An Algorithmic Framework For Density Estimation Based
Evolutionary Algorithms

Peter A.N. Bosman Dirk Thierens
peterb@cs.uu.nl Dirk. Thierens@cs.uu.nl

Department of Computer Science, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

December 1999

Abstract

The direct application of statistics to stochastic optimization in evolutionary computation
has become more important and present over the last few years. With the introduction of
the notion of the Estimation of Distribution Algorithm (EDA), a new line of research has
been named. The application area so far has mostly been the same as for the classic genetic
algorithms, being the binary vector encoded problems. The most important aspect in the
new algorithms is the part where probability densities are estimated. In probability theory,
a distinction is made between discrete and continuous distributions and methods. Using the
rationale for density estimation based evolutionary algorithms, we present an algorithmic
framework for them, named IDFA. This allows us to define such algorithms for vectors of
both continuous and discrete random variables, combining techniques from existing EDAs as
well as density estimation theory. The emphasis is on techniques for vectors of continuous
random variables, for which we present new algorithms in the field of density estimation based
evolutionary algorithms, using two different density estimation models.

1 Introduction

Optimization problems are formulated using variables that can assume values from some domain.
The allowed combinations of assignments of values from that domain to those variables, constitutes
the search space for the optimization problem. Each such instantiation of every variable is called
a feasible solution. Each such a solution can be graded as to how well of a solution it is for the
problem at hand. The objective with respect to the optimization problem, can then be defined
so as to find the optimal feasible solution. The definition of optimality is subject to the problem
definition (eg. minimization or maximization).

The class of optimization problems can be seen as a superclass. Every optimization problem
resides in some class that is a subclass of the general optimization problem class. An example of
such a class of problems are the combinatorial optimization problems (COPs). These problems
are in general defined so as to find the minimum subset S C N, given a set of n weighted elements
|N| = n such that S € F C P(N), or in other words such that S lies within the set of feasible
solutions F, which is a subset of the powerset of N that contains all possible subsets of N. As the
size of set F is usually an exponentially growing amount as a function of n, the search space tends
to be very large. A lot of well known combinatorial optimization problems are not surprisingly in
the class of N'P—complete problems. This means that for such a problem we cannot expect that
there will ever be a polynomial time algorithm that finds the optimal feasible solution.

Different optimization approaches focus on a subset of optimization problem classes. An algo-
rithm that is often applied to solving N"P—complete problems, is the branch and bound method
(see for instance [27]). Branch and bound is in general an exponential time algorithm in the case
of exponentially large search spaces, that traverses the search space systematically to find the
optimal solution.

The way that feasible solutions are graded along with which solutions are to be seen as feasible,
codes the structure of the search space. All of this structural information is formulated using the
problem variables. Any reasonable optimization problem has structure. Regard for instance the
problems in the COP class. The common known problems in this class, such as the TSP, clearly
have some structure. If we exploit this structure, we can perform optimization faster to give better
results.

In black box optimization, we have no prior knowledge of the problem structure. The only
thing available is a mechanism to grade a feasible solution. Assuming that the underlying problem
within the black box has structure, attempting to find out and subsequently use this structure is
a more preferable way to traverse the search space than a random search.

Searching for and using such structure in optimization has been an active line of research within
the field of genetic and evolutionary computation. One of the latest developments in this field is
to build and use probabilistic models over stochastic random variables, where one random variable
is introduced for every coding variable within the optimization problem. Most of the theory and
practice within this line of research has been done in the class of problems that are encoded using
only binary variables. The reason for this is that the new methods have been developed in the
field of genetic and evolutionary computation, wherein the genetic algorithm (GA) plays one of
the most important and historical roles.

Within the standard genetic algorithm [12, 18], strings of binary variables are manipulated
using operators inspired by biological evolution. Parts of information are exchanged between
solutions as a result of recombination. A selection of solutions that are maintained in a population
at any point in time, is appointed to undergo this recombination operation. If the structure of
the encoded problem is such that it contains sets of interacting variables (building blocks), it is
known that the population size required to solve the problem for a standard genetic algorithm with
uniform crossover, grows exponentially with the problem size [33]. The uniform crossover operator
combines two solutions by swapping the values for every variable with a certain probability.

In the compact GA (cGA) by Harik, Lobo and Goldberg [16], the dynamics of the standard
GA are mimicked using only a single probability vector that codes whether a variable should be
set to 1. This probability vector as a result resembles a univariate probability distribution over
the binary variables. Using such a univariate probability distribution in different ways, has in
addition to the cGA resulted in the PBIL approach by Baluja and Caruana [2] and the UMDA
by Miihlenbein and Paaf [23]. These approaches share the problem of not being able to efficiently
optimize problems that contain sets of interacting variables.

To take into account interacting variables, Holland [18] already recognized that it would be
beneficial to the GA if it would exploit this so called linkage information. The inversion operator
was proposed to accomplish this, but it unfortunately has turned out to be too slow with respect
to the speed of convergence of the GA. Through other approaches, such as the mGA [14], the
fmGA [13], the GEMGA [19, 4], the LLGA [21] and the BBF-GA [34], the simple GA was
extended to be able to process building blocks. Other approaches have come to focus more on the
probability density view of processing the problem variables. An overview of the work in this field
was given by Pelikan, Goldberg and Lobo [25]. Our work in this paper contributes along those
lines of research.

Staying within the field of problems that are encoded using binary variables, approaches that
allowed for pairwise interactions between variables in the probability distribution were presented.
The reason for this extension to higher order statistics is the equivalent of the quest for the
exploitation of linkage in GAs. Because the variables are being processed independently when
using a univariate distribution, problems that are defined using higher order building blocks can
not be solved efficiently. In these approaches, a variable may be conditionally dependent on exactly
one other variable. Allowing different structures for pairwise interactions, the MIMIC algorithm
by De Bonet, Isbell and Viola [6], an optimal dependency tree approach by Baluja and Davies [3]
and the BMDA algorithm by Pelikan and Miihlenbein [26] were introduced. For all of the methods
in this introduction, we leave the details to section 3.

More recently, approaches allowing multivariate interactions were presented. In these ap-
proaches, a variable may be conditionally dependent on sets of variables. These methods include

the BOA by Pelikan, Goldberg and Canti—Paz [24], the FDA by Miihlenbein, Mahnig and Ro-
driguez [22] and the ECGA by Harik [15]. Even though finding the correct structure to capture
the sets of interacting variables is very difficult, covering multivariate interactions is the key to
solving higher order building block problems and exploiting problem structure [7].

Miihlenbein, Mahnig and Rodriguez [22] first presented a general framework for this type of
algorithm, named EDA (Estimation of Distribution Algorithm). This framework is a general
optimization algorithm that estimates a distribution every iteration, based upon a collection of
solutions and subsequently samples new solutions from the estimated distribution. In this paper,
we make certain steps from the EDA more explicit within a new framework. By doing so, we allow
algorithms within the new framework to follow a certain rationale for density estimation based
evolutionary algorithms.

