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Abstract

A number of properties of term rewriting systems related to termi-
nation is discussed. It is examined how these properties are affected by
modifications in the definitions like weakening the requirement of strict
monotonicity and adding embedding rules. All counterexamples to prove
non-equivalence of properties are string rewriting systems, in most cases
even single string rewrite rules.

1 Introduction

The most basic idea of proving termination of a term rewriting system is the
following:

Define a weight function on terms such that by every rewrite step the
weight strictly decreases.

Often there are infinitely many possible rewrite steps, but only finitely many
rewrite rules. In order to reduce the set of proof obligations the basic idea can
be refined to:

Define a compositional and monotone weight function on terms such
that for every rewrite rule the left hand side is greater than the right
hand side

The set of possible weights is equipped with an order; to be able to conclude
termination this order has to be well-founded. By compositionality of weights
this set is an algebra, since the weight function has to be monotone it is called a
well-founded monotone algebra. In [13] a hierarchy of different properties related
to termination was proposed based on the kind of algebra involved. In this paper
this hierarchy is extended by a number of other notions as they appear in the
literature.



For all properties X and Y occurring in the hierarchy that satisfy X = VY
we give an example of a term rewriting system satisfying Y but not satisfying
X, hence proving that the converse of the implication does not hold. Except
for one all of these examples are single string rewrite rules. These single string
rewrite rules are of particular interest since they look very simple, but proving
termination can be very hard ([15, 10]).

Next we study some possible modifications of the definitions given so far, and
study whether they affect the meaning of the definitions. In most cases indeed
they do, hence we can say that the definitions of the properties occurring in the
hierarchy are not robust. One modification of particular interest is the weakening
of the monotonicity requirement. In the standard definition the operations in
the algebra have to be strictly monotone in all arguments. If this requirement
is weakened to weak monotonicity no termination can be concluded any more.
However, if the operations are weakly monotone and satisfy the subterm property,
then we prove that we can conclude termination. By this observation the set of
operations that can be used for proving termination drastically increases. For
instance, in the set of natural numbers the operation taking the maximum of
both arguments is not stricly monotone, but it is weakly monotone and satisfies
the subterm property.

In Section 2 we give some preliminaries including the hierarchy as given in
[13]. In Section 3 we extend this hierarchy, and we prove that for none of the
implications in the hierarchy the converse holds. In Section 4 we prove that al-
gebras with weakly monotone operations satisfying the subterm property serve
for proving termination, and discuss how this would affect the properties in the
hierarchy. In Section 5 we study the subtle difference between the subterm prop-
erty and the strict subterm property. This difference can also be described as the
effect of adding embedding rules. In Section 6 we study the effect of reversing
strings and show that our notion of total termination is not equivalent to the
same notion introduced by Ursula Martin for string rewriting. Finally in Section
7 we give some concluding remarks.

2 Preliminaries

Let F be a set of operation symbols each having a fixed arity. Let X be a set of
variable symbols. The set of terms over F and X is denoted by T (F, X).

Definition 1 A well-founded monotone algebra over F consists of

o A well-founded poset (A, >)

o for every operation symbol f € F of arity n an operation f4 : A" — A that
1s strictly monotone in all arguments, i.e., if a1,...,a,,b1,...,b, € A for



which a; > b; for some 1 and a; = b; for all j # i then
falag,...an) > fa(by, ..., by).

A map o : X — A extends to terms by

e [z,0]=0(x) forx e X

o [f(t1,...,tn), 0] = fa([ts,0),---,[tn,0]) for f € F andty, ..., t, € T(F,X).
A well-founded monotone algebra and a TRS are compatible if

[l,0] > [r, 0]

for every rule | — r and every o : X — A.

This definition is motivated by the following basic theorem.

Theorem 2 A term rewriting system is terminating if and only if it is compatible
with a well-founded monotone algebra.

The proof of this theorem is not difficult. For the ‘if’-part one shows that
an infinite reduction ¢; — t3 — t3 — --- transforms to an infinite decreasing
sequence

[tl,O'] > [tQ,U] > [tg,O'] >y,

using strict monotonicity, for the ‘only if’-part one shows that (7 (F,X),—™)
is a compatible well-founded monotone algebra if the term rewriting system is
terminating. For details of the proof we refer to [13].

