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Abstract. The probability assessments of a Bayesian belief network
generally involve inaccuracies. These inaccuracies influence the reliability
of the network’s output. An integral part of investigating the reliability of
output is to study robustness. Robustness pertains to the extent to which
varying the probability assessments of a Bayesian belief network influ-
ences its output. Output robustness is studied by subjecting the network
to a sensitivity analysis. In this paper, we address the issue of robustness
of a belief network’s output in view of the threshold model for decision
making. We present a method for sensitivity analysis that provides for
the computation of bounds between which a network’s assessments can
be varied without inducing a change in recommended decision.

1 Introduction

Bayesian belief networks are widely accepted in artificial intelligence as intu-
itively appealing representations of domain knowledge. A Bayesian belief net-
work basically is a concise representation of a joint probability distribution. It
encodes, in a qualitative, graphical part, the variables of importance in the do-
main that is being represented, along with their probabilistic interrelationships;
the strengths of these relationships are quantified by conditional probabilities,
that with each other constitute the network’s quantitative part. The increasing
number of knowledge-based systems that build upon the framework of Bayesian
belief networks for knowledge representation and inference, clearly demonstrate
its usefulness for addressing complex real-life problem domains in which un-
certainty is predominant. Most notably, applications are being realised in the
medical domain, for diagnosis, prognostic assessment, and treatment planning.

Bayesian belief networks are generally constructed with the help of experts
from the domain of application. Experience shows that, although it may require
considerable effort, building the qualitative part of a belief network is quite prac-
ticable. In fact, as it has parallels to designing a domain model for a more tra-
ditional knowledge-based system, well-known knowledge-engineering techniques
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can be employed. Constructing a belief network’s quantitative part is generally
considered a far harder task, not in the least because it tends to be much more
time-consuming. It amounts to assessing various conditional probabilities for the
variables represented in the network’s qualitative part. Although, for most ap-
plication domains, probabilistic information is available from literature or from
statistical data, it often turns out that this information does not provide for
estimating all probabilities required [DV95]. For most domains, therefore, many
probabilities remain to be assessed by domain experts. Upon eliciting judgemen-
tal probabilities from experts, various problems of bias and poor calibration are
typically encountered [KST82]. The probability assessments obtained for a belief
network as a consequence tend to be inaccurate.

The inaccuracies in the probability assessments of a Bayesian belief network
influence the reliability of its output. An integral part of investigating the reli-
ability of a network’s output is to study its robustness. Robustness pertains to
the extent to which varying the probability assessments of the network influences
its output. For gaining detailed insight in output robustness, a Bayesian belief
network can be subjected to a sensitivity analysis [CV98]. Sensitivity analysis is
a general technique for investigating the effects of the inaccuracies in the param-
eters of a mathematical model on the model’s output [MH90]. The basic idea
of performing a sensitivity analysis of a belief network is to systematically vary
the assessments for the network’s conditional probabilities and study the effects
on the output. Upon such an analysis, some conditional probabilities will show
a considerable impact, while others will hardly reveal any influence.

In this paper, we address the issue of output robustness of a Bayesian belief
network in view of applications in which the output is used for decision making.
To this end, we focus on the threshold model for decision making. Although
generally applicable, this model is used most notably for patient management in
medical applications [PK80]. With the threshold model, an attending physician
decides whether or not to gather additional information from diagnostic tests
and whether or not to give treatment based upon the probability of disease for a
patient under consideration. The robustness of the output of a belief network now
pertains not just to the probability of disease computed from the network, but
also to the decision for patient management based upon it. For some conditional
probabilities, varying their assessment may have a considerable effect on the
probability of disease and yet not induce a change in patient management; for
other probabilities, variation may have little effect on the probability of disease
and nonetheless result in a different management decision. Studying the effects
of varying the assessments for the network’s conditional probabilities on the
probability of disease therefore no longer suffices for establishing robustness: the
effects on the recommended decision need also be taken into consideration.

