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Abstract

Sensitivity analysis is a method to investigate the effects of varying a model’s parameters
on its predictions. It was recently suggested as a suitable means to facilitate quantify-
ing the joint probability distribution of a Bayesian belief network. This article presents
practical experience with performing sensitivity analyses on a belief network in the field
of medical prognosis and treatment planning. Three network quantifications with differ-
ent levels of informedness were constructed. Two poorly-informed quantifications were
improved by replacing the most influential parameters with the corresponding parame-
ter estimates from the well-informed network quantification; these influential parameters
were found by performing one-way sensitivity analyses. Subsequently, the results of the
replacements were investigated by comparing network predictions. It was found that it
may be sufficient to gather a limited number of highly-informed network parameters to
obtain a satisfying network quantification. It is therefore concluded that sensitivity anal-
ysis can be used to improve the efficiency of quantifying a belief network.
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1 Introduction

The framework of Bayesian belief networks was introduced in the late 1980s [14] for reasoning
with uncertainty in a mathematically correct manner. It owes much of its popularity to the
use of probability theory combined with an appealing graphical representation of conditional
independence relations. As such, belief networks allow for explicit and declarative modelling
of a problem domain, capturing domain knowledge that is relevant for solving knowledge-
intensive problems [1, 7).

In building a belief network, two closely related tasks can be discerned; the construction
of the graphical part of the network, and its subsequent quantification. Building the graphical
part of a network consists of identifying variables in the domain under study, and assessing
the conditional independence relations that exist between these variables; these relations are
represented by an acyclic, directed graph. The quantification of a belief network amounts to
assessing a local conditional probability distribution for each variable in the network. These
local distributions uniquely define a joint probability distribution on the variables discerned,
that respects the independence relations portrayed by the graph. A variable’s distribution is
conditioned on its parents in the graph; the number of parameters (conditional probabilities)
that need to be assessed for the distribution grows exponentially in the number of parents.
The total number of parameters that is needed to quantify a belief network may therefore be
considerable. Furthermore, a substantial number of network variables may be hidden from
direct observation; it is then very difficult, if not impossible, to collect quantitative data on
these variables. For these reasons, quantification of a belief network is often considered a
harsh task.

To facilitate the quantification of belief networks several methods have been proposed in
the literature [8, 11, 4]. Recently, Coupé et al. [2] have described how sensitivity analysis
can be used to reduce the quantification effort. Sensitivity analysis is a method to investigate
the effects of varying a model’s parameters on its predictions. For a belief network, it can
reveal which parameters have a large effect on posterior probabilities, and, therefore, on
which parameters the quantification effort should be focused. In [2], the authors propose
a procedure of iteratively performing sensitivity analyses of an initially roughly quantified
network, in order to stepwise refine the quantification.

This article presents an empirical investigation regarding the viability of this procedure.
As a case study, we selected a belief network that describes the pathophysiology of ventricular
septal defect (VSD), a frequently occurring congenital cardiac anomaly. It was developed as
part of a larger decision-theoretic application for treatment planning and prognosis in the field
of paediatric cardiology [16]. For the quantification, we have obtained subjective probability
estimates. The use of subjective probabilities is indispensable in domains where there is a
shortage of clinical data and many variables cannot be measured. Unfortunately, this may
require a massive amount of probabilities to be estimated by field experts, a difficult and time-
consuming task. The main objective of our research is to establish whether it is possible to
reduce the number of parameters that have to be estimated by field experts. That is, we want
to obtain a network quantification that gives predictions comparable to an expert-quantified
network, without having to elicit all the network’s parameters from the expert.

The following procedure was used in the investigation. Three network quantifications
were obtained, differing in the level of informedness of the estimates. The term informedness
refers to the knowledge about the problem domain of the person supplying the estimates;
we assume that accuracy of network predictions increases with the level of informedness.



Extensive sensitivity analyses were performed on all three network quantifications, yielding a
set of most influential parameters. In the two least informed quantifications, the estimates for
these influential parameters were replaced, stepwise, with the estimates in the quantification
of the field expert. The predictions of the resulting improved quantifications are compared
with the predictions of a network that was completely quantified by the field expert.

Our results show that the procedure contributes to efficient quantification of a belief net-
work: if, in a poorly-informed quantification, a limited number of highly influential parameters
are replaced by more precise estimates, then the network gives predictions that are compara-
ble to the network that is completely quantified with precise estimates. This means that we
can avoid lengthy elicitation procedures, and focus the quantification effort on parameters to
which network predictions are found to be most sensitive when varied.

The article is organised as follows. In Section 2, we briefly discuss the problem of treatment
planning for patients with a ventricular septal defect, and present the qualitative part of the
VSD network. Section 3 gives formal backgrounds of sensitivity analysis in belief networks,
and describes the method of investigation to test the refinement procedure. Then, in Section 4,
the results of the sensitivity analyses and subsequent refinements of the network quantification
are presented. Discussion and conclusions are given in Section 5.

2 The VSD network

Ventricular septum defect (VSD) is the most frequently occurring congenital heart disease;
approximately 2 to 3 out of each 1000 infants is born with this cardiac anomaly. It is a
relatively well-understood disorder with many clinical features that are characteristic for
congenital heart disease in general. We are currently developing an application to support
the management of VSD patients in clinical practice, based on recently developed techniques
from uncertainty reasoning and decision theory. Our aim is to deliver a ‘white-box’ system,
in which the user can perceive what is going on, and can interact by proposing alternatives
or adjust admissible treatment plans [15]. The core of the system is formed by a sequence of
Bayesian belief networks that model VSD pathophysiology and its clinical findings at different
stages of infant development. Heart, lungs and vessels are subject to a number of changes
during the first years of life, which make it impractical to use the same belief network for each
development stage. Instead, we chose to employ different belief networks for different stages;
there is, of course, substantial overlap between these networks.