The way of proving termination of a term rewriting system by means of The-
orem 2 is now as follows: choose a well-founded poset (A,>), define for each
operation symbol f a corresponding operation f4 that is strictly monotone in
all of its coordinates, and for which [, 0] > [r, o] for all rewrite rules [ — r and
all o0 : X — A. Then according to Theorem 2 the term rewriting system is
terminating.

In this setting it is a natural question to ask which kind of posets (A, >) and
which kind of operations are useful or necessary to prove termination by this
approach. By giving the following restrictions we define the following restricted
kinds of termination.

Definition 3 A term rewriting system is simply terminating if it is compatible
with o well-founded monotone algebra (A,>) such that fa(a1,...,a,) > a; for
every f € F, every ay,...,a, € A and everyi=1,...,n.

A term rewriting system is totally terminating if it is compatible with a well-
founded monotone algebra (A, >) such that > is a total order on A.
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A term rewriting system s w-terminating if it is compatible with a well-
founded monotone algebra (A,>) such that A = N and > is the usual order
on IN.

A term rewriting system is polynomially terminating if it @s compatible with a
well-founded monotone algebra (A, >) such that A =N and > is the usual order
on IN and fa is a polynomial for every f € F.

Summarizing:
A term rewriting | if it is compatible with a
system is well-founded monotone
algebra (A, >) such that
terminating —
simply terminating fal.ya,..)>a
totally terminating | > is a total order on A
w-terminating (A,>) = (N, >)
polynomially (A,>) = (N,>) and
terminating fa are polynomials

For these kinds of termination in [13] the following basic hierarchy was given:

polynomial termination
—> w-termination
—> total termination
— simple termination
= termination.

Validity of all implications is by definition except for the implication of sim-
ple termination from total termination which is immediate from the following
proposition.

Proposition 4 Let (A, >) be a well-founded monotone F-algebra for which the
order > 1is total on A. Then fa(ay,...,a,) > a; for every f € F, every
a1,...,0, € A and everyi=1,...,n.

Proof: Assume not. Then there exist f € F,a1,...,a, € Aand i € {1,...,n}
such that fa(aq,...,a,) > a; does not hold. From totality we conclude:

a; > fa(ar, ..., an).

Define g : A — A by g(x) = falar,...,0;-1,%,0;11,--.,0,), then g is strictly
monotone. We obtain an infinite chain

a; > g(a;) > g(g(ai)) > g(9(g(a;))) > ---,

contradicting the well-foundedness of (A, >). O
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Example:
9(f(z)) = f(f(9(x)))
is polynomially terminating by A = IN and

fA(.T) = x+1

ga(z) = 3z
0a(fa(@) = 3(+3)
> 3x+1+4+1
= fa(fa(ga(z)))
Example:
flg(z)) = g(f(f(2)))

is totally terminating by A = IN x IN and

fa(z,y)) = (z,2+y)
9a((z,y) (2z + 1,y)

SN—r
I

with lexicographic order, since

falga((z,y))) 2x+ 1,2z +y+1)
2z + 1,2z + y)

ga(fa(fa(z)))

Here it is essential to take the lexicographic order from left to right, otherwise
fa is not strictly monotone. In [13] it was shown that this term rewriting system
is not w-terminating. Through this paper it will serve as an example a few more
times.

v 1

In these examples only unary symbols occur, only one variable symbol occurs,
and all terms consist of a string of unary symbols applied on this variable. With-
out loosing information we can omit the variable symbol and all parentheses, for
instance writing gf — ffg and fg — gff for the above two examples. Term
rewriting systems in which only unary symbols occur are called string rewriting
systems; for string rewriting systems we will use this shorthand notation of omit-
ting variables and parentheses. In the literature string rewriting systems are also
called semi-Thue systems.

In [13] it was shown that for none of the implications in the basic hierarchy
the reverse implication holds, even for single rule string rewriting.

For a signature F we define Emb(F) or shortly Emb to be the term rewriting
system consisting of the rules

flz, .o xn) —
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for all f € F with arity > 0 and all 4+ = 1,...,n, where n is the arity of f.
The rules of Emb are called embedding rules. We conclude this section by two
propositions for which the proofs can be found in [13] and [2] respectively.

Proposition 5 A term rewriting system R is simply terminating iof and only if
R U Emb is terminating.

Proposition 6 A term rewriting system R is totally terminating if and only if
19 > r? for all rules | — r in R and all ground substitutions o, for some total
well-founded order > on ground terms that is closed under contexts. In case F
does not contain constants a fresh constant is assumed here to be added in order
to obtain ground terms.