To provide for studying output robustness of a Bayesian belief network in
view of the threshold model for decision making, we enhance the basic method
of sensitivity analysis with the computation of upper and lower bounds between
which a belief network’s assessments can be varied without inducing a change in
recommended decision. Informally speaking, the more a belief network’s proba-



bility assessments can be varied, the more robust the decision based upon the
network is.

The paper is organised as follows. In Section 2, we briefly review the formal-
ism of Bayesian belief networks. In Section 3, we outline the threshold model for
decision making. In Section 4, we detail the basic method of sensitivity analysis
and its enhancement for threshold decision making. The paper ends with some
conclusions and directions for further research in Section 5.

2 Bayesian Belief Networks

A Bayesian belief network basically is a representation of a joint probability
distribution on a set of statistical variables [Pea88]. It consists of a qualitative
part and an associated quantitative part. The network’s qualitative part takes
the form of an acyclic directed graph, or digraph, for short. Each node in this
digraph represents a statistical variable that takes its value from a finite set of
discrete values. In this paper we will restrict the discussion to binary variables,
taking one of the values true and false. If a variable V has the value true, we
will write v; the notation —w is used to indicate that V' = false. The arcs in the
digraph represent the influential relationships among the represented variables.
The tail of an arc indicates the cause of the effect at the head of the arc. Absence
of an arc between two variables means that these variables do not influence each
other directly and, hence, are conditionally independent.

For our running example we consider the following fragment of (fictitious and
incomplete) medical information, adapted from [Coo84]:

Consider a primary tumour with an uncertain prognosis in an arbi-
trary patient. The cancer can metastasize to the brain and to other
sites. We are interested in the course of the cancer within the next
few years, especially with regard to the development of a brain tu-
mour and its associated problems. Metastatic cancer (denoted MC)
may be detected by an increased level of serum calcium (ISC). The
presence of a brain tumour (B) may be established from a CT scan
(CT). Severe headaches (SH) are indicative of the presence of a brain
tumour. Both a brain tumour and an increased level of serum calcium
are likely to cause a patient to fall into a coma (C) in due course.

In this fragment of information, six statistical variables are identified. The influ-
ential relationships among these variables are encoded in the digraph depicted
in Figure 1. The digraph for example reflects, by means of the arc B — SH,
that the presence of a brain tumour is a possible cause of severe headaches.
The relationships among the variables that are represented in the qualitative
part of a Bayesian belief network basically are probabilistic dependences. The
strengths of these dependences are described by conditional probabilities: for
each variable, the probabilities of its values are specified conditional on the
various possible combinations of values for its parents in the digraph. For our



Fig. 1. The digraph of an example belief network; it expresses information concerning
the presence of a brain tumour and its associated problems in an arbitrary patient.

running example, we assume the following probabilities:

p(b|me)= 0.20 p(me) = 0.20 p(ct | b)

p(b | —-me) = 0.05 plet |
p(e| byisc) = 0.80

plisc | me) = 0.80 p(e | —byisc) = 0.80 p(sh | b) = 0.80

p(isc | -me) = 0.20 p(c| b,—isc) = 0.80 p(sh | ~b) = 0.60
p(c | =b,~isc) = 0.05

The probabilities specified for the variable ISC, for example, express that know-
ing whether or not metastatic cancer is present has a considerable influence on
the probability of an increased level of serum calcium in an arbitrary patient.
The relationship between metastatic cancer and increased total serum calcium
therefore is a strong dependence. On the other hand, severe headaches are ex-
pressed as quite common in both patients with and without a brain tumour.
Severe headaches thus have a low predictive value for a brain tumour. The prob-
abilities with each other constitute the network’s quantitative part.

The qualitative and quantitative parts of a Bayesian belief network with each
other uniquely define a joint probability distribution. A belief network therefore
allows for the computation of any probability pertaining to its variables. For this
purpose, various algorithms are available, that provide for computing probabil-
ities of interest and for processing evidence, that is, for entering observations
into the network and subsequently computing the revised probability distribu-
tion given these observations [Pea88,1.S88]. The details of these algorithms are
not relevant for the present paper.

