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Abstract

AGENTO is an agent-oriented programming (AOP) language, designed by Shoham [10].
An AGENTO agent is an entity with a complex mental state, consisting of beliefs and
commitments. On the one hand, in [10] the properties of the mental state of agents are
formally introduced by a modal logic. On the other hand, the programming language
AGENTO for programming agents is only informally introduced. The link between the
modal logic and the programming language AGENTO, however, is unclear. One of the
more important mismatches is that the logic does not specify how the mental states of
agents change over time. In the programming language so-called commitment rules are
used for this purpose.

In this paper, we provide a clear and formal operational semantics for AGENTO,
focusing on individual agents, which specifies both the static and the dynamic aspects
of the mental states of AGENTO agents. The proposal for a semantics for AGENTO0
is split up in two separate layers. By introducing two layers a separation of concerns
is established. The first and most basic layer specifies the meaning of the AGENTO0
programming constructs. The second layer specifies the control loop of the AGENTO
interpreter.

The formal semantics discussed in this paper, we believe, yields a better insight into
the use and a precise definition of the working of commitment rules in AGENTO and
the style of decision-making of AGENTO0 agents. It also allows for a detailed comparison
with other agent programming languages and provides a first step towards the design of
a specification logic that is directly based on a formal semantics for AGENTO.

1 Introduction

AGENTO is an experimental programming language to program intelligent agents [14], de-
signed by Shoham [10]. An intelligent agent in AGENTO is an entity with a mental state,
consisting of the beliefs and commitments of the agent, that is capable of interacting with its
environment and deciding what to do. So-called commitment rules provide the basic means
for decision-making and the introduction of new commitments.

Since its introduction there have been several proposals for other agent programming
languages in the literature. It is not so clear, however, how these various programming
languages are related to each other. Moreover, it is not so easy to compare them because
of the fact that not all of them have a clear and formal semantics. The main result of this
paper is a proposal for an operational semantics for AGENT0 which is formal and facilitates



a precise comparison with other agent languages, notably AgentSpeak(L) ([8]) and our own
programming language 3APL ([3, 4]). The proposed semantics provides a detailed analysis
of AGENTO0 and - we believe - enhances our insight into agents and agent programming in
general. Although our main focus is on providing a formal semantics which provides a basis
for comparison with other languages and with clarifying the notion of agent programming in
general, we also discuss some of the more methodological issues raised in Shoham’s papers
[9, 10, 11]. In particular, we discuss the reasons for specifying a formal semantics for the agent
programming language and the relation between the logic proposed in [10, 9] and AGENTO.

In the first section, we motivate the need for a formal semantics for the programming
language AGENTO and argue that such a semantics cannot be derived from the modal logic
for reasoning about beliefs, choices, etc. as introduced in [10, 9]. Then we give an informal
overview of the programming language AGENTO. In section four, we then identify a subset
of AGENTO0 useful for programming single agents which we call the single agent core of
AGENTO. Tt is this subset we provide a formal semantics for. In the next two sections,
a formal, operational semantics for AGENTO is proposed. The semantics is split up into
two parts. The first part specifies the meaning of the basic constructs in the language,
whilst the second part specifies the semantics for the AGENTO interpreter used to execute
agent programs. OQur account reveals an interesting difference in the style of decision-making
between AGENTO agents and agents programmed in AgentSpeak(L) or 3APL.

2 Defining The Agent-Oriented Paradigm

The programming language AGENTO supports the construction of agent programs. In [10],
agents are defined as entities ”whose state is viewed as consisting of mental components such
as beliefs, capabilities, choices, and commitments.” AGENTO supports the construction of
such agents by offering programming constructs which are viewed as formal counterparts of
these mental concepts. The programming constructs stand in rough correspondence to their
common sense counterparts. That is, the goal is to obtain a close enough resemblance to be
suggestive and useful when programming agents, or, as Shoham puts it, to "make engineering
sense out of these abstract concepts” [9].

The emphasis on mental states in agent-oriented programming makes it imperative to state
precisely and explicitly what such a state is. For this reason, part of the agent programming
paradigm in [9, 10, 11] is to provide a formal semantics of the mental state of agents. The
means by which the mental terminology is made precise in these papers is provided by a formal
modal logic. This approach is also used to define the mental components in the programming
language PLACA [12], a successor of AGENTO.

The modal logic used to define the modal components of AGENT( agents is in most detail
outlined in [9]. The basis for the modal logic is an ”explicit-time point-based logic”. This
temporal logic is extended with a KD45 operator ([1]) for modelling belief and a KD4 operator
for modelling commitment. In terms of these operators, a choice of an agent is defined as
commitment to itself, and the capability to (see to it that) X (where X is a proposition) is
defined as a conditional: if the agent chooses to X, then X should be the case.

On the other hand, in [10] an informal account is provided of the agent programming
language. The features of agents written in the programming language include constructs for
referring to time points, beliefs, capabilities, actions, commitment rules for selecting actions,
and communication. These constructs only roughly correspond to the operators of the logic.



There are more differences than similarities. To name only a few, the programming language
includes an explicit representation of actions whereas the logic does not, commitments are
defined in terms of these actions in the programming language (chosen actions) whereas
commitment is a primitive notion in the logic, and the dynamics of the execution of agents
is not modelled in the logic but is implemented by commitment rules in the programming
language.

For these and other, similar reasons, there is no clear link between the modal logic and
the programming language AGENTO. The formal semantics of the logic, therefore, contrasts
with the lack of a formal semantics for the agent programming language itself. Still, it is
important to have a formal semantics which gives a precise definition of the meaning of the
basic constructs in the language AGENTO0 and of the control loop of the interpreter which is
used to run agents.