In this article, we focus on the belief network that models VSD pathophysiology for
patients aged 3 to 6 months. After a VSD has been diagnosed (usually in the first weeks
of life), the patient is monitored during the subsequent months. The age of 3 to 6 months
is crucial from a clinical perspective, as it provides the first opportunity to establish the
severity of disease. It is therefore the point in time where the clinician will want to assess a
preliminary prognosis of the patient’s further development, and may already want to decide
upon the treatment plan that is to be followed.

This section describes the qualitative part of the belief network for VSD patients aged
3—6 months. We take this part to comprise the directed graph that models conditional
independence relations between domain variables, and various types of constraint on the
probability distribution modelled by the network. Before we elaborate on the network itself,
we first briefly review the domain under consideration.



2.1 VSD

A VSD is an abnormal opening in the ventricular septum, the fibromuscular wall that sepa-
rates the heart’s two ventricles [5]. The main pathophysiological consequence of the presence
of a VSD is blood flow (“shunt”) from the left to the right ventricle due to ventricular pressure
differences. Left-to-right ventricular shunting renders typical murmurs that can be heard by
auscultation of the heart, and abnormal vibrations of the heart (called a “thrill”) that can
be felt at the chest. The shunt size, i.e., the amount of blood flowing through the defect,
depends primarily on the size of the defect and the pulmonary vascular resistance. The con-
sequence of shunting is that oxygenous blood is recirculated through the lungs. As a result,
pulmonary vascular pressure will rise, and systemic cardiac output will decrease. With large
defects, the large shunt size and high pulmonary arterial pressure may lead to heart failure:
the heart is unable to adequately fulfil its primary function, the circulation of blood through
the body. Heart failure accounts for most of the typical symptoms associated with VSDs, such
as shortness of breath, feeding problems, oedema, and growth arrearage. Severe heart failure
may result in cardiomegaly (enlarged heart), hepatomegaly (enlarged liver), and pulmonary
infections.

About 70% of all VSDs close spontaneously by normal tissue growth, [9], where small
defects are more likely to close spontaneously than large ones. This development may take
several months or even years, but it precludes the need for surgical intervention. Unfortu-
nately, continual pulmonary overflow and hypertension may cause severe, irreversible damage
to the pulmonary arterioles; this is termed Fisenmenger’s reaction, and represents the pri-
mary risk to VSD patients. Eisenmenger’s reaction is detected at early stages by considering
the ratio of pulmonary and systemic vascular resistances; increasing pulmonary vascular resis-
tance is indicative for the reaction. However, there exist no means to measure this resistance
in clinical practice; it can only be estimated from related signs. For this reason, early surgical
intervention is recommended for patients with large VSDs that are unlikely to close sponta-
neously. The majority of patients with timely repair of uncomplicated VSDs in infancy or
early childhood have an excellent result with no clinical signs or symptoms and apparently
normal life-expectancy [10].

For the clinician, the main problem is to decide if and when to submit a patient to
surgery. Usually, the patient’s condition is monitored without surgical intervention during
the first year of life. During this period, non-invasive diagnostic tests such as auscultation
and echocardiography are conducted repeatedly to gain insight into the shunt size and the
pulmonary vascular resistance. When necessary, medical treatment is given to reduce heart
failure. After the first year of life, the risks associated with surgical intervention have dropped,
and a decision whether surgery is necessary is made. In cases of doubt concerning the state of
the pulmonary arterioles, cardiac catheterisation or pulmonary biopsy may be performed prior
to that decision to obtain more information on the severity of disease. Therapy is considered
completed after closure of the defect, either spontaneously or by surgical intervention.

2.2 Qualitative part of the VSD network

A Bayesian belief network represents a joint probability distribution over a set of discrete,
stochastic variables. Each node in the graph represents one of the domain variables, and the
absence of an arc between two nodes means that there exists no direct dependency between
the variables represented by these nodes; the variables are only dependent via intermediate



nodes in the graph. In practice, the most commonly used heuristic to assess a network’s
structure is the concept of causality: an arc is drawn between two nodes if there is known
to exist a direct, causal relation between the corresponding variables. This often provides a
sound overall representation of probabilistic dependencies in the problem domain.

For the VSD application, a network structure was hand-crafted with the aid of a field
expert, a senior paediatric cardiologist. First, a set of variables jointly describing the VSD
domain was selected, and then the graphical part of the belief network was assessed, us-
ing causality as the principle modelling heuristic. For a more elaborate description of this
development process, we refer to [16]. The resulting network is depicted in Figure 1.
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Figure 1: The VSD network.



Once the structure of a belief network has been established, the next task is to estimate
the parameters for the quantitative part of the network; this part encodes a joint probability
distribution over the network’s variables. For the VSD network, which consists of 38 vari-
ables, 1298 parameters are needed to fully quantify the probability distribution. A significant
number of variables cannot be observed in clinical practice, making it very difficult to obtain
estimates of the required parameters. In order to alleviate the quantification burden for the
VSD network, we decided to collect three types of qualitative information on the probability
distributions prior to the precise estimation of parameters:

1. functional dependencies, modelling deterministic relations between variables,
2. consistency constraints, describing which combinations of values cannot occur, and
3. qualitative influences, expressing the sign of probabilistic interactions.

Each of these information types can be interpreted as expressing a constraint on one of the
local probability distributions in the network [4]. Below, we elaborate on each of them.

