we have exploited the independences among the variables portrayed by the
digraph of a Bayesian belief network to identify probability assessments that upon variation
cannot influence the network’s probability of interest. The independences can even be
further exploited as they constrain the relation between the network’s probability of interest
and an assessment, or pair of assessments, under study to a simple mathematical function.
In a one-way sensitivity analysis of a Bayesian belief network, the network’s probability of
interest relates to a probability assessment under study as a quotient of two functions that
are linear in this assessment. We reconsider Figure 7 showing for our example belief network
the probability of interest Pr(b | sh) as a function of the assessments for the probabilities
p(me), p(b | -mc), and p(sh | —b), respectively; for the assessment z = p(b | —mc), for
example, this function equals

4-2+0.20

Prblsh) = =580

If a probability assessment under study pertains to a node that is an ancestor of the
node of interest and does not have any observed descendants, the function expressing the
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probability of interest in terms of this assessment reduces to a simple linear function. More
specifically, if the probability of interest is a prior probability, it relates linearly to any of
the influential assessments. We consider once again Figure 4 showing for our example
belief network the probability of interest Pr(c) as a function of the assessments for the
conditional probabilities p(b | mc), p(isc | mc), and p(isc | =mc), respectively; for the
assessment x = p(isc | =mc), for example, this function equals

Pr(c) =0.57- 2+ 0.21

The properties described above for the functions that are yielded by a one-way sensitivity
analysis of a Bayesian belief network, provide for considerably reducing the computational
burden of the analysis. Systematic variation of a probability assessment is no longer
necessary. The constants in the functional relation between a probability of interest and
a probability assessment under study can be determined by computing this probability
of interest from the network for a small number of deviations from the assessment and
solving the resulting system of linear equations. For an assessment that is related linearly
to the probability of interest, two network computations suffice; for all other assessments
three network computations are required. To give some impression of the reduction in
computational effort thus attained, we address once again the three belief networks we have
studied. If no case-specific observations have been entered, the ALARM-network reveals
only three influential probability assessments. The probability of interest relates as a
linear function to any of these assessments. To compute the constants in these functions,
therefore, 2 - 3 = 6 network computations suffice. After entering a typical patient profile,
the network reveals 54 influential probability assessments. To establish the mathematical
functions expressing the probability of interest in terms of any of these assessments, 3:-54 =
162 network computations are required. Note that this number of computations is just 3%
of the number of computations that would have been performed in a straightforward one-
way sensitivity analysis of the network. Table 1 summarises these results, along with
the results that we have obtained for the WILSON- and vsD-networks; for the number of
computations required, the table lists the number of computations for systematic variation
of all probability assessments from a network (variation), the number of computations for
systematic variation of just the assessments pertaining to nodes from the sensitivity set
for a probability of interest (set), and the number of computations for determining the
constants in the mathematical functions relating a probability of interest to an assessment
under study (functions).

For a two-way sensitivity analysis of a Bayesian belief network similar observations
hold as for a one-way sensitivity analysis. As a one-way analysis, a two-way sensitivity
analysis can be restricted to the probability assessments pertaining to the nodes from a
sensitivity set under study. Also, the independences among the variables portrayed by the
network’s digraph once again constrain the relation between the probability of interest and
two assessments that are being varied to a simple mathematical function. The probability
of interest relates to two assessments under study as a quotient of two functions that are
bi-linear in these assessments. We reconsider Figure 8 showing for our example belief
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network # influential # computations
(total # probs) | # observations | assessments | variation | set | functions

ALARM 0 3 6281 33 6
(571) 6 54 6281 | 594 162

WILSON 0 6 1782 66 12
(162) 4 32 1782 352 96
VSD 0 151 8877 1661 302
(807) 9 491 8877 5401 1473

Table 1: The reduction in computational effort obtained for three different realistic belief
networks by using the properties of a one-way sensitivity analysis (the meanings of the
numbers are given in the text).

network the probability of interest Pr(b | sh) as a function of the probability assessments
x = p(b | =mc) and y = p(sh | b); the function equals

1.10005 - z - y — 0.00056 - = + 0.0559 - y — 0.00034
z-y—0.6268 - x + 0.0835 -y + 0.7811

In this function, the terms —0.00056 - x and —0.6268 - z pertain to the effect of variation
of just the probability assessment p(b | mc); the terms 0.0559 - y and 0.0835 - y pertain to
the assessment p(isc | me). The terms 1.10005 - z - y and z - y with each other capture the
interaction effect of the two assessments on the network’s probability of interest. These
terms provide information that cannot be revealed by one-way analyses with respect to the
two assessments separately. The mathematical function expressing a network’s probability
of interest in terms of two assessments reduces to a simple bi-linear function for assessments
that pertain to nodes that are ancestors of the node of interest and do not have any
observed descendants. More specifically, if the probability of interest is a prior probability,
it relates bi-linearly to any pair of influential assessments. We consider once again Figure 5
showing for our example belief network the probability of interest Pr(c) as a function of
the assessments x = p(b | mc) and y = p(isc | mc); the function equals