There are a number of reasons which motivate the need for a formal semantics. First of
all, the construction of a formal semantics requires a detailed analysis and may reveal incon-
sistencies or gaps in informal accounts of software systems. As our analysis will show, there
are several such gaps in the informal account of AGENTO. Such an incomplete specification
may give rise to ad hoc implementations that differ in important aspects. Secondly, a formal
semantics explains in a precise and explicit manner the meaning of the programming lan-
guage constructs and thereby enhances our understanding of agent programming and agents
in general. It also provides a formal definition of the rule-based decision-making and other
features of agents. A formal semantics thus facilitates the programming of agent systems.
Third, a formal semantics allows for a detailed comparison with other agent programming
languages. In particular, the proposal of a formal semantics for AGENTO highlights an in-
teresting difference in the decision-making of AGENTO agents and that of agents written in
AgentSpeak(L) ([8]) and 3APL ([3, 4]). Finally, a formal semantics is a first step towards a
programming logic for reasoning about agent programs written in AGENTO.

3 Overview of the programming language AGENTO0

Agents are controlled by agent programs. In AGENTO0 these programs are executed by an
interpreter which continuously executes a control loop consisting of two phases: A phase in
which the mental state is updated and a second phase in which actions (current commitments)
are executed. In the first phase received messages from other agents are processed and
commitment rules are fired to add new commitments to the current ones.

We will now give a somewhat more detailed overview of the constructs used in AGENTO
to program agents. First of all, the beliefs of an agent are simple, timed, atomic formulas,
also called facts, from a first order language with explicit time, written like (1march/10:00
(employee (John))). These facts may also contain variables. The programming language has
a number of different types of actions. The first, most basic type is a so-called private action
and is written like (DO 18april/9:00 issue_boarding pass). Note that these actions are
also timed. The time indicates the time associated with the execution of the action (if it is
executed). Three communication actions are provided. An action to inform an agent of a
fact, written like (INFORM imarch/2:00 smith (18april/10:00 (flight sf ny #293)))
which informs Smith that on 18 april 10:00 a flight with number 293 from San Francisco to
New York is scheduled. T'wo more communication primitives, the REQUEST and the UNREQUEST
primitives, are supported. These primitives allow an agent to send requests to perform an



action to another agent and to request an agent to drop a commitment to a particular action.
Finally, conditional actions of the form (IF mntlcond action) where mntlcond is a condition
on the mental state and refrain actions of the form (REFRAIN action) can recursively be
constructed from more simple actions.

Commitments of an agent consist of actions that an agent has chosen to perform at a
particular time. The decision to perform an action is regulated by commitment rules of the
form (COMMIT msgcond mntlcond (agent action)) where msgcond is a condition on the
received messages and mntlcond is a condition on the current mental state of an agent. The
rule can be fired if both conditions are satisfied. Conditions on the mental state are boolean
combinations of simple conditions on the beliefs of the form (B fact) and simple conditions
on the commitments of the form ((CMT agent) action). Conditions on the messages are
boolean combinations of simple message conditions of the form (agent INFORM fact) or
(agent REQUEST action) ! Finally, these conditions may include a number of different types
of variables. The agent associated with action is the agent to which the commitment is made.
As an example, the commitment rule

(COMMIT (7a REQUEST ?action) (B (now (myfriend 7a))) (?a ?action))

can be fired if a request to perform ?action from agent ?a has been received and the agent
believes that 7a is a friend. The constant now is a special constant referring to the current
time. Upon firing, the agent commits to action ?action and records that the commitment
is made to agent 7a. Thus, commitment rules provide a mechanism for making decisions in
AGENTO. In the interpreter for AGENTO, this decision-making occurs in the first phase.

To summarise, the agent programming language AGENTO includes features for repre-
senting the domain of interest (beliefs), to perform actions (simple, conditional and refrain
actions), for interacting with agents (communication primitives), and for making commit-
ments (by means of commitment rules). Each agent has it own associated set of capabilities,
and actions and beliefs are explicitly associated with a particular time.

4 The Single Agent Core of AGENTO

The number of features present in the language AGENTO is somewhat overwhelming. It is
hard to understand the interaction between so many features and difficult to program with no
clear understanding of the meaning of so many constructs. For simplicity, we therefore define
a semantics for a subset of AGENTO constructs. This semantics is a first approximation to
a semantics which includes all features. The subset we consider in this paper includes all
features except for multi-agent communication and reference to time. We call this subset the
single agent core of AGENTO.

The single agent core as we have defined it includes beliefs, capabilities, three types of
action, commitments, and commitment rules. The specification of the formal semantics for
this core is based on the informal explanation of AGENTO in [10]. Although we have tried
to stay as close as possible to the intended meaning of AGENTO constructs, our semantics
is a reconstruction from the informal text in [10]. Our strategy for defining the semantics is

!t is not so clear why message conditions of the form (agent UNREQUEST action) are not allowed. Message
conditions of this form would allow an agent, in case it is requested to drop a commitment but it still wants
to achieve the goal associated with the commitment, to commit to an alternative plan of action.



to separate the semantic systems specifying the meaning of the basic constructs of the pro-
gramming language like beliefs and rules and the interpreter for the language. This strategy
is based on our research into our own agent language 3APL (cf. [3, 4]).

In the following sections, the single agent core is introduced and the syntax is formally
defined. The syntax of the language is recast in a somewhat different notation. This notation
serves our purposes better and is more suitable as a means for comparison of AGENTO0 with
other languages than the idiosyncratic syntax of AGENTO as presented in [13, 10].

4.1 Beliefs

An AGENTO agent essentially is a mental entity that operates on and manipulates a database
of beliefs. The language for beliefs used in AGENTO is a simple fragment of first-order logic,
namely the set of literals (atomic statements and their negations). Beliefs are built from
terms, predicates and negation. Here, following [10], we define a term as either a constant or
a variable. These restrictions on the beliefs of an agent seem unnecessarily restrictive. Since
no functions are allowed, nor Prolog-like programs, the computational expressiveness at this
level is restricted to a bare minimum (and basically consists of pattern-matching). However,
for our purposes this is of no real interest.