The first type of qualitative information consists of functional dependencies. These depen-
dencies effectively model deterministic relations, as they express that a variable will necessarily
take a certain value when its conditioning variables (i.e., its parent nodes in the graph) have
a particular configuration of values. For example, in the VSD domain, we know that if there
is severe aortic regurgitation (i.e., the aortic valve is very leaky), then cardiac auscultation
will definitely reveal a typical kind of murmur (called a leak murmur) during the diastole, the
phase of relaxation in the cardiac cycle. Formally, we have that

p(diast_leak murmur = yes | aort _regurg = severe,pulm regurg =z) = 1,

for any legal value of z for pulm regurg, the second conditioning variable of diast_leak mur-
mur. Furthermore, the probabilities of other values for diast_leak murmur (in this case only
the value no) are 0 under these conditions. For the VSD network, 8 variables were completely
described by functional dependencies; 10 additional variables were partially described by
them. These dependencies, provided by the field expert, were all assumed to be reliable.

The second type of qualitative information on probability distributions consists of con-
sistency constraints. These constraints exclude certain combinations of values that cannot
possibly occur in practice. For instance, once the pulmonary arterioles have reached their nor-
mal state (6 to 12 weeks after birth), then the pulmonary vascular resistance cannot exceed
1/4 of the systemic vascular resistance. Formally:

p(resis_ratio > 1:4 | pulmart = normal) = 0. (1)

For the VSD network, 102 consistency constraints were found, pertaining to 10 different vari-
ables. Overall, 560 parameters were determined by a functional dependency or a consistency
constraint, reducing the number of parameters that need estimation to 738.

The third and last type of qualitative information on probability distributions consists of
qualitative influences [19] A qualitative influence is a symmetric property describing the sign
of probabilistic interaction between two variables, building on orderings of these variables’
value domains. A positive (negative) qualitative influence, indicated by attaching the label
‘“+’ (‘=) to an arc in the graph, expresses that higher values of the one variable makes
higher (lower) values of the other more likely, and vice versa. For instance, if the amount of



blood that flows through the VSD (the shunt size) grows, then increasing failure of the left
ventricle becomes more likely. This is expressed by a positive qualitative influence between
the variables shunt and LV_failure:

shunt — LV_failure (2)
which induces the following inequalities:
p(LV_failure = none | shunt > 2: 1) <

p(LV_failure = none | 1:1 < shunt < 2:1)

p(LV_failure = moderate | shunt > 2 : 1)

+ p(LV_failure = severe | shunt > 2:1) > 3)
p(LV_failure = moderate | 1 : 1 < shunt < 2:1)
+p(LV_failure = severe | 1 : 1 < shunt < 2:1)

p(LV_failure = severe | shunt > 2: 1) >
p(LV_failure = severe | 1 : 1 < shunt < 2:1) .

These inequalities constrain the local probability distribution for the variable LV_failure. In
co-operation with the field expert, a total of 24 positive and 5 negative qualitative influences
was found for the VSD network.

3 Quantification and sensitivity analysis

When assessing the quantitative part of a belief network, numerous network parameters have
to be estimated, either from frequencies found in statistical data, or subjectively by experts
in the field of application. But often such statistical data are difficult, if not impossible to
obtain, and gathering estimates from field experts is very time-consuming. In this article,
we experimentally assess the viability of a procedure to facilitate the quantification task,
proposed in [2]. This procedure, which is based on performing sensitivity analyses, is reviewed
in Section 3.1. For the experimental investigation, where the VSD network is used as a case
study, we have collected three quantifications that differ with respect to informedness of the
estimates; these are described in Section 3.2. Furthermore, two variables in the network
that are indicative for its performance, and five case profiles, describing typical patterns of
observations, have been identified; these are described in Section 3.3.

3.1 One-way sensitivity analysis of a belief network

Sensitivity analysis is a technique to systematically study the effects of variations in the
parameters of a mathematical model on this model’s predictions. It is widely used in the fields
of decision theory and mathematical modelling, [6, 12, 20]. For a Bayesian belief network,
sensitivity analysis provides for studying the effects of variations in the estimates of the
network’s parameters on one or more posterior probabilities of interest. As such, sensitivity
analysis allows for identifying network parameters that are highly influential, and should
therefore be estimated with the highest accuracy. For less influential parameters, rough
estimates may suffice. Sensitivity analysis can thus be used to increase the efficiency of
quantifying a belief network, as it directs the quantification effort towards crucial parameters.

The simplest type of sensitivity analysis is a one-way sensitivity analysis. In a one-way
sensitivity analysis of a belief network, the estimates of the network’s parameters are varied



one at a time, keeping all others fixed. The analysis then reveals the separate effect of variation
of a parameter estimate on posterior probabilities. In this investigation, we used the method
for one-way sensitivity analysis proposed in [3].

Coupé et al. show that in a sensitivity analysis of a belief network, it is not necessary
to vary all network parameters, given a particular posterior probability of interest. Only a
subset of parameters will influence the posterior probability; this subset can be derived solely
from the graphical structure of the network. We will refer to the sensitivity set as the set
of variables whose parameters may be influential; the constitution of this set depends on
the evidence entered into the network and the posterior probability one is interested in. For
details concerning the identification of the sensitivity set, we refer to the paper concerned.

Furthermore, Coupé et al. show that there exist functional relationships between individ-
ual parameters and posterior probabilities in a belief network. Any posterior probability is a
rational polynomial over the parameter under study:

0=z /15 _ _a-zT+b
POV =v]g) = 2T @
where 0 is the parameter under study, and a, b, and ¢ are real-valued constants. Prezm(V =
v | €) is the posterior probability of the value v for the variable V' given evidence £&. We refer
to the right hand side of Eq. 4 as a sensitivity function. It is easily seen that systematic
variation of the parameter under study is not necessary to determine its associated sensitivity
function: if we compute the posterior Prf=%*(V = v | £) with three different values for 6, the
constants in the functional relationship can be determined. These constants are now used to
calculate the first order derivative of the sensitivity function:
IRl = i Q
If we apply this derivative function to the original parameter estimate, we obtain the gradient
of the sensitivity function at that point. This quantity gives an impression of the influence of
(small) variations in the estimate on the posterior Pr(V = v | £); see Figure 2 for illustrations.

