EA Visualizer Tutonal

Peter A.N. Bosman

Department of Computer Science

June 1999

Preface

When the first working version® of the EA Visualizer was finished in 1998, it was tested
by a group of users. Even though the system was accepted as being a powerful and useful
one as well as being self contained, it was generally felt that the program would be more
accessible to a greater audience when a tutorial with an operational setting would be
available. Without such a tutorial, getting to know and understand the system is a task
that requires some interest and curiosity as the help system must be explored in order to
find explanations for system parts. Having a tutorial with a great amount of examples of
a great variety would be easier to use in quickly getting a feel for the system as it directly
allows the user to properly create an EA and run it without making quick and therefore
mostly wrong decisions in defining an EA. So, even though the FA Visualizer is a self
contained enough system to directly use and work with, this tutorial will greatly aid in
quickly getting to know the basics of the system.

This tutorial is thus a guide to the FA Visualizer system. The reader is presented with a
description of how to operate parts of the system without going into technical implemen-
tation details. After describing the system parts, a set of examples is given for both the
single runs and the multiple runs way of running EAs. In this way, the reader can directly
try out the system while reading this tutorial, giving a good feel of what it is capable of
and of how things work. Next to such an operational description, other parts such as menu
items are all described as well, so as to make this tutorial self-contained just as is the help
system. This means that all parts of the FA Visualizer that the user can be confronted
with in the user interface can be found here. At this point we should note that when items
from the FA Visualizer are not clear while reading this tutorial, the system itself can be
used directly to resolve this through the help system that is inbedded. There, a summary
of all relevant components is given along with explanatory information for each of them.
Next to an operational description of the EA Visualizer system, the editor version is de-
scribed as well. Again first through explanation and second through examples, the user is
guided in the use of the system.

Upon writing this tutorial, the current version of the EA Visualizer is 1.4. The general idea
of the system has always been the same, so this tutorial is applicable also if your version of

Version 1.3

the system is more recent?. Furthermore, the images in this tutorial are all taken from the
same computer running the operating system WINDOWS 98, using the JDK 1.2 from SUN
and screen resolutions of 1280 x 1024 and 1024 x 768. This however does not withhold us
to note that because of recent developments in JAVA technology, using the EA Visualizer
is transparent in that on any system the interfaces are alike to such an extent that using
any of them in a tutorial would be evenly explanatory. In some details you might find
differences with your current working version, but the setup of the system is to such an
extent the same that you will never find any harmful inconvenience when working with
your own system while reading this tutorial. For any further information you can contact
me by going to section 6.2 and address me with whatever remarks or comments you might
have. In the mean time, I hope you will enjoy this scientific system and that it will aid
and benefit you in your research as it does me every day.

Peter A.N. Bosman
June 1999

2This is always the case when starting the applet on the WWW or when downloading the latest version
at: http://www.cs.uu.nl/people/peterb/computer/ea/eavisualizer/EAVisualizer.html

Contents

1.1
1.2

1.3

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4

Operating the system

Starting up the systemo Lo
The main GUIs e

The help system

Views and the view system

Updating and redrawingo o
Internal views and external views 0oL,
Graph drawer views
Saving views as imagesot c i e e e
2.4.1 Directly: using the EA Visualizer
2.4.2 Indirectly: using the OSo

Single Runs

On single runs and multiplerunso
Evolutionary algorithms in the EA Visualizer
The single run settings interface 0oL
Examples L
3.4.1 Edge map recombination for the TSP
3.4.2 Bitcounting Lo L

3.4.3 Crowding, preselection, deterministic crowding and sharing schemes

il

12

15
15
16
17
23
25
26

29
29
31
36
40
41
20
54

3.4.4 Evolution strategies and elitist recombination/replacing 67

3.4.5 Advanced: MIMIC, FDA and others 73

4 Multiple Runs 93
4.1 Batch testing by expanding to multiple runs: how and why? 93
4.2 The multiple runs settings interfaces 94
4.3 Exampleso 102
4.3.1 Various recombination operators for the TSP 102

4.3.2 GA vs. ES on simple polynomes 117

4.3.3 Population sizing Lo 129

4.3.4 Advanced: 1X-GA vs. UX-GA vs. MIMIC vs. FDA 137

5 Using the editor 151
5.1 Starting up the editoro Lo 151
5.2 Themain GUL 152
5.3 About parameter components 157
5.4 Adding and removing classeso 159
5.5 Editing and browsing classes oL Lo 163
5.5.1 Theclasseditor oL 163

5.5.2 Theclass browser o 176

5.6 Examples 179
5.6.1 Adding the n—point crossover operator 179

5.6.2 The implementation of FDA 194

6 Miscellaneous 207
6.1 Installation 207

6.2 Contacting the author o o000 210

Chapter 1

Operating the system

In this chapter, the basic operation of the system is described. The components of the main
Graphical User Interface (GUI) are explained as they are what you will see on your screen
most of the time. Other user interfaces that you will be confronted with while working
with the FA Visualizer are described in other sections where they are most applicable and
will be encountered while operating that part of the system. This means that the actual
creation and running of EAs in an operational setting is described in sections 3 and 4.

Before starting the general description of the system, the program files must be installed
and ready to be run. If you must still do this, you should first read section 6.1 and install
the system so as to operationally follow the remainder of this tutorial.

1.1 Starting up the system

In section 6.1 a description is given of how to install the FA Visualizer and how to start
the system using the JAVA runtime system. It is from that point on that we describe what
happens on screen, as well as how and why. In this section we start at the very beginning,
just after having executed the commandline to start the FA Visualizer.

The first thing that becomes visible on the screen is the EA Visualizer startup message
window!. In this frame the progress of the startup procedure can be monitored. As soon
as the startup is completed, this frame disappears. In figure 1.1 the startup frame at the
end of the initialization process is displayed, showing the intermediate steps that have all
successfully been executed during startup.

1As Frame is the JAVA equivalent of the window in WINDOWS, the word frame is freely used as a
substitute for window in this tutorial.

2 CHAPTER 1. OPERATING THE SYSTEM

FE4 EA Visualizer is starting up.

Creating gateways for file access... =
Gerting checksun information...
Perforning checksun on system files...
Creating menus. ..
Creating message frame for system messages.. .
Setting up name sSystem...
Creating parameter frames...
Creating sbout window...
Retrieving Inage "sbouting.gif”... Retrieved
Creating button bar. ..
Retriewing 6 images...
Retrieving Inage "play.gif” ... Retrieved
Retrieving Image "playdis.gif”... Retrieved
Retrieving Image "stop.gif” ... Retrieved
Retriewing Image "stopdis.gif”... Retrieved
Retriewing Image "step.gif” ... Retrieved
Retrieving Inage "stepdiz.gif”... Retrieved
Initializing Creator cbjects (Component and View)...
Creating viewer...
Setting up help system...
Initializing main system...

L o

Figure 1.1: Startup frame at the end of system initialization.

E%:Encwptiun!Decwptiun Progress Pop-Up

Decrypting data

25%

Figure 1.2: Encryption/Decryption progress popup window.

During the third step, a checksum is done on all system files. This checksum involves
going over all files that should not be altered by the user and inspecting whether they are
still valid. This is done based upon information that is retrieved in the second step. This
information is stored encrypted and must first be decrypted in memory in order to retrieve
the actual checksum information. To this end, a popup window appears that displays the
progress in the decryption of the data, which is shown in figure 1.2.

When the checksum information is used to check the system files?, it might turn out that
some files are damaged. In this case, the system cannot start and the user is notified
of this through a Fatal Error message in a big red window, containing the error message.
Figure 1.3 shows such a window. In this case, a random system file was altered deliberately,
which was detected by the FA Visualizer. After clicking the Close button at the bottom
of this screen, the FA Visualizer will no longer start and the startup has failed, so the
program will end right there.

If all is right, your system files are errorfree. The system will then dispose of the startup
frame in figure 1.1 after execution of the all initialization steps and present the two main
windows for the EA Visualizer, meaning it is ready to run. In the next section we describe
these user interfaces.

2Some 250 files.

1.1. STARTING UP THE SYSTEM 3

Close

Figure 1.3: Fatal error reported by the system, making it unable to start.

4 CHAPTER 1. OPERATING THE SYSTEM

ions Hel
' 'l - Il - I Status: Stopped Generation: 0

come to the EA Visualizer V1.4 =l

Clear |

Figure 1.4: The main GUIs right after startup.

1.2 The main GUlIs

Once the system has started, the two main GUIs are shown on the full desktop area as
shown in figure 1.4. There are two frames, a larger one with a black background and
a smaller one at the south with the same background as the startup frame. The upper
frame is the main frame of the FA Visualizer and contains the viewing space where the
visualization mainly takes place.

The lower frame is the system message frame where the EA Visualizer states system
information when needed. When working with the system, messages are displayed here
when for instance a new EA is created or when the EA is reset. Also, errors are reported
here that warn you of incompatible settings that most likely result in undesired effects
during runs. More urgent errors are directly displayed in a blocking popup message as you
will notice. So the error messages that will appear in the system message frame are non
fatal and could be regarded as warnings, but should mostly be taken very seriously.

1.2. THE MAIN GUIS)

Menubar Statusbar
[E3EA Visualizer V1.4
EA Views Options Helpy
' lml = l Status: Evolving Generation: 51

. Y Fitness Average . Fitness 3t. Dev.
2Z.82

386.094
20.538

367.668
16.256

347.242
15.974

326.816
13.692

306.39
11.41

285,964
9.128

265.538

245.112

ZLUEE 5.2 10.4 .6 20.8 26.10, 3l.2 36.4 41.6 .0 ERERL] 5.2 10.4 15.6 20.6 26.0 3l.z2 36.4 41.6 52.0

g.o tidhs Lege, Gruplot g.o Options Legend| Guuplot
1) .
Views View Space

Figure 1.5: An overview of the most important frame in the system.

The upper and main frame with the black background is the frame in which all operations
are done and as such is the main window of the FA Visualizer. It displays the results of
the evolutionary algorithms through the use of views and facilitates the user both to start
and stop the algorithm and open the frames to enter the settings for a new or a current
evolutionary algorithm. A general overview is displayed in figure 1.5.