3 Threshold Decision Making

In the medical domain, Bayesian belief networks are often used for diagnostic
purposes. A diagnostic belief network typically comprises one or more variables
modeling the presence or absence of disease, various variables modeling find-
ings and results from diagnostic tests, and a number of intermediate variables



modeling unobservable pathophysiological states. In our example network, for
instance, the variable B models the disease of interest, being the presence or
absence of a brain tumour; the variable MC models an unobservable state and
the remaining variables capture findings and test results. A medical diagnostic
belief network is used for computing a most likely diagnosis for a patient given
his or her presentation findings and test results.

The most likely diagnosis for a patient, along with its uncertainty, is generally
taken by an attending physician to decide upon management of the patient. The
physician may decide, for example, to start treatment rightaway. For our running
example, the physician may decide to perform neurosurgery if a brain tumour is
indicated. Alternatively, the physician may defer the decision whether or not to
treat the patient until additional diagnostic information has become available,
for example from a CT scan. Or, the physician may decide to withhold treatment
altogether. To support choosing among these decision alternatives, the threshold
model for patient management can be used.

The threshold model for patient management, or for decision making more in
general, builds upon various threshold probabilities of disease [PK80]. The treat-
ment threshold probability of disease, written P*(d) for disease d, is the prob-
ability at which an attending physician is indifferent between giving treatment
and withholding treatment. If, for a specific patient, the probability of disease
Pr(d) exceeds the treatment threshold probability, that is, if Pr(d) > P*(d),
then the physician will decide to treat the patient as if the disease were known
to be present with certainty. Alternatively, if Pr(d) < P*(d), the physician will
basically withhold treatment from the patient.

As a consequence of the uncertainty concerning the presence of disease in
a patient, additional information from a diagnostic test may affect an attend-
ing physician’s basic management decision. If the probability of disease exceeds
the treatment threshold probability, then interpreting a negative test result may
result in an updated probability of disease below the threshold probability. Alter-
natively, if the pretest probability of disease falls below the treatment threshold
probability, a positive test result may raise the probability of disease to a value
above the threshold probability. To reckon with such effects, the threshold model
for patient management includes another two threshold probabilities. The no
treatment-test threshold probability of disease, written P~ (d), is the probability
at which the physician is indifferent between the decision to withhold treatment
and the decision to obtain additional diagnostic information. The test-treatment
threshold probability of disease, written Pt (d), is the probability at which the
physician is indifferent between obtaining additional information and starting
treatment rightaway.

Figure 2 summarises the basic idea of the threshold model for patient man-
agement. As long as the diagnostic test under consideration has not been per-
formed, a physician has three decision alternatives at his or her disposal. If
the probability of disease Pr(d) for a patient falls below the no treatment-test
threshold probability, that is, if Pr(d) < P~ (d), then the physician will withhold
treatment from the patient without gathering additional diagnostic information.
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Fig. 2. The threshold model for patient management, indicating three threshold prob-
abilities and the various decision alternatives at a physician’s disposal.

If the probability of disease exceeds the test-treatment threshold probability,
that is, if Pr(d) > P*(d), then the physician will start treatment rightaway.
Otherwise, that is, if P~ (d) < Pr(d) < P*(d), the physician will perform the
diagnostic test. After testing, there are only two decision alternatives left. If
the updated probability of disease for the patient exceeds the treatment thresh-
old probability, the physician will start treatment; otherwise, treatment will be
withheld from the patient.

The treatment threshold probability of disease P*(d) used in the threshold
model is typically established by a physician after carefully weighing the various
utilities involved. These utilities pertain to the presence or absence of disease on
the one hand and giving or withholding treatment on the other hand. From the
expected utilities for giving and withholding treatment in view of the uncertainty
concerning the presence of disease, the probability of disease at which the physi-
cian is indifferent between the two decision alternatives is readily determined.
For our running example, the physician will typically take into consideration the
life expectancy for a patient, with and without a brain tumour, and the patient’s
attitude towards impaired health states; we assume that the physician sets the
treatment threshold probability of a brain tumour at 0.15. The two threshold
probabilities P~ (d) and P*(d) for deciding whether or not to perform a diag-
nostic test are established from the test’s characteristics. For our example, the
physician will typically weigh the discomfort of a CT scan for a patient against
the additional diagnostic information yielded by the scan; we assume that the
physician sets the no treatment-test threshold probability of a brain tumour at
0.045 and the test-treatment threshold probability at 0.56.