As the influences of parameter estimates on posterior probabilities may vary with the
evidence &, sensitivity analyses should be performed for several evidence sets. We will refer
to these sets as case profiles; they preferably consist of realistic patterns of observations.
Furthermore, it should be established which posterior probabilities are indicative for the
performance of the belief network. The variables to which these probabilities pertain will be
called the wvariables of interest. Both realistic case profiles and variables of interest depend
on the envisioned application of the belief network under consideration.

To facilitate the quantification of a belief network, Coupé et al. now propose the following
two-stage procedure. After the graphical part of the network has been assessed, a rough
quantification is established. Such a rough quantification can be based, for instance, on a
small collection of statistical data, or order-of-magnitude estimates derived from qualitative
descriptions of the relations involved. The second step consists of performing one-way sensi-
tivity analyses on the network; this requires the identification of several realistic case profiles,
and one or more variables of interest. Finally, those parameter estimates that turn out to
be highly influential are refined. Improved estimates are obtained, for instance, by gathering
more statistical data on the variables involved, or by eliciting them from experts in the field.
The effort of obtaining highly accurate parameter estimates is thus limited to a subset of
network parameters.
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Figure 2: Two sample sensitivity functions. (a) A linear sensitivity function (i.e., ¢ = 0). The
gradient is independent of the actual point estimate. (b) A nonlinear sensitivity function. The
gradient of the function is computed for the point estimate (0.25), providing an indication of
the influence of small variations in the parameter estimate on the posterior probability.

We conclude this section by noting that the refinement of influential parameters in a given
quantification will generally not reduce the sensitivity of posterior probabilities to parameter
variation. A quantification solely comprising highly accurate parameter estimates will often
contain just as much influential parameters as a completely random quantification: there
exists no relation between sensitivity and ‘quality’ of a quantification.

3.2 Three quantifications of the VSD network

The main question now is: how compares a network quantification obtained by following the
procedure described above to a network quantification that consists completely of accurate
parameter estimates? Furthermore, what is the efficiency gain, in terms of quantification
effort, yielded by the procedure? This article presents an experimental investigation into
these issues, using the VSD network as a case study.

To be able to answer the questions above, we have acquired three different quantifications
of the VSD network. A total of 738 parameters had to be established. The following network
quantifications were obtained, listed in order of increasing informedness:

Q1, consisting of completely uninformative parameter estimates,

Q2, consisting of parameter estimates supplied by a non-expert, on the basis of qualitative
characterisations of the uncertain relations, and

Q3, consisting of parameter estimates supplied by a field expert.

In network quantification Q1, a uniform probability distribution was used for each variable in
the network. The assessed deterministic relations, as described in Section 2.2, were however



preserved in this otherwise uninformative network quantification.

For quantification Q2, the parameter estimates were provided by a non-medical researcher
who was involved in the construction of the graphical part of the network. For this quan-
tification, the information on qualitative probabilistic influences between the variables in the
network was used. Where possible, a linear model was assumed for the dependency between
the parameter estimates for a variable and the values of the parents of that variable. That
is, the difference in probability estimates for successive values of the conditioning parents is
taken to be equal. In estimating the required prior distributions for variables without ascen-
dants in the graph, both medical literature and qualitative statements of the field expert were
used. For the estimated occurrence of different types of VSD, incidence figures found in the
literature were used; for the various complications of disease, statements such as “common”,
“rare”, “very rare”, given by the field expert during the elicitation of the qualitative part of
the network, were translated to probability estimates. Furthermore, as in quantification 1,
the deterministic relations were also ensured in quantification 2. In total, seven hours were
spent on establishing this quantification of the VSD network.

For the network quantification Q3, parameter estimates were provided by a senior paedi-
atric cardiologist. For each distribution, the cardiologist was asked to provide the expected
number of patients out of a hundred with a specific value for the variable under consideration,
given a configuration of its parents in the graph. Initially, the clinician felt reluctant to give
such precise numbers; he was therefore asked to provide 95% and 50% confidence intervals in
addition to the point estimates. As the confidence intervals allowed him to express his own
uncertainty regarding the estimates, he felt more comfortable with this procedure. The total
amount of time the cardiologist spent on the quantification of the network was approximately
twenty-five hours.

Our objective now was to assess whether it is possible to improve quantifications Q1 and
Q2 up to the level of Q3, where the improvements consist of selective revisions of influen-
tial parameters. These influential parameters are found by performing one-way sensitivity
analyses of the network.