As shown in the overview, the frame consists mainly of three parts:

e The menubar allows you to manipulate both the evolutionary algorithm and the
views for it that are currently active in the system. Also some general options can
be set regarding the system behaviour. These options are described below.

e The statusbar is located just below the menu bar. On the left of it are three image
buttons, much like the ones you’ll find on your CD player. When a button is disabled,
it will appear grey. Otherwise it will have a red-gold color. By pressing the play
button (leftmost button) when it is enabled, the current evolutionary algorithm will
start or continue to run. Pressing the stop button (button in the middle) will cause

6 CHAPTER 1. OPERATING THE SYSTEM

the evolutionary algorithm to stop immediately after the current generation step has
ended. In order to look closely at the progress the algorithm makes, the step button
(rightmost button) can be used. Pressing this button will cause the EA Visualizer
to perform exactly one generation step of the evolutionary algorithm.

On the right of the buttons, the status of the algorithm is displayed. This status can
be one of the following: Stopped, Evolving, Evolving (One Generation), Terminated.
Stopped means that either the evolutionary algorithm is not running, but it hasn’t
terminated yet, so it can be started or continued, or there is no algorithm defined
currently. Evolving implies that the algorithm is running until the termination con-
dition is met or the user has pressed the Stop button. When the status indicates
FEvolving (One Generation), the user has pressed the Step button. Finally, when
the status indicates Terminated, the evolutionary algorithm has stopped because its
termination condition has been met.

e The View Space is the black rectangle that is the body of the main frame. This space
is used to place internal views on. The views can be made “active” by moving the
mouse pointer over them. Once the mouse points at a certain view, that view will
have a yellow bounding box around it. When pressing <CTRL> + F1 when pointing
at a view, help will be displayed for that view. Any interactions that a view might
have defined for it, can be utilized by using the mouse, no matter where the view
is located in the view space. The internal views are layouted in the order that they
were added in. This order can be changed through the menu option Change Order
Of Views in the menu Views as described below.

We finish the description of the main GUIs in the FA Visualizer by going over the menubar
and explaining all selectable menuoptions.

e FA. This is the main menu for the manipulation of evolutionary algorithms. New
algorithms can be created and current ones edited or reset. This menu corresponds
to the File menu found in most standard applications.

— New Multiple Runs FA. Alternatively, the F2 key can be pressed on the keyboard
to activate this menu option. This creates a new multiple runs EA that can be
used for running a multiple of single run EAs a multiple of times. Different type
of views can be added to average results over these multiple of runs. More on
the difference between single run EAs and multiple run EAs can be found in
section 3 where the single run EAs are introduced. Selecting this menu item

opens a new interface in which the settings can be specified for a new multiple
runs EA.

— Edit Current Multiple Runs EA (Reset If Applied). Alternatively, the F3 key
can be pressed on the keyboard to activate this menu option. This menu option
is only available when a multiple runs EA is currently installed in the system. It

1.2. THE MAIN GUIS 7

opens the same interface as when a multiple runs EA would be created through
the “create” menu option, but now it already contains the information on the
current multiple runs EA that is installed. When the settings are applied, the EA
Visualizer is reset. This is required because alterations within a multiple of runs
do not allow for simple changes in the result that allow for direct continuation
of the current process. This means that all views will be removed upon applying
the changes and that the enumeration of the current multiple runs EA is reset
to start over.

— New Single Run FA. Alternatively, the F4 key can be pressed on the keyboard to
activate this menu option. This creates a new EA that can directly be used to be
run and visualized. The actual creation and running of such EAs is described
by operational examples in section 3. Selecting this menu item opens a new
interface in which the settings can be specified for a new single run EA.

— Settings Current Single Run FA. Alternatively, the F5 key can be pressed on
the keyboard to activate this menu option. This menu option is only available
when a single run EA is currently installed in the system. It opens the same
interface as when a single run EA would be created through the “create” menu
option, but now it already contains the information on the current single run
EA that is installed. When the settings are applied, the changes in the EA are
noted and reported in the system message frame at the bottom of the screen.

— Reset Single Run EA. Alternatively, the F6 key can be pressed on the keyboard
to activate this menu option. This menu option is only available if a single run
EA is currently installed in the system. Selecting this menu option resets the
entire algorithm by resetting each installed part.

— Reset Single Run Population. Alternatively, the F7 key can be pressed on the
keyboard to activate this menu option. This menu option is only available if a
single run EA is currently installed in the system. Selecting this menu option
resets the population by regenerating it. The other parts in the EA are left
unharmed.

— Erit. Alternatively, the F10 key can be pressed on the keyboard to activate
this menu option. This opens a popup window in which a question is posed
whether you really want to quit the system. Upon a confirmation, the system
is terminated. Upon a negative response, the system resumes its tasks.

e Views. Through this menu, the views in the system can be manipulated. Views can
be added and removed and their order can be interchanged so that they are layouted
differently in the view space. Each individual view gets an entry in this menu so that
its parameters can be altered. More on views can be found in section 2. The use of
these menus is demonstrated in sections that demonstrate the system by example,
being sections 3 and 4.

CHAPTER 1. OPERATING THE SYSTEM

— Add View. Alternatively, the F8 key can be pressed on the keyboard to activate
this menu option. This opens a new interface through which views can be added
to the system once an EA (single or multiple) is installed and not running. More
on views can be found in section 2.

— Remove View. Alternatively, the F9 key can be pressed on the keyboard to acti-
vate this menu option. This opens a new interface through which current views
can be removed from the system once an EA (single or multiple) is installed and
not running and views are currently active within the system.

— Change Order Of Views. This opens a new interface through which the order
in which the currently active views are administered within the system can be
altered. The way the views are added is directly used to layout the views in
the view space. This regards of course only the internal views as the external
views are separate windows. The internal views are layed out row by row,
preserving the ordering of the views in the system. This means that as many
views as possible are first placed on the first row. After this, the row is given the
height of the highest view. Then the other rows are filled if there are views left.
Because this might lead to an undesirable layouting of the views, the ordering
of the views in which they are placed in the rows one by one can be altered
through this menu option. More on internal and external views can be found in
section 2.

— View Names. Below the Change Order Of Views option, the views that have
been added and are currently active are placed. When one of these is selected,
an interface is shown with the current settings of parameters for that view,
which can then be altered.

e Options. In this menu, the way the FA Visualizer performs certain tasks can be
altered. This mostly has to do with how the views are updated with information
from the EAs.

— Single Run Views Updating. Opens the interface as shown in figure 1.6. The
Update Interval parameter is a number that specifies when to update the single
run views with information from the EA on the current state of the evolutionary
algorithm that is running in case of a single run EA. The number specifies
the amount of generations that have to pass before sending such an update
message to the views. Increasing the number implies that the views are less
frequently processing information to visualize, but this also means that the
visualized information is less extensive.

The When To Update parameter specifies this updating process more in general.
When “Always” is selected, the views are updated every generation. If the se-
lection is “By Generation Interval” (default setting), the updating is done every
so many generations according to the number specified above. Finally when
“Never” is selected, the views are never updated at all, except at termination.

1.2. THE MAIN GUIS 9

E%Parameters for Single RBun Yiews Updating

Update Interwal Il
[Always

When To Update (= By Generation Interwval
(" Never

Applyl Cancel |

Figure 1.6: Entering parameters for the updating of single run views.

E%Parameters for Multiple Bunz ¥iews Updating

Update Interwal Il
[Always

When To Update { By Generation Interwval
(= Bv Bun

Applyl Cancel |

Figure 1.7: Entering parameters for the updating of multiple runs views.

— Multiple Runs Views Updating. Opens the interface as shown in figure 1.7.
The Update Interval parameter is a number that specifies when to update the
multiple runs views views with information from the EA on the current state of
the evolutionary algorithm that is running in case of a multiple runs EA. The
number specifies the amount of generations that have to pass before sending
such an update message to the views. Increasing the number implies that the
views are less frequently processing information to visualize, but this also means
that the visualized information is less extensive.

The When To Update parameter specifies this updating process more in gen-
eral. When “Always” is selected, the views are updated every generation. If the
selection is “By Generation Interval”, the updating is done every so many gen-
erations according to the number specified. When “By Run” (default setting) is
selected, the views are updated when a run of an evolutionary algorithm termi-
nates. As multiple runs views mostly only gather information at the termination
of a run, this is the default setting.

10

CHAPTER 1. OPERATING THE SYSTEM

E%Parameters for Single RBun Yiews Hedrawing

Redraw Interwal Il
[Always

When To Bedraw (= By Generation Interwval
(" Never

Applyl Cancel |

Figure 1.8: Entering parameters for the redrawing of single run views.

— Single Run Views Redrawing. Opens the interface as shown in figure 1.8. The

Redraw Interval parameter is a number that specifies when to redraw the single
run views in case of a single run EA. The number specifies the amount of
generations that have to pass before requesting the system to redraw the views.

The When To Redraw parameter specifies this redrawing process more in gen-
eral. When “Always” is selected, the views are redrawn every generation. If the
selection is “By Generation Interval” (default setting), the redrawing is done
every so many generations according to the number specified above. Finally
when “Never” is selected, the views are never redrawn at all, except at termina-
tion. Redrawing can make the run much slower as views can be graphically or
statistically intensive. The information passed on to the views has nothing to do
with the redrawing of the views, so no information is lost if the redrawing is set
to occur less often than every generation. The information flow is determined
by the view updating instead of the view redrawing. In other words, the final
results are the same when the views are selected to never be redrawn as the
only request to redraw will then occur at the very end (when the status equals
terminated).

Multiple Runs Views Redrawing. Opens the interface as shown in figure 1.9.
The Redraw Interval parameter is a number that specifies when to redraw the
multiple runs views in case of a multiple runs EA. The number specifies the
amount of generations that have to pass before requesting the system to redraw
the views.

