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Abstract

Partially observable Markov decision processes (POMDPs) have recently been suggested
as a suitable model to formalising the planning of clinical patient management over a
prolonged period of time. However, practical application of POMDP models is hampered
by the computational complexity of associated solution methods. It is argued that the
full generality of POMDPs is not needed to support many decision problems in clinical
patient management, and that specialised forms are often sufficient. A specialised form
of POMDP, tailored to a particular type of management problem, is introduced. It is
described how a new solution method, based on Monte Carlo simulations of the decision
process, can take advantage of this specialised form.

1 Introduction

Managing patients that suffer from a progressive disease is a complicated task involving a
mixture of test planning, treatment selection, and prognostic assessment. The large num-
ber of possible management strategies over time precludes formalisation of this task using
traditional representations such as decision trees and influence diagrams. Recently, partially
observable Markov decision processes (POMDPs) [4, 8] have been suggested as a providing
a suitable, integrated approach to this type of management problem [7, 10]. POMDPs are
models for sequential decision making under conditions of uncertainty and limited observa-
tion opportunities. By taking into account both immediate and longterm consequences of
decisions, POMDPs provide a powerful framework for decision-theoretic planning of clini-
cal actions. Unfortunately, the computational burden associated with solving POMDPs is
overwhelming, precluding their application to problems of practical size [9].

However, for many specialised problems, the full-blown generality of the POMDP approach
and its associated solution methods is superfluous. We believe that this holds in particular
for clinical decision problems, where often the class of admissible solutions is significantly
constrained. In this paper, we discuss a specialisation of POMDPs that is tailored to a
frequently re-occurring type of clinical management problem, and propose a solution method
that is able to exploit the properties of this specialised form. The management problem we
envision to support looks as follows. A patient suffers from a disease from which natural
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recovery is possible, but which may also cause harmful complications over time. There are
possibilities to halt progress of the disease and its complications by intervention (e.g. surgery),
but these involve a serious risk to the patient. The main problem is therefore deciding whether
or not to intervene, and if so, when. Prior to intervention, it is possible to perform several
diagnostic procedures; these procedures reveal information on the clinical state of the patient
at the time the procedure is undertaken, but they also comprise a (smaller) risk. A secondary
problem is therefore the selection and timing of diagnostic procedures.

2 Model form

In this section, we briefly describe the general POMDP model and its associated solution
form. Given a set X of variables, let QQx denote the set of all configurations of X, i.e. all
possible value assignments to variables from X. A POMDP model is a tuple (T, X, A, P, 0, L),
where

e T is a linearly ordered set of decision moments,

e X is a finite set of stochastic variables, jointly defining the set x of states,

A is a finite set of available actions,

o P={p}:Qx xQx — [0,1] | a € A,t € T} is a set of time- and action-dependent
transition probability functions,

e 0: A — p(X) is an observation function, and
o L:{l;:Qx xA—R|teT}is aset of time-dependent loss functions.

The set T of decision moments denotes the points in time where the decision maker is ex-
pected to select an action a € A. We restrict ourselves to finite-horizon problems, and take
T=1{0,1,2,...,N} C N. No action is selected at the last decision moment ¢ = N; this mo-
ment is included for evaluation of the final state only. The clinical state of the patient is
described by the set X of discrete, stochastic variables; let S = Qx X --- x Qx = Q%“ de-
note the set of all possible state sequences. When configuration ¢ € {2x characterises the
state at time point ¢t € T, selection of action a € A will result in a transition to state ¢’ at
time point ¢+ 1 with probability p¢(c,c’). Furthermore, the decision maker is able to observe
the configuration of the set o(a) C X at time point ¢, and can use this observation to optimise
subsequent decision making; note that the observation function o is independent of time. At
each decision moment the decision maker also incurs a loss l;(c, a); the losses associated with
subsequent moments in a realisation of the decision process are combined by a utility function
uw: RV 5 R,