Definition 4.1 (terms, atoms, literals)

Let (Pred, Cons) be a signature, where Pred is a set of predicate symbols, and Cons is a set of
constant symbols, and let Var be a set of countably infinite variables. Then the set of terms
Term, the set of atoms At, and the set of literals Lit are defined by:

e Var C Term,
e Cons C Term,
e if P € Pred of arity n, and ¢1,...,t, € Term, then P(t1,...,t,) € At,

e if P € Pred of arity n, and t1,...,t, € Term, then P(t,...,t,),P(t1,...,t,) € Lit.

4.2 Actions

When communication and time is left out of AGENTO, three types of actions remain: (i)
simple actions of the form (DO <privateaction>), constructed from a given set of so-
called private actions, (ii) conditional actions of the form (IF <mntlcond> <action>), where
<mntlcond> expresses a condition on the mental state of the agent, and (iii) refrain actions of
the form (REFRAIN <action>). The refrain action (REFRAIN <action>) is a type of action
that precludes commitment to actions of the form <action>. 2

First, we formally define the syntax of the most basic actions, called private actions, and
for reasons that will become clear below we currently postpone the formal introduction of the
other types of actions.

Definition 4.2 (private actions)
Let Asym be a set of action symbols. Then the set of private actions Bact is defined by:

Bact = {a(t1,...,ts) | @ € Asym of arity n, and ¢1,...,t, € Term}

2 According to Shoham, the refrain action ”is really a non-action ([10], p. 72)



Actions The definition of actions provides an instructive example of the mismatch between
the modal logic for defining the mental state and the programming language. Although in [10]
it is stated that ”in the programming language” actions are ”introduce[d] [...] as syntactic
sugar”, actually, in the programming language an explicit construct DO is introduced and
the so-called private actions may range from ‘retrieval primitives’, ‘mathematical procedures’
to robotic, physical actions. As an example, in the manual [13] of AGENTO, a number of
basic or primitive actions programmed in Lisp are provided. These primitive actions are not
propositions, but are explicit actions useful for programming agents in AGENT0. Moreover,
the programming language allows complex conditional and refrain actions which have no
counterpart in the modal logic. And finally, a number of communicative actions are supported
by the programming language which are not present in the logic.

In the modal logic as defined in [9, 10], the most primitive actions, called private actions,
are represented by propositions. In the logic no explicit and distinct representation for actions
is present nor are there any modalities for actions incorporated into the logic as in, for example,
dynamic logic ([2]). In [5], in particular this feature is criticised. The specific axioms of the
logic which are proposed in [9] turn out to have the highly counter-intuitive consequence that
if an agent cannot do something, then it believes that it can do it. To secure consistency
within the logic, as a consequence, an agent cannot believe that it is incapable of anything.
In [5], the main conclusion is that the core of this problem is due (in part at least) to the
absence of an explicit representation of action.

For these reasons, there is a mismatch between the programming language and the modal
logic in [10] in the representation of actions. In particular, whereas in the logic commit-
ments are represented as obligations to a fact holding, in the programming language an agent
commits to actions to change its mental state. As a consequence, the requirement that com-
mitments to actions should be ”internally consistent” makes only sense in the logic but not
in the programming language. Moreover, the principle of "good faith” which requires that
a commitment to see to it that a proposition holds implies that the agent believes that the
proposition will hold cannot straightforwardly be translated to a statement about the pro-
gramming language. Also, the persistence conditions with respect to beliefs and commitments
are only discussed informally in [10]; no formal semantic account for either the logic or the
programming language is provided.

4.3 Variables

In [10] a number of different types of variables are introduced. The types of variables in
AGENTO include variables ranging over agents, beliefs, and action statements as well as first
order variables. For our purposes, the first type - agent variables - are not very interesting since
we focus on the single agent core of AGENTO. Therefore, we do not include these variables.
The second type of variables in the list, variables ranging over beliefs, provides a kind of
higher-order feature concerning information, whereas the third type provides a higher-order
feature concerning actions. They are, however, not included in the BNF syntax definition
in [10]. In the absence of any complex beliefs or complex actions constructed by means of
regular programming operators, we have doubts concerning the use of both types of variables.
In this context, it seems to allow only for very general pattern matching. For example, a rule
could be programmed expressing that if the agent is committed to any action, then inform
another agent that the agent is currently busy. In [10], some examples are provided of variables
ranging over beliefs, but no interesting examples are offered for variables ranging over actions.



The intended semantics of these variables is also not entirely clear. As far as variables are
concerned, we therefore discuss only first order variables.

In [10], two types of first order variables are introduced, ‘existentially quantified’ and
‘universally quantified’ variables. Whereas the ‘existentially quantified’ variable is used simi-
larly as variables are used in logic programming, the semantics of the ‘universally quantified’
variable is less clear. The use of a universally quantified variable, denoted by the prefix 771",
is illustrated in [10] by the following example:

(IF (B (t (emp 7!'x acme))) (INFORM a (t (emp ?7!x acme)))).

As explained in [10], this conditional action results in informing all employees which are be-
lieved to have acme of that fact. The scope of the ‘universally quantified’ variable seems to
be the entire conditional.

The combination of both types of variables, however, leads to a problem concerning the
order of the quantifiers. For example, what does a statement IF (B (friend ?7!x 7y))
(INFORM a (friend ?!x ?y) mean? Does it mean that agent a should be informed in case
everybody has a friend or in case there is somebody who is everybody’s friend?

Because of this problem, in this paper we only allow one type, the ‘existentially quantified’
variable ranging over the domain of discourse of the agent, and do not consider a ‘universally
quantified’ variable. Also, in PLACA [12], ‘universally quantified’ variables seem to have been
left out of the language, and in AGENTO they were not included in the actual implementation.

The types of variables allowed in the programming language provide another example
of the mismatch between the logic and the programming language. The different types of
variables in the programming language do not have counterparts in the logic. From the
informal text, moreover, it is not easy to reconstruct the intended semantics of the different
types of variables in the programming language.