3 The extended hierarchy

There are numerous ways to refine the termination hierarchy. For instance, for
polynomial termination one can distinguish between degrees of polynomials that
are allowed. Another way is to refine total termination by the ordinal type of the
total order used. In [2] it was proved that for every positive natural number n
the string rewriting system consisting of the rules

fifiv1 = fixififi

forv =1,...,nis compatible with a total well-founded monotone algebra of order
type w™tL, but not with a total well-founded monotone algebra of a smaller order
type. Hence the level of total termination can be subdivided into infinitely many
distinct levels.

In this section however we will compare the properties of the basic hierar-
chy with other properties that are related to termination, but not to monotone
algebras.

Definition 7 A term rewriting system R is called self-embedding if terms t and
u exist satisfying t =5 u —%, . t.

A term rewriting system R is called looping if a term t, a context C' and a
substitution o exist satisfying t —3 C[t°].

A term rewriting system R is called cyclic if a term t ewists satisfying t =% t.

A term rewriting system R s called rpo-terminating if a well-founded prece-
dence > on the signature exists such that | >,p, v for all rewrite rules | — r of
R. Here >, is the recursive path order as described in [1].

Using these properties we arrive at the following extended hierarchy:



polynomially terminating
4
w-terminating <  rpo-terminating

4

totally terminating
4

simply terminating
4

non-self-embedding

4

terminating =  weakly normalizing
4
non-looping

4

non-cyclic

Validity of the implication ‘rpo-terminating = w-terminating’ is a corollary of
the main result of [8]; this result only holds for finite signatures. For instance, if
we have rules b — a; and a;,1 — a; for all 7 € IN, where all symbols are constants,
then this infinite system is rpo-terminating but not w-terminating.

Validity of the implication ‘non-self-embedding = terminating’ immediately
follows from Kruskal’s theorem in case of finite signatures as discussed in [1]; for
infinite signatures it is not true: the system consisting of the rules a; — a;,1 for
all 2 € IN is clearly non-self-embedding but not terminating.

All other implications hold both for finite and infinite signatures; for ‘totally
terminating = simply terminating’ this follows from Proposition 4, for ‘simply
terminating = non-self-embedding’ this follows from Proposition 5, and validity
of the remaining implications is immediate by definition.

For none of the implications the reversed implication holds for term rewriting.
It even holds for single rule string rewriting except for the implication ‘terminat-
ing = non-looping’, for which this is an open problem. For all other implications



X = Y we give a single string rewrite rule that satisfies Y but not X:

satisfying but not example
w-terminating polynomially terminating | fgh — gfhg
w-terminating rpo-terminating faf — gffh
totally terminating w-terminating fg — gff
simply terminating totally terminating fgh — fhhgg
non-self-embedding simply terminating fg — hggffh
terminating non-self-embedding ff — fof
weakly normalizing terminating fafg — gfgffg
non-looping terminating open problem
non-cyclic non-looping f = fg

The proof that fgfg — gfgffg is weakly normalizing but not terminating,
and even that this is the smallest string rewrite rule having this property, is due
to Alfons Geser ([3]).

The system fgf — gffh is not rpo-terminating since both f > g and g > f

will not yield f(g(f(x))) >mo g(f(f(R(x)))). It is w-terminating by fa(z) =
z+1,94(x) =2z, ha(z) = x.

The system fg — hggf fh is not simply terminating due to Proposition 5 and
the reduction

fag — hggffhg —pm ff9— Fhagffh —=Em f99-

It is non-self-embedding due to the next proposition.
The proofs of all other claims in the table are obvious or can be found in [13].

Proposition 8 The string rewrite rule fg — hggf fh is non-self-embedding.
Proof: Assume we have a reduction
t =1 u =%, t

Assume the number n of steps in ¢ —* u is minimal. Since there is no overlap
between the left hand side and the right hand side we have t = wo fgw; - - - fgw,
and v = wohgg f fhw; - - - hgg f f hw,. We will apply the following claim a number
of times:

Claim:
If av —3,,, av', then v —%, , v'.

If vv" —7%;,,, av” for a string v in which the symbol @ does not occur,
then o' =5, , v".