3.3 The variables of interest and case profiles under consideration

Two variables of interest were indicated by the field expert to be used in the sensitivity
analyses: the variable shunt and the variable resis_ratio. These are the two most important
variables in the network, in the sense that the patient’s prognosis largely depends on their
values; a clinician usually bases his management decisions on estimates of these variables. We
have therefore assumed that the performance of the VSD network can be measured by testing
the accuracy of predictions for these variables. For the variable shunt, we have focused
on the value shunt > 2:1, corresponding to a strongly increased pulmonary blood flow.
Continual pulmonary overflow increases the risk of damage to the pulmonary circulation. For
the variable resis ratio, taking one of the four values 1:10-1:8, 1:8-1:4, 1:4-1:2, and >1:2,
the value 1:10-1:8 was taken as the value of interest. This value reflects normal vascular
resistance in the pulmonary circulation and therefore corresponds to a favourable situation;
the remaining values for resis _ratio correspond to increasing pulmonary damage.
In analysing the network quantifications, we thus focused on the posterior probabilities

e Pr(shunt > 2:1 | profile;) and

e Pr(1:10 < resis_ratio < 1:8| profile;),
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and their respective sensitivity to parameter variations, where profile; stands for a particular
case profile (i.e., a set of observations). Five case profiles were selected in cooperation with
the field expert; they are shown in Table 1. Except for profile 1, each of these profiles reflects
a realistic pattern of observations found in a particular type of VSD patient. Some profiles
provide strong, unequivocal evidence towards certain predictions and pose no interpretation
problems to clinicians in the field. For instance, profile 2 represents a patient with few, yet
compelling findings, providing strong evidence for a small VSD. In profile 5, all symptoms
related to a VSD are present, providing strong evidence for a large defect. For other profiles,
the prognosis is more difficult to assess, and therefore more uncertain. Profiles 3 and 4 are
less evident than profiles 2 and 5, and even somewhat contradictory. Typical signs of a VSD
are absent, but still a holosystolic murmur is audible, which is symptomatic for the disease.
In profile 4, moreover, a diastolic flow murmur is present, increasing the evidence for a large
VSD. The profile that is listed first, finally, shows many symptoms common for a VSD patient,
but necessary findings such as systolic murmur and thrill are absent; this profile corresponds
to a patient not having a VSD, but some other, unknown disease.

4 Results

For each of the network quantifications Q1, Q2, and Q3, the sensitivity of the selected posterior
probabilities to variations in the network parameters was analysed. Subsequently, quantifica-
tions Q1 and Q2 were refined by replacing the probability distributions of the most influential
variables with distributions from quantification Q3. This section discusses the results of the
sensitivity analyses, and the effects of refining network quantifications. First, in Section 4.1,
we compare the predictions of the three network quantifications for the five case profiles. The
results of the sensitivity analyses are presented in Section 4.2. In Section 4.3, we detail the
refinement procedure, and compare the predictions of refined network quantifications to the
predictions of quantification Q3.

Evidence profile 1  profile 2 profile 3  profile4  profile 5
syst_murmur no short_decr holo_band holo_band holo_band
thrill none none none — evident
diast _flow murmur 7o no no yes yes
paleness yes no — no yes
sweating yes no — no yes
hepatomegaly no no — — yes
dyspnoea yes no no no yes
feeding problems  yes no no no yes

fail to_thrive yes no — no yes

Table 1: The case profiles for the VSD network. A maximum of nine observations is available
for every case profile. The profiles are ordered according to the severity of disease. From left
to right the VSD size increases and, therefore, also the likelihood of an unfavourable outcome.

11



4.1 Predictions of the three network quantifications

For each of the network quantifications and each of the case profiles, the predictions for
the variables shunt and resis _ratio were computed; they are shown in Figures 3a and 3b,
respectively.
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Figure 3: Predictions for the posterior probabilities (a) Pr(shunt > 2: 1 | profile;) and (b)
Pr(1:10 < resis ratio < 1: 8| profile;) for each of the case profiles, computed from the
three network quantifications (0 for Q1, ¢ for Q2 and o for Q3). The vertical dotted lines
separate VSD profiles with typical characteristics.

First, consider Figure 3a, showing the results for the variable shunt. We see that all
quantifications assign zero probability to a large shunt, given profiles 1 and 2. This is due
to consistency constraints encoded in each of the quantifications: the lack of loud heart
murmurs and thrill precludes existence of a large shunt. These profiles therefore provide no
basis for comparison here. For the other profiles, we find that the quantifications Q1 through
Q3 have increasingly more discriminative power; this is in line with the increasing level of
informedness of the quantifications. Quantification Q1 gives the same prediction for each of
these profiles, due to the uniform distributions used in this quantification. The predictions
of quantifications Q2 and Q3 are more pronounced and they do provide the same ranking
of profiles. For profiles 4 and 5, the predictions from Q2 and Q3 agree well, but for profile
3, however, a large difference is seen in the predictions. This corresponds well to the fact
that profile 3 provides contradicting observations and is therefore hard to interpret. The
field expert indicated, however, that quantification Q3’s prediction was best in line with his
intuition for this profile.

Turning to the predictions for the variable resis_ratio, shown in Figure 3b, we see that
for each of the quantifications the predictions remain more or less constant over the case
profiles. However, the average level of the posteriors differs considerably per quantification:
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‘ Profile Q1 Q2 Q3 ‘

1 0 0 0

shunt 2 0 0 0
= 3 0.01172 (87%) 0.01685 (84%) 0.01446 (83%)
>2:1 4 0.01222 (83%) 0.00716 (83%) 0.00882 (85%)
5 0.01256 (82%) 0.00071 (78%) 0.00000 (77%)
1 0.00793 (70%) 0.01230 (80%) 0.02173 (80%)
resis_ratio 2 0.00638 (76%) 0.01058 (77%) 0.01292 (82%)
= 3 0.00483 (88%) 0.00738 (85%) 0.00857 (85%)
1:10—-1:8 4 0.00485 (85%) 0.00726 (83%) 0.00704 (85%)
5 0.00506 (79%) 0.00715 (79%) 0.00732 (78%)

Table 2: The sensitivities of the posterior probabilities Pr(shunt > 2:1 | profile;) and
Pr(1:10 < resis ratio < 1: 8| profile;) to parameter variations, averaged out over the net-
work parameters considered in the analysis. The percentage of uninfluential parameters is
given between parentheses.

whereas quantification Q1 assigns a low probability of normal pulmonary vascular resistance,
quantification Q3 is fairly confident about this circumstance; quantification Q2 is located
in between. These differences can be traced back to prior (unconditional) distributions for
variables without ascendants in the graph, which are quite different for the three quantifica-
tions. In discussing these results, the field expert again confirmed the predictions of his own
quantification (Q3): at the age of three to six months, VSD patients usually have a normal
pulmonary vascular resistance, regardless of the severity of disease.