Next to presenting this new algorithmic framework, we also present three instance classes for
it. One of these instances is the class of empiric probabilities for discrete variables, which follows
the approaches mentioned above. The estimation of distributions is however not limited to binary
or discrete spaces and can be extended to real spaces. Therefore, we also present two new instance
classes for problems defined on real continuous variables.

The simple GA and the approaches discussed so far only regard binary or discrete encoded
problems. In the case of real valued problems, evolution strategies (ES) [1] have been shown to
be very effective. In the ES algorithm, real variables are treated as real values. Real values can
be coded in binary strings, but when such a coding is processed by the GA, a few problems arise.
The most important of these is that if two real variables are dependent on each other, this means
that all of the binary variables that code these real variables, have to be dependent on each other
in some way. This gives additional overhead because the bits that code a single real variable also
have to be seen as having some sort of dependence amongst each other. In the ES, a new type of
mutation is applied that adapts the value for a real variable along a certain direction according to
a normal distribution, using correlations with respect to other variables if desired.

There is no direct use of a probability distribution or density estimation in the ES algorithm.
However, other approaches have made a first step in this direction. Given the EDA framework,
we could say that the work by Servet, Trave-Massuyes and Stern in a first approach [30], the
algorithm PBIL¢ by Sebag and Ducoulombier [29], which is a real valued version of PBIL using
normal distributions, and the more flexible approach using a mixture model of normal distributions
by Gallagher, Fream and Downs [11], are first attempts to expand the use of building and using
probabilistic models for optimization to real continuous spaces. In all of those approaches however,
the real variables are processed independently of each other. In other words, the probability
distribution structure that is used in these algorithms, is a univariate one. In this paper, we
present algorithms that use real density models as well as allow for the modelling of multivariate
interactions between variables. All of this is done within the new framework that we present, but
can be seen to be rather independent of it.

Our goal in this paper is to apply the search for linkage in terms of probabilistic models to
continuous spaces. We therefore do not introduce any new way of data or linkage information
processing, but show how we can expand the existing techniques to be used in the continuous
case. This means that we focus mainly on density estimation. We require density models to use
for modelling distributions of continuous random variables. The problem of estimating densities
is well studied. An overview on fundamental issues in density estimation has for instance been
given by Scott [28] and in a more application like manner by Bishop [5]. Based on such work,
we can employ commonly used density models that have convenient properties in expanding from
discrete to continuous density estimation based evolutionary algorithms.

The remainder of this paper is organized as follows. In section 2 we present the general
framework for density estimation based evolutionary algorithms. Next, we go over previous work
in section 3 and observe what is required to establish those algorithms. We need to know the
demands on the density estimation model to be able to use probability theory for defining density
estimation based evolutionary algorithms in general. In section 4, we redefine the algorithms
for the case of discrete random variables to fit within the new framework. Subsequently, we use
the requirements information in section 5 to define new algorithms using two different density

estimation models for continuous random variables. The two density estimation models we use in
this paper are the normal distribution and the histogram distribution. Notes on the running times
of the algorithms and topics for further research are given in section 6. We finish by presenting
our conclusions in section 7. We present all of the algorithms in somewhat detailed pseudo—code.
Conventions that are used in this paper for writing pseudo—code are given in appendix F. In
general, involved mathematical derivations and definitions can be found in the appendices (A
through F). Before moving to present the IDEA algorithmic framework, we first introduce some
notation we employ in writing probability theory.

1.1 Probability theory notation

Discrete random variables are variables that can take on only a finite or at most a countably
infinite number of values. We shall denote such variables by X;. Using this notation, X or X i
denotes a vector of random variables X;. The domain for each X; is mostly taken to be the same
as well as finite, so we shall denote the domain by DX = {dff,df,...,dX, _,}. The size of the
domain is thus denoted by ng = |DX|. In a special case, we have ng = 2, dg = 0 and d; = 1
so that DX = B, the binary domain that was used in most EDAs so far. Now we can define the
multivariate joint probability mass function for n discrete random variables X, , X, ... X;

josr<Yjis- Jn—1*
Piositymins (A A5 dX)= P(Xj, = dX, Xj, =d, ..., X;,_, =dX) (1)
ng—1lng—1 ng—1
X
such that Z Z Z Pio g rin-s (g Ay - i,) =1
ko:O k1:0 'n, 1—0

where pjo i, ja_1() >0

For n = 1 this becomes the well known univariate probability mass function p;(dy) = P(X; =
d¥) so that the sum over all domain variables of the probability function equals 1. As the set DX
is taken to be finite, we can straightforwardly make use of the mapping i <+ dX. By storing this
mapping!, the numbers DX = {0,1,...,n4 — 1} C N can be used. This clarifies and simplifies
certain notations and implementations. Therefore, when referring to discrete random variables
in the remainder of the paper, we shall use DX instead of DX. In the one-dimensional case for
instance, this means that we write p;(k) = P(X; = k) instead of p;(dy) = P(X; = di¥). As
a general notation, we usually write P(X;) for pz, maklng P(X;) a function. Th1s notation is
straightforwardly expanded to the multivariate case.

Continuous random variables are variables that can take on a continuum of values. We shall
denote such variables by Y; and let Y or Y7 once again be a vector of variables Y;. The domain
is mostly a subset of R, so we shall denote the domain by DY = [d} ,d}] with df < df and

(d¥,dY) € R2. We can now define the multivariate joint density function f(yo,y1,---,Yn—1) for
n continuous random variables Y;,,Y;,,...Y;, _:
/ / fJO,Jl, SJn— 1(:1/0;?]1, 7yn—1)dy0dy1"'dyn—1 = P((Y107Y117"'7Y7n_1) € A) (2)
ao Y a1
such that / / fm,]l, i1 Wos Y1, - Yn—1)dyodys . . .dyp—1 =1
ay

where f(-) >0 and A = [ag,bo] X [a1,b1] X ... X [@n_1,bn_1] C (D¥)"

For n = 1 this becomes the well known univariate density function fab fily)dy = P(a <Y; < b),
so that the integral over the domain of the positive density function equals 1. As with the discrete
variables, we would like to employ a notation P(Y; f fi(y)dy so that given a point a, we get

1When programming for instance, this mapping could be stored in an array.

the probability that Y; is set to a, but we cannot do so because P(Y; = a) = faafi(y)dy = 0. Since
however we do computations on f(y) in the continuous case, we introduce the notation P(Y;) for
fi, making P(Y;) a (density) function. This notation is again straightforwardly expanded to the
multivariate case.