The proof of this claim is straightforward. Write t = wq fgt’ and u = wohgg f f hu'.
Applying the first part of the claim #uwy, times yields hggffhu' —%,., fat'
Applying the second part of the claim yields ffhu’ —}, , gt'. Again applying
the second part of the claim yields v’ —}, , t'. Combined with ' —* u’ we obtain
t' =T u' =73, ', contradicting minimality of n. O

We state the existence of a single non-looping non-terminating string rewriting
rule as an open problem. Partial results include the single non-looping non-
terminating term rewriting rule

fle;a(z),y) = 9(f(e,x,a(y)), f(z,y,ala(c))))

from [16] and the two rule non-looping non-terminating string rewriting system

fgh — hghfgff
fh — hf

from [7], being a simplification of a similar two rule system from [16] constructed
from four symbols. In [4] it was shown that for single string rewrite rules [ — r
in which a symbol a occurs that occurs in 7 not more often than in /, the notions
termination and non-loopingness coincide.

One motivation for considering this open problem is its relation with the
open problem of decidability of termination of single rule string rewriting. In
case termination and non-loopingness coincide for single rule string rewriting
this indicates that single rule string rewriting is essentially less powerful than
both two rule string rewriting and single rule term rewriting and one may hope
for decidability of termination of single rule string rewriting.

The extended termination hierarchy as presented here has been the basis of
studying relative undecidability: for most of the implications X = Y it has
been proven in [5] that for term rewriting systems satisfying Y it is undecidable
whether X holds. In [6] it has been proven that this even holds for single rule
term rewriting.

4 Weak monotone algebras

In the monotone algebras we considered until now all operation were required
to be strictly monotone in all arguments. This is a quite strong requirement.
For instance, if A = IN for a binary symbol a we are not allowed to choose
a4(z,y) = max(z,y) since a, is not strictly monotone in its first argument as
can be seen from 3 > 2 and max(3,4) ¥ max(2,4). In this section we will see how
we can weaken the restriction of strict monotonicity to the combination of weak
monotonicity and the subterm property in such a way that we still can conclude
termination from compatibility with a corresponding monotone algebra. In the
setting of orderings instead of monotone algebras a similar replacement of strict
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monotonicity by the combination of weak monotonicity and the subterm property
was called the second termination theorem in [1].

Definition 9 A weak monotone algebra over F consists of

o A well-founded poset (A, >)

o for every operation symbol f € F of arity n an operation f4 : A™ — A that
1s weakly monotone in all arguments, i.e., if ai,...,a,,b1,...,b, € A for
which a; > b; for some 1 and a; = b; for all j # i then

fA(Cll, SR a'n) > fA(bl, Sy bn)7
and that satisfies the subterm property, i.e.,
falay, ..., an) > a
for every ay,...,a, € A and everyi=1,...,n.
A weak monotone algebra and a TRS are compatible if
[l,o] > [r, 0]
for every rule l — r and every o : X — A.
As usual here the relation > is defined by
a>b < a>bVa=h.
In order to be able to prove the corresponding we start with a lemma.

Lemma 10 Let a term rewriting system R be compatible with a weak monotone
algebra (A,>), and let 0 : X — A. Then

o [[*0]>[r* o] fora: X = T(F,X), and
o [t,0] > [u, 0] for every t,u satisfying t —% u.

Proof: The first assertion follows from compatibility and the fact that [t*, o] =
[t, 7] for 7 : X — A defined by 7(x) = [z%, o], for every term t. This fact is easily
proved by induction on the structure of ¢.

In case of t — u the second assertion follows from weak monotonicity and
the first assertion, by induction on the context. The general version of the sec-
ond assertion follows from this particular case by induction on the length of the
reduction. O
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Theorem 11 A term rewriting system is terminating if it is compatible with a
weak monotone algebra.

Proof: Assume that a term rewriting system R admits an infinite reduction and
is compatible with a weak monotone algebra (A,>). Fix an arbitrary map o :
X — A. Since > is well-founded there exists a term ¢ having an infinite reduction
that is minimal in the following sense: every term u satisfying [¢, 0] > [u, o] has
no infinite reduction. Next take a subterm t' of ¢ such that ¢ admits an infinite
reduction but no proper subterm of ¢ admits an infinite reduction. Due to the
subterm property we have [t,0] > [t/,0]. Take an infinite reduction of #. Since
no proper subterm of ¢ admits an infinite reduction, this infinite reduction has
to be of the shape
t =R 1% g >R

for some rule [ — r of R and some a.: X — T (F, X'), where r® admits an infinite
reduction. From Lemma 10 we conclude

[t,o] > [t' o] > [I%,0] > [r®, 0],
contradicting minimality of ¢. O

For validity of Theorem 11 it is essential to require the subterm property
in a weak monotone algebra. For example, choose R to consist of the string
rewrite rule f — gf, and (A4,>) = (IN,>), fa(z) =2+ 1 and ga(z) = 0. Then
all requirements are fulfilled except the subterm property of g4, and R is not
terminating.