4.2 Results of the sensitivity analyses

A one-way sensitivity analysis of both posterior probabilities Pr(shunt > 2 : 1 | profile;) and
Pr(1:10 < resis ratio < 1: 8| profile;) was performed for every case profile, for each of the
three quantifications. From the total of 1298 parameters in the network, 560 parameters that
are determined by a functional relationship or a consistency constraint were excluded from
the analysis. Table 2 shows the sensitivity of the posteriors given each case profile, averaged
over the 738 parameters considered in the analysis. Between parentheses, the percentage of
uninfluential network parameters is written. The high percentages illustrate that there is
often a considerable number of network parameters inside the sensitivity set, that yet turn
out to be uninfluential when varied. In Table 3 the maximum sensitivity found for each case
profile and network quantification is listed.

First, consider the results for the variable shunt. We recall from the previous section
that for profiles 1 and 2, the posterior Pr(shunt > 2 : 1 | profile;) is determined to be zero
by consistency constraints. For this reason, varying parameters estimates will not affect the
posterior in any of the network quantifications; it is completely insensitive, given these profiles.
We therefore restrict the discussion to profiles 3, 4 and 5. We find that the predictions for
shunt in quantifications Q2 and Q3 are significantly more sensitive to parameter variation
for profiles 3 and 4 than for profile 5. An explanation for this pattern exists in the fact that
profile 5 provides several independent pieces of evidence indicating a large shunt; varying
individual parameters therefore hardly influences that prediction. In contrast, profiles 3 and
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‘ Profile Q1 Q2 Q3 ‘

1 0 0 0

shunt 2 0 0 0

= 3 —0.73372 —1.07992 1.51122
>2:1 4 —0.73372 —0.38576 —2.68748

5 0.36686 —0.38789 —0.00020

1 0.48170 —0.55913 —5.19101

resis_ratio 2 0.48170 0.53568 0.95637
= 3 0.51299 0.49599 0.95812
1:10-1:8 4 0.51299 0.48988 —0.82572
5 0.51299 0.50188  -0.82463

Table 3: The maximum sensitivities of the posterior probabilities Pr(shunt > 2 : 1 | profile;)
and Pr(1:10 < resis_ratio < 1: 8| profile;).

4 comprise contradicting observations: although heart murmurs indicating a large VSD are
observed, none of the symptoms that would then be expected are present. In these cases,
varying a single parameter can change the prediction for the shunt variable considerably. The
result is not found for the uninformed quantification Q1: as this quantification gives the same
prediction for each case profile, these predictions are almost equally sensitive to parameter
variation.

For each case profile and each quantification, we identified the thirty parameters showing
the largest influence on the posterior Pr(shunt > 2 : 1 | profile;). The variables to which they
pertain are listed in Table 4, in order of decreasing maximum influence of their parameters.
We note that there exists a substantial overlap in the variables to which highly influential
parameters pertain, and therefore the number of variables is much smaller than thirty. Fur-
thermore, the selections of variables per profile are roughly the same for all quantifications.
This indicates that the structure of the belief network considerably affects the sensitivity of
posteriors to parameter variation; the quantification that is used in the analysis is of secondary
importance.

For quantification Q1, only the prediction variable itself (shunt), and observed, direct
descendants of this variable are selected.! This is not surprising, as the uniform distributions
used in this quantification eliminate all influences through longer pathways in the graph when
only one parameter estimate is varied at a time. Therefore, only higher-order sensitivity anal-
yses can reveal the propagation of influences through the graph for this quantification. The
selections for quantifications Q2 and Q3 are supersets of the selection for quantification Q1.
Notably, they also comprise variables at a greater distance of the shunt variable, and ascen-
dant variables of shunt in the graph, e.g., defect_size and resis ratio. The distributions
of these ascendant variables represent prevalences of the disease and its complications, and are
therefore influential on the posterior distribution of shunt. We conclude that the selections
for quantifications Q2 and Q3 provide more realistic patterns of influential variables.

Consider now the results, in Tables 2 and 3, for the variable resis_ratio. For this
variable, the differences in average and maximum sensitivity between the three quantifica-
tions and five case profiles are very small. This illustrates that there is no relation between

!The variable LV_failure is functionally determined by its observed descendants and can therefore itself
be regarded as observed.
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| Q1 Q2 Q3
profile 3 LV_failure syst_murmur LV_failure
diast_flowmurmur syst_Pgry/PLy syst_Pry/PLv
thrill diast flowmurmur diast_flow murmur
syst_murmur LV_failure syst_murmur
shunt thrill pulm _sten
shunt shunt
resis_ratio defect_size
PDA
outlet_pos
thrill
profile 4 LV_failure syst_Pry /PLv diast_flow_murmur
paleness syst_murmur LV_failure
diast_flowmurmur diast flowmurmur syst_Pry/PrLy
sweating paleness syst_murmur
syst_murmur sweating pulm_sten
shunt LV_failure shunt
shunt paleness
outlet_pos sweating
pulm_sten defect_size
resis_ratio PDA
outlet_pos
profile 5 diast_flowmurmur diast_Pap/Py, diast_flow_murmur
paleness thrill LV_failure
sweating syst_Pry/Prv sweating
thrill diast_flowmurmur RV_failure
syst_murmur syst_murmur thrill
LV_failure LV_failure syst_murmur
shunt paleness paleness
sweating VSD_type
shunt syst_Prv/PLv
outlet_pos pulm _sten
pulm_sten shunt
resis_ratio