4.4 Actions and Mental State Conditions

An AGENTO agent is allowed to inspect both its beliefs and its commitments for decision-
making. Also, during the execution of (conditional) actions an agent is allowed to do so. The
beliefs of an agent are simple facts (literals) from a predicate logic. The commitments of an
agent are the actions it has selected for execution. Together, the beliefs and commitments of
an agent make up its mental state.

Since conditions on mental states may refer to actions and (conditional) actions may refer
to mental state conditions, actions and mental state conditions are defined by simultaneous
induction. Perhaps in our definition of mental state conditions we deviate the most from
the syntax of AGENTO as introduced in [10]. Our reason for doing so is that we want
to be as precise as possible and at the same time aim at an operational semantics which
can be readily implemented. Although the logic-like notation in [10] is very suggestive, the
operational meaning of the notation is not so clear (although in [10] the opposite is claimed).
In particular, to understand the parameter mechanism of the programming language it is
important to have a formal semantics. Our notation is more suited for this purpose, though
it is less suggestive as the notation introduced in [10]. We discuss these issues more extensively
below when the operational semantics is defined. Actions are defined starting with private
actions and mental state conditions are defined as four-tuples consisting of: (i) a set of literals
the agent should believe, (ii) a set of literals the agent should not believe, (iii) a set of actions
an agent should be committed to, and, finally, (iv) a set of actions the agent should not be
committed to. A mental state condition is fulfilled if all of these conditions hold.



Definition 4.3 (actions and mental state conditions)
The set of actions Act, and the set of mental state conditions £™ is defined by simultaneous
induction:

e The set of actions Act:

Bact C Act,

— if a € Act and ¢1,...,¢, € L™, then (c1,...,¢y, : a) € Act, called conditional
actions,

— if a € Act, then da € Act, called refrain actions,

e The set of mental state conditions £™:
—if LY, L™ C Litand C*,C~ C Act, then (L*,L™,C*T,C™) € L™.

Informally, when executed a conditional action (cy, ..., ¢, : a) performs the action a if one
of the conditions ¢; is satisfied. A refrain action removes commitments to actions.

4.5 Commitment Rules

The decision-making of AGENTO agents is implemented by so-called commitment rules. Com-
mitment rules introduce new commitments. They do not remove or modify the current com-
mitments of the agent, but simply add new ones. A commitment rule consists of two parts:
(i) a condition on the mental state of an agent and (ii) an action (recall that we do not discuss
communication in this paper which explains the absence of message conditions in commit-
ment rules). The action part represents the new commitment that is to be made if the rule is
fired. A commitment rule thus (almost) has the same structure as a conditional action, but
for clarity and to be able to keep them apart we introduce some new notation for commitment
rules:

Definition 4.4 (commitment rules)
The set of commitment rules Rule is defined by:

o if (LT, L=,CT,C~) € L™, and a € Act, then C*,C~ + LT L~ | a € Rule. 3

4.6 Agent Programs

Now we have introduced the basic constructs in the language AGENTO, we are able to define
what an agent (program) is. Syntactically, an agent program is a set of capabilities, a set of
initial beliefs, and a set of commitment rules. The set of capabilities in the program defines the
expertise of the agent. Capabilities consist of a mental state condition and a private action.
The condition specifies under what (mental) condition the agent is capable of executing the
action. The initial beliefs specify what the agent believes, at the start of execution. Finally,
the commitment rules determine what types of decisions - new commitments - the agent will
make. Note that initially the set of commitments is supposed to be empty.

3In the BNF syntax of AGENTO, multiple actions are allowed in a rule instead of a single action a. Since
this feature can be simulated by rules with a single action, however, we have restricted rules to the more simple
format with a single action in the body.

“In the BNF grammar of AGENTO in [10] every type of action is allowed. In the main text (p. 77) only
private actions are allowed.



Definition 4.5 (agent program)
An agent program is a tuple (Cap, 09, '), where

e Cap is a set of capabilities, i.e. a set of actions of the form (cy,..., ¢, : a), where ¢; € L™
for all ¢ and a € Bact,

e 0o C Lit is the set of initial beliefs, and

e I' C Rule is a set of commitment rules.

5 Operational Semantics for the Core of AGENTO

In this section, we propose a formal semantics that specifies the meaning of the basic con-
structs of AGENT0. The semantics of mental state conditions, actions and commitment rules
is defined. The semantics in this as well as the next section is based on the informal account
of the programming language in [10] and only discusses the logical approach when it offers a
different perspective or there is a difference between the two. Because the informal account is
not always precise or detailed enough, there are a number of gaps in the account in [10] which
we had to fill in to specify a semantics for AGENTO0. In section 6, we define the semantics of
the main control loop of an interpreter for AGENTO.

5.1 Transition Systems

The semantics we provide for AGENTO is an operational semantics. For this purpose, we use
Plotkin-style transition systems ([7]). Such a transition system defines a transition relation
on agents, where each transition corresponds with a single computation step. This type of
semantics can be viewed as specifying an abstract machine on which agent programs can be
executed. Formally, a transition system is a deductive system that allows the derivation of
transitions of a program. A transition system consists of a set of transition rules that specify
the meaning of each programming construct in the language.

In agent-oriented programming, the notion of a mental state is the basic concept. Agent
programs can be viewed as transition functions on mental states. The transition relation
defined in this section therefore is a relation on mental states. It specifies how computation
steps of an agent program transform mental states.

Definition 5.1 (mental state)
A mental state is a pair (II, o), where IT C Act is a set of actions, also called commitments,
and o is a set of beliefs.

We assume that there are no occurrences of free variables in an agent’s belief base.

5.2 Semantics of Mental State Conditions

In [10], no (informal) explanation is given of the semantics for mental state conditions. The
use of a logic-like notation suggests that the formal semantics of the modal logic used in [10, 9]
should fill in this gap. However, the logic does not provide an appropriate account. First of
all, the parameter mechanism and scope of free variables in the programming language is not
explained by the logic. Secondly, the logic does not specify when an agent does not believe



something given a particular mental state. The reason is that the logic only offers the usual
modality for belief. However, from Bp, for example, it is not possible to derive that the agent
does not believe ¢, that is, -Bg. For this purpose, an operator for ‘only knowing’ might be
more appropriate.