We may now note that when we discuss random variables in general, regardless of their domain
type, we specify them as Z; and write Z for a vector of variables Z;. We can now give the definition
for the conditional probability of one random variable Z; being conditionally dependent on n other
variables Zj,, Z;,,...,Z;,_,. This is the most fundamental probability expression in the use of
density estimation based evolutionary algorithms:

7 P(Zi7Zj07Zj17"'7Zjn—l) (3)

P(Z;|Z; ,Z ; =
(| Jﬂ_l) P(Zjoazjn-'-azjn—l)

JorLg1r -

2 Optimization using IDEAs

In this section we present the algorithmic framework for evolutionary optimization algorithms
using density estimation techniques. We call this framework IDEA. In section 2.1 we specify the
IDEA and show its connection with the EDA. In section 2.2, we introduce additional notation and
place some remarks on the fundamental part of IDEA, namely the probability distribution.

2.1 The IDEA framework

The rationale for using distribution estmation in optimization was clearly stated by De Bonet,
Isbell and Viola [6]. Assume we have a problem for which the function to be optimized is defined
as C(Z) with Z = (Zy, 2y, ..., Z1—1), which without loss of generality we seek to minimize. If we
have no information on C(Z) in advance, we might as well assume a uniform distribution over the
input P(Z). Now denote a probability function that has a uniform distribution over all vectors Z
with C(Z) < @ and a probability of 0 over all other vectors by P?(Z):

1 .
0.7\ - { IOy 0(2) <6
Piz) = {(l){ s otherwise)

Sampling from distribution P?(Z) would thus give only samples with a function value of at
most §. This means that if we would somehow gain information that allows us to find P?" (Z)
where §* = minz{C(Z)}, a sample drawn from the probability distribution P?"(Z) would give us
an optimal solution vector Z*.

Sampling and estimating distributions is well studied within probability theory. In terms of an
iterated algorithm, given a collection of n vectors Z? (i € {0,1,...,n — 1}) at iteration ¢, denote
the largest function value of the best |7n| vectors with 7 € [1,1] by 6;. We then pose a density
estimation problem, where given the | 7n| vectors, we want to find, or best approximate, the density
P%(Z). To this end, we use density estimation techniques from probability theory. In section 3
we will investigate what techniques have been employed so far in previously introduced algorithms
for discrete (binary) spaces. Once we have this approximate distribution, we sample from it to
find more samples that will hopefully all have a function value lower than §; and select again from
the available samples to approximate in the next step P%+1(Z) with 6;,; < 6;. Making these
steps explicit, we define the general Iterated Density Estimation Evolutionary Algorithm (IDEA)
as follows:

IDEA(n, 7, m, sel(), rep(), ter())
1 Generate a collection of n random vectors.
{Zt]|ie{0,...,n—1}}
2 Evaluate function values of the vectors in the collection.
c(zh) (ie€{0,1,...,n—1})
3 Initialize the iteration counter.
t«0
4 Select |Tn| vectors.
{29 | iefo,...,|tn] —1}} + sel() (r €[L,1])
Set 6; to the worst function value value among the selected vectors.
Determine the probability distribution P (Z).
Generate m new vectors O by sampling from P (Z).
Incorporate the new vectors O in the collection.
rep()
Evaluate the new vectors in the collection (C O).
10 Update the iteration counter.
t—t+1
11 If the termination condition has not been satisfied, go to step 4.
if —ter() then goto 4
12 Denote the amount of required iterations by tenq.
tend < 1

o J O Ot

©

If we refer to the iterations in the IDEA as generations, it becomes clear that the IDEA is
a true evolutionary algorithm in the sense that a population of individuals is used. From this
population, individuals are selected to generate new offspring with. Using these offspring along
with the parent individuals and the current population, a new population is constructed.

In the IDEA algorithm, P%(Z) stands for an approximation to the true distribution P% (Z).
An approximation is required because the determined distribution is based upon samples. This
means that even though depending on the density model and search algorithm used, it is possible
we might achieve P%(Z) = P%(Z), in general this is not the case.

If we set m to (n — |7n]), sel() to selection by taking the best |7n| vectors and rep() to
replacing the worst (n — |7n]) vectors in the collection by the new sampled vectors, we can
state that Ory1 = 0 — e with € > 0. This assures that the search for §* is conveyed through a
monotonically decreasing series 8y > 6, > ... > 0ten 4 Hopefully we end up having 0ten 4= 0*.
We call an IDEA with m, sel() and rep() so chosen, a monotonic IDEA.

If we set m in the IDEA to n and take the m new vectors as the new collection, we obtain
the EDA algorithm that was originally presented by Miihlenbein, Mahnig and Rodriguez [22] as
a general estimation of distribution algorithm. In the EDA however, the probability plateau 6,
cannot be enforced according to the rationale we just presented. Therefore we introduce IDEA
and note how EDA is an instance of this new framework.

In figure 1 we give a graphical example of the general idea according to which IDEAs go to
work. We have a continuous problem with DY = [-10,10] and I = 2. The simple function C(Y")
we seek to minimize has a uniquely defined minimum at (¥7*,Y5) = (0,0). The C(Y") function
plots demonstrate the idea of having the threshold 8, for the probability distribution P% (V). Over
the iterations (with teng = 30) we observe that 6; goes to the minimum value of C(Y"), leading to
convergence to the optimal point. The contour plots show the convergence of the distribution of
the vectors in the collection. The vectors were determined at the end of each iteration.

New IDEAs have been introduced under different names. The most important discriminant
among these algorithms has been the way in which step 6 in IDEA is performed. The reason for
this becomes apparent when looking at the case of discrete random variables. In the case when
we attempt to best estimate the complete joint probability, we require to count from the selected
|7n| vectors the occurrences of every combination of assignments of every element from DX to
every X;. This leads to (ng4)! combinations to check out for each selected vector, which is an
exponential amount. The amount of vectors we would require to justify this estimation would

Hteration 0

heration 0

10 8 4 0 2
¥
Hteration s,

heration 5

0.254505

10
08
07
04
03
02
01
10
8
4
v
2
0047173

08
07
04
03
02
01

10

2

42

-4

46

Figure 1: An example run of a monotonic IDEA on a simple test function
distribution structure such that P(Y) = P(Y1|Y2)P(Y3), 7 = 0.5, n = 30 and m = 15.

teration 1

teration 1

Hteration 10

0207767

0.004665

Hteration 2

heration 2

0120158

08
07
04
03
02
01

10

48

6

44

2

o v

42

EE)
¥
Hteration 30

Ieration 10

Ieration 30

with a fixed probability

Figure 2: An unfeasible PDS graph on two variables: P(Zy|Z,)P(Z:|Zo)

also be enormous. We would be better off trying every possible vector X. The other extreme
would be to regard every variable X; independently. Such has been the approach by algorithms
such as PBIL [2] and UMDA [26]. However, just as the notion of linkage was first acknowledged
by Holland to be of importance [18], it has been shown by Bosman and Thierens [7] that IDEA
algorithms require to find higher order density structures as an approximation to P%(X) as well
in order to find solutions to higher order building block problems. This is why quick and efficient
density estimation is of the greatest importance to IDEA algorithms and why multiple different
algorithms have been introduced with different types of distribution structures. In section 3 we
shall go over these algorithms and note what is required to rationally find such a distribution by
observing what has been done so far. First however, we introduce some notation regarding these
probability distributions and introduce the general notion of how these distributions are used in
IDEAs.