Now, let ¢ be a joint probability distribution on X at the initial time point ¢t = 0, re-
flecting the decision maker’s prior beliefs on the clinical state of the patient. Given ¢ and a
sequence « of action choices for all decision moments (except ¢t = N), we obtain a probability
distribution on Pryg, on the set S of possible state sequences. From this distribution, we
can compute the expected utility of action sequence o under ¢. Our objective is to select
actions during the decision process such that expected utility is maximised. Prior to the first
action choice, we therefore compose a decision-theoretic plan w, which prescribes an action
choice for each time point ¢ < N, given the history of past actions and observations. When



m is the maximum number of distinct observations that may follow an action choice (i.e.,
if Y = o(a) then |Qy| < m, for each action a € A), we have that m” is an upper bound on
the size decision-theoretic plans. The number of possible plans is bounded by k™, where
k =|A| is the number of available actions. It is therefore not surprising that the problem of
finding the optimal plan is PSPACE-complete [9].

A POMDP model was recently developed to support the clinical management of patients
with ventricular septal defect (VSD), a frequently occurring congenital heart disease [10]. A
VSD is an abnormal opening in the heart causing heart failure and associated symptoms such
as shortness of breath, feeding problems, and growth retardation. Approximately 70% of all
VSDs close spontaneously in the first years of life due to tissue growth, obviating the need
for surgical intervention. However, in the long run the disease may cause irreversible damage
to the lungs and a severely impaired respiratory function. Several diagnostic tests (ECG,
echocardiography, cardiac catheterisation, chest X-ray, and pulmonary biopsy) are available
to examine the patient’s condition before deciding upon cardiac surgery. The cardiologist
treating a VSD patient therefore faces the type of management problem described in the
previous section. The POMDP model for VSD has 33 state variables, yielding approximately
9,7 - 105 possible configurations (i.e. states of the POMDP); many configurations, however,
cannot occur in practice, or can only occur in specific circumstances. This is expressed in the
transition probability functions by assigning zero probability to those configurations. The
model distinguishes 6 decision moments (ages of the patient, ranging from 3 months to 8
years), and 7 distinct actions to choose from.

It was also shown in [10] how temporal probabilistic networks can be used to graphically
represent the transition probability functions of a POMDP model, and how this representa-
tion, by exploiting conditional independence relations between state variables, can strongly
reduce the number of probability estimates required to complete the model. This is especially
useful when the number of state variables is large: the complexity of transition probability
functions quickly grows in the number of variables. A compact representation, as in probabilis-
tic networks, is then indispensable as obtaining probability estimates is often a cumbersome
task. We do not further elaborate on this representation here, and refer the interested reader
to the paper in question for more details.

3 A specialised POMDP form

We will now propose a special form of POMDP model that is tailored to support the man-
agement problem described in Section 1. We first characterise the types of loss and utility
function that are used within this special form, and then describe three restricting assump-
tions we make on actions, transition probabilities, and plan structure.

We take a loss li(c,a), t < N, to represent the mortality risk associated with state ¢ and
action a at time point ¢, and a loss [ (c’) to denote life expectancy (in years) associated with
final state ¢’ at time point ¢ = N, where no action choice is made. Let 7g,...,7y_1 be such
mortality risks, obtained from a given evolution of the decision process (i.e. states and actions
for each of the decision moments up to time point ¢ = N — 1). Then,

t—1

St = H(l—’l"i) (1)

1=0

denotes the chance that the patient survives at least up to time point ¢ > 0. Now, let d; be



the (fixed) actual duration (in years) between the start of the decision process and decision
moment ¢, 0 <t < N; we then have that

t—1
let = Zdj’f‘jsj' (2)
j=1

is the life expectancy of the patient up to time point ¢. The following utility function u now
expresses overall life expectancy:

w(ro,...,vn) = len +(dy +7N) - SN, (3)

where ry = In(c') denotes life expectancy at the final time point. This type of utility
function is generally referred to as risk-sensitive [5]. We note that it is also possible to encode
mortality risks in the transition probability functions, but we deliberately choose not to do
so, for reasons explained shortly.