Our semantics, however, is directly derived from the mental state as used in the operational
semantics below. Although we cannot be sure that this semantics fully corresponds to that
of the intended semantics, it probably provides a good approximation and completes the
specification of the semantics for the language. Moreover, it is a precise semantics which
can be evaluated on its merits and deficiencies. The semantics of beliefs is derived from the
semantics of first order logic; we use |= to denote the usual consequence relation of first order
logic. To specify the parameter mechanism used in AGENTO which is used to obtain bindings
for free variables, we use the notion of a substitution. A substitution is a finite set of pairs
(also called bindings) of variable-term pairs (for a more explicit and formal definition, see

[6])-

Definition 5.2 (semantics of mental state conditions)
Let 6 be a substitution. A mental state condition ¢ = (L™, L~,CT,C) is satisfied in a mental
state M = (II, o) relative to 6, notation: M = c#, if:

e for each p € L™, we have that o = (0,

e for each a € C", we have that af € II,

for all ¢ € L™ and substitutions y we have that o [~ ¢y, and

for all @ € C~ and substitutions v we have that a7y ¢ II.

Thus, a mental state condition is satisfied if (i) it is possible to instantiate the free variables
in L™ and C" uniformly such that the agent’s beliefs imply the literals in Lt and the agent’s
commitments contain the actions in C*, and (ii) it is not possible to instantiate a literal in
L~ or action in C'~ such that the agent respectively believes the instantiated literal or has
committed itself to the instantiated action. Somewhat simplified, a mental state condition is
satisfied if the agent believes L™ and does not believe any of the literals in L™, and the agent
is committed to CT and is not committed to any of the actions in C~.

5.3 Executing Commitments

Since the commitments of an agent consist of the actions the agent has selected for execution,
the semantics of commitments is provided by a semantics for action execution. A semantics
for actions is provided relative to the meaning of the most basic or private actions. These
actions define the basic capabilities of the agent and are assumed to be given. In [10] the
meaning of private actions is not discussed in great detail. However, a number of remarks
suggest that private actions should be taken as updates on the set of beliefs of the agent.
5 This is the view we will take here. For this purpose, we introduce a (partial) function
T : Bact x p(Lit) — p(Lit) which specifies what type of update is performed by each private
action. & The computation step resulting from executing a private action then formally is

50n p. 61 of [10], it is remarked that there is no distinction made ”between actions and facts, and the
occurrence of an action will be represented by the corresponding fact holding.” On p. 76 we are explained that
the belief database may be updated ”as a result of taking a private action” .

5We assume that the transition function does not introduce any free variables into the belief base of an
agent in compliance with our previous constraint on belief bases.

10



defined by the following transition rule.

Definition 5.3 (private actions)
Let a be a private action.

T(a,0) =0’
<{ ) @, }70 — <{ }70’>
A conditional action (ci,...,cp : a) is executed by testing whether there are bindings for

one of the conditions ¢; such that it is satisfied in the current mental state of the agent and,
if the test succeeds, by committing to the action a instantiated with the computed bindings.
Variables in the mental state condition thus retrieve data from the belief base and current
commitments by means of pattern-matching. The values retrieved are recorded in a substitu-
tion € and used to instantiate the action a. If the test fails, either the conditional action could
be removed from the commitments or not. We have chosen to retain the conditional action
as a commitment. The transition rule for conditional actions is specified at the commitment
level. Note that for the execution of a conditional action the context of execution, i.e. the
entire mental state, is required.

Definition 5.4 (conditional actions)
Let 6 be a substitution and I = {..., (¢c1,...,¢n : @),...}.

II,0 = ¢;6 for some i
((c1,...,¢n10),...},0) — ({...,ab,...},0)

A refrain action da removes actions of the form a from the set of commitments. All possible
instantiations of a are removed from the current commitments. In this way, it prevents the
execution of these actions. It is not clear from [10] if and when a refrain action itself is
removed from the set of commitments. We have chosen to retain the refrain action itself after
executing it, since this type of action is probably most often used for safety reasons. l.e.,
for example, to prevent destructive behaviour or to prevent certain undesirable effects of the
action which is to be refrained from. 7

Definition 5.5 (refrain actions)
Let 6 be a substitution.

da,af €11
(I, o) — (II\ {ab}, o)

5.4 Applying Commitment Rules

A commitment rule C*,C~ + LT, L™ | a in AGENTO is used to make new commitments. A
commitment rule does not remove old commitments, it only introduces new ones. It is possible
to make a new commitment if the mental state condition (L™, L~,C*,C ) is satisfied in the
current mental state.

"We think that a refrain action makes more sense in a multi-agent setting, where requests from other agents
to refrain from a particular action could be received. In the single agent setting, the conditions specifying the
circumstances in which an agent should refrain from an action could probably just as well be explicitly listed
in the condition part concerning the action in the list of capabilities in the program.
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A unique feature of AGENTO is that all applicable instances of a commitment rule are
fired. Thus, a new commitment is made for every set of bindings for the free variables in
the mental state condition of the rule which can be derived from the current belief base and
commitments of the agent.

Formally, a rule fires for each substitution that satisfies the mental state condition of the
rule in the current mental state. This also is an important difference between the meaning
of conditional actions and commitment rules, besides the fact that rules are never removed
from the agent program. It should be noted that a variant of the rule is used to prevent any
undesired interference with variables in the rule and current commitments (cf. also [3]). We
use Free(e) for the set of all (free) variables in e and dom(6) for the variables in the domain
of substitution 6.

Definition 5.6 (rule application)
Let © be the set of all substitutions # such that II,o = ¢f and dom(0) C Free(c), where
c=(Lt,L,C,C).

o) — (LU{af |0 € O},0)

if Ct,C~ — L*,L | ais a variant of one of the commitment rules of the agent such that no
free variables in the rule occur in the set of commitments II.