2.2 Probability distribution issues

After updating the probability density structure, we can write this structure in the following
general form:

-1
PTI'(Z) = H P(Zi|Z7r(i)05Z7r('i)1a ceey Z7r(z')|,,(i)|_1) (5)
=0

Where Z; represents the i—th random variable in vector Z and 7 (7) is a function that returns a
vector w(i) = (m()o, 7(4)1,- - -, (%) x(s) —1) of indices denoting the variables that Z; is conditionally
dependent on.

We call the graph that results when drawing the variables Z; as nodes and drawing an arc
from node ¢ to j when Z; is conditionally dependent on Z;, the Probability Density Structure
(PDS) graph. The PDS graph needs to be acyclic. This can be seen from the simple example in
the discrete case when we might want to model P(Xo|X;)P(X;|Xo) as shown in figure 2, with
DX =B = {0,1}. This is not a valid probability distribution over X. From an IDEA standpoint,
even though we will be able to determine the two required probabilities by counting, we will
not be able to generate new samples according to this distribution because we need to set Xi
to 0 or 1 before we can sample X, but we also need to set Xy to 0 or 1 before we can sample
Xi. To see that an acyclic graph is sufficient, we note that because P(Z;,|Z;,, Zjs,---, Zj,_,) -

P(Z;,,Zjy,...,Z;,_,) = P(Zj,, Zj,,-.-,Zj,_,), the complete joint probability can be written as
follows (see figure 3 as an example):
-1
P(Zo, 21,21 1) = HP(Zi|Zi+1;Zi+2;---:Zlfl) (6)
=0

To formalize the notion of having an acyclic graph, we state that we require to have a vector
w = (wp,w1,---,w;_1), S0 that we can rewrite the general form of the approximated probability
density structure:

Figure 3: A complete PDS graph on five variables: 13(Z0|Z1,Z2,Z3,Z4)]5(ZI|Z2,Z3,Z4)-
P(Z5|Z3, Z4)P(Z3|Z4)P(Zs) = P(Zo, Z1, Z2, Z3, Z4)

-1
P7r,w (Z) = H P(Zw, |Z7r(w,-)0 3 Zﬂ(wi)la [EER} Zﬂ'(wi)ln(wi)l—l) (7)
i=0
such that Vicqo,1,....i—13{wi € {0,1,...,1 =1} AVieqoa,..0—1}—{i} (Wi # W)
vi€{071,---,l—1}<vk€7r(wi)<k € {w’i+1aw’i+27 s lefl}»

Even though this definition is tricky and defines what permutations in combination with parent
functions are allowed, the construction method for the PDS in the form of (7, w) will in general
only create feasible structures.

We should note that next to finding a distribution, we must also be able to sample from
P,W,(Z). It is clear to see that because the PDS graph is acyclic, there is an ordering of the
variables such that we can always sample a value for a variable that is conditionally dependent
only on variables we have already sampled for. This ordering is given by the w; from equation 7.
Note that given the conditional variables, the probability density for a variable takes on a one
dimensional form, since it is given in the form of equation 7. From such a one dimensional density
it is sometimes straightforward to sample. Still, the method of sampling is dependent on the type
of density estimation that is used, so we parameterize this method in the IDEA.

Once more we note that step 6 in the IDEA is an important discriminant. A general dis-
crimination can be made between algorithms that use a factorization a priori and the ones that
search for a probability density structure. Note that the factorization we refer to is not the full
specification of P ,(Z), but only of the structure of Py, (Z). This structure is fully specified by
a pair (m,w) that is subject to the constraints from equation 7. The actual probability values are
found through estimations on the selected points. This means that even though we might have
the correct structure over all points, say the complete joint probability, we yet have to find the
probability values over the domains that assign probabilities of 1.0 to the assignment of the right
domain values to the variables. This estimating however needs always to be done. If we specify a
search procedure for finding (7,w) by sea(), we note that algorithms that use a factorized prob-
ability distribution simply use a static sea() procedure that always returns the same structure.
Therefore we need not to introduce two new algorithms, but we can suffice by elaborating on the
first framework to end up with the final specification of IDEA:

IDEA(n, 7, m, sel(), rep(), ter(), sea(), est(), sam())
1...5 Identical to IDEA(n, 7, m, sel(), rep(), ter())
6 Determine the probability distribution P,ffw(Z) in two steps:
6.1 Find a PDS subject to the constraints from equation 7.
(m,w) + sea()
6.2 Estimate the density functions.
{P(Zwi Zﬂ'(Wi)O? Zﬂ(wi)ﬂ cee, Zﬂ'(wi)\ﬂ(wi)\—l) | 1€ {0, = 1}} — €St()

7 Generate m new vectors O by sampling from P,ffw(Z) in three steps:
71 0«0
7.2 repeat m times

7.3 O «+ 0O U sam()
8 ...12 Identical to IDEA(n, 7, m, sel(), rep(), ter())

Concluding, we now have a framework that, given implementations for the functions that are
parameters and the values for the other parameters, completely specifies density estimation based
evolutionary algorithms. This makes it clear what variant of the IDEA is exactly used, as any
parameter that is not specified leaves it unclear as to what the algorithm does. In addition however,
add—ons may be introduced on top of the framework. For instance a local search heuristic can be
added, which makes the algorithm hybrid.

3 Finding requirements from existing EDAs: Previous Work

The use of distribution estimation in optimization algorithms has been introduced through various
approaches. These approaches use various types of density structures and have mostly been applied
to discrete and in particular binary random variables. We seek to investigate what approaches
to the search for a PDS have been used. By making this algorithmic part explicit, we isolate
what we require from certain distribution models in order to use them in the case of continuous
random variables. In all cases, we will find that the metric to guide the search for a PDS is the
entropy measure over random variables. We shall write h; and h;; respectively for the univariate
and bivariate joint empirical entropy (either discrete or differential) over variables Z; and Z;. In
the pseudo—code that we present in the remainder of this paper, we assume that h; (V;cf0,1,....1-1})
and hi; (Y(;j)efo,1,...,—1}2) are global variables, for which we do not allocate additional memory
in the algorithms.

3.1 PBIL
The basic idea in PBIL by Baluja and Caruana [2], is to update a single probability vector
P[i],i € {0,1,...,1 — 1}. This vector has an entry for every binary random variable. Each

entry denotes the probability that the corresponding variable should be set to 1. The update
procedure is performed by moving the probability vector toward a few (M) of the best vectors in
the population. This is achieved by updating each entry independently of the others at the rate
of a certain learning parameter 7:

for j < 0to M —1do
fori+— 0tol—1do

Pli] « PE(1—n) + X%y

The requirements for the density model are nothing special because the density structure is
simply the univariate distribution. In other words, we need no special aspects of the density model
to compute (m,w). We do note however, that PBIL uses a different approach to updating the
distribution. In PBIL, a memory is used as the information from previous iterations is preserved
by multiplication of the probability vector entries with (1 — n). This is different from our IDEA
algorithmic model as we use only the population to update the distribution from.