The When To Redraw parameter specifies this redrawing process more in gen-
eral. When “Always” is selected, the views are redrawn every generation. If the
selection is “By Generation Interval”, the redrawing is done every so many gen-
erations according to the number specified above. When “By Run” is selected,
the views are updated when a run of the evolutionary algorithm terminates.
When “After Final Run” is selected (default setting), the views are redrawn
after the batch of runs for one and the same evolutionary algorithm. In other

1.2. THE MAIN GUIS 11

E%Parameters for Multiple Bunz Yiews Hedrawing

Figure 1.10: Entering parameters for the resetting of the population.

words, a multiple runs evolutionary algorithm is run a multiple of times for each
of the settings required in order to average the results in some way. Redraw-
ing the views “After Final Run” means that a redraw is requested every time
for instance 20 runs have been run with the same settings. This setting is most
commonly used as multiple runs views will have new information to display only
at such a point since information can then be averaged in some way. Therefore,
this is the default setting. Finally, when “Never” is selected, the views are only
redrawn when the complete multiple runs evolutionary algorithm terminates.

— Resetting Population. Opens the interface as shown in figure 1.10. When “Yes”
is selected, in using the Reset Single Run Population option from the EA menu,
the generation counter (located on the status bar) is also reset, otherwise it is
not.

e Help. In this menu, help information on the FA Visualizer can be found. The self
contained help system can be opened and general information on the system can be
found.

12 CHAPTER 1. OPERATING THE SYSTEM

About EA Yizualizer

Figure 1.11: Information on the EA Visualizer.

— Help Index. Selecting this item opens the help system on the index page. The
help system is described in section 1.3.

— About EA Visualizer. Selecting this item opens information on the EA Visual-
izer such as version, copyright and author as can be seen in figure 1.11. Pressing
the Close button at the bottom of the interface dismisses the information and
allows you to operate the system again as displaying the information blocks your
input to the system.

1.3 The help system

The FA Visualizer is equipped with a fully self contained help system that can aid you
at any point in time when using the system. Pressing the F1 key anywhere in the system
will bring up the help system with related information on the location where you pressed
the F1 key. This will always be information on the window in which you pressed the key.
Alternatively, the help index can be brought up by selecting this in the help menu in the
main GUIL Many items are not directly related to a window, so they cannot be found by

1.3. THE HELP SYSTEM 13

pressing F1 somewhere. The help index can also be displayed by pressing the Index button
in the help interface. In the index all help topics are located and sorted alphabetically.

Just as in a WWW browser, the help information can be linked to other help information.
Such a link is displayed in blue, using blue underlining. This is for instance the case for
every entry in the help index. When you move the cursor over these links, it changes to a
handcursor. Pressing the mouse button then opens that link and displays a new page with
help information. Using the navigation buttons at the top of the interface, pages in your
history of browsing the help pages can be brought up. The Prev button brings you to the
previously visited page in your help browsing. Pressing the Nezt button brings you back
to where you were before if you just pressed the Prev button. Pressing the Close button
closes the help window and forgets your help browsing history. Basically, using the help
system is based upon following the links and browsing through the index, which is really
quite self explanatory. The index page of the help system is displayed in figure 1.12.

14

CHAPTER 1. OPERATING THE SYSTEM

A EA Visualizer Help System B3

Index =

2 Opt Heuristic For The T3P

4 Color In BGE Space

4 List Of Integer Numbers 3eparated By 3Jpaces
4 List Of Schewmas Separated By Spaces
Y
ry
A

Peal Mumber Within Bounds
Set Of Lists Of Integer Numbers
String Without Restrictions
Ackley's Function
A4dd An Twage To The E4 Visualizer 3vystem
Add O0ffspring To Population
4dd Parameter Component
Add Viewn
All Eeial Genomes
411 Ecual Genowmes and Maximum Generations
An Enwironment To Differentiate Between Different Settihgs In & Multiple Funs Ed
An Integer Number Within Founds
An Interwval With Real Bounds
Ealuja ¢ Dawvies Optimal Dependency-Trees —
Eest & Worst Binary String Genome
Eest & Worst Evolution Strategies Genome
Eest & Worst Multi Walued dllele String Genome
Best Sample Elitist Replacing
Einary String
Einary String - Bit Counting
Einary String - Bitwise Difference
Binary String - NE Fitness Landscape
Einary String - One Point Crossowver
Einary String - Polynowme Optimizer In [a,b]
Einary 3tring - Range Difference
Einary String - Trap Functions
Einary String - Two Point Crossowver
Binary String - Mhiform Crossover
Einary String Fopulation Dots
Einary String Random Mutation
Erowse Class
Erowze Help
Erowse Ttems
Erowse Name
Crowding
Dependency Chain For MIMIC & Baluja and Dawvies Hybrid
Dependency Imposing Conponents For One Multiple Puns Ea
Determnihistic Crowding
Ei Punner [(Evolutionary Algorithwm Engine)
EiL Viewer [(View Manager)
Ei4 Visualizer (Main System)
Ei WVisuwalizer Editor
EiComponent Creator (Generated Class)
E4View Creator (Generated Class)
E5 Crossower
ES Mutation
Edit Class
Edit Dependencies
Edit Help
Edit Name
Edit Parameter Components
Edit String
Elitist Replacing
Evolution Strategies
Evolution Strateqies — Polynome Optimizer In [a,hb]
External Multiple Punz Overwview
External Multiple Buns Statistics
External Numerical 3chema Tracer
FDi

-
T Mot
1] 3

Figure 1.12: The index page of the help system.

Chapter 2

Views and the view system

In this chapter we shortly focus on the visualization part of the FA Visualizer without
directly using it on evolutionary algorithms. In other words, we go over the viewing system
that given the data coming from the EAs presents information to the user. In the next
chapter the viewing system is implicitly demonstrated by working with EAs, just as is
done in the chapter following it. Here we present the most important general aspects you
should be aware of when working with the system.

2.1 Updating and redrawing

The views in the system visualize information coming from the EAs. This information is
constructed each generation as the EA that runs goes through the evolution step. The
information thus created is then collected by the EA Visualizer and shipped to the view-
ing system. The views are then updated and asked to redraw themselves with the new
information. As such, the views can be seen as slaves that redraw only upon request and
are provided with information.

Updating a view means that the information coming from the EA is presented to the view.
The view will then in some way process the information provided. For instance, when
regarding statistics, the information presented is processed to find for instance the average
fitness of the population or the amount of certain substrings or schemata in the population.
The key issue is that every view extracts the information required to visualize information.
Note that this extraction is separate from the visualization.

The visualization is done when a view is drawn. This is thus done based upon the informa-
tion extracted from the past updates. This internally stored data is used mostly to draw
some image such as a graph. However, this redrawing is only done upon request by the
system. Some visualizations might however take a lot of time, whereas you might only be

15

16 CHAPTER 2. VIEWS AND THE VIEW SYSTEM

interested in the final visualization at the end of a run. As was noted in the first chapter
when the menus in the system were explained, update intervals and redraw intervals can
be specified so that redrawing can be postponed if it really takes a lot of time. Mostly,
you will not want to do away with updating the views because the visualization you wish
to do has to be done based upon the information from all past generations. So it is more
likely that you will sometimes set a larger interval for redrawing then for updating. In any
way, you should note that updating views is separate from redrawing views and that a lot
of redrawing will slow down your EA.

This separation brings us to another note, which is automatic redrawing. Even though
you might specify that the system only issues redraw request every so many generations,
you might find that redrawing is done anyway in the mean time. This can happen when
you are working on a multitasking system and have lowered the focus of the main GUI for
the FA Visualizer. Once you request the focus for the main GUI of the system however,
your operating system will issue a redraw to paint the contents of the window. The FA
Visualizer then issues a redraw to the views, which results in displaying of course the latest
information anyhow even if you selected the system to request redraws only every so many
generations.

Also, views might redraw themselves as a result of interaction with the user (pressing the
mouse button somewhere in the view for instance). This has nothing to do with redrawing
called by the system while the EA is running, just as the automatic redrawing we just
noted.

2.2 Internal views and external views

The viewing system is set up in a modular way just as are the EAs as we shall see shortly
when discussing single run EAs. Furthermore views are capable of processing user input by
using a mouse pointing device. Before defining what views look like, we must ask ourselves
how a visualization comes into being. Mostly this is done in some graphical way as in
drawing graphs. But the visualization could also be merely a list of numbers. We are
now facing the problem that we want to offer the option to create views that graphically
visualize information without much overhead in defining a new system in which a drawing
of any type can be made, as well as the option to easily create text—based output that
can be copied and pasted to save the information to a file. A solution exists in creating
two types of views. This is what has been done in the FA Visualizer. On the one hand
we have internal views that can directly use graphical methods for drawing visualizations
and on the other hand we have external views that can be used as external frames without
restrictions. For instance this will allow very easy presentation of text when using text
components in a frame.

2.3. GRAPH DRAWER VIEWS 17

Next to identifying the type of views in the system, we have to remember that the internal
views need to be layouted. This part is rather tricky because we have to describe in some
way how to layout a collection of views neatly. Are we going to compute what is the
best fit to some measure or are we going to apply a simple first fit heuristic? The latter
approach may very well result in an undesirable layout. However, the latter approach also
maintains the order in which the views were added and it is the most simple to implement.
Furthermore if we allow the user to switch the order of the views in the management of
the EAViewer, causing the layout to change as well, we need not worry about any not so
good looking layouts. If some ordering is not satisfactory, the user can change it if desired.
In order to employ a first fit heuristic however, we are to place views in rows from top
to bottom, layouting them with equal space on all sides in one row. If a view does not
fit on a row any longer, it is shipped to the next row. The row length is taken to be the
maximum of the width of the widest view and the width of the canvas that the views are
to be displayed upon. The layouting and the placing of the views is the easiest when all
views in one row are thought of to have the same height and a total width that equals the
maximum width. To this end a wrapper is used, which is a rectangle that is larger than an
actual view but is invisible to the user. This wrapper makes it easier to do the layouting
because we can at first determine what views will end up on what row, then determine the
sizes of their wrappers so that the views have an equal amount of spacing between them
on all sides so that they are centered as well. Finally all views are simply located in the
center of their wrappers.

So basically, you can expect two type of views when working with the FA Visualizer,
namely internal views that draw themselves directly on the view space of the main GUI
and external views that are placed in frames exterior to the system. Added to that, the
internal views are layouted as just mentioned, which can be influenced as noted in the first
section.

2.3 Graph drawer views

One type of view is special in the EA Visualizer, which is the Graph Drawer view. Behind
the scenes in the FA Visualizer, this is a general view that is capable of drawing graphs.
An example of such a view is shown in figure 2.1. As this view is generally applicable, we
discuss this view separate from the other views as we quickly go over its functionality.