Alternative Semantics for Rule Application Whereas commitment rules do not change
the current commitments of an agent, it will prove useful for defining an interpreter for
AGENTO to allow also rules which do modify the current commitments of an agent. In
particular, it will be useful to have rules for dropping commitments. We use rules of the form
C*,C~ « LT, L™ | a for this purpose and call these rules decommitment rules. The semantics
is similar to that of commitment rules but instead of adding new commitments, these rules
delete commitments, and instead of checking whether a condition holds, a check is performed
to see if a mental state condition fails to hold. Thus, if the mental state condition of a
decommitment rule fails to hold, then the agent is allowed to drop the associated commitment
of the rule.

Definition 5.7 (rule application)
Let © be the set of all substitutions 6 such that II,o [~ ¢f and dom(0) C Free(c), where
c=(L*,L~,C*,C™).

(Il,0) — (1 \ {ab | 6 € O}, 0)

if CT,C~ « L*,L™ | a is a variant of one of the decommitment rules of the agent such that
no free variables in the rule occur in the set of commitments II.

5.5 Decision-Making in AGENTO0, AgentSpeak(L) and 3APL

In AGENTO there are no operators for constructing complex actions. For example, sequential
composition or recursive structures like procedures or plan rules are absent in AGENT0. This
lack of constructs for programming control flow and abstraction is one of the things which
suggests that AGENTO supports a bottom-up approach. By a bottom-up approach we mean
here that in contrast with a top-down approach the agent does not decide what to do next by
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fixing a high-level goal and computing plans, but decides what to do next by looking only at
the circumstances the agent finds itself in. This lack of goal-driven behaviour of agents has
been one of the reasons to design the successor language PLACA with such features in [12].
PLACA is similar to AGENTO, but it allows planning by means of a plan library.

Another feature which also suggests AGENTO supports a bottom-up approach is the type
of rules allowed to program an agent. The rules to program agents are condition-action
rules. We mean by this that the rules do not modify any existing (high-level) goals of the
agent by substituting plans for achieving them, but just add new commitments to the set
of commitments if the conditions of a rule are satisfied. In this sense we could say that a
language like AGENTO is rule-driven, while languages like AgentSpeak(L) ([8]) and 3APL
([3, 4]) are goal-driven.

With the bottom-up and top-down approach two different styles of decision-making can
be associated. These different styles of decision-making give rise to two different styles of
control loops for interpreters for agent programs. The different styles of decision-making can
be explained by introducing two distinct practical syllogisms for decision-making; one corre-
sponding to goal-driven interpreters and one corresponding to the rule-driven interpreters:

Practical Syllogism corresponding to the Goal-Driven Approach (PSG):
If (1) the agent intends to achieve a goal g, and (2) believes that g will not be achieved
unless the plan p will be executed, then (Concl) the agent intends to execute plan p 8.

Practical Syllogism corresponding to the Rule-Driven Approach (PSR):
If (1) the agent believes it is in situation S and (2) the agent already has made commit-
ments II concerning a set of actions, then (Concl) the agent should commit to perform
action a.

An explanation of the PSG syllogism is to view it as a reasoning scheme which may be
used by the agent to achieve a goal by means of some plan. The PSR syllogism is best
explained as a reasoning scheme to guarantee the commitment to all actions of a particular
form. Thus, the first might profitably be used to infer a possible means to achieve a goal, while
the second is more suited to be used as a means to infer the necessity to perform an action, i.e.
to guarantee that some actions are performed in certain circumstances. The two approaches
therefore are dual approaches and correspond to the duality of the possibility and necessity
modalities. For this reason, it is interesting to note that in [10] the concept of obligation is
taken as basic instead of that of motivation. In [10] Shoham actually somewhat overstates, we
think, the contrast between the two different modes of decision making. According to him,
the decision making in AGENTO “reflects absolutely no motivation of the agent, and merely
describes the actions to which the agent is obligated.” (p. 67) The tools for programming an
agent in AGENTO on the one hand, and AgentSpeak(L) and 3APL on the other hand, thus
are derived from two different perspectives on decision making.

6 The AGENTO Interpreter

Apart from the basic language constructs, in [10] also a control loop or interpreter for execut-
ing agent programs is introduced. To complete the formal specification of AGENTO, therefore,

81t is probably advantageous for the agent to add some condition stating that the plan should not interfere
to much with other goals of the agent. For simplicity, we have left such a condition out.
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in this section we present a language in which such an interpreter can be specified. This lan-
guage is based on previous work of the authors as reported in [4]. There are some notable
differences, however. The original language from [4] is somewhat simplified, the semantics
of some of the basic operators has been changed to suit the AGENTO0 semantics, and a new
update operator has been introduced. The language for programming interpreters introduced
below is a set-based, imperative language with operators for referring to the basic notions of
the agent language itself and for programming selection strategies. First, this so-called meta
language is introduced and then it is shown how to define an interpreter for AGENTO in this
language.

6.1 Auxiliary Notions

For the purpose of defining an interpreter for AGENTO, it is convenient to introduce some
notation. The notation is introduced to highlight a distinction between on the one hand
executing commitments and on the other hand making new or dropping old commitments.
Basically, the notation consists of a kind of labelling of the transition relation as defined in
the previous section with the information that is relevant in defining a control loop for an
interpreter. The relevant information consists in (i) the action that is executed or the rule
that is applied (written above the transition relation —), and (ii) the commitments that have
been deleted or removed (this information is added as subscripts to the transition relation
— where the set A is the set of commitments that have been deleted and A is the set of
commitments that have been added).

Notation 6.1 Let M, M’ be mental states and A and A be sets of actions.
o M iqa}’@ M' for a computation step due to a private action,

M (Cl;i;z:a)

{(c1,mcn:a)}{a'} M' for a computation step due to a conditional action,

M2 (a0 M " for a computation step due to a refrain action,

M Lm, A M' for a computation step due to the application of the commitment rule p,
and

M - Ao M " for a computation step due to the application of the decommitment rule
p-

When we abstract from the specific action that has been executed, the first three (labelled)
transitions can also be written as M LA,A M' where 7 denotes the action that has been
executed. Moreover, we write M — if there is an M’ (and sets A, A) such that M A p M'.
Similarly, the last two transitions due to the application of rules can also be written as
M L5ap M'. We write M —5 A 4 if there is an M’ such that M 25 4 M.