10

In extensions of the PBIL framework to continuous spaces [30, 29, 11], all variables continue to
be regarded independently of one another. Even though the density model for each variable may
be different, the requirements on these models are nothing special from the viewpoint of searching
for the structure (m,w). Concluding, the requirements for implementing the search algorithm
employed by PBIL are none.

3.2 MIMIC

In MIMIC, a framework by De Bonet, Isbell and Viola [6], all binary variables except for one are
conditionally dependent on exactly one other variable. These dependencies are ordered in such a
way that the resulting PDS is a chain:

-2
) - (17
i=0

such that V(; pyeqo,1,....1—132 (8 # k = i # ji)

To determine the j; that constitute the chain, the agreement between the complete joint
distribution and P(X) is maximized. This comes down to minimizing the following expression
when using the Kullback-Leibler divergence, written using discrete variables X;:

-2
J(X) = (ZH(XL
=0

In this expression, H(X;) stands for the entropy of variable X;. The notion of entropy was
first introduced by Shannon when presenting his information theory [31]. It is a measure of the
average amount of information conveyed per message. The multivariate definition in n dimensions
for discrete random variables X, X;,,..., Xj,_,, is the following:

Zji+1)> P(Zjl—l) (8)

in+1)) + H(le—1) (9)

H(onvXjnn-vXjn—l) = (10)

ng—1lng—1 ng—1

- z Z z pjo,j1,...,jn—1(k07k17---7knfl)ln(pjo,j1,...,jn—1(k07kla---;knfl))

ko=0 k1=0 kn—1=0
Furthermore, we require the notion of conditional entropy. For one discrete random variable

X; conditioned on n other discrete random variables X;,, X;,,..., X}, _,, this definition equals:

H(Xi|X.io:Xj17---ann—1) = (11)
H(X’ianoanla .. -JXjn—l) - H(XjOJXj1’ v ann—l)
The definition in equation 10 cannot be used for continuous random variables. To this end,

we require the definition of differential entropy, which is the continuous variant of the entropy
measure. This entropy measure is usually denoted with a small h instead of a capital letter H:

Yo, Y5, Y _) = (12)

Jor 19"

oo o0 o0
—/ / / Fioiitserint Y05 Y15+ o s Yn—1)IN(F0.51,c0im 1 (Y03 Y15+ - s Yn—1))dYodY1 - . . dYn—1
—o0 J —o0 e

The minimization of the divergence in equation 9 can be done in a greedy way, which is the
approach used in MIMIC. First, the variable with minimal unconditional entropy is selected. Then,
new variables are subsequently selected by choosing the one with minimal conditional entropy,
given the previously selected variable. This gives an O(I?) algorithm (without computing the
entropies):

11

w1 + arg min;{h(Z;) | j € {0,1,...,1—-1}}
71'((4)171) «0
for i + | — 2 downto 0 do
w; + arg minj{h(Zj,Zle) - Zu4) |
j € {05]-7 . '7l - 1} - {wi+17wi+27 s awl—l}}

7r(wl-) — Wit

In the above, we have written h(Z;) instead of h(Z;) to remark that the entropy measure used
in an actual algorithm based on vectors Z(5)7 is the empirical entropy. The empirical entropy
differs from the true entropy in that the empirical entropy is based upon samples instead of upon
the true distribution.

Concluding, the one requirement we have on the distribution model to be used in order to
apply the MIMIC chain search procedure, is that we are able to compute one dimensional and two
dimensional (joint) empirical entropies.

3.3 Optimal Dependency Trees

In the approach using optimal dependency trees by Baluja and Davies [3], all variables except for
one may still be conditionally dependent on exactly one other variable, but multiple variables may
be dependent on one and the same variable, yielding a tree structure:

(HP |Z€1) (Zjl—l) (13)

such that V(i xyefo,1,...i-132{(0 # k = Ji # jr) A€i € {Jit1 ... Jn-1})

To determine the j; that constitute the tree, the Kullback—Leibler divergence is again mini-
mized. In the algorithm, the measure named mutual information is used. The definition of mutual
information for two random variables Z; and Z; can be expressed in terms of the entropy measure
we saw earlier in section 3.2:

I(Zz, Z]) = h(ZZ) + h(ZJ) — h(Zz, Z]) (14)

The greater the mutual information, the greater the interaction between variables Z; and Z;.
As a result, the algorithm builds the tree by maximizing the mutual information measure. The
algorithm runs in O(I2) time (without computing the entropies):

b « new array of integer with size [— 1
wi—1 < RANDOMNUMBER(!)
w(wl_l) «~ 0
bli] wia (Vie{o,l,...,z—1}—{w,_1})
for i+« 1—2downto0 do
w;i + arg max;{h(Z;) + (th[]]) h(z;, Zyri) |
J€{0,1,...,1 =1} —{wiy1,wiy2, -, wi-1}}
m(w;) + blwi]
if MZ;) + h(Zyyy) = W(Zj, Zyry) < W(Zj) + W(Z) = 1(Z;, Z,)
then bt[.j] — W; (vge{O,l,...,l 1} —{wi,Wit1,..wi—1}

In the above, we have used algorithm RANDOMNUMBER(z), which is assumed to return a
(pseudo) random integer from the set {0,1,...,2 — 1}. We may conclude that because we only
require (empirical) entropy measures, we require nothing new for implementing the optimal depen-
dency tree search procedure in addition to the requirements for implementing the MIMIC chain
search procedure. The only requirement is thus to be able to determine h(Z;) and h(Z;, Z;).

12

3.4 BOA

One of the most general approaches, allowing the most flexible network structure, was proposed
by Pelikan, Goldberg and Canti—Paz [24]. The algorithm named BOA uses a PDS in which each
node may have up to k successors, allowing variables now to be conditionally dependent on sets
of variables. Because of the very general structure, we may write this using the same variables as
before in equation 7 and with the introduction of one additional constraint:

-1
P(z) =[] P(Z..
=0
such that Vicqo,1,..1—1}{wi € {0,1,...,1 = 1} AVyeqo,..1—1}—{i} (Wi # Wk))
Vic{o,1,...1-1}(Vker(w:) (k € {wit1,wit2, .-, wi—1}))
Viefo,1,..i—13{|7 ()| < &)

As was the case in MIMIC and the use of the optimal dependency trees, a metric is required that
should be maximized or minimized so as to find a network structure. In the original implementation
of BOA, the so called K2 metric is used, which is a metric that should be maximized. In contrast
to that approach and more in the light of previously dicussed approaches, we use a metric based
on conditional entropies. In appendix A, the difference between the K2 metric and the entropy
metric is elaborated upon. In the general graph search algorithm that will result, we will attempt
to minimize the conditional entropy of the PDS imposed by equation 15:

Zﬂ(wi)anw(w,-)la---aZn(wi)‘,,(wi)‘_l) (15)

-1
’(b((ﬂ, w)) = min(ﬁ,w) {Z h(sz |X7r(wi)o) Xﬂ'(wi)l’ T Xﬂ(wi)|"(wi)|_1)} (16)
i=0

Note the obvious similarity with the metric used by MIMIC which we discussed in section 3.2.
It follows from this metric that we require again only to be able to compute empirical entropies.
The only difference is that this time we are required to be able to compute multivariate entropies
for the applied density model in k + 1 dimensions.