Although we have discussed the threshold model for decision making in a
medical context, we would like to note that the model’s use is not restricted to
the medical domain but in fact is generally applicable.

4 Sensitivity Analysis for Threshold Decision Making

In our introduction, we have argued that the various probability assessments of a
Bayesian belief network tend to be inaccurate. To gain insight into the effects of
the inaccuracies involved, a belief network can be subjected to a sensitivity anal-
ysis. In Section 4.1, we outline sensitivity analysis of a Bayesian belief network
with regard to a probability of interest. In Section 4.2, we address sensitivity
analysis of a belief network in view of threshold decision making.



4.1 Sensitivity analysis of a Bayesian belief network

For a Bayesian belief network, sensitivity analysis amounts to systematically
varying the assessments for the network’s conditional probabilities and inves-
tigating the effects on a probability of interest [CV98]. In essence, for every
conditional probability of the network, a number of deviations from the orig-
inal assessment are investigated. For every investigated value, the probability
of interest is computed from the network. The results thus obtained reflect the
probability of interest as a function of the conditional probability under study.

We illustrate performing a sensitivity analysis of our example belief network,
taking the prior probability of the presence of a brain tumour in an arbitrary
patient for the probability of interest. The effects of varying the assessments for
the probabilities p(mc) and p(b | =mc) on this probability of interest are shown
in Figure 3. Figure 3(a) shows that systematically varying, from 0 to 1, the
assessment for the probability p(mec) of the presence of metastatic cancer has a
rather small effect on the probability of interest: Pr(b) increases from 0.05 to 0.20.
Figure 3(b) shows that varying the assessment for the conditional probability
p(b | =mc) of the presence of a brain tumour in the absence of metastatic cancer
has a much stronger effect: Pr(b) now ranges from 0.04 to 0.84. As long as no
further information is available about the inaccuracies in the assessments for
the two probabilities under study, we conclude that the probability of interest
is more robust with regard to inaccuracy in the assessment for the probability
p(mc) than with regard to inaccuracy in the assessment for p(b | ~mc).

A sensitivity analysis of a Bayesian belief network with regard to a prior
probability of interest allows for assessing the robustness of the network in its
reflecting a prior probability distribution for the domain of application. In the
presence of case-specific observations, however, a belief network may very well
show different sensitivities. To reveal these, a sensitivity analysis can be per-
formed with regard to a posterior probability of interest. Such an analysis
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Fig. 3. A sensitivity analysis of the example belief network; the effects of varying
the assessments for the probabilities p(mc), (a), and p(b | ~me), (b), on the prior
probability of disease Pr(b) are shown.
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Fig. 4. A sensitivity analysis of the example belief network; the effects of varying the
assessments for the conditional probabilities p(b | =mc), (a), and p(sh | =b), (b), on
the posterior probability of disease Pr(b | sh) are shown.

allows for investigating the robustness of the network’s output for specific cases
or for case profiles.

We once again perform a sensitivity analysis of our example belief network,
this time taking for the probability of interest the posterior probability Pr(b | sh)
of the presence of a brain tumour in a patient who is known to suffer from severe
headaches. By doing so, we assess the robustness of the diagnosis of a brain
tumour for an arbitrary patient with severe headaches. The effects of varying
the assessments for the conditional probabilities p(b | ~mc) and p(sh | —b) on the
posterior probability of interest are shown in Figure 4. Figure 4(a) reveals that
the observation that a patient suffers from severe headaches has little impact
on the robustness of the probability of disease with regard to inaccuracy in the
assessment for p(b | ~mec). Figure 4(b) shows that varying the assessment for the
conditional probability p(sh | =b) can have a considerable effect on the posterior
probability of disease; small deviations from the original assessment 0.60 have
little effect, however.

