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Abstract

The quantification of belief networks is known to be a laborious and difficult task, which
hampers their application in practice. However, sensitivity analyses generally reveal that
the influences of individual parameters on a network’s performance differ considerably.
This suggests that the quantification effort can be focused on the most influential param-
eters, as for less influential parameters, rough estimates may suffice. The paper presents
an empirical investigation of the viability of this approach, by comparing several belief-
network quantifications of different levels of informedness. It was established that refining
a limited number of highly influential parameters in a poorly-informed quantification may
be sufficient to obtain satisfying network performance.

1 Introduction

In building a Bayesian belief network [8], two closely related tasks can be discerned: the
construction of the graphical part of the network, and subsequent quantification of the local
conditional probability distributions associated with the variables in the network. Especially
quantifying a belief network is a difficult and time-consuming task; it is often considered to
be a bottleneck in belief-network construction. Several methods have therefore been proposed
in the literature to facilitate the task [4, 11]. It has also been claimed however that once the
graphical part of the network is correct, then the behaviour of the network is insensitive to
the quality of the majority of quantification parameters, [10]. If this conjecture is true, then
a satisfactory network quantification can be obtained by only estimating a small set of highly
influential parameters from well-informed sources, and taking rough estimates for the others.
Recently, Coupé et al. [2] have proposed a quantification procedure for belief networks that is
based on the above conjecture of variational sensitivity. The procedure consists of iteratively
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performing sensitivity analyses of an initially roughly quantified network, in order to stepwise
refine the quantification. Sensitivity analyses can reveal which network parameters have a
large effect on posterior probabilities, and therefore, on which parameters the quantification
effort should be focused.

This paper presents an empirical investigation regarding the viability of the quantifica-
tion procedure proposed in [2]. As a case study, we selected a belief network that models the
clinical pathophysiology of ventricular septal defect (VSD), a congenital heart disease. Three
quantifications were obtained for this network, differing in level of underlying informedness
(i.e. amount of domain knowledge used); in the two least-informed quantifications, the es-
timates of highly influential parameters were stepwise replaced with the estimates from the
third, best-informed, quantification. Our results show that the procedure contributes to effi-
cient quantification of a belief network: after selective replacements of probability estimates,
the poorly-informed quantifications give predictions that are comparable to the network that
is completely quantified with well-informed estimates.

The paper is organised as follows. In Section 2, we briefly discuss the belief network for
VSD. Section 3 gives a description of the method of investigation that was used. Then, in
Section 4, the results of the sensitivity analyses and subsequent refinements of the network
quantification are presented. We conclude with a discussion in Section 5.

2 The VSD network

Ventricular septal defect (VSD) is an abnormal opening in the wall that separates the heart’s
two ventricles [5]; it is the most frequently occurring congenital heart disease. The main
pathophysiological consequence of a VSD is blood flow, called a shunt, from the left to the right
ventricle. The shunting of blood accounts for most of the symptoms associated with VSD,
such as shortness of breath, growth arrearage, cardiomegaly (enlarged heart), hepatomegaly
(enlarged liver), and pulmonary infections. For the clinician, the main dilemma when treating
a VSD patient is to decide if and when to submit a patient to surgery. About 70% of all VSDs
close spontaneously by normal tissue growth during the first years of life; this development
precludes the need for surgical intervention. Unfortunately, when the defect does not close,
the continual shunting may cause severe, irreversible damage to the lung circulation; surgical
intervention is indispensable to prevent this reaction.

A belief network that models VSD pathophysiology was developed in co-operation with a
field expert, a senior paediatric cardiologist [9]. The independency graph for the network was
developed by hand; it consists of 38 nodes and 50 arcs; the number of parameters needed to
quantify the belief network is 1298. Prior to quantification three types of qualitative infor-
mation on the probability distributions were collected: (i) functional dependencies, modelling
deterministic relations between variables, (ii) consistency constraints, describing impossible
combinations of values, and (iii) qualitative influences, expressing the sign of probabilistic
interactions. Each of these information types can be interpreted as expressing a constraint on
one of the local probability distributions in the quantification [4]. The functional dependencies
and consistency constraints jointly reduced the number of parameters that need estimation
from 1298 to 738. A total of 24 positive and 5 negative qualitative influences was found, each
inducing a number of inequalities between quantification parameters.