Looking at figure 2.1, the main issue displayed is the graph itself. This graph is a twodimen-
sional plot of two variables. Above the graph, a title is displayed. In the graph the graph
entries are drawn, which can be multiple depending on the application using the graph
drawer. The graph properties are mostly adapted during the updates that are performed
by the system. This mostly means that the ranges along the axes change continuously.
However, below the graph three buttons can be seen and the plotting of the graph can be
influenced by pressing the leftmost of these that carries the name Options. By pressing

18 CHAPTER 2. VIEWS AND THE VIEW SYSTEM

500.0 # In Schemata _—

450.0
400.0

K
350.0 El

:

300.0
250.0
200.0
150.0

i00.0

""‘?‘."‘é::-:'-—'h-:'.:‘m:r_‘f-'w\‘t'f":'-ﬁ”:;
o 14.8 15.3 Zz2.2 25.9 z9.6
0.0 Options Legend Gnuplot

Figure 2.1: An example of an internal view using the graph drawer.

this button, an external window appears with the settings for the graph as can be seen in
figure 2.2. After having set the options in the desired way, the changes can be applied,
cancelled or tried by pressing the three buttons respectively at the bottom of the settings
frame. Applying the settings means the settings are kept and the graph is drawn anew with
the new settings. Canceling the settings means that all changes in the settingsinterface
are discarded and that the view is redrawn with the same settings as when the options
interface was opened. Finally, trying the settings means the options interface does not
disappear and that the graph is only redrawn according to the current settings in the set-
tingsinterface. In other words, cancelling after trying still resets the graph to the settings
it used when the options frame was first opened. The options that can be set for any graph
drawer are the following:

e Title. You can fill in any title you want for the graph in this field. This title is
displayed centered over the graph (top).

e Width. The width of the graph in pixels (minimum value is 400).

e Height. The height of the graph in pixels (minimum value is 200).

e X Range set. Determines whether the Graph Drawer should itself determine the
range along the z axis (horizontal) or that the values given by the user should be
used. When this option is set to Automatic, the range is set so that all values that
need to be displayed will precisely (eg. no larger than need be) fit in the graph.

2.3. GRAPH DRAWER VIEWS 19

e X Range. The range along the z axis (horizontal) that is to be used when X Range
set 1s set to Rigid.

e Y Range set. Same as X Range set but now along the y axis (vertical).
e Y Range. Same as X Range but now along the y axis (vertical).

o X Ticks type. Sets how to compute the locations for the grid in the graph. By step
means that for every amount as specified by the setting X Ticks step a grid line is
placed. When By amount is selected, the Graph Drawer will attempt to place exactly
that amount of grid lines in the graph (along the z axis). The grid lines are always
placed at positions a positive or negative multiple of the tick step. This means it is
not done based on the lower range bound of the graph. For instance when the step
size is every 4 units and the lower value for the range is 10, the first gridline will
appear at 12 as that is the smallest multiple of 4 greater than 10. Again to point out
the difference, the first grid line is not placed at 10 + 4 = 14.

o X Ticks step. The amount of units for every which a grid line should be placed when
By step is selected for the X Ticks type.

e X Tick amount. The amount of gridlines that should be placed (independent of the
range) when By amount is selected for the X Ticks type.

e Y Ticks type. Same as X Ticks type but now along the y axis (vertical).
o Y Ticks step. Same as X Ticks step but now along the y axis (vertical).
e Y Tick amount. Same as X Tick amount but now along the y axis (vertical).

e Decimal precision. The amount of decimals that should be used to display the nu-
meric values along an axis. This means that rounding is done to the amount of dec-
imals specified. There are no recomputations done for the given amount of decimal
positions (for instance for the positions of the gridlines). The values are computed on
beforehand and then rounded. Although an amount of 0 decimals can be specified,
this only means that the value behind the dot will always be 0; one decimal is always
a minimum in displaying the numeric data.

o Sampling step size. Sets how the amount of samples that are used to draw the graph
entries must be determined. When By amount is selected, this value is taken directly
from the Samples parameter entry. When Clipping size is selected however, the
amount is taken to be the amount of pixels in the horizontal direction of the clipping
area. The clipping area is the part of the graph that is the actual drawing (not the
numeric data along the axis). This value is the minimum for a graph that in all cases
doesn’t cut off actual values.

20 CHAPTER 2. VIEWS AND THE VIEW SYSTEM

e Samples. The amount of samples that should be taken to determine the actual graph.
The more samples are used, the better the representation, but also the slower the
drawing. For normal view sizes (500 x 250), 5000 samples is more than enough for a
very smooth result.

e Auzis color. The color for the axis and the numeric data along the axis. The color is
to be specified in RGB format where the maximum value for any entry is 255 and
the minimum is 0 (eg. 256 steps).

e Grid color. The color for the grid.
e Background color. The color for the background of the graph (default is white).

e Title color. The color for the title of the graph.

Next to these various settings that can be set for any graph drawer, there is a button for
the legend. As the graph drawer can be used for a multiple of graph entries, a legend is
required for the user to be able to distinguish between the different entries. By pressing
the legend button, a separate frame is displayed that contains this legend information as
can be seen in figure 2.3.

The legend frame consists of three parts. The top part contains the entries in the graph.
These are listed top to bottom. On the left the type of line that is used to display the data
is given (solid line, dotted line, etc.). On the right of that entry a summary is given of
what the graph entry stands for. Whenever the supplier of data for the graph has set up
more information that does not fit on one line, the button on the far right that says Details
is enabled. When pressed, more specific information on that graph entry is displayed in
the center part of the graph which is a textarea. Finally, the bottom part of the legend
frame contains a button that allows the user to close the window.

These legends are mostly required when working with multiple runs as then mostly we are
varying some parameters, implying different graph entries. For instance if we are comparing
one—point crossover to two—point crossover and uniform crossover, we will typically have
three lines in the graph specifying exactly the results using these types of recombination
operators. In such a case, the legend is required to tell us which of the lines is which
operator.

Finally, it is common practice to use the results from experiments and save them to disk. At
a more professional level, the results are used in a book or a paper to be presented. In the
general sense, saving pictures of views to disk is discussed in the next section, section 2.4.
For views that use the graph drawer however, an additional option to what is described in
section 2.4 is available.

This additional option lies within the third button at the bottom of any graph drawer,
being the gnuplot button. By pressing this button, a new frame appears with GNUPLOT

2.3. GRAPH DRAWER VIEWS

E%Eraph drawer options

In Schemata

o0

Figure 2.2: Settings for the graph drawer.

21

22 CHAPTER 2. VIEWS AND THE VIEW SYSTEM

Graph drawer legend o =]

DO R R R R FFF TR AR TR R R R R A A A A RAA AR ERFFFFRRAS Details

--------------------- s e E st s e s e a e R e e s Details

——————— Dl OFF o R R R FFF TR AR TR R F R I A A A A RAA AR ERFFFFRRAS Details

111

————————— R s et R st e e s A a e R e e s Details

IOOF*F R R R R FFF TR R TR TR FF R I FFFF AR AR ERFFFFRHAS

--------------------- N P R e S R T Details

——————— LIOF*rFEh R AT FF TR R AR TR FF R I FFFF AR AR ERFFFFHHAS Details

————————— R T e R S R T Details

Other Details

..................... Population Details

JEEEE

In &chemata:
N T o o e e e o e ek

E
Bs

Cloze |

Figure 2.3: The legend for the graph drawer.

2.4. SAVING VIEWS AS IMAGES 23

information. The program GNUPLOT is a command-driven interactive function plotting
program that is freely available from the GNU community. This program is widely used
by researchers around the world to create professional graphs. Using the Gnuplot button
in any graph drawer view allows you to export the graph in the view to GNUPLOT. This
exporting is done through the external frame that appears once the button is pressed as
can be seen in figure 2.4.

The GNUPLOT data interface consists of two parts. The larger part of the frame is used
at the top by a textarea that contains the actual GNUPLOT data. The data will be split
over a multiple of files as the actual pointdata is saved in datafiles for GNUPLOT and one
file contains the actual plotting commands. The files are displayed in the textarea at the
top of a file. The filename is followed by a colon and is underlined with bars. In the lower
part of the interface, a textfield shows again the names of the files to be saved and files
that will be saved once the Save button is pressed.

Once saved, you will have files named graphtype_datafileX, where graphtype equals the
name of the graph you have saved and X equals a number that denotes the how manieth
datafile it is. Furthermore, there will be exactly one file named graphtype_plotfile. This
file holds the commands for GNUPLOT. Running GNUPLOT on this plotfile by executing
gnuplot graphtype_plotfile, a postscript file is generated on the standard output that
is the GNUPLOT result of the graph you saved when using the graph drawer.

The export to GNUPLOT will maintain most of the settings you have entered for the graphs,
such as ticks along the axis and axis boundaries, so the GNUPLOT representation is similar
to the result in the EA Visualizer. However, using GNUPLOT, manipulating graphs is much
easier, just as is most of all the combining of graphs. This requires only creating a new
plotfile in which other commands are given to construct the desired result as the data is
stored as numbers in datafiles. Otherwise, the graphical result of the FA Visualizer must
be manipulated, which is a significantly more time-consuming task. For more information
on GNUPLOT, you should refer to your local system administrator or the following URL
of the GNUPLOT WWW site:

http://www.cs.dartmouth.edu/gnuplot_info.html

2.4 Saving views as images

As noted in the previous section when we discussed the GNUPLOT export option for graph
drawing, the user will in the end want to save the results to disk and use them in a book
or a publication of some kind. Therefore there should be a way to save the views as images
in some graphics format. We have seen in this chapter that there are two types of views
in the EA Visualizer, namely internal views and external views. The internal views are
always graphical and it is intuitively clear that these graphics can be saved to disk just as

24 CHAPTER 2. VIEWS AND THE VIEW SYSTEM

Eg’,gﬁnuplut data for graph: Schema Tracer O] %]
IiInS chemata_datafilel: =

.0 53.0

. 046307353455607009 53.6946132725341055
LO09E61576971214018 59.38392365456321
L1353892565456821026 60.083554581552515
L1585231539424=28038 60.778473091364205
L23153942428035043 61.47309136420526
L2TTE4T30913642053 62.16TT096357046351
.3241551939924906 62.862327909837355
L37046307535435607 63, 55694613272541 =
LA1677096370463074 64, 25156445556944
LA6307834556070030 o4.9461527=2841052
LS09386733416771 65.640530100125156
L55560461582728411 66.353541927409262
LBO020025031289111 67.03003754693387
.64331038798495812 67.72465581977471
L0946152725410514 63. 4192740961577
LTA09261576971214 69.11353923654565E
LTETE340425531915 69.808351063529738
LG335419274092615 Y0, 50312591113393
LBY98498122653517 Y1.19774715835397997
L9261576971214017 Y1.89236545652103
972405581977 4718 V2. 556958372066205
L018773466533542 T3.60075093867334
LO0650531351689612 75.053260325406755
.11138923654565821 7. 564455569446153
L1576971214017522 78.046307334556085

-
| | 3

InSchemata_datafilel, In3chemata datafilel, Indchemata datafiled, Inichemata datafiled,

F R OoODOoODOoOOoOOoDDOoOOoOOoOoDoDoooooooooooo

Cloze | Sawve |

Figure 2.4: Exporting the graph drawer data to GNUPLOT.