In a sensitivity analysis of a Bayesian belief network, the relation between
a probability of interest and a conditional probability under study is fully de-
termined by the network. More specifically, the independences reflected by the
network’s qualitative part constrain the relation to a simple mathematical func-
tion. In general, the probability of interest relates to a conditional probability
under study as a quotient of two linear functions. For the posterior probability
of interest Pr(d | 0), given some observations o, and a conditional probability z,
we have that

a-rz+b

Pr(d|0) = m

where a,b,e, and f are constants. For an example, we reconsider Figure 4(b)
showing for our belief network the posterior probability of interest Pr(b | sh) as



a function of the conditional probability = p(sh | =b); the function equals

0.06957
Pr(b|sh) = 06057

If the conditional probability under study pertains to a variable without any
observed descendants, that is an ancestor of the variable of interest in the net-
work’s qualitative part, the mathematical function reduces to a linear function.
For the probability of interest and a conditional probability z as indicated, we
then have that

Pr(d|o)=a-z+b

where a and b are constants. In particular, a prior probability of interest relates
linearly to any conditional probability from the network. For an example, we
reconsider Figure 3(b) showing for our belief network the prior probability of
interest Pr(b) as a function of the conditional probability z = p(b | -mc); the
function equals

Pr(b) = 0.8 -z + 0.04

The constants in the mathematical functions involved in a sensitivity analysis of
a Bayesian belief network are readily determined by computing the probability
of interest from the network for a small number of values for the conditional
probability under study and solving the resulting system of linear equations. For
further technical details, we refer the reader to [CV98].

4.2 Sensitivity analysis in view of threshold decision making

Sensitivity analysis of a Bayesian belief network with regard to a probability of
interest yields a functional relation between this probability of interest and every
single conditional probability from the network. The relation indicates how the
probability of interest will shift upon varying the assessment for the conditional
probability under study. For a probability of interest that is used in the thresh-
old model for decision making, not every shift is significant. In fact, only a shift
that results in a different decision recommendation is of interest. In sensitivity
analysis in view of threshold decision making, therefore, we have to take the
various threshold probabilities employed into consideration. To this end, we en-
hance sensitivity analysis of a Bayesian belief network with the computation of
upper and lower bounds between which the network’s assessments can be varied
without inducing a change in decision.

The computation of bounds on variation of a belief network’s probability as-
sessments builds upon the mathematical functions that we have detailed before,
relating a probability of interest to the network’s conditional probabilities. Once
again focusing on patient management, we begin by considering a probability of
disease Pr(d | 0) and a conditional probability z to which it is linearly related,
that is, we have

Pr(d|o)=a-z+b



for some constants a and b. For ease of exposition, we assume that Pr(d | o)
increases with increasing values for z; we will return to this assumption presently.
If, in view of the threshold model, the probability of disease indicates withholding
treatment, that is, if Pr(d | 0) < P~ (d), then the decision will remain unaltered
as long as the value of the conditional probability x is smaller than the value z~
that is computed from

a-x_ +b=P (d)

More precisely, the decision to withhold treatment remains unaltered for any
value of the conditional probability = within the interval (—oo,z~) N[0, 1]. If the
probability of disease on the other hand indicates starting treatment rightaway,
that is, if Pr(d | o) > P*(d), then the decision will remain unaltered as long as
the value of the conditional probability = is greater than the value z+ that is
computed from

a-zt +b=Pt(d)

More precisely, the decision to start treatment rightaway remains unaltered for
any value of the conditional probability = within the interval (z*, +00) N[0, 1]. If
the probability of disease indicates testing, that is, if P~(d) < Pr(d | o) < P*(d),
then this decision will be the same for any value of the conditional probability
x within the interval [z~, 2] N[0, 1].