Table 4: The variables to which the thirty network parameters pertain that are most influ-
ential to the posterior Pr(shunt > 2 : 1 | profile;), for profiles 3, 4, and 5. The variables are
ordered with respect to the maximum influence of their parameters.
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the level of informedness of a network quantification and the sensitivity for variations in
parameter estimates. Furthermore, there exists no distinction between the ‘contradicting’
profiles 3 and 4 and other profiles; this seems to be correct as these contradictions mainly
concern the size of the shunt. At the age of three to six months, only minor differences
between patients with regard to the resistance ratio are to be expected. For the posterior
Pr(1:10 < resis_ratio < 1: 8| profile;), the variables pertaining to the thirty most influen-
tial parameters were also identified. Due to space limitations, these results are not shown here.
However, similar observations hold as for the posterior Pr(shunt > 2 : 1| profile;). Again,
the selections of influential variables per profile are roughly the same for each quantification.
Every selection contains the variable resis_ratio itself, as well as its direct ascendant in
the graph, the variable pulm_art. The direct descendants diast_Psp/Pa, and shunt also
turn out to be very influential. Furthermore, the selected variables at greater distance from
resis_ratio partially overlap with those variables selected for shunt.

4.3 Predictions of the refined network quantifications

Using the results of the sensitivity analyses, quantifications Q1 and Q2 were stepwise re-
fined with parameter estimates from quantification Q3. Although sensitivity analysis reveals
the influence of individual parameters, we chose to substitute, at every refinement step, all
parameter estimates pertaining to a network variable. The motivation for this approach is
that parameter estimates often have little meaning in isolation: it is their relation with other
parameter estimates from the same local distribution that matters. To select variables whose
parameters are eligible for substitution, the sets of influential variables per profile (Table 4)
were compiled to a single, ordered set; the order was determined by averaging the positions
of the variables in the original sets.
With respect to the shunt variable, the following sets were thus compiled:

Vqi(shunt) = {diast_flowmurmur,LV_failure,syst_murmur, (6)
shunt, paleness, thrill, sweating}

Vq2(shunt) = {syst_Ppy/PLy,syst_murmur,diast_flow murmur, (7)
LV_failure, shunt,resis ratio,thrill, paleness,

sweating, outlet_pos,pulm sten,diast Pyp/Py,}.

With respect to the variable resis ratio, we have

Vqi(resis_ratio) = {resis_ratio,shunt,pulm art, (8)
diast Ppp/Ppo, LV_failure, PDA}
Vqo(resis_ratio) = {resis_ratio,shunt,pulm art,LV_failure, 9)

diast _Ppp/Pao, Syst_Pry/PLy, Syst_murmur,
RV_failure,diast_flow murmur, paleness,

sweating, thrill}

The variables are listed in decreasing order of influence on the respective variables.

The quantifications were stepwise refined by replacing, at step ¢, all parameter estimates
pertaining to the i'! variable in the above sets by the corresponding estimates from quantifica-
tion Q3. So, to improve the prediction for shunt, a total of seven and twelve refinement steps
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were made for Q1 and Q2, respectively. For resis ratio, a total of six and twelve refine-
ment steps were made for Q1 and Q2. With each of the refined quantifications, the posteriors
Pr(shunt > 2: 1 | profile;) and Pr(1: 10 < resis_ratio <1: 8| profile;) were computed for
the various case profile; these posteriors are plotted in Figures 4 and 5.

First consider the refinements for the posterior probability Pr(shunt > 2: 1 | profile;).
The plots indicate that for both quantifications, the posteriors rapidly shift towards the pos-
teriors of quantification Q3. For quantification Q1, for example, two refinement steps suffice
to approach Q3’s predictions. For profile 5, even a single refinement of quantification Q1
(replacing the estimates of the variable diast_flow murmur) is enough to nearly reach Q3’s
prediction. However, the difference between posteriors does generally not decrease mono-
tonically. This is most notable with the refinements of quantification Q2: the posteriors
for profiles 3 and 4 show considerable fluctuations in the first seven steps. Thereafter, they
quickly converge to the desired level. Unfortunately, this convergence is not obtained for
quantification Q1: even after replacing the distributions of all seven variables with influential
parameters, the posteriors still deviate from the posteriors of Q3.

Now, we turn to the refinements for the posterior Pr(1 : 10 < resis_ratio < 1: 8 | profile;).
As before, the posteriors quickly approach the posteriors of quantification Q3. For both
quantification Q1 and Q2, three refinement steps suffice to reduce the difference with Q3’s
predictions considerably. After the maximum of six refinement steps, however, still no con-
vergence is reached for Q1. For quantification Q2, the refined posteriors lie very close to the
predictions for Q3 after the maximum of eight steps.

So far, we have seen that the results of refinements are encouraging. However, these
results pertain to the five profiles that were also used in the sensitivity analyses. In order
to investigate whether the results generalise over more cases, the effects of refinements were
also tested on clinical data. Thirty-six cases were selected from a database of VSD patients
collected at the Leiden University Medical Centre in The Netherlands. These cases correspond
to patients aged 3—6 months having VSD as their primary diagnosis. For each case, the
predictions of quantifications Q1 and Q2 both before and after the refinements were compared
with the predictions of quantification Q3. The average, maximum and minimum difference
between the predictions from Q3 and both the original and refined predictions from Q1 and Q2
for the thirty-six cases were computed. In Tables 5a and 5b, these differences for refinement
with two, four and six variables, respectively, are shown.