In case, for a mental state M, we have that M —— for some commitment 7, we say that

action 7 is ezecutable in M; if for some rule p M -5, we say that the (de)commitment rule
p is applicable in M.

14



6.2 Syntax

The syntax of the meta language is very similar to imperative programming and consists of
assignment, and the regular operators for sequential composition, nondeterministic choice,
and iteration. The basic terms and variables, however, range over a special domain: the
commitments and rules of agent programs. Two types of terms are thus distinguished, re-
spectively the commitment and rule terms. The commitment and rule terms of the meta
language are used to access the commitments and rules of the agent program of the object
language in the meta language. The terms refer to sets of commitments or sets of rules. The
operators of the meta language for building complex terms are the usual set operators.

Definition 6.2 Let Varg, Varr be given disjoint, countably infinite sets of variables.

Then the set of commitment terms %1 is defined by: (i) Varg C T, (i) 0,11 € Ty, (iii) if
90,91 € %11, then go N g1,90 U g1,90 — 91 € T

The set of rule terms X is defined by: (i) Varp C %, (ii) 0,T € T, (iii) if ro,71 € Tr, then
roNry,roUry,rg —r1 € Tp.

The commitment and rule terms are the usual set terms, constructed from the set operators
N, etc. O is a constant denoting the empty set. Furthermore, I' is a rule term constant denoting
the set of rules of an agent program. The commitment term II, however, is a variable which
denotes the commitments of the current object mental state during execution. As a notational
convention, strings denoting variables start with upper case while all other strings for terms
denote arbitrary terms including variables.

The meta language includes assignment of sets of commitments or rules to respectively
commitment or rule variables, tests for equality on the commitment and rule terms, and
the regular programming constructs for sequential composition, nondeterministic choice, and
iteration. It also includes three special actions to control the type of computation steps
and updates that are performed at the object level. The action apply(R, Del, Add) selects an
applicable rule from the input set R, computes the commitments that would be removed from
and added to the current commitments if the rule would be applied, and returns these sets
respectively in Del and Add; then the selected rule is removed from R and this is repeated until
no rules from R are applicable anymore. In the end, Del consists of all the commitments that
would have been removed by applying all these rules and Add consists of all the commitments
that would have been added. If there is no applicable rule in the set R, then the output
variables Del and Add return the empty set. The action ez(G) is used for the execution
of committed actions from the input set G. The set G is updated every time an action is
executed. It repeatedly executes until no actions from G are executable anymore. Finally, the
action upd(del,add) first removes the commitments in the input term del from the current
commitments and then adds the actions in add again. The first three meta actions are calls
to the object agent system to perform object transition steps corresponding to execution of
actions or application of rules.

Definition 6.3 The set of meta statements & is defined by:
e if G € Varq,g € X1, then G :=g € G,
e if R€ Varp,r € Ty, then R:=7r € G,

o ifg,g' € Ty, theng=g',9#4¢ €6,
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o if 7' €Ty, thenr =7 r£71' €6,

e if G € Varpy, then ez(G) € G,

e if R € Varr and Del, Add € Vary, then apply(R, Del, Add) € &,
o if del,add € ¥y, then upd(del, add) € &, and

e if 3,8' € G, then 8; 8,8+ 3,5* € 6.

Remark 6.4 If in some context a planning system is defined, then we could also introduce
an action plan(g,r,G', R') for adding new rules to the set of rules of the program. (g,r are
input terms; in G’ the set of goals for which a plan has been found could be stored, and in R’
the set of plans found.) The suggestion of incorporating a planning system in the language
PLACA (cf. [12]) possibly can be viewed as such an action. Note that in this case, the rule
term I' no longer is a constant.

End Remark

6.3 Semantics

In this section the operational semantics of the meta language is defined. The transition
relation of the meta transition system is denoted by =. The transition relation = is a
relation on meta configurations, which are pairs consisting of a program statement and a meta
state. Meta level states should include the information about object level features an agent
interpreter should be able to access. Among these features are the object mental state and
the commitment rules of an agent program. Furthermore, a meta state should keep track of
the values of variables used in the meta program.

Definition 6.5 A meta state, or m-state 7 is a tuple ((Il, o), <11, ', V), where (II, o) is an
object mental state, <1 is an ordering on the set of actions Act, I is a set of object rules, and
V is a wariable valuation of type : (Vary — p(Act)) U (Varp — p(Rule)).

The ordering on the set of actions is used to define priorities on action types, as will be
explained below. An m-configuration is a pair (8, 7) where § is a program statement and 7
is an m-state. We also write an m-configuration as a triple (3, (II, o), V'), where the constant
set of rules and ordering on actions is dropped from the configuration.

Definition 6.6 (semantics of terms)
Let 7 = ({(Il,0), <, T, V) be an m-state, and T range over goal and rule terms. Then the
interpretation function [-], : (¥q — p(Act)) U (Tr — p(Rule)) is defined by:

e [T], = V(T) N1I, for T € Vary U Varr,

e ], =10, [T], =T,

o [0], =0,

o [To & T1]- = [To]- & [T1]+, for ® € {N,U, -},

We will drop the subscript referring to the state in the rest of this paper, as it will be clear
from the context which state is referred to.
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The semantics of each of the four special primitives of the meta language is formally
introduced next. In this paper, we do not define the formal semantics for the well-known
constructs from imperative programming, but refer the reader to [7, 4].

The action ex(G) is an action that executes as many actions from G as possible, in a non-
deterministic order. The formal definition of the semantics of the action ex(G), therefore, is
defined by iteration. ex(G) is executed by choosing an executable action with highest priority
from [G], deleting this action from [G], and executing the selected action at the object level,
until no more actions from [G] can be executed. When ez(G) terminates, the content of the
variable G contains the remaining actions which are not executable in the current mental
state. The second transition rule below specifies the termination condition of the iteration.