2.4. SAVING VIEWS AS IMAGES 25

easily as they can be presented on screen. The external views however can be of a great
diversity and saving these as images to disk is not trivial to implement. Furthermore, the
external views will mostly be used for presenting numerical data. As such, it is often not
desired to save this numerical data as some graphical image. It is for this reason that
external views cannot directly be saved by using the EFA Visualizer and that the internal
clipboard of the OS must be used to save the data. In the following we shall describe how
to use the EA Visualizer to save internal views as graphical images and how to do this for
any type of view using the operating system. In the latter case however we only describe
WinDows and UNIX based systems.

2.4.1 Directly: using the EA Visualizer

Internal views are graphical representations of data. It is for this reason that it is intuitive
that it is desirable that such views can be saved to disk as images so they can be used
in reports. The EA Visualizer (not running as an applet) supports saving images in the
portable PPM format. This format stems from the PBM family, which stands for Portable
BitMap. The portable bitmap format is a lowest common denominator monochrome file
format. It was originally designed to make it reasonable to mail bitmaps between different
types of machines using the typical network mailers we have today. Now it serves as the
common language of a large family of bitmap conversion filters. The PPM format stands
for Portable PizMap and is an extension over the PBM to incorporate color. This format
is widely supported in many operating systems.

Actually saving an internal view in this format requires you to place the cursor over the
view you wish to save so that it becomes active in the EA Visualizer. This means a
yellow rectangle will appear around the view. At this point, as noted before, you can press
CTRL+F1 for direct help on the internal view. Alternatively, you can press the CTRL+S key
combination on your keyboard to save the view. After pressing the key, a file dialog is
presented in which a filename must be entered. Optionally, the extension .ppm can be
entered. Without this extension, the FA Visualizer will automatically paste it behind the
filename you enter. After having thus selected the filename under which to save the image
data, the system will save the data. If you have selected an existing filename, either the
filedialog will prompt you for acknowledgement for overwriting or the FA Visualizer will
do so if the system finds out that after adding . ppm to the filename, that file already exists.

After saving the view as a PPM image, you can use an image processing program such as
LViewPro under WINDOWS 95/98/NT or XV under X—WINDOWS to convert the image
to for instance postscript if you want to use it in a IXTgX report. Under X-WINDOWS
on UNIX, you might alternatively use the program convert, which is a very convenient
program for converting between file formats.

26 CHAPTER 2. VIEWS AND THE VIEW SYSTEM
2.4.2 Indirectly: using the OS

In the older versions of the FA Visualizer, directly saving internal views was not imple-
mented for several reasons. Therefore, the OS had to be used to establish this. Here we
describe how to do this in general and give examples for two different type of systems.

The general idea is that any OS has a so called clipboard which can be used to pin infor-
mation on to exchange between programs. This clipboard is of a general kind and can hold
any type of information. Using the copy and paste methods from your operating system,
images can be grabbed from the FA Visualizer and be saved to disk using some graphics
program for images. The general idea is to copy a graphic representation of the screen to
the internal clipboard of your operating system and subsequently to paste this into some
graphics program. You can then use this program to crop the image to the required se-
lection and to save the data to disk. This of course also directly applies to external views
just as much as it does to internal views. Next, we describe by example how to actually
achieve this for two operating systems.

Windows 95/98/NT systems

In these systems, the internal clipboard can be used for an image. The desktop can be
grabbed as an image and placed on the clipboard by pressing the PrtScn button on the
keyboard. This captures the entire desktop (what you seen on your screen) as an image.
More specifically, the Shift key can be held down while pressing the PrtScn button, which
will grab as an image the currently active window only instead of the entire desktop. This
means that when you activate the main GUI of the EA Visualizer by pressing anywhere
in that window, by pressing Shift+PrtScrn you will place the entire main frame of the
system as an image on the clipboard.

Having thus placed an image onto the clipboard, you can start some graphics program to
paste the image into. On any WINDOWS system, the program PAINT is available, but it
isn’t very useful in working with the images. Alternatively, you are recommended to get
some version of LVIEWPRO which is a much better program to view and edit pictures.
You should start up any such picture editing program and use the paste operation of the
program to paste the clipboard image to be the current image that is to be edited. By
selecting the desired part of the view, you can then use the crop operation to crop to the
part you wish to save and then save it in some graphics format using this graphical picture
viewing or editing program.

Alternatively, you might want to save the numerical text data that is contained in some
external view that has no direct means of saving data. To do this, you should select all
of the text in the textarea or textfield you wish to save and then press Ctrl+C on the
keyboard. Next, you should start up some text editing program (such as NOTEPAD) and
press Ctrl+V there to paste the text data to the text editing program. You can then save
this text to store the required data from the EA Visualizer.

2.4. SAVING VIEWS AS IMAGES 27

Unix systems running X—Windows

Using X-WINDOWS, it is not possible to grab an image to the internal clipboard as is
possible using WINDOWS variants. Instead, we assume that you have the standard picture
viewer and editor XV installed on your system. You should start up this program when
you wish to save graphical information from the FA Visualizer and display the controls
by pressing the right mouse button in the graphics window of XV. In the control window
of XV, you should then press the Grab button and select to hide the XV windows when
grabbing. When then selecting to start grabbing, the XV windows disappear and you can
grab entire windows by pressing the left mousebutton or grab rectangular selections by
pressing the mousebutton in the middle. This will place the grabbed area in the graphics
window of XV, which will then reappear. By using the controls of XV, you can now save
the image in the desired format.

Saving the text data is similar as is the case when using WINDOWS variants. You should
take care to select the part of text that you wish to save and then press Ctrl+C. By then
opening an editor (such as NEDIT) and by then pressing Ctr1+V, the text is pasted into the
text editor program and the text can be saved. Alternatively, if the use of the Ctrl keys
does not work, you can still select the part you wish to save in some external view of the
FEA Visualizer and then start an editor program. However, you should now not press first
Ctrl+C and then Ctrl+V, but press the mousebutton in the middle in the active editor
window to copy and paste the text directly in the editor.

28

CHAPTER 2. VIEWS AND THE VIEW SYSTEM

Chapter 3

Single Runs

To establish some form of a system description with respect to its actual usage, we could
provide figures of the system and explain all components within it, describing all menu
items and buttons in the system. Such is however already done in the help system. This
means that when the user doesn’t understand something, by simply pressing F1 the required
information is displayed. There is something that is not contained in the help system as it
is hard to provide a place for it unless we create a commercial product and incorporate a
lot of external documentation in terms of short movies that explain how to use the system.
What we are referring to is some means of how to use the system by example.

The system is provided with information on every part of it, but it does not have some
means of showing the user how to typically run an algorithm and visualize the results.
This addition is provided in this tutorial. We describe some examples of visualizations
done and algorithms run with the FA Visualizer. Through a series of examples, we show
the reader step by step how the algorithms are created and what actions are to be taken
in order to get the system running. Before describing the settings in the EA Visualizer,
we wish to note at this point that the examples shown in the following subsections are not
to prove anything or to achieve interesting results with respect to evolutionary algorithms.
They are merely meant to demonstrate the usage and the capabilities of the system.

3.1 On single runs and multiple runs

Evolutionary algorithms belong to the class of probabilistic algorithms because of their ran-
dom aspect in applying operators with a specified chance, the creation of random genomes,
etc. As such we can never rely on these algorithms in one single run to provide us with
information from which we can then draw conclusions on how good or bad it is in any sense.
Therefore, experiments with EAs are always (or at least should always be) performed a
multiple of times. The results are then combined (for instance by averaging).

29

30 CHAPTER 3. SINGLE RUNS

The whole idea of setting up the FA Visualizer has been to create a new way to look at
evolutionary algorithms, namely through interactive visualizations. As multiple runs are
mostly conveyed when the user is occupying him or herself with other activities because
they take a lot of time, these interactive visualizations imply the main utilization of the
EA Visualizer be through the usage of single runs.

Nevertheless, the position of these single runs and the interactive visualizations within
the research should be reviewed here. Not only are indeed continuous and interactive
visualizations a great tool to learn about and research evolutionary algorithms, they are
also a way to quickly establish satisfaction regarding intuitions. In order to then generate
a thorough investigation, a multiple of runs is still needed. Next to that, using the single
run version on beforehand guards the user from wasting a lot of time in computing results
over a multiple of runs on wrong settings. Still in the end, the user will want to be able
to perform a multiple of runs with different settings in order to compare results. It is
important to realize that a general system for evolutionary algorithms is not complete if in
the end one is not capable of running an algorithm a multiple of times and of combining
the results.

Furthermore, not only is it common practise (not only for evolutionary algorithms) to test
an algorithm a multiple of times, but also to test it on problems with a different size or
with different settings for the algorithm. As such, the availability of a multiple runs version
that provides the option for running algorithms with different settings of all kinds is always
a valuable and almost indispensable property.

Therefore, the EA Visualizer can be used in two important ways in order to investigate
the behaviour of a certain evolutionary algorithm. These two approaches are known as the
Single Run EA and the Multiple Runs FA.