3 Quantification and sensitivity analysis

This section reviews the quantification procedure under study, discusses the three quantifica-
tions that were obtained for the VSD network, and describes 5 case profiles, typical patterns
of observations on VSD patients, that were used in the experiments.

3.1 A focused quantification procedure

Sensitivity analysis is a technique to study the effects of varying a model’s parameters on its
predictions. It is widely used in the fields of decision theory and mathematical modelling,
[6, 7]. For a Bayesian belief network, sensitivity analysis provides for studying the effects of
variations in the estimates of the network’s quantification parameters on one or more posterior
probabilities of interest. In this investigation, we restrict ourselves to one-way sensitivity
analyses, where estimates of the network’s parameters are varied one at a time.

In a belief network, the relationship between a probabilistic parameter § and a posterior
probability y = Pr(V = v | €) can be expressed as

fl) = L2tb 1)

T+c

where a, b, and c are real-valued constants, and 0 < z <1 is the value of 8, [1]. Now, if zg
is the estimate for # in a given network quantification @, then f'(zg) provides a quantitative
impression of the effect of (small) variations in the estimate of # on the posterior in that
quantification. We have chosen to use this quantity as a measure of influence of parameter 6
on Pr(V =w | £). It is often found that b = ac for many network parameters; then f'(z) =0
for all z and these parameters are therefore uninfluential. Note that the shape of the function f
may differ with the observed evidence &; sensitivity analyses should therefore be performed for
several evidence sets. We will refer to these sets as case profiles. 1t should also be established
which variable V is indicative for the performance of the belief network. It depends on the
envisioned application of the belief network under consideration; we will refer to it as the
measurement variable.

To facilitate the quantification of a belief network, the following two-stage procedure is
proposed in [2]. After the graphical part of the network has been assessed, a rough quan-
tification is established. Such a rough quantification can be based, for instance, on a small
collection of statistical data, or order-of-magnitude estimates. The second stage consists of
performing sensitivity analyses on the network. The estimates of parameters that turn out
to be highly influential are refined, where the refined estimates are obtained, for instance,
by gathering more statistical data on the variables involved. The effort of obtaining highly
accurate parameter estimates is thus limited to a subset of quantification parameters.

3.2 Method of investigation

The main question now is: how does a network quantification obtained by following the proce-
dure described above compare to a network quantification that consists completely of accurate
parameter estimates? To answer this question, we have acquired three different quantifica-
tions of the VSD network, ()1, @2, and (3, each consisting of estimates for the 560 parameters
that were not determined by a functional dependency or a consistency constraint. Quantifi-
cation (), consists of completely uninformative estimates: a uniform probability distribution



was used for each variable in the network. Quantification ()2 consists of estimates supplied
by a non-medical researcher involved in the project, based on the available information on
qualitative probabilistic influences between network variables. These qualitative influences
were translated into linear models. For quantification (03 finally, each of the parameters was
estimated by the expert physician. We assumed quantification Q3 to be more accurate than
quantifications Q1 and Q2. Our objective was to assess whether it is possible to improve
quantifications (1 and @2 up to the level of (J3, where the improvements consist of selective
revisions of influential parameters.