Pr(b | sh) =

Pr(c) = —0.15-2 -y +0.15- 2 + 0.15 - y + 0.194

From this function it is readily seen that the two probability assessments under study
upon variation have a negative interaction effect on the probability of interest. Not every
pair of probability assessments that are being varied will have an interaction effect on a
probability of interest, however. For example, any two probability assessments that pertain
to incompatible probabilities, in the sense of specifying complementary values for the same
variable, will not interact. The function expressing the probability of interest in terms of
two such assessments will lack a product term. We consider once again Figure 6 showing for
our example belief network the probability of interest Pr(c) as a function of the assessments
x = p(b | me) and y = p(isc | =mc); note that the two assessments under study pertain to
incompatible probabilities. The function equals

Pr(c) = 0.03 - z 4 0.57 - y + 0.204
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A two-way sensitivity analysis involving assessments for incompatible probabilities does
not reveal any unanticipated effects on a prior probability of interest beyond the effects
shown by one-way sensitivity analyses for the two assessments separately. Any such pair of
assessments can therefore be excluded from the analysis. The properties described above for
the functions that are yielded by a two-way sensitivity analysis of a Bayesian belief network
once again allow for considerably reducing the computational burden of the analysis. The
constants in the functions can again be determined by computing the network’s probability
of interest for a small number of deviations from the assessments under study and solving
the resulting system of equations. The number of network computations thus required
ranges from four to seven per pair of assessments. For an impression of the reduction in
computational effort thus attained, we refer once more to Table 1 and observe that the
number of network computations required for a two-way sensitivity analysis equals the
number of computations for a one-way analysis to the second power, approximately.

The sensitivity analyses of the three realistic belief networks we have studied, shows
that the computational burden involved can be reduced considerably by exploiting the
probabilistic relationships portrayed by a network’s digraph. This reduction increases the
practicability of the procedure suggested in the previous section for quantifying Bayesian
belief networks.

7 Conclusions and Directions for Further Research

When building a Bayesian belief network, a large number of probabilities will have to be
assessed by experts in the domain of application. Experience shows that experts often are
reluctant to assess all probabilities required, feeling that they are unable to give assessments
having a high level of accuracy. However, not every probability in a belief network in the
making needs to be assessed with a high level of accuracy to arrive at satisfactory behaviour
of the network. In this paper, we have addressed performing a sensitivity analysis of a
belief network to gain insight into which probabilities require a higher level of accuracy
and which probabilities do not. Insight into which probabilities are the most influential
allows for careful focusing of elicitation efforts. We therefore believe sensitivity analysis to
be a practical aid in probability elicitation for Bayesian belief networks. We have proposed
an elicitation procedure in which sensitivity analysis takes a central role. In the procedure,
alternatingly, analyses of a belief network in the making are performed and probability
assessments are refined, until satisfactory behaviour of the belief network is obtained, until
the costs of further elicitation outweigh the benefits of higher accuracy, or until higher
accuracy can no longer be attained due to lack of knowledge.

Sensitivity analysis of a Bayesian belief network allows for assessing the sensitivity of a
probability of interest to the various probability assessments specified in the network. When
performed with respect to a prior probability of interest, a sensitivity analysis serves to
assess the network’s quality and robustness in its reflecting a prior probability distribution.
The network’s robustness in modeling a posterior probability distribution can be assessed
by performing a sensitivity analysis with respect to a posterior probability of interest,

22



conditional on case-specific observations; such an analysis may be looked upon as yielding
a measure of confidence for the probability of interest computed from the network for a case
under consideration. Sensitivity analysis therefore serves for both general and case-specific
validation of a belief network under study.

A one-way sensitivity analysis of a Bayesian belief network reveals the effect of varying
a single probability assessment on a probability of interest. A two-way sensitivity anal-
ysis in addition yields insight into the joint effect of varying two probability assessments
simultaneously. Performing a two-way analysis therefore is particularly useful for uncov-
ering and studying synergistic influences among probability assessments. With a two-way
sensitivity analysis, however, it is not possible to reveal higher-order synergistic influences
involving more than two assessments. For this purpose, a higher-order sensitivity analysis
would be required. Interpreting the results of such an analysis is often very hard. To be
of practical use, appropriate tools need to be designed for this purpose.

The computational complexity of performing a sensitivity analysis of a Bayesian belief
network of realistic size is an issue of major concern. In this paper, we have briefly presented
several properties that allow for reducing the computational burden involved to at least
some extent. In a forthcoming technical paper, we have detailed these and additional
properties that will allow for practical use of sensitivity analysis. Building upon these
properties, we have implemented a prototype tool for performing one-way and two-way
sensitivity analyses of belief networks. We are currently experimenting with this tool in
view of various real-life Bayesian belief networks.

To conclude, we would like to note that, currently, we have little practical experience
with our elicitation procedure. We have performed a preliminary experiment with the pro-
cedure for a Bayesian belief network for congenital heart disease and are currently using the
procedure in the construction of a large decision-theoretic network for treatment planning
for patients with oesophageal cancer. The experiences with our elicitation procedure so far
encourage us to pursue this line of research in the future.
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