The Single Run EA is the one time execution of a specific evolutionary algorithm with
specific settings for its parameters. The execution can be observed but in addition the
execution can be stopped at any time in between generations. At such a point the settings
of the EA can be altered to inspect the influence of different strategies or parameters for
a given problem in a direct sense. Further interaction is achieved through the views, but
such is dependent on the functionality of a view.

The Multiple Runs EA facilitates in performing a thorough benchmark/performance test
with multiple settings over multiple runs. It is widely accepted that because of the ran-
dom aspect within each evolutionary algorithm, in order to make any conclusions about
the performance, the results should be statistically combined over an amount of separate
runs. The Multiple Runs FEA in the EA Visualizer provides the possibility to enter differ-
ent values for parameters (like selection size and population size), different instances for
components (like selection strategy and recombination operator), possible links between
them preventing a crossproduct in settings and the specification of the amount of times to
run one specific evolutionary algorithm (specific parameter values and specific component
instances).

3.2. EVOLUTIONARY ALGORITHMS IN THE EA VISUALIZER 31

In this chapter, we observe the direct way of running and visualizing EAs, which is thus
called the Single Run EA in the system. It should be clear to the reader at this point
what the difference is between the single run and the multiple runs and why these two
versions are needed. In this chapter we shall also look at how Evolutionary Algorithms
are represented in the system. Understanding the structure of EAs in the FA Visualizer
strongly aids the user in understanding how EAs can be created and run. In this tutorial
we do not go into why the representation (decomposition) of EAs is of the form we shall
see, but will only present what it is like. For background information, the reader should
refer to more technical papers on the EA Visualizer [5, 6].

3.2 Evolutionary algorithms in the EA Visualizer

Because of software engineering aspects, it was determined that the modeling of EAs
should be modular [5]. This implies that the EAs are represented by components that
work together in some general framework. We call these components a decomposition of
EAs. By specifying this framework and the dataflow from one component to the other, we
have defined a structure for EAs. An actual evolutionary algorithm is then no more than
having an instance for each such component in the decomposition. For example, we have a
Recombinator component and a possible instance is Binary String — One Point Crossover.

At the outset a common view on EAs is the basis of the framework in the EA Visualizer.
This common view is depicted in figure 3.1. It holds nothing more than the running of an
EA for one generation at a time until the termination condition is met. It is the Evolve step
that truly determines the way EAs can be modeled in the system. This step is graphically
presented in figure 3.2 and should be intuitively clear. All together, the following algorithm
is constructed:

t=20
initialize(P(t))
evaluate(P(t))
while not terminate(P(t)) do
sel = select(P(t))
mat = mate(sel)
rec = for each mated collection m € mat do recombine(m)
mut = for each genome g in each recombined collection r € rec do mutate(g)
hyb = for each mutated genome h in each collection m € mut do hybrid(h)
rep = replace(hyb, P(t))
P(t+ 1) = select(rep)
evaluate(P(t + 1))
t=t+1
od

32 CHAPTER 3. SINGLE RUNS

Unc'fc’a(ége

(Generate population, evaluate genomes)

|

Tevninater:

Should the EA

terminate now? .
> Yes,! Cesincnate

No

€t'0 tt‘@

(Determine and/or create the genomes
of the next generation and evaluate them)

Figure 3.1: Coarse grained decomposition of evolutionary algorithms.

In this algorithm a number of components can be seen. Next to these components however,
there are also components that are not directly visible from either figures or the above
algorithm. In the following we shall give a description of all components present in the
EA Visualizer that make up the decomposition and thus the general framework. When
working through the examples in the remainder of this chapter, the reader is advised to
look back at the decomposition to imagine how the instances selected in the example work
together in the algorithm installed. Understand why parameters are set in what way and
how instances work together to get a good feeling for modeling EAs in the EA Visualizer.
First however, we shall now present the definition of the components in the decomposition
of evolutionary algorithms in the EA Visualizer:

| Name | Description |

Population | A Population is a container for the genomes. When looked upon
as a storage facility, the Population is nothing more than a collec-
tion of objects, but in the evolutionary algorithm it can come to
hold more information than just such. For instance information
on clusters or linkage between genomes can also be incorporated
here, making the Population vastly more important than merely
the holder of a collection of genomes. Like the Fitness Func-
tion, the Population serves as an environment. The difference is
that the environment induced by the Population regards infor-
mation about the structure and the linkage between genomes as
opposed to information regarding the search space of the opti-
mization problem.

3.2. EVOLUTIONARY ALGORITHMS IN THE EA VISUALIZER

[epecastion
* ¢ S.° ®
oo
® o0 o,
°
0,07 ¢ o
[] ® °
°

e o °
® oo0
°o®)
[] ° [X0 Py
o _® % o
o o P °
) bt °
(After) Selector
edation
° ® o
® o o
o ® Y
° o ©
°
° o ® o

g = Genome

33

Figure 3.2: Fine grained decomposition of the generation step in evolutionary algorithms.

34

CHAPTER 3. SINGLE RUNS

Name

Description

Fitness Function

The Fitness Function rates the genomes and therefore the solu-
tions according to their fitness. Very important alongside this
definition is the fact that the Fitness Function of course also
defines what a “better” fitness value is (maximization or mini-
mization for instance). Observing this definition in terms of the
algorithm, it is clear that the Fitness Function defines a map-
ping from the solution space to the real numbers. This points
out that the Fitness Function plays the role of the environment
in the optimization problem. It holds the information that is
specific for the problem instance. Finally, the Fitness Function
implicitly defines a genotype-phenotype mapping. To be more
precise, it denotes the exact location in the problem space for
each genome. It is clear that based on this location, the Fitness
Function computes its fitness values. Hence the Fitness Function
can map a genome onto its phenotypic equivalent.

Genotype

A genome represents a potential solution to a problem. It codes
the problem specific information that describes a point in the
search space. How the solution information is coded within a
genome, is determined by the Genotype. Like in imparative pro-
gramming languages, it designates the type of a value container
where in this case the value container is a genome instead of a
variable.

Hybrid Searcher

The Hybrid Searcher is an extension to the conventional evolu-
tionary algorithm as it need not make use of evolutionary opera-
tors. It facilitates the optimization of individual genomes outside
the evolution process. After both the Recombinator and the Mu-
tator have been applied, a Hybrid Searcher is used to optimize
every single offspring genome. The Hybrid Searcher has no fur-
ther knowledge on the execution of the evolutionary algorithm
in the larger setting. The system will provide it with the genome
it needs to locally optimize when needed.

Mater

The Mater is an operator that puts together the parent genomes
that were selected by the before Selector in groups. These groups
need not be disjoint, but such is usually the case. The genomes
that are placed together in a group will produce offspring to-
gether, for it is the groups that result from this operator that
are transferred one by one to the Recombinator.

3.2. EVOLUTIONARY ALGORITHMS IN THE EA VISUALIZER

| Name

| Description

Mutator

The Mutator implements the operation where the coincedental
exploration of the search space takes place. The exploration is
such because the mutation of a genome is mostly totally random.
The Mutator has no further knowledge on the execution of the
evolutionary algorithm in the larger setting. The system will
provide it with the genome it needs to mutate when needed.
These genomes are the offspring as resulting after the application
of the Recombinator to the mated parents.

PRNG

In order to explore vast amounts of the search space (or at least
to be able to do so), the usage of a certain random number gen-
erator can have a great effect. When using a random number
generator that only generates so many different combinations,
the exploration of any evolutionary algorithm is thereby inher-
ently limited as well. In order to provide the user with a degree
of freedom as to be certain of a well implemented Pseudo Ran-
dom Number Generator, this functionality has been placed into
a separate component.

Recombinator

The Recombinator implements the operation where the inheri-
tance of genetic material as found in nature takes place. This
operator takes an amount of parent genomes and by combining
the information that is stored within their genetic structure in
some sense, creates new offspring. In this way an exchange in
solution information information takes place, causing a traversal
through the search space of a certain kind to take place. The
Recombinator has no further knowledge on the execution of the
evolutionary algorithm in the larger setting. The system will
provide it with the parents it needs to recombine when needed.
These groups of parents were compiled prior to the application
of the Recombinator through usage of the Mater.

Replacer

The Replacer determines (before any optional after selection op-
erator) which genomes will be in the population in the next
generation. The replacement strategy implements a way to
place the offspring back into the population and thereby pos-
sibly replacing already present genomes. The Replacer is pro-
vided with the current population as well as the offspring and
relation between these offspring genomes and the parents that
created them. Based on that information, a selection is made as
to see what genomes survive. As such, this operator is part of
the selection process.

35

36 CHAPTER 3. SINGLE RUNS

| Name Description |

Selector The Selector is an operator that is capable of selecting genomes
from a population. This selection process needs not to select any
genome at most once. Individual genomes can be selected mul-
tiple times. It is not said that a Selector has to select the better
genomes, but usually this will be the case. In the evolutionary
algorithm framework used, selection is applied twice during the
evolution of one generation. First, it is applied as the before
Selector, selecting the genomes that will act as parents during
the current generation. Who is to survive is not yet pointed
out, as the Replacer specifies which genomes will eventually be
placed in the population. Second, the selection operation is ap-
plied directly after replacement has taken place. Here, as the
after Selector, it does define exactly who is to survive, for only
the genomes that are selected this time are placed within the
resulting population.

Similarity | In order to be able to compare genomes and use this information
when defining evolutionary operators, the Similarity component
is part of an evolutionary algorithm in the general framework. A
Stmilarity component takes two genomes and determines to what
extent they are equivalent. This information can for instance be
used when mating genomes to create offspring or when replac-
ing genomes in the current population to find the best or worst
match.

Terminator | Eventually we want the evolutionary algorithm to terminate. For
this task, a separate component has been created, being the
Terminator. The component is provided with all the relevant
information from the evolution process during the last genera-
tion. The Terminator then determines based on this information
whether or not the algorithm should terminate.

3.3 The single run settings interface

By selecting New Single Run EA or by pressing F4 on the keyboard, an interface is dis-
played in which the settings can be entered for a single run evolutionary algorithm. This
means that for each component of the general framework for evolutionary algorithms as
stated above, the user must select an instance. The selected and available instances are
placed in the lists at the center of the interface. An overview of this interface is given in
figure 3.3.