So far, we have addressed the computation of bounds on the variation of
a conditional probability that is related linearly to the probability of disease.
For a conditional probability that is related to the probability of disease by a
quotient of two linear functions, bounds on variation are computed in a similar
fashion. We have further assumed so far that the probability of disease increases
with increasing values of the conditional probability z under study. With this
assumption, we have implicitly assumed that = < zt. For a conditional prob-
ability x of which increasing values serve to decrease the probability of disease,
we have that z— > z*. Using this observation, the bounds derived above are
readily adjusted.

We illustrate the computation of bounds on variation for our example belief
network; we recall from Section 3 that the three threshold probabilities of disease
have been set at P*(b) = 0.15, P—(b) = 0.045, and P*(b) = 0.56. We begin
by addressing the robustness of the decision for management of an arbitrary
patient. From our belief network, the prior probability of disease is computed
to be Pr(b) = 0.08. For this probability, we have that P~ (b) < Pr(b) < P*(b).
Using the threshold model for patient management, therefore, the physician will
decide to gather additional information from a CT scan. We investigate the
robustness of this decision by computing an upper and lower bound on variation
of the assessment for the conditional probability 2 = p(b | =-mc). The lower
bound z~ on variation is computed from

Pr(b) = 0.8z~ + 0.04 = 0.045
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yielding = = 0.00625; the upper bound z+ on variation is computed from
Pr(b) = 0.8-z% +0.04 = 0.56

yielding z+ = 0.65. For any value of the conditional probability p(b | —mc)
within the interval [0.00625,0.65], therefore, the decision to gather additional
diagnostic information will remain unaltered. Since the conditional probability
under study has been assessed at 0.05, we conclude that the decision is fairly
robust with regard to this assessment; variation of the assessment to smaller
values, however, may change the decision to the recommendation to withhold
treatment without gathering additional diagnostic information.

To conclude, we address the robustness of the management decision for a
patient with a primary tumour who is known to suffer from severe headaches.
From our belief network, the posterior probability of disease is computed to be
Pr(b | sh) = 0.1039. For this probability, we observe that P~(b) < Pr(b | sh) <
Pt (b). The physician will therefore order a CT scan for the patient. We inves-
tigate the robustness of this decision by computing the upper and lower bound
on variation of the assessment of the conditional probability x = p(sh | —b).
Note that the probability of disease decreases with increasing values for this
conditional probability. The lower bound z1 on variation is computed from

0.06957

=—F—— =056
xt +0.06957

Pr(b| sh)
yielding z+ = 0.1938. Upon computing the upper bound z~ on variation, we find
a value greater than one. For any value of the conditional probability p(sh | —b)
within the interval [0.1938, 1], therefore, the decision to gather additional diag-
nostic information for the patient will remain unaltered. Since the conditional
probability under study has been assessed at 0.60, we conclude that the decision
is quite robust with regard to this assessment.

5 Conclusions

The probability assessments of a Bayesian belief network tend to be inaccurate.
The belief network as a consequence will yield inaccurate output. If the network’s
output is used for decision making, its inaccuracy influences the reliability of a
decision that is based upon it. An integral part of investigating reliability is
to study output robustness. To investigate the robustness of a belief network’s
output in view of threshold decision making, we have presented an enhanced
method for sensitivity analysis that provides for the computation of upper and
lower bounds between which a network’s assessments can be varied without
inducing a change in decision.

We have addressed the issue of robustness in view of a simplified threshold
model for decision making, involving binary variables and a single diagnostic
test. The more general threshold model addresses variables that have multiple
discrete values and provides for selecting among multiple tests. Our method of
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sensitivity analysis will be further elaborated upon for use with this more general
model. Although often used in practice, the threshold model is a simple model
for decision making. With a Bayesian belief network, more complex models can
be used. More specifically, a belief network can be extended to an influence
diagram to provide for addressing more elaborate trade-offs in decision making.
The results put forward in this paper hold unabatedly for influence diagrams. In
the near future, we hope to extend our method of sensitivity analysis for decision
making to apply to influence diagrams.
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