The next step in the investigation was to select an appropriate measurement variable
and case profiles. The field expert indicated that he would normally base his management
decisions on his expectation of the shunt size, the amount of blood that flows through the
VSD. Shunt size is expressed as ratio of pulmonary and systemic blood flows; of particular
interest is whether this ratio exceeds the value 2 : 1. We have therefore focused on the value
shunt > 2 : 1 to measure the performance of the VSD network under different quantifications.
Furthermore, five case profiles &1, ... ,&5 were composed in cooperation with the field expert.
We have chosen to use profiles that consist of values for network variables that are measurable
in clinical circumstances. The profiles differ with respect to the (suspected) severity of the
underlying disease and their unequivocalness. The first profile, £;, consists of symptoms that
are for a VSD patient, but the necessary heart murmurs are absent; this profile corresponds
to a patient not having a VSD, but some other disease. Profiles £ and &5 consist of related
symptoms and do include heart murmurs; they provide compelling evidence for a small and
a large VSD, respectively. Profiles &3 and &4 also clearly relate to VSD, but the severity is
now harder to assess, as the findings are more equivocal.

4 Results

In this section we compare the predictions of the three network quantifications for the five
case profiles, discuss the results of the sensitivity analyses, and the effects of refining network
quantifications @)1 and Q.

4.1 Posteriors of the original network quantifications

Let P;; denote the posterior probability Pr(shunt >2:1|¢;), 1 <14 <5, under quantifica-
tion Qj, j = 1,2, 3; these posteriors are shown in Figure 1. We see P ; and P, ; are zero for
each quantifiction ();. This is explained by the consistency constraints that were established
prior to quantification; the first two profiles therefore provide no basis for comparison. For
the other profiles, we find that the quantifications @ through @3 have increasingly more
discriminative power; this is in line with the increasing level of informedness of the quan-
tifications. Quantification @) gives the same posterior for each of these profiles, due to the
uniform distributions used in this quantification. The posteriors of quantifications ()2 and Q3
are more pronounced. Notably, a large difference is seen in the posteriors for profile £5. This
corresponds well to the fact that this profile provides equivocal observations and is therefore
hard to interpret. The field expert indicated, however, that quantification @3’s posterior was
best in line with his intuition for this profile.
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Figure 1: Posterior probabilities, O for @1, ¢ for Q)2 and o for Q3.

4.2 Results of the sensitivity analyses

A one-way sensitivity analysis of the posterior F; ; was performed for all three quantifications
(j and with each of the five case profiles §;; the 560 parameters that were determined by a
functional relationship or a consistency constraint were excluded from the analysis. Table 1
shows the average influences of the remaining 738 parameters. Between parentheses, the
percentage of uninfluential network parameters is written; note that this percentage is often
considerable.

Q1 Q> Qs
& 0 (100%) 0 (100%) 0 (100%)
& 0 (100%) 0 (100%) 0 (100%)

€& | 0.0117 (87%) 0.0169 (84%) 0.0145 (83%)
£ | 0.0122 (83%) 0.0072 (83%) 0.0088 (85%)
& | 0.0126 (82%) 0.0007 (78%) 0.0000 (77%)

Table 1: The average sensitivity of F; ; to parameter variations.

We recall from the previous section that for profiles 1 and &9, the posterior is determined
to be zero by consistency constraints, and varying parameters estimates will therefore not
affect it; we restrict the discussion to profiles £3, &4 and &5. We find that in quantifications
Q2 and Q3 the posterior is significantly more sensitive to parameter variation for profiles &3
and &4 than for profile £5. An explanation for this pattern exists in the fact that profile &5
provides several independent pieces of evidence indicating a large shunt; varying individual
parameters therefore hardly influences that posterior. In contrast, profiles £3 and &4 comprise
contradicting observations; in these cases, varying a single parameter can change the posterior
considerably. The result is not found for the quantification @)1, due to the uniform probability
distributions it comprises.

Using the results of the sensitivity analyses, quantifications ()1 and (2 were stepwise
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Figure 2: The posteriors of (a) quantification 1 and (b) quantification Q)2 after refinement.
The dotted horizontal lines correspond to the posteriors of quantification Qs.

refined with parameter estimates from Q3. Although sensitivity analysis reveals the influence
of individual parameters, we chose to substitute, at every refinement step, all parameter
estimates pertaining to a network variable. The motivation is that a parameter often has little
meaning in isolation: it is its relation to other parameters from the same local distribution
that matters. Furthermore, there usually exists a substantial overlap in the variables to which
highly influential parameters pertain; this was also found in the present analyses.