The only thing that is now missing is the algorithm used in BOA to find a PDS. To this
end, three different cases are distinguished for k. When k = 0, the PDS regards every variable
univariately. In other words, we end up with a fixed network in which V;(rw (i) = 0). In the case of
k = 1, there is a polynomial algorithm by Edmonds [10] to construct the optimal network. A direct
combinatorial proof of the correctness of the algorithm was given by Karp [20]. The definitions
that are required to understand the algorithm and fill in the details, are based on the work by
Karp and are clarified in appendix B. If k > 1, the problem is A"P—complete for the proposed
metric [17]. Therefore, a greedy algorithm can be used as has been done in the MIMIC approach.
The original implementation of BOA starts with a PDS with V;{w(i) = 0). Next, from the set of
arcs that are not yet in the PDS graph, the arc that moves the metric the most in the direction of
the optimum is selected and added to the PDS graph. This process is repeated until the metric can
no longer be improved. These three cases constitute a search algorithm that runs in O(kl®) time
(without computing the entropies). This time bound is due to the fact that for k = 0, the running
time is O(1), for £ = 1, the running time is O(1®) and for £ > 1, the running time is O(xl®). Along
with these running times, we note that Tarjan [32] has given a more efficient implementation of
finding optimal branchings for the case when k = 1, which runs in O(I(log(l))? +1?) time. Seen to
the equivalent running time of the general graph search algorithm with respect to the case when
k > 1 is taken as a constant, this is of no influence on the running time. We are now ready to
present the algorithm itself:

13

if k=0
then i+ 0tol—1do
w; 1
7r(wi) «~0
elseif k=1
then P < CONSTRUCTPROBLEM()
G=V,A) « ({0,1,...,1—=1},{0,1,...,1 = 1}> = J\Z5{(3,9)})
set s(i,7) < ¢ and t(4,5) < j
compute c(i, j) for every arc (4,7) so that min(; j){c(i,j) | (i,5) € A} =1
P+ (G,s,t,c)
H = (V,An) + CoMPUTECRITICALGRAPH(P)
i1f AcycLIC(H)
then B < Ag
else P + CONSTRUCTDERIVEDPROBLEM(P, H)
B « repeat computation, but start with P
B « optimum branching for P corresponding to B for P
perform topological sort on B to find (7,w)
else
then G = (V,A) « ({0,1,...,1—1},0)
compute change(i, j) for every arc (i, j)
¥ Yo MZi)
whsile —finished do
(v1,v2) « arg ming; ;y{change(i, j) | allowed(i, j) A (i,) € V?}
if change(vy,v2) >0
then breakwhile
mark (vy,vs) and arcs (4,j) that make cycles as not allowed
A+ AU (’Ul, ’U2)
1f vs has k parents
then mark each arc (i,v2),% € {0,1,...,] — 1} as not allowed
e Yo MZil{Z4),) € 4D
compute change(i, j) for every arc (i, j) with allowed(i, j) = true
perform topological sort on G to find (7, w)

3.5 UMDA, BMDA and FDA

The EDA framework has resulted from insights gained through the introduction of algorithms
along the line of UMDA, BMDA and FDA. The UMDA by Miihlenbein and Paaf [23] uses the
same type of distribution as does the PBIL algorithm discussed in section 3.1. The main difference
is that a memory is used in PBIL, whereas in UMDA the collection of vectors is used mainly. This
latter approach is therefore more in concordance with our IDEA approach. It follows from the
use of only the univariate distribution that, for the same reasons as PBIL, we have no additional
requirements for the UMDA.

The BMDA by Pelikan and Miihlenbein [26] covers second order interactions just as is the
case for MIMIC and the optimal dependency trees discussed in sections 3.2 and 3.3 respectively.
However, the structure used in BMDA is the most general one for second order relations, meaning
that the PDS graph has the form of a collection of trees as used in the optimal dependency trees
approach. If we look even closer, we observe that because the BOA from section 3.4 also uses the
most general approach for modeling relations with maximum order &, the model for BMDA equals
the model for the BOA with k = 1. As noted elsewhere [24], the BOA covers both the UMDA
and the BMDA. Hence, we may decline from going into further detail on this algorithm.

Finally, the FDA by Miihlenbein, Mahnig and Rodriguez [22] is of importance. In this algorithm
a complete factorization of the distribution, specified by n, sets s; with i € {0,1,...,n, — 1}, is
taken as input and used to build the PDS:

14

ns—1

poy=112| 1012 112z ||2| Il % (17)

Z;€b; Zj€c; Zj€bo
C; =s;Nd;_4
b; =58 — di—1
where ¢ . _ JUjzesi ifi>0
¢ ¢ otherwise

Urks'si = {Zo, Z1,y- -+ s Zn}

Using an actual factorization for the problem at hand, FDA can very efficiently perform opti-
mization. As this factorization is given a priori, it can be written in terms of the general definition
of equation 7. This means that we have no additional requirements for implementing FDA in
our IDEA framework, since the PDS that is used, is fixed at the outset. In other words, a sea()
function that returns the PDS given as input by the user, suffices.

3.6 CGA and ECGA

The compact genetic algorithm (cGA) was introduced by Harik, Lobo and Goldberg [16] in 1997.
The main idea behind this algorithm, is that it is able to mimic the order-1 behaviour of the
simple genetic algorithm (sGA) with uniform crossover. Again, just as in the UMDA and PBIL,
for each binary variable, an entry in a probability vector is created that is initially set to 0.5. The
algorithm then creates tournaments and moves the probability vector toward the winner of the
tournament. The way in which the probability vector is adapted, is dependent on the assumed
population size in the sGA that the cGA mimics. Again, because of the fact that a univariate
distribution is used, we do not have any additional requirements.