To illustrate the power of Theorem 11 we give two examples.

Example: Consider R to consist of the rule

fg(x)) = g(a(f(2), f(2))).

It is possible to prove that R is w-terminating, but for doing so one for f4 one has
to choose an exponential function. This is due to the fact that as(z,y) >z +y
for every a4 : IN X IN — IN that is strictly monotone in both arguments.

The following weak monotone operations on A = IN are much simpler:

falz) = 2z forz € N
galz) = z+1 forz € N
as(z,y) = max(z,y) forz,y e N;

from
fa(ga(z)) =22 +2>2z+1=g(a(f(2), f(z)))

we conclude termination of R by Theorem 11.

The converse of Theorem 11 does not hold, more precisely, we have the fol-
lowing proposition.
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Proposition 12 A term rewriting system is simply terminating if and only if it
15 compatible with a weak monotone algebra.

Proof: If the term rewriting system R is simply terminating then the correspond-
ing well-founded monotone algebra satisfies all requirements of a weak monotone
algebra.

Conversely let (A4, >) be a weak monotone algebra compatible with R. Let
>’ be the lexicographic order on A’ = A x IN from left to right. Define

fa(ar, kr), - (an, n)) = (Falar, o an), 1+ ) ki)

for every f € F. Then (A’,>') is a weak monotone algebra compatible with R U
Emb. Then RUEmb is terminating by Theorem 11, and R is simply terminating
by Proposition 5. O

The following proposition states that the notion of total termination is not
affected by replacing the strict monotonicity requirement by the combination of
weak monotonicity and the subterm property.

Proposition 13 A term rewriting system is totally terminating if and only if it

is compatible with a weak monotone algebra (A, >) in which the order > is total
on A.

Proof: The ‘only if’-part is immediate from Proposition 4. The proof of the
‘if’-part is given in [11]. O

The next natural question is whether the notion of w-termination is affected
by replacing the strict monotonicity requirement by the combination of weak
monotonicity and the subterm property. The following example shows that it is.

Example: In [13] it was proved that the string rewrite rule
flg(z)) = g(f(f(=)))
is not w-terminating. However, by choosing
falz) =142 |z/2]
ga(z) =24 2% |x/2]
we have
falga(z)) = 3+2x[2/2] > 24 2x[2/2] = ga(fa(fa(2))).

Both f4 and g4 are not strictly monotone but they are weakly monotone and
satisfy the subterm property, hence f(g(x)) — g(f(f(z))) is compatible with a
weak monotone algebra (A, >) for which (4, >) = (N, >).
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5 Adding embedding rules

We have seen that for total termination and simple termination the requirement
of strict monotonicity is equivalent to the combination of weak monotonicity and
the subterm property. Here for the subterm property one can imagine two distinct
kinds: a weak subterm property

fA(...,a,...)ECL

as we considerd until now, and a strict subterm property

fA(...,a,...)>a.

Is there an essential difference between these two requirements? It is easy to
see that the strict subterm property is equivalent to compatibility with Empb.
Hence the question about the difference between weak and strict subterm prop-
erty can be restated without referring to monotone algebras: for properties X
of term rewriting systems related to termination we wonder whether X (R) is
equivalent to X (R U Emb). In this section we will show that this holds for X
being rpo-termination, total termination and simple termination, and not for all
other properties in the extended hierarchy.

The string rewrite rule ff — fgf is terminating while adding embedding
rules yields a cycle ff — fgf — ff, proving that the properties termination,
being non-looping and being non-cyclic all three are affected by adding embedding
rules.

The string rewrite rule fg — hggffh is non-self-embedding as we proved in
Proposition 8, while by adding embedding rules we obtain the self-embedding

99 = hggf fhg =gy fT9— fhggffh —Fm f99-

Hence non-self-embeddingness is affected by adding embedding rules.

The string rewrite rule f — f is not weakly normalizing while it is after
adding adding embedding rules, hence weak normalization is affected by adding
embedding rules.