We make three further assumptions on the POMDP model and its admissible solu-
tions. First, the set A is taken to be composed of three disjoint sets Aiegt, Atreat, and
Agip, Where Age; constitutes the set of available diagnostic procedures, Agreat lists treat-
ment alternatives, and Agp is a singleton set that consists of the special action skip (i.e.
refrain from acting at the specified point in time) only. The set Aireat is assumed to be
relatively small compared to Agest; €.g., in the VSD domain, we have Aeat = {surgery}
and At = {ECG, echo, catheter, X—ray, biopsy}. Second, from Ay¢reay an action is selected
at most once, and after that moment, further action is refrained from (by selecting skip for
all subsequent moments). Before the moment of treatment though, actions may be selected
freely from Ages; and Agyip. From the first two assumptions we thus obtain a restricted set
IT of admissible plans, in each of which there is but a single moment of control, preceded by
multiple moments of observation. The size of the set II is bounded by (Kgest + l)mN , where
ktest = | Atest|, and as before, m is the maximum number of distinct observations that may
follow an action choice. Although ket < k& (where k = |A]), this number of admissible plans
is still very large. The average size of plans in IT, however, equals m™~ /2.

The third and last assumption is that state development is independent of test actions.
So, pf = pfk’p for each a € Agest, t =0,...,N — 1. Note that we can make this assumption
because mortality risks are encoded in the loss functions: this enables us let all diagnostic
procedures induce the same transition probabilities, even if they differ with respect to their
associated risks. Without this assumption, each of the k" possible action sequences « in-
duces a different probability distribution Pry, on state sequences. With the assumption,
many action sequences induce the same distribution: we obtain (ktreat + l)N classes of action
sequences, kireat = |Atreat|, Where the sequences in each class induce the same distribution.
Action sequences that are obtained from one of the admissible plans in the set II though,
contain at most one action choice from Aireat. With that restriction, the number of classes
therefore further reduces to N - kireat + 1. We will exploit this significant reduction in the
solution method described below.

4 Solution method

The standard approach to solving POMDP problems was initiated by Astrom [1] and Sondik
[11], and is based on transforming the POMDP into an equivalent, fully observable Markov



decision process (called the belief MDP), over all possible probability distributions on the
original state space Q2 x. The belief MDP can be solved using value iteration, a form of dynamic
programming [2]. However, the continuous state space of the belief MDP is computationally
difficult to handle, and therefore the associated solution algorithms are complicated and
limited [8]. Notwithstanding recent algorithmic advances in this field [3, 6], solving POMDP
problems of considerable size with this approach seems to be infeasible; the current state
of the art allows to solve POMDPs with at most 10 to 15 states. Another disadvantage of
dynamic programming is that the decisions are optimised in reverse order. This implies that
we cannot exploit prior knowledge of the problem involved (e.g. patient-specific information),
and it is difficult to take into account constraints on plan structure, as for instance occur in
the specialised POMDP form described above. We therefore propose a new solution method
to solve POMDPs, tailored to the specialised form described above. Due to space limitations,
we restrict ourselves to giving a sketch of the proposed method.

Basically, our method estimates expectations of the utility function u under a given
decision-theoretic plan 7 € II by simulating the stochastic process on X under plan 7. These
Monte Carlo estimates are then compared to establish the optimal plan. With this approach,
we can easily exploit prior knowledge of the problem case, as each simulation starts from
the initial decision moment; this is especially useful when many potential state sequences
are ruled out by the initial state. Constraints on plan structure are taken into account by
selecting plans from the admissible set II only. Furthermore, we can take advantage of the
fact that the distribution on state sequences is fixed by the choice and timing of treatment.
Let 01,...,0, be independent and identically distributed samples from S, where treatment
action a € Atreat Was selected at time point ¢ < N in the simulations. Since the transition
probabilities are equal for all test actions and the skip action, we can use these samples to
estimate expectations of the function u for all action sequences that select treatment a at
moment £, regardless of their prior testing policy. So, the simulation effort is strongly reduced
as we evaluate a large variety of action sequences from a single collection of samples.