An extension to the ¢cGA, named the extended compact genetic algorithm (ECGA), was given
by Harik [15] in 1999. In the ECGA, the PDS consists of joint structures which are all considered
univariately. This means that variables can be grouped together in a joint distribution, but they
are processed independently of any other variables. Such a PDS follows the idea of having non—
overlapping building blocks which must be processed as a whole in order to solve a problem. Such
problems have been shown to be solvable by the ECGA in a very efficient manner. The search
algorithm for the PDS is a greedy algorithm that seeks to combine two sets of variables into a
single new set as long as a certain metric can still be increased. Initially, all of the variables are
placed in a singleton set. The metric used is based upon the minimium discription length from
information theory (see for instance [8]). The advantage of this metric is that is penalizes models
that are more complex than required. This is important because the density estimation step is an
approximation to the true density because of the model used as well as the fact that we are using
a limited set of samples.

The metric used in the ECGA (as well as the one used in BMDA) differs from the entropy
measure we proposed to use in all of the other cases. The search algorithm is a special case of
finding a multivariate PDS. The most general structure is used within the FDA and the BOA.
Therefore, even though it deserves full attention, especially with respect to completely decompos-
able problems, we shall see this method as being covered by the level of allowed interactions in a
general PDS search and focus on that. The ECGA search algorithm, along with the metric used,
can however easily be incorporated in the IDEA framework. Even though the used metric has
important and interesting properties, we shall refrain from exploring it further in this paper.

4 IDEAs for discrete random variables
Having noted the type of information that is required in previously created EDAs for binary

random variables, we are ready to revisit the work in terms of the IDEA framework. In this
section, we show how in the case of discrete random variables, the algorithms discussed in section 3

15

can be implemented. We directly cast these algorithms in the form of general discrete random
variables as introduced in section 1 as opposed to the special case of the binary random variables
that was implicitly used in most of the discussed algorithms. The running times of the algorithms
are stated in section 6.

Even though the incorporation of the pseudo—code for the search procedures that return the
PDS (7,w) in the case of discrete random variables is something of a repetition of earlier work, it
serves three purposes:

1. Tt gives a clear overview of the main ingredients of the algorithms presented in the literature
so far by using pseudo—code to clearly specify the operational procedures.

2. It shows how those algorithms can be incorporated within the IDEA framework.

3. It provides a reference to check back with when defining the algorithms for continuous
random variables, allowing to note the similarities and see how density estimation lies at the
heart of these methods.

In the discrete case, we compute probabilities by counting frequencies as we would in making
a histogram. We call these probabilities empiric probabilities and denote them by p(-). The basis
of computing probabilities in these algorithms in the discrete case lies within the use of equation 3
and the following:

. m(Jj,k

pjo,j1,...,jn_1(k03k15 .- '7k’n—1) = L(’]'nJ) (18)
j :(jOajla"'ajn—l)
k = (ko,kl,...,knfl)

her
where m(v, \) = Z(ET:%J {1 if Vie{o.,l,...,\)\\—l}<Xlg:'9)q = X\i)
0 otherwise

We need to compute the empiric probabilities in order to sample from the conditional proba-
bilities imposed by the PDS. We do this by using bins (b; and b¥, i € {0,1,...,1 — 1}) in which
we perform a frequency count exactly as imposed by function m(-,-) from equation 18. This leads
us to define algorithm DIEST to estimate the density functions in the discrete case once the PDS
is known:

DI1EsT()
1 fori+0Otol-1do
1.1 by, « new array of real in |7(w;)| + 1 dimensions
with size ng X ng X ... X ng
1.2 W, + new array of real in |7 (w;)| dimensions
with size ng X ng X ... X ng
1.3 for (ao,a1,-.-,0(wy]) < (0,0,...,0)

to (ng—1,ng—1,...,nq—1) in erossproduct do
1.3.1 by,[ag,a1,-.., a|,,(w1.)|] <0
1.4 for (ag,ai,---,0x(w)—1) + (0,0,...,0)
to (ng—1,ng—1,...,nqg — 1) in crossproduct do
141 bP, [ao,aq, ..., a|,r(w1.)|_1] <0

15 fork+« Oto|mn|—1do
151 ag « X9k
152 for g+ 0to |r(w;)| —1do
1521 agyy « XOK

m(wi)q
1.5.3 by;lao,a1,- .., ax@w))] < bulao, a1, ...,] + |_T1—nJ
1.54 bW, [al, as,..., a|,r(w1.)‘] — bP,, [al, as, ..., a|,r(wi)‘] + Lrl—nj

16

1. I
6 v(lio,kl,...,k‘w(m,.n)eDX‘ @+ {

P(Xwi = k0|X7r(wi)o = k17X7r(uJi)1 =ks,...,
Xﬂ'(u)i)‘ﬂ(mi”_1 = khr(uh)|) <~ SO(LUZ', k07 kl: IR k|7r(w1)|))
b“’i [ko,kl,...,k‘,,(mi”]

where (Wi, ko, k1, - -, Kw(ony|) = 4 P k2 binap)] if |7(w;)| >0
bu;[ko, k1, - .- kjr(w;)] otherwise

2 return(P(-))

Note that in step 1.6 of algorithm DIEST the probabilities are assigned to the approximation
of the probability mass function. This step does not actually have to be computed, because the
required information is stored in the arrays b; and b?. The only reason it is stated here is for
the clarity of the mapping to be established for sampling from the probability distribution. Note
that the above algorithm takes an exponential amount of time, which can become a problem if
the amount of parents gets larger. This sampling is straightforward as the probability information
can be directly accessed through the arrays. This is coded in algorithm DIHISAM:

Di1Sam()
1 for i+ [l—1downto(0 do
1.1 ¢+ RanpOMOL()
1.2 9«0
1.3 n+1
14 if |m(ws)| >0 then
141 n+« bgi ['XTI'(UJi)OJXﬂ(UJi)l’ s X
1.5 fork+0tong—1do
1.5.1 Jd+« I+ %bwi[kan(w;)oan(wi)la---:X
1.5.2 1f ¢ <9 then X,, < k; breakfor

W(wi)l‘lr(wiﬂ—l]

ﬂ(wi)\ﬂ'(uiﬂ—l]

Having specified how to estimate the distribution and how to sample from these estimations in
the case of discrete random variables, we still have to specify how to find (7, w). Two special cases
arise when we fix the distribution in a certain way. In general, a search procedure that returns
some fixed PDS that may be dependent on user—input on beforehand, gives an approach similar
to the FDA [22]. The two special cases of such a fixed distribution that we wish to outline on
beforehand, are the univariate distribution and the complete joint distribution. In the univariate
distribution, each variable is regarded independently of the others. This leads to an approach in
the line of to PBIL [2] and UMDA [23]. For problems without linked parameters, these methods
can be very efficient. However, when parameters are linked, we require higher order building
block processing in order to find efficient and effective optimization algorithms [7]. In the joint
distribution, which is the other extreme, all the variables are regarded in a joint fashion, conveying
$1(1 — 1) dependencies. This PDS will convey too many dependencies for most problems. We can
formalize the two algorithms as follows:

UNIVARIATEDISTRIBUTION()
1 fori+<O0tol—1do
1.1 w1
1.2 W(wi) <~ @
2 return((m,w))

JOINTDISTRIBUTION()
1 fori+<O0tol—1do
1.1 w1

12 w(w) ¢« (i+1,i4+2,...,1—1)
2 return((m,w))

Note that these two fixed PDS algorithms only need to compute the information once and may
return this information every time anew. The running time of these algorithms thus needs to be

17

counted only once, contrary to the algorithms that search for a PDS. The search algorithms will
require their running time every iteration.