The following procedure was now used to select variables whose parameters were eligible
for substitution. First, for each case profile &;, i = 3,4, 5, we identified the thirty parameters
showing the largest influence on P, ;, and the variables to which these parameters pertained.
Subsequently, these sets of influential variables per profile were compiled to a single, ordered
set; the order was determined by averaging the positions of the variables in the original sets.
In the resulting selection for quantification ()1, consisting of 7 variables, only the measurement
variable itself (shunt), and observed, direct descendants of this variable were selected. This is
not surprising, as the uniform distributions used in this quantification eliminate all influences
through longer pathways in the graph when only one parameter estimate is varied at a time.
The selection for quantification @2 (12 variables) also comprised variables at a greater distance
of the shunt variable, and ascendants of shunt in the graph. As such, the selection for
quantification ()2 seemed to provide a more realistic pattern of influential variables.

4.3 Predictions of the refined network quantifications

The next stage in our investigation was to refine quantifications (1 and Q)2, by stepwsie re-
placing the parameter estimates of variables in the ordered selections with estimates from Q3.
With each of the refined quantifications, the posterior F; ; was computed for case profiles {3,
&4, and &5; these posteriors are plotted in Figure 2. The plots indicate that for both quantifi-
cations, the posteriors rapidly shift towards the posteriors of quantification (J3. However, the
difference between posteriors does generally not decrease monotonically. This is most notable
with the refinements of quantification (Q2: the posteriors for profiles 3 and 4 show considerable
fluctuations in the first seven steps. Thereafter, they quickly converge to the desired level.



Unfortunately, this convergence is not obtained for quantification @)1: even after replacing
the distributions of all seven variables with influential parameters, the posteriors still deviate
from the posteriors of 3.

To investigate whether the results generalise over more cases, the effects of refinements
were also tested on real-world data: 36 cases were selected from a clinical database of VSD
patients collected at the Leiden University Medical Center in The Netherlands. For each
case, the posteriors of quantifications (21 and @2 both before and after the refinements were
compared with the posteriors of quantification (3. Unfortunately, the results of the refine-
ments were not unequivocal. In short, it was found that for some cases in the database, our
procedure selected inappropriate variables to refine; this was probably due to the small set of
case profiles used in the sensitivity analyses. Due to space limitations, we cannot elaborate
on this investigation here; the interested reader is referred to [3].

5 Discussion

We have presented an empirical investigation of a quantification method for belief networks,
where the effort is focused on influential network parameters. These parameters were found
by performing sensitivity analyses. The results of our investigation suggest that the method
is promising: partially refined, poorly-informed quantifications give predictions that are com-
parable to a well-informed quantification. However, the procedure showed better results for
the small set of case profiles that was used to identify influential parameters, than for the
larger set of case from a real-world clinical database. We conclude that it is preferable to also
use a large set of real-world cases when identifying influential parameters.

For the quantification, we have used subjective probability estimates. The proposed pro-
cedure is not limited to subjective estimates though; it is equally well applicable to statistics
from data sets, frequencies reported in the literature, or a combination of sources. The method
is however limited to finding the effects of individual parameter variations on a network’s pre-
dictions, as the influential parameters are found by performing one-way sensitivity analyses.
To reveal synergetic effects of varying multiple parameters, higher-order sensitivity analy-
ses, or uncertainty analyses, which investigate the effect of varying all network parameters
simultaneously, are required.

The main shortcoming of the current procedure is that the effects of refinements are non-
monotonic; it is therefore difficult to establish a stopping criterion. In the future, we plan
to investigate whether monotonic improvement of network behaviour is feasible, and if so,
under what conditions. Further sophistication of the procedure is envisioned in alternating
sensitivity analyses and quantification refinement, and in using the expected accuracy of
parameter estimates as expressed by confidence intervals.
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