Definition 6.7 (transition rule for ex)

M LA,A M’,7r S |[G]]
(ex(G), M, V) = (ex(G), M", V{([G] \ A) UA/G})

and there is no 7’ € [G] such that = < 7’ and M .

M /£~ for all m € [G]
(ex(G), M,V) = (E,M,V)

The action apply(R, Del, Add) nondeterministically selects an applicable rule from R, and
stores in the variables Del and Add respectively the set of commitments that would have been
removed and the set of commitments that would have been added if the rule would have been
actually applied. This process is repeated until no more rules in R are applicable.

Definition 6.8 (transition rule for apply)

M i)A,A,p (S [[R]]
(apply(R, Del, Add), M, V) =
(apply(R, Del, Add), M, V{[R] \ {p}/R,[Del] U A/Del,[Add] U A/Add})

M £ for all p € [R]
(apply(R, Del, Add), M,V) — E,M,V)

Finally, an update action upd(del,add) is defined on the set of commitments. Its argu-
ments are two sets of actions: the first set is a set of actions that are to be deleted from the
commitments - which is done first - and the second set is a set of actions which are to be
added to the set of commitments. The update action always succeeds.

Definition 6.9 (transition rule for upd)

(upd(del,add), (Il o), V) = (E,((II\ [del]) U [add], o), V)
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6.4 Interpreter

One of the basic differences between a number of agent languages resides in their control
structure. The main purpose of a control structure for an agent language is to specify which
commitments to deal with first and which rules to apply during the execution of an agent
program. The strategy for executing commitments and applying rules in AGENTO, is to
execute all executable commitments and apply all applicable rules in every cycle of the control
loop of the interpreter. In this section we use the meta language to specify an interpreter for
AGENTO0, based on the informal account in [10].

The strategy used in AGENTO for decision-making corresponds to the PSR syllogism that
we discussed in section 5. The main control loop in the AGENTO interpreter executes two
consecutive phases:

1. in the first phase, update the commitments (the commitment rules of the agent program
are used in this phase),

2. in the second phase, ezecute commitments made previously (this phase is independent
from the agent program).

The update phase in the control loop again consists of two distinct steps. On the one
hand, new commitments are added by firing the applicable commitment rules of the agent
program, and, on the other hand, the feasibility of the agent’s commitments is checked. The
test to determine whether or not a commitment is feasible consists of checking a condition
on the mental state to see whether or not the agent believes that it is capable of executing
the commitment. In case a commitment is no longer considered feasible, the commitment is
removed. It is here that the decommitment rules which we introduced are useful. By means
of these rules, we can implement the feasibility check in the interpreter below. The order
imposed on these two steps in the AGENTO interpreter is not discussed in [10]. We have
chosen to first apply the applicable commitment rules and then to check for feasibility. We
believe that this choice makes the most sense.

The execution phase, i.e. the second phase in the loop above, boils down to executing as
many commitments as possible in AGENT(. Since the actions executed are simple actions we
might presume that each of the actions executed is executed completely. This remark applies
in particular to conditional actions, which are executed by first performing a test and in case
the test succeeds executing the action part.

An implicit order on the type of actions is assumed. In particular, the refrain actions
have a higher priority than private or conditional actions. The reason is that refrain actions
should always be executed first to prevent actions from which the agent should refrain to be
executed. The priority on actions is used in defining the semantics of the meta action ezx.
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AGENTO

REPEAT

Stepl | R:=T; Del:=0; Add :=0 ;
apply(R, Del, Add);

upd(Del, Add);

Step2 | R:= A ; Del :=0 ; Add := () ; | Table 6.4
apply(R, Del, Add);
upd(Del, Add);

Step 3 | G:=11I;

ex(G);

UNTIL FALSE;

The meta program defining the interpreter is given in table 6.4. It implements the three
separate steps of the interpreter. Step 1 corresponds to firing the set of commitment rules I" of
the agent program. After initialising the variables R, Del and Add, this step is implemented
by the meta action apply which fires as many rules as possible and the action upd for actually
updating the mental state of the agent.

Step 2 corresponds to the check for feasibility of committed actions, and is again imple-
mented by the meta action apply. A set of decommitment rules A is presupposed. Each of
the rules in this set is of the form C*,C~ « L™, L™ | a where the mental state condition
¢ = (L*,L~,C*,C™) corresponds to the feasibility or capability conditions for the action
a. Recall that by the definition of the semantics for decommitment rules, only in case the
capability conditions associated with an action fail, the action is to be removed from the set
of commitments.

Step 3 corresponds to the execution of as many commitments as possible. The meta action
ex implements this step of the interpreter. The order on actions is assumed to give higher
priority to refrain actions than to any of the other action types. The actions are executed
completely by iteratively repeating execution for the remaining part of (conditional) actions.

7 Conclusion

By abstracting from a number of features of AGENTO, we have been able to construct an
operational semantics for AGENTO. We used a two-layered approach by separating the
semantics of the basic programming constructs and the semantics of the control structure in
the interpreter for AGENTO. This approach yields a clear and intuitive definition of AGENTO,
as well as for other agent languages. The benefits of a formal semantics in general and for
AGENTO in particular is that it provides for a precise specification for an implementation
of the language. In contrast, in the original, informal specification in [10] a number of gaps
were identified. Moreover, the formal semantics allows for a formal comparison, and thereby
clarifies a number of differences between rule-based agent languages (cf. [4]).

The specification of a formal semantics for AGENTO0, we believe, also resulted in a better
understanding of the use of so-called commitment rules in AGENTO0. We distinguished a
bottom-up approach used in AGENTO and a top-down approach used in AgentSpeak(L) and
3APL. Corresponding to this distinction, AGENTO0 can be characterised as rule-driven, while
AgentSpeak (L) and 3APL can be characterised as goal-driven.
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