The space II of admissible plans will generally be too large to enumerate. We therefore
perform a local search through II, stepwise refining the plan under consideration. The search
process proceeds as follows. Let ¢ represent given beliefs on the initial state, and let a be the
action sequence where action a € Agpeat is selected at time point ¢ < N, and skip is selected at
all other times. Note that « also represents a (rather unsophisticated) plan = € II: ‘perform
action a at time point ¢ without prior testing’. Now, let Pry , as before be the distribution
on S induced by ¢ and «, and let S be a collection of independent and identically distributed
samples from S drawn using Pry,. If (o, ) denotes the life expectancy associated with
state and action sequences ¢ and «, then

Uga(S) (o, a) (4)

is an Monte Carlo estimate of life expectancy under plan 7. To obtain more sophisticated
plans, we now try to find indicators of variation in 4. We say that the set Y C X is
such an indicator at time point ¢’ < ¢, if there exists configurations ¢}, and cf of ¥ such
that difference between g o(S’) and 44,4(S") is statistically significant, where S’, S” are the
subcollections of state sequences matching ¢} and cf- at time point ', respectively. We restrict
the search process to indicators Y that are observable, i.e. Y = o(a') for some action a’ € Agest.
Furthermore, the difference between estimated life expectancies must remain significant when



adjusted for performing test action o’ at time point #. The plan 7 is now refined by adding
the test action corresponding to the indicator that induces the most significant difference in
life-expectancy estimates. Subsequently, the treatment action and its timing are re-considered
for each of the possible observations that may follow a'; new simulations may be needed to
obtain the necessary samples here. After possible adjustment of the treatment choice under
each of the observations, the process is repeated; policy refinement is halted when no further
improvements can be found.

We note that Monte Carlo estimates converge to correct expected values in the limit of
taking an infinite number of samples. In practice, however, a finite, and often small, number
of samples is sufficient. Furthermore, the number of samples corresponding to particular
events is balanced with the likelihood of these events to occur. In our application of the
technique, this means that highly improbable state developments are considered only after
taking a large number of samples. At the start of the policy-refinement process, improvements
to the policy will be based on developments that are either very likely to occur or induce
large differences in life expectancy. As the refinement process proceeds and more samples are
obtained, improvements may also be based on rare developments that induce small differences.

5 Discussion and future work

POMDPs provide a powerful modelling framework for decision-theoretic planning, with promis-
ing applications to multi-stage clinical decision problems. The generality of the standard
POMDP model, however, limits practical application of the framework due to the computa-
tional complexity of associated solution methods. To alleviate this obstacle, we have proposed
a specialised POMDP form and algorithm to support a frequently encountered type of clini-
cal management problem. The specialised form assumes several restrictions on the effects of
actions on state development, and on the structure of admissible solutions. These restrictions
jointly reduce the number of action-sequence classes that induce a different probability distri-
bution on state sequences. Our algorithm exploits this property by reducing the simulation
effort in Monte-Carlo evaluation of decision-theoretic plans: each sample of the stochastic
process is used to evaluate a large number of action sequences.

We are currently implementing our algorithm, and plan to evaluate its performance on
the VSD model in the near future. Further research is required to investigate extensions to
the basic model form proposed here. For instance, more elaborate loss and utility functions
that incorporate quality of life and costs of treatment, are needed to provide a more realistic
account of the tradeoffs in real-world clinical decisions. Furthermore, allowing a larger number
of control moments is needed to support a wider range of management problems. To prevent a
combinatorial explosion in the solution space, this extension should be coped to a fine-grained
classification of action types and associated restrictions on admissible treatment plans.
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