Proposition 14 Let R be a term rewriting system.
o R is rpo-terminating if and only RU E'mb is rpo-terminating;
e R s totally terminating if and only R U Emb s totally terminating;
o R is simply terminating if and only RU Emb is stimply terminating.

Proof: For all three assertions the ‘if’-part is evident.
The ‘only if’-part of the first assertion follows since f(z1,...,%n) >rpo i by
definition.
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The ‘only if’-part of the second and third assertion follows by replacing the
corresponding monotone algebra A by the lexicographic product A x IN as we did
in the proof of Proposition 12. O

The remaining two properties in the hierarchy are polynomial termination and
w-termination. In the next two proposition we prove that for both properties X
a string rewriting system R exists satisfying X while R U Emb does not satisfy
X.

Proposition 15 Let R consist of the string rewrite rules
ffr— af
99 — fgh.
Then R is w-terminating and R U {h(z) — x} is not w-terminating.

Proof: Let (A, >) = (IN,>) and let fa,g4 : A — A be defined by

fa(z) | ga(z)
rzeven |3x+2|3xz+1
zodd |3z+1|3z+2

Note that both f4 and g4 are strictly monotone. Since f4(z) is even for every
x € A we have fa(fa(z)) > ga(fa(z) for every z € A. Since ga(x) is odd
for every © € A we have ga(ga(z)) > fa(ga(x) for every z € A. By choosing
ha(z) = x for every x € A we have proved that R is w-terminating.

Next assume that R U {h(z) — z} is w-terminating. Then there are strictly
monotone functions f, g, h : IN — IN satisfying

f(f(x) > g(f(z))

9(9(z)) > f(g(h(z)))
h(z) > =z

for every € IN. From the last line we conclude h(z) > x + 1; applying mono-
tonicity yields

(@) > g(f(z)) (1)
9(g(z)) > [flg(z+1)) (2)

for every z € IN. From (1) we conclude that f(z) > g(z) for z = f(1). From

(2) and monotonicity we conclude g(g(f(1))) > f(g(f(1) + 1)) > f(g(f(1))),
hence f(y) < g(y) for y = g(f(1)). Since g is monotone we have z < y. From

f(z) > g(z), x < y and f(y) < g(y) we conclude that there exists zo € IN
satisfying f(xo) > g(zo) and f(zo+ 1) < g(xo + 1). We conclude
g(f(xo)) > g(g(z0)) (by monotonicity and f(z¢) > g(zo))
> f(g(zo+1)) (by (2))
> f(f(xo+1)) (by monotonicity and f(zo + 1) < g(zo + 1))
> g(f(zo+1)) (by (1))
> g(f(z0)) (by monotonicity),
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contradiction. O

Proposition 16 Let R consist of the string rewrite rules

fg — g9f
hf — ffh
gh — hi.

Then R is polynomially terminating and R U {i(z) — z} is not polynomially
terminating.

Proof: For the polynomials f, g, h,% defined by
f(z)=3z+5, g(x) =z +1, h(z) =27, i(z) ==

one easily checks f(g(z)) > g(g(f(z))), h(f(z)) > f(f(h(z))) and g(h(z)) >
h(i(z)) for all z € N, proving that R is polynomially terminating.

Assume that R U {i(z) — z} is polynomially terminating. Then there are
monotone polynomials f, g, h, % for which

flg(@)) > g(g(f(2)))
h(f(z)) > f(f(h(z)))
g(h(z)) > h(i(z))
h(z) > z
for all z € IN. Write deg(p) for the degree of a polynomial p. It is easy to prove
that deg(p) > deg(q) if p(z) > gq(z) for all z € N. From the first inequality we
conclude

deg(f) * deg(g) = deg(f o g) > deg(go go f) = deg(g) » deg(g) * deg(f),

hence deg(g) = 1. Similarly we conclude from the second inequality that deg(f) =
1. Hence we can write f(z) = ax + b and g(x) = cx + d. Since f and g are
monotone we have a,c > 0; since f,g: IN — IN and 0 € IN we have b,d > 0. Since

acz +ad+b= f(g(z)) > g(g9(f(z))) = ac’x + bc* + dc +d

for all z € IN we conclude ac > ac?, hence ¢ = 1, and ad + b > bc? + dc+ d, hence
ad > 2d. From d > 0 we now conclude a > 3. The second inequality combined
with a > 3 yields a contradiction in case h is linear, hence deg(h) > 1. From the
fourth inequality we obtain i(xz) > z + 1 for all z € IN, from the third inequality
and g(z) = = + d we conclude

h(z) +d = g(h(z)) > h(i(z)) > h(z +1).

hence h(z + 1) — h(z) < d for all z € IN. This contradicts deg(h) > 1 and
monotonicity of A. O
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6 Reversing strings

Strings can be reversed. Write rev for string reversing, for instance we have
rev(fghhfh) = hfhhgf. A corresponding transformation on string rewriting is
reversing all left and right hand sides:

rev(R) = { rev(l) » rev(r) |l > r € R }.