For quantification Q1, the results show that stepwise refining this quantification indeed
steadily reduces the differences with the predictions from quantification Q3. Note, that we do
not claim that the predictions for Q3 are reliable. Since no reliable outcome measurements
were available for these thirty-six patients no validation of the various quantifications was
performed. Therefore, we only compare the refined quantifications with Q3 and aim to
obtain a network quantification giving similar predictions as Q3, without using all parameter
estimates from Q3.

For quantification Q2, the results of the refinement procedure are less clear. For the
variable shunt, the mean difference between Q3 and both Q2 and refinements of Q2 indeed
show a decreasing trend. However, the original differences between the predictions from Q2
and Q3 are quite small, making drastic changes impossible. For resis ratio, no significant
effect of the refinements can be observed. This is an unsatisfying result; future research will
have to uncover its causes.

As an example, in Figures 6a and b, the detailed results of the refinement procedure are
given for two patients, one patient for whom Q3 predicts a low shunt and one patient for
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Figure 4: The predictions of (a) quantification Q1 and (b) quantification Q2 for the pos-
terior probability Pr(shunt > 2 : 1 | profile;), after successive refinement steps. The dotted
horizontal lines correspond to the predictions of quantification Q3.
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Figure 5: The predictions of (a) quantification Q1 and (b) quantification Q2 for the posterior
probability Pr(1: 10 < resis ratio < 1: 8| profile;), after successive refinement steps. The
dotted horizontal lines correspond to the predictions of quantification Q3.



Table 5: The mean, maximum and minimum difference with Q3 of the refined predictions of
Q1 and Q2, for all cases in the database whose predictions are not determined by a consistency

constraint.
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whom a high shunt is expected. Figures 6a illustrates that the refinement procedure may
work very effectively. After four refinement steps, the predictions from Q2 have approached
Q3 considerably. Convergence, however, is reached only after nine steps. Figures 6b shows
a patient for whom the refinement procedure originally only worsens the predictions. This
suggests that in applying the refinement procedure to quantify a network efficiently, it may
be worthwhile to use real patient data for the sensitivity analyses.

5 Discussion and Conclusions

Quantifying a Bayesian belief network is a difficult and time-consuming task, precluding easy
application of belief-network technology in practice. However, it has been claimed that, once
the graphical part of the network correctly models the independence relations in the domain
of application, then the behaviour of the network is insensitive to the quality of the majority
of quantification parameters, [17]. If this is true, then a satisfactory network quantification
can be obtained by only estimating a small set of highly influential parameters from well-
informed sources, and taking rough estimates for the others. We have presented an empirical
investigation into this claim, by comparing the predictions of a well-informed quantification
with poorly-informed quantifications, in which only influential parameters were reconsidered.
These influential parameters were identified by performing one-way sensitivity analyses.

The results of our investigation suggest that using a two-step procedure of only recon-
sidering influential parameters works: partially refined, poorly-informed quantifications give
predictions that are comparable to a well-informed quantification. The procedure could be
repeated several times depending on the level of informedness of the quantification at hand.
However, the procedure shows better results for the case profiles that were used to identify
influential parameters, than for cases from a real-world, clinical database. We conclude that it
is preferable to use a large set of cases when refining a network quantification. With respect to
sensitivity analysis, it was found that the structure of the belief network considerably affects
the influence of parameter variation to posterior probabilities; the quantification that is used
in the analysis is of secondary importance. Furthermore, our results confirm that there is no
relation between sensitivity of posteriors to parameter variation and the level of informedness
of the quantification at hand.

Throughout the investigation, we have assumed that the structure of the belief network, as
elicited from the field expert, is correct; the same assumption was made for functional relations
and consistency constraints on network variables that were identified prior to quantification.
We believe that these assumptions have had little or no impact on the results that were
found. When building a real-world application, however, critical evaluation of these parts of
the network model is also necessary: sensitivity analyses should not be restricted to numerical
information. Furthermore, the re-quantifications concerned influential parameters that were
found by performing one-way sensitivity analyses. These analyses measure the effects of
individual parameter variations. Therefore, synergetic effects of varying multiple parameters
are not detected, although they may have an important effect on the network’s predictions.
To reveal such effects, higher-order sensitivity analyses are required.

The method proposed here is not limited to elicitation of network parameters from field
experts; it is also applicable to parameter elicitation from other sources such as clinical data
sets or frequencies reported in the literature. In fact, we believe that the usage of objective
statistical sources is indispensable to obtain a network quantification of sufficient quality.
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Subjective probability estimates are known to suffer from several forms of calibration and
bias, [18], and their reliability is therefore not beyond dispute. Moreover, in the medical field
it is often possible to collect datasets of reasonable size. The basic procedure investigated,
however, applies equally well when a combination of quantification sources is employed.

To conclude, we believe that sensitivity analysis provides a promising addition to the
methods that exist to facilitate belief network quantification. In future research, we plan to
investigate more sophisticated procedures than the one described here. For instance, instead
of making a final network quantification on the basis of a single sensitivity analysis, it is
probably better to have a few alternating steps of sensitivity analyses and improvements of
the quantification. This approach takes into consideration that by each refinement, the set
of highly influential parameters is changed. Furthermore, it may be worthwhile to addition-
ally perform higher-order sensitivity analyses, or even uncertainty analyses, which investigate
the joint effect of varying all network parameters simultaneously. And finally, the expected
accuracy of parameter estimates, as expressed by confidence intervals, can be involved in
the analysis. This is accomplished by taking the variation of a sensitivity function over a
confidence interval instead of over the whole range as a measure of the parameter’s influ-
ence. Then, parameter estimates with high expected accuracy (i.e., having small confidence
intervals) will only be reconsidered when the sensitivity function is extremely steep over the
confidence interval.
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