3.3. THE SINGLE RUN SETTINGS INTERFACE

Ei

Ewvolution Strategies

Malri Walned A11lela Stying

Binary ing - Bitwise Difference
Binary Strihg - Range Difference

We Sdimilardtss

Ackley's Function

Einary 3tring Eit Counting

Fimarsr Stvines T Fitne== Landscans
Ealuja : Optimal Dependency-Trees
Einary 3trihg One Point Crossover
Fimars Strine Trn Print Craszorar
Binary e R om Mutation

No Mutation

. A1l
Fandom Selection
Friletteamhes]l Salactioh
No Zelection lect All)
Fandom Felection
Drlatrremhesl Salactinn
Mate all gehomes in one group
Fandon Mater
Simnle Matrer
add 0f ring To Population
BEest Sample Elitist Replacing

C+arrdd v
All Equal Fitn alues
411 Equal Fithess Values And Maximum Generations

A11 Frmial Genome=

No Hybrid rch
Vector Population

ra PRIG

37

Mew Single Run EA

Parameters

Faraneors

Parameters

30 0 I | N

Parameters

EX

HarameLErs

Parameters

Earamebers

Haraneers

FaraneLers

Pl Helle il Dl Llxd

ParaneGers

£

Earaeers

Paramerers

Parameters

Figure 3.3: The GUI for single run EA settings.

38 CHAPTER 3. SINGLE RUNS

Whenever a selected instance has parameters, the Parameters button on the right side
of the list belonging to that selected instance is enabled. By pressing this button, an
interface is displayed with the Parameter Components in which the parameters for the
selected instance are to be filled in.

At the bottom of the interface, the recombination and mutation chances are to be specified.
If your screen resolution is not high enough to host all of the components, the lists are
divided over two pages and the recombination and mutation chances are located at the
bottom of the second page.

Once for all components an instance has been selected and all the parameters are filled in,
the Create FA or Apply button can be pressed to dismiss the interface. The name of the
button is dependent on whether you are editing the settings for a new or for the current
evolutionary algorithm respectively. Pressing the Cancel button discards any changes and
dismisses the interface as well.

Four components are so called Dependency Imposing components. These components are
used by other components in the process of creating the next generation of genomes.
Because of this, the selection of the other instances for components can be dependent
on what selection has been made for these Dependency Imposing components. These
Dependency Imposing components are the Genotype, the Fitness Function, the Similarity
and the Population. When selecting an instance for a Dependency Imposing component,
the interface will filter all the other lists for the components so as to see which instances
are allowed to be selected now that this instance for this Dependency Imposing component
has been selected. For instance, when selecting the Genotype to be Binary String, the
other lists of instances for components will only list the instances that can be used for that
genotype. This will mean amongst other things that the ES Recombinator will disappear
as will the ES Mutator.

Next to entering the settings by hand, settings can be loaded and saved (if the system
is not being run as an applet). Loading and saving can be established by pressing the
Load Settings and Save Settings buttons respectively at the bottom of the interface. By
pressing the the Load Settings button, an interface appears as is depicted in figure 3.4.
This interface shows a large textarea where the summaries for the settingsfiles are shown
once a file is selected in the list of selectable files at the bottom of the interface. Once
the desired settingsfile is located, the settings can be actually loaded by pressing the Load
button. This will dismiss the interface and alter the settings interface according to the
settings in the settingsfile that was selected. The interface can also be dismissed without
loading settings by pressing the Cancel button.

Saving settings in the FA Visualizer is done through the interface that becomes visible
after pressing the Save Settings button in the settings interface for the single run EA. This
interface for saving settings is depicted in figure 3.5. The interface shows two textareas. In
the above textarea the summary for the settingsfile to be saved can be edited. The lower
textarea shows settingsfiles that currently exist in the system. The settingsfiles that were

3.3. THE SINGLE RUN SETTINGS INTERFACE

Egﬁ Load EA Settings

T r ms 0 500 1.0 | 1000 LY

|

AckleysFunction 5 -30-30 400 1.0 0.5 1000 random ES$ truncation 200 add
GeometricTSPED RandomKeys ulyssesizunadapted Z00_1.0_0.0_1000_tourname

-

Figure 3.4: Loading single run EA settings.

39

40 CHAPTER 3. SINGLE RUNS

Egﬁﬁave EA Settings

Figure 3.5: Saving single run EA settings.

shipped in the original configuration cannot be overwritten. At the bottom of the interface
the filename for the settingsfile can be entered. Once the desired information is entered, the
settings can be actually saved by pressing the Save button. This dismisses the interface,
gathers the information from the settings interface and actually saves the information to
disk. The interface can also be dismissed without saving settings by pressing the Cancel
button.

3.4 Examples

In this section we present various examples. The examples are chosen so that there is a
variety in applications, showing the diversity of the EA Visualizer system. The examples
range from simple to more difficult, starting off with something simple. The examples

3.4. EXAMPLES 41

presented are sometimes described in less detail than in others, but nevertheless the reader
is guided in the use of the FA Visualizer, especially when the examples get more involved.

3.4.1 Edge map recombination for the TSP

In a first example you are taken through the FA Visualizer step by step and are shown
through what steps an EA can be created, run and visualized. In the next section, more
examples will be given over a variety of applications. However, in this section the process
of establishing such an EA visualization is described in full detail, whereas the subsequent
examples are presented more briefly.

The standard package of the FA Visualizer contains a basic working set for the 2-dimensional
symmetric geometric traveling salesman problem. This problem states that we are to find
the shortest path between a given set of cities in the 2-dimensional plane in such a way
that every city is visited exactly once and the city where we start is also the city where
we end. The distances between the cities are the Eulerian distances. It follows that the
resulting tour is a Hamilton cycle. The 2-dimensional geometric version of the TSP (Trav-
eling Salesman Problem) was chosen because easy visualizations that are both interesting
and fun to see can be created. In this section we see how to use the FA Visualizer to try
to find an approximation to the problem using evolutionary algorithms.

At the outset we choose to use one of the better recombination operators for the numbered
list representation of the solutions to the TSP. This recombination operator is the edge
map recombination strategy. This is one of the better “blind” operators that stem from
the first generation of operators for the TSP. Blind operators do not utilize any domain
specific information from the problem at all. Only the information from the parents is used
to generated new tours. The edge map recombination operator has turned out to be one of
the best of this kind. Mathias and Whitley [11] have shown that the edge crossover can even
be improved further, which resulted in an edge-2 and an edge-3 crossover operator. The
edge map recombinator uses a so called edge map. This edge map is a table in which each
city is stored. Behind each city a list is placed which holds the cities that are neighbours
to this city in the parent tours. These lists therefore all have a length no larger than four
cities. The recombination process is then performed as follows:

1. Select first city from one of both parents to be the current city.

2. Remove the current city from the edge map lists.

3. If the current city has any remaining edges, go to step 4, otherwise go to step 5.
4

. Choose the new current city from the edge map list of the current city as the one
with with shortest edge map list.

5. If there are any cities left, select the city with the shortest edge map list to be the
current city and go to step 2.

42 CHAPTER 3. SINGLE RUNS

It follows that the operator according to the above definition creates 1 offspring genome for
every two parents. This means we have to select twice as many parents so as to get enough
offspring back to replace the current population and keep the population size equal.

We are now ready to enter the settings of the evolutionary algorithm. By pressing F4 in
the main window or by selecting NEwW SINGLE RUN EA from the EA menu, we open the
settings window and enter the settings as is depicted in figure 3.6. At the top of the win-
dow we select to use the TSP Numbered List as the genotype. The similarity component
is not interesting as we are not concerned with niching or any other means of similar-
ity usage. We therefore select the only thing we are allowed to select: No Similarity.
The fitness function is one of the most interesting parts of the settings. We select the
Geometric TSP Numbered List and notice that the Parameters button on the right of
it is enabled. By pressing that button we can specify the parameters for the component
which in this case is of course the locations of the cities. As this is an unusual type of
parameter component, we show this situation in figure 3.7. At the top we can enter the
coordinates of the cities. We can also directly enter the cities by clicking them in the white
rectangular area. We wish to use the TSPBIB library set ei1101 that contains 101 cities.
After reformatting the data in this set to be the right input to the EA Visualizer, we enter
the locations for the cities, resulting in the drawing of the city locations as can be seen in
figure 3.7. By pressing Apply we select to go with the entered settings.

We continue to enter the settings for the evolutionary algorithm by selecting that we wish
to use edge map recombination as the recombination operator and no mutation whatsoever
as the mutation operator. The outset of the evolutionary algorithm determines how we
should select our remaining components. We choose to select some classical configuration
by installing a selector on beforehand and using only the offspring genomes as the genomes
of the next generation. This leads to selecting tournament selection as the before selector.
We enter to select 400 genomes from the population with a tournament size of 2. Note that
the tournament selection strategy is found by scrolling down the list of available selectors.
The after selector is set to no selection and the mater to the simple mater that is to create
mating groups of size 2 so as to achieve the classical configuration as requested. Continuing
on this note we select to have the New 0ffspring Only as the replacement strategy which
is once again located in the lower part of the list. This replacement strategy only takes the
offspring genomes as the individuals of the population of the next generation. Furthermore
we employ no hybrid searcher and select to use the standard population implementation,
namely the Vector Population. We specify to have 200 genomes in the population which
is correct with respect to the selection of 400 genomes by the before selector because
the recombinator creates one offspring genome for every two parents implying that the 400
selected genomes are recombinated into 200 offspring. Finally we select to use the standard
prng that is provided within any JAVA distribution. We finish entering the settings for the
evolutionary algorithm by pressing the Create EA button, accepting the chance of 1 for
recombination and 0 for mutation (of which the latter is not of interest because we have a
non contributing mutation operator).

3.4. EXAMPLES

ew Single Bun EA [modified)

Fandon Keys Genotype
T3P Numbered List

4

T3P Numbered List - Distance Preserwvihg Crossover
TSP Numbered List - Edge Map Recombination
TP Mimhered Ti=t — Arder Cro=s=nirar

No Mutation

[+]

EX

Foulettewheel Selection
Tournament Selection
Trimrcatintn Selacrtinn

No tion (Jelect All)
Fandom Felection

Drilattemheal “alactinn

[+

Fandon Mater
Simple Mater

New Offspring Onlwy
Preselection

Bl L]l

411 Equal Fithess Values And Maximum Generations
A11 Equal Ger]

411 Frmial Gernome= And Mavimim Gerneratinm=

il Tols

[«

Z Opt Heuristic For The T&FP
No Hybrid rch

Vector Population

FENG

43

Harae et

Faraneors

Parameters

Earaneers

HarameLErs

Parameters

Earamebers

Parameters

Parameters

ParaneGers

Earaeers

Paramerers

Parameters

Load Sectings

Figure 3.6: Entering the settings for a single run.