Now one may consider the effect of reversing on the properties in the termination
hierarchy. For the properties X of being simply terminating, non-self-embedding,
terminating, weakly normalizing, non-looping and non-cyclic, it is straightforward
to check that X holds for a string rewriting system R if and only if X holds for
rev(R). In the next propositions we prove that for the four remaining properties
in the hierarchy, being total termination and everything above, this does not
hold.

Proposition 17 Let R consist of the string rewrite rule gf — ffg. Then R
is polynomially terminating, rpo-terminating and w-terminating, while rev(R)
satisfies none of these three properties.

Proof: Polynomial termination and hence w-termination of R follows from choos-
ing fa(zx) =z + 1 and ga(x) = 3z for all x € IN; rpo-termination follows from
choosing g > f.

Conversely, rev(R) consists of the string rewrite rule fg — g¢ff, for which
it was proved in [13] that it is not w-terminating, hence neither polynomially
terminating nor rpo-terminating. O

Proposition 18 Let R consist of the string rewrite rules

I — gqf
99 — fg

Then R is totally terminating and w-terminating, while rev(R) satisfies neither
of these properties.

Proof: In the proof of Proposition 15 we gave monotone functions f4,g4 : IN —
IN proving that R is w-terminating and hence totally terminating.
Assume that rev(R) consisting of the rules

f(f(@) — flg(=))
9(g(x)) — g(f(z))

is totally terminating with a corresponding well-founded monotone algebra
(A,>). Choose a € A arbitrarily. Assuming ga(a) > fa(a) yields a contra-
diction with f4(fa(a)) > fa(ga(a)) and monotonicity of f4. From totality we
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conclude f4(a)) > ga(a). Monotonicity of g4 and compatibility with the second
rule yields

ga(fala)) > ga(ga(a)) > ga(fa(a)),

contradiction. Hence rev(R) is not totally terminating and hence not w-terminating.
|

Restating Proposition 6 for string rewriting we have:

A string rewriting system is totally terminating if and only if lq > rq
for all rules [ — r and all strings ¢ for some total order > on strings
satisfying v > v = pu > pv for all strings p, u, v.

In case only string rewriting is considered, one can prefer an alternative sym-
metric definition of total termination as is given by Martin in [9]:

A string rewriting system is totally terminating if and only if [ > r
for all rules I — r for some total order > on strings satisfying v >
v = puq > pvq for all strings p, ¢, u, v.

Using this alternative definition a string rewriting system is totally terminat-
ing if and only if its reverse is totally terminating. It is clear that every string
rewriting system that is totally terminating in the sense of Martin is totally ter-
minating in our sense. The converse does not hold: by Proposition 18 the string
rewriting system {ff — gf, g9 — fg} is totally terminating in our sense and its
reverse is not, hence neither in the sense of Martin.

For R consisting of the rules

fff — faf
999 — 4fg

we have that R = rev(R) is w-terminating and hence totally terminating by the
same interpretation as we gave in the proof of Proposition 18. It is not difficult
to see that R is not totally terminating in the sense of Martin.

7 Conclusions

We considered a termination hierarchy for first order term rewriting partly based
on interpretation in monotone algebras. This kind of interpretation is concep-
tually easy, and allows a number of natural extensions: to rewriting modulo
equations, to context-sensitive rewriting ([14]) and even to higher order rewriting
(12)).

However, we saw that the part of the hierarchy based on various kinds of
interpretations is not robust in the following directions:

e weakening monotonicity requirements;
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e adding embedding rules;
e symmetry in string rewriting.

More precisely, we saw that the notion of w-termination is essentially weakened
by replacing strict monotonicity by the combination of weak monotonicity and
the subterm property, we saw that the meaning of both polynomial termination
and w-termination is affected by adding embedding rules, and we saw that rpo-
termination, polynomial termination, w-termination and total termination are
not symmetric for string rewriting.
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