44 CHAPTER 3. SINGLE RUNS

E‘ng’,ﬁ'Palameters for Geometnic TSP 2D

Figure 3.7: A special kind of ParameterComponent, entering parameters for the 2-
dimensional geometric TSP.

3.4. EXAMPLES 45

[E3Add View

External Fepresentational 3tatistics
Fithezsz Evaluations

Fitnesz 3tatistics

Fitness Statistics Numbers
Geometric TSP Tour

Figure 3.8: Adding views to visualize information.

Once the evolutionary algorithm has been created, we press the F8 button or select
Add View from the Views menu to add views in order to visualize information about
the evolutionary algorithm. The window that appears resulting from this action is shown
in figure 3.8. We select to add four views. First of all we wish to see directly some of
the solutions. The most interesting solutions are the best and the worst genome. As we
are optimizing a 2-dimensional geometric TSP, we add two Geometric TSP Tour views
that show the best and the worst tour in the population. Below these views we specify to
have two statistics views to have some statistical feedback on the evolution process over a
multiple of runs. These views are both Fitness Statistics views that display the fitness
average of the population and the fitness standard deviation. These numbers are displayed
as a function of the generation counter. After adding all these views, we press the Close
button in the Add View window and we are ready to run the evolutionary algorithm.

Running or stopping the evolutionary algorithm is done by using the three buttons un-
derneath the menubar in the main window of the system. The buttons have been chosen
similar to those of a CD or cassette player and are therefore intuitively easy to use. The
leftmost of the buttons is the “play” button and can be used to start or continue the algo-
rithm. The button in the middle is the “stop” button and can be used to stop the algorithm
at some point. Finally the rightmost button can be used to do one generational step and
is called the “step” button. All buttons are grey when they are disabled. They turn to
a yellow-red combination color when they are enabled. By pressing the “play” button,
the evolutionary algorithm starts and we can observe the best and the worst tours that it
contains each generation as well as the fitness statistics we chose to view. In figure 3.9 the
situation is displayed after 235 generations.

CHAPTER 3. SINGLE RUNS

46

JE§ EA Visualizer V1.4
Views Options Help

Figure 3.9: The evolutionary algorithm in progress.

3.4. EXAMPLES 47

ESEA Visualizer V1.4

E

3436.419 ElLicss

Ttness Average
2741.74 ’ %WWWW

£94.676

25.0 50.0 75.0 100.0 125.0 150.0 175.0 . : 25.0 50.0 75.0 100.0 125.0 150.0 175.0

0.0 Options Legend Gruplot - Options Legend Gnuplot

Figure 3.10: A single step of the evolutionary algorithm with a 2-Opt heuristic.

After these 235 generations we observe that the fitness average of the population is not
decreasing fast enough anymore to our satisfaction and the tours are far from something
interesting yet. The standard deviation is still rather large, but seen the fitness average
this tells us only we have some rather bad and even worse tours. So after 235 generations
we edit the settings of the current evolutionary algorithm by pressing F5 or by selecting
Settings Current Single Run EA from the EA menu. We select to use the 2-Opt hybrid
searcher for the TSP and use the step button to do one step in the algorithm. The results
are shown in figure 3.10. This demonstrates the influence the user can have directly on the
evolutionary algorithm and the conclusions that can be drawn when applying some new
strategy somewhere right in the middle of a run.

Because we have no interest in this section to investigate any properties of the evolutionary
algorithm or the selected recombination operator specifically, we do not draw any conclu-
sions about any results here. As we are demonstrating the system itself and we want to
provide an example of typical usage, we would for instance at this point like to just let the
original algorithm run again with this intermediate result. We establish this by editing the
settings of the current evolutionary algorithm again and by removing the hybrid searcher.
Then by pressing the “play” button, we continue evolution. After 603 generations, the
results have turned worse again and the nice approximations that we saw after one step

48 CHAPTER 3. SINGLE RUNS

el
l " - I' = l Status: Terminated Generation: 685

Fitness

itness Average
2236.16 .
1877.12 -

1118.08

641,22

50.0 125.0 200.0 275.0 350.0 425.0 500.0 o "7 50.0 125.0 200.0 275.0 350.0 425.0 500.0
0.0 Options Legend Gruplot - Options Legend Gnuplot

Figure 3.11: The resulting visualizations upon termination.

with the hybrid searcher have somewhat vanished. The algorithms was therefore altered
to again employ the hybrid searcher from generation 603 and on. The standard deviation
and fitness average immediately dropped, but the selective pressure was still not great
enough to converge to a single solution. To this end, elitist replacing (see section 3.4.4)
was employed as replacement strategy after 655 generations. After 30 more generations,
the algorithm finally terminates with a tour that is slightly better than the one first found
when first using the 2-Opt searcher. This situation is depicted in figure 3.11. Note how
all the buttons are now disabled and the status is marked as Terminated.

Finally, we use the FA Visualizer to magnify the result by enlarging the view. This is
done by selecting the view in the Views menu and altering its dimensions. Once again
we note that we are not interested in drawing any conclusions about the results for any
reason, but we do wish to finish this example by providing a nice view of the results. The
tour that was finally found is depicted in figure 3.12 and is a rather acceptable result at
first glance. This concludes our stereotypic example of using the system with a single run
version. The number of options is far greater than demonstrated here and can be made
as great as required by implementing some interesting usage of the interactivity offered by
the FA Visualizer. We merely set out to provide some feeling for how to use the system.

3.4. EXAMPLES

Figure 3.12: The resulting tour, displayed magnified by the system.

49

50 CHAPTER 3. SINGLE RUNS
3.4.2 Bitcounting

One of the most simple optimization problems for genetic algorithms is the bitcounting or
one—max problem. In the EA Visualizer, a fitness function is defined that implements a
fitness landscape according to this fitness function. The Bit Counting fitness function is a
simple fitness function that counts in the 1 symbols or the 0 symbols in the binary string.
This fitness function is therefore defined specifically for the Binary String Genotype.
There are two ways in which bits can be counted in this fitness function, but we only
regard one of these two options, namely One-Maz. This problem is the classic bitcounting
in which the fitness value of a binary string is equal to the amount of bits set to 1.

We wish to run a simple GA with one—point crossover on this problem and observe the
trajectory and the form of the binary strings in the population. At the same time we would
like to trace some schemata to see what type of binary strings occur more frequently in
the population.

First of all, we need to specify how to set up the FA Visualizer. In the sections containing
the examples of creating and running single run EAs, including this one, we provide the
settings in a table. After having read the extensive example description in section 3.4.1,
the reader should be able to configure the FA Visualizer using only the table information
and as such, doing so could be seen as an exercise. The following table shows the settings
to be entered for a new single run EA:

| Component | Instance | Parameters |
Genotype Binary String String length 100
Similarity No Similarity —
Binary String —

Fitness Function Counting type One-max

Bitcounting

Binary String —

One Point Crossover
Mutator No Mutation —

Selection size 100
Tournament size 2
After Selector No Selection (Select All) | —

Recombinator Offspring Arity 2

Before Selector | Tournament Selection

Mater Simple Mater Grouping size 2

Replacer New Offspring Only Report popsize warnings Yes
Terminator All Equal Genomes —

Hybrid Searcher | No Hybrid Search —

Population Vector Population Population size 100

PRNG Standard Java PRNG Seed Any

Use Random Seed Instead Yes

The value Any for the seed parameter of the PRNG component means you may pick any
value. Here, you may alternatively set the second parameter of the instance to Yes for a

3.4. EXAMPLES 51

random number to be picked by the system to use as a seed. Having entered these values in
the settingsinterface, we press the Create EA button, after which the system will notify us
in the message frame that the creation of the new EA is completed. We are now supposed
to add views for visualization, after which we desire to run the EA and witness the results.

We select Add View from the Views menu or alternatively press F8 in the main GUI and
select to add the population dots view which will give us an overview of the population
contents. As our population holds 100 members of string length 100, we select the width
of the view to be equal to the height of the view so that the bits are represented as
squares rather than rectangles and go with the initial settings for a view of 200 x 200
pixels. Pressing the Apply button immediately displays the population dots view, which
should give you the view of a random population, meaning a random mix of blue and red
dots in a square view. As we noted in the beginning of this example, we wish to observe
some schemata to see what happens in the population using this method. To this end, we
select to add a Schema Tracer view. First we must now decide which schemata to trace.
Because all bits in all positions are equal in contribution to the search problem, we may for
instance only regard the first so many bits to trace some schemata. We decide we want to
see all schemata with fixed bits for the first three positions and don’t care symbols for the
remaining positions. To this end, we enter the following string for the Schemata to trace
parameter:

8 sk ok ok ok sk ok ok ke ok sk ok sk ok ok sk ok sk ok sk ok ok e ok sk ok ok sk ok ok sk ok sk s ok sk ok ok ke ok sk ok ok ke ok sk ok ok sk ok ok sk ok sk ok ok sk ok sk ke ok ke ok ok ok ok sk ok ok sk ok sk sk ok sk ok ok ok ok ok s ok sk ok ok sk ok ok sk ok ok sk kok ok

Furthermore, we select to view the number of individuals in the population that are
matched by a schema by selecting # In Schemata from the Statistic parameter options.
We do the same for two more schema tracer views, but now select to view the fitness
average and fitness standard deviation. Having added these views, we stop the adding
of views by pressing the Close button in the interface for adding views and behold the
viewing space of the FA Visualizer with four views as can be seen in figure 3.13.

At this point, we press the Play button in the buttonbar and observe the evolution process
and the visualization thereof in the FA Visualizer. Quickly already, we can observe in
the population dots view that the view is turning red. This means that the amount of ‘1
symbols in the population is increasing. The optimum is of course a string with only such
symbols, so we indeed hope that the entire population dots view will end up red. The
final result in our ru