For each of the three different search approaches discussed in section 3, we now present them
in the setting of discrete random variables. The first of these was MIMIC. In order to write down
this algorithm, we noted in section 3.2 that we need to be able to compute the entropy. In the case
of discrete random variables, combining equations 10 and 18 provides us with enough information
to write out algorithm DICHAINSEA:

Di1CHAINSEA()
1 a <+ new array of integer with size [
2 fori+0Otol—1do
21 afi] +
2.2 p; « new array of real with size nqy
e« 0
wi—1 < ale]
5 fori+0tol—1do
51 forj+<0tong—1do
5.1.1 Pal[i] [j] +«0
52 for j+ 0to |tn] —1do
5.2.1 pgy [Xiﬁv”] = Pafi] [Xéﬁ])J] + Tl
5.3 hap) ¢ — 2320 Pafy) [K]ln(pag [K])
54 af ha[i] < hy,_, then
541 w1 < aff]
542 e+
6 W(wl,l) +—0
ale] « a[l — 1]
8 fori+1l—2downto0do
81 e« 0
8.2 w; « ale]
83 forq+ Otoido
8.3.1 Pu,iialq & mew array of real in 2 dimensions with size ng X ng
8.3.2 puglwis, ¢ mew array of real in 2 dimensions with size ng X ng
83.3 for jo+0tong—1do
833.1 for ji+0tong—1do
8.3.3.1.1 Pu;1alq] [j(),jl] 0
8.3.3.1.2 pa[q]wi+1[j1,j0] 0
834 forj+«O0to|mn|—1do

S)i S)i S)i S)i
8.3.4.1 Puw;y1alq] [Xu(.’z-?_{aXi[q)]J] «— Duw;1a[q] [XLE)I-H)Xi[q)]J] + |_7—an

= w

N |

)i S S) g S)i

8.3.4.2 pa[qmiﬂ[Xi[lq)lJ’X‘(“lE] Putgonia (X5 X528 +
835 hufirilala) & ~ Lieo Liieo Pursaala ko, kaln(Po,yyafq ko, k1))
836 ha[q]wi+1 <~ hw’i+1a[’J]

83.7 if halgwirs — hwizr < hwiwipys — hwiy, then
8.3.7.1 w; + alq]
83.72 e+gq
8.4 w(wi) — Wil
8.5 ale] « ali]
9 fori+0tol—1do
9.1 if |m(wi)| >0 then
9.1.1 bw,- € Pu;im(wi)o
9.1.2 bfjl < Pr(wi)o
9.2 else
9.2.1 by, < Pu;
10 return((m,w))

18

Note that from algorithm DICHAINSEA it follows that we do not need to recompute the arrays
b; and bf in algorithm DIEST. In other words, because of the fact that line 1.6 of algorithm DIEST
was only to clarify the construction of P, algorithm DIEST can be skipped when using algorithm
DICHAINSEA. This follows from the definition of IDEA because sea() is executed before est().
This reduces computation time every iteration.

The second search procedure is taken from the optimal dependency trees approach. To this
end, we require again the entropy measure. Since we have already shown what this measure is,
we can immediately write down algorithm DITREESEA:

DITREESEA()
1 a <+ new array of integer with size [
2 fori+0tol—1do
21 afi] +
2.2 p; « new array of real with size nqy

3 b« new array of integer with size [— 1
4 e +RANDOMNUMBER(()
5 w1 ¢+ e
6 7T(wl_1) 0
7 forj+0tong—1do
71 pu,_,[i] <0
8 forj«O0to|mm|—1do

S
8.1 Py, [XSM] ¢ poy XA + 145
9 h'wz—l Al EZiolpwt—1[k]ln(pwt—1[k])
10 ale] « afl — 1]
11 fori+0tol—-2do
111 for j+«+ 0tong—1do
11.1.1 pa[i][j] <0
112 for j+Oto I_TTLJ —1do
11.2.1 pa[z][Xa 1 P XV + i
113 hgypy ¢« — Ek 0 pa[,] [k]ln(pa[,] [k‘])
114 bali]] < wi—1
115 pyt[afi]alg ¢ mew array of real in 2 dimensions with size ngxng
11.6 py[ijpt[a) ¢ mew array of real in 2 dimensions with size ngxng
11.7 for jo < 0tong—1do
11.71 for j1 < 0tong—1do
11.7.1.1 pyeqafifjarildo, J1] 0
11.7.1.2 papigstiafilin, Jo] < 0

11.8 for j« Oto |tn]| — 1 do
(S) (8)J
Xa[]J] < Pot[a[i]] a[z][th[a [’ Xa[]J] +

11.8.1 pyt[a[i]]afs [th a[l]]’ x (83 LTan
11.8.2 papiee [z][Xa[z]) bt[a[z]]] € Pali]bt[a] ’l]][Xa [i] [aj[i]]] + ﬁ

11.9 hbi[a [illali] < — Zko =0 Zln =0 Pbt[a[i]]a[i] [k()a kl]ln@b‘ [il]ald] [ko,k1])
11.10 hgpgstfala] < Potlalil]ali

19

12 for i+ | —2 downto 0 do
12.1 e < arg maxj{ha[j] + hbt[a[j]] - ha[]‘]bi[a[]‘]] | j € {0, 1,.. ,7,}}
12.2 w; + ale]
12.3 W(wi) — bt[wi]
124 ale] + ali]
125 for j<0toi—1do
12.5.1 p,,;q[j < new array of real in 2 dimensions with size ng X nq
12.5.2 pq[jlw; < new array of real in 2 dimensions with size ng X nq
12.5.3 for jo+ 0tong—1do
12.5.3.1 for j1 + 0tong—1do
12.5.3.1.1 p,.qpldo, J1] < 0
12.5.3.1.2 popjjw; [J1,Jo] < 0
12.54 fork+ Oto|™m|—1do

S)k Sk S)k Sk
12.5.4.1 pu)ia[j][XUSi) 7X[g[j)]](_pwia[j][Xugi) aX[g[j)]]+ LTan

12.5.4.2 Pa[jlw; [X(Efj)]ka XLS?)k] < Paljlw: [Xii)]ka X£?)k] + LTan
1255 husals] & = Lieco Lo Puraljilko, killn(pusals ko, F1])
12.5.6 ha[j]w,- — hwia[j]
12.5.7 Ipest <= hafj) + Mot (als]) = Paljjp*(als]
12.5.8 I,qq4 ha[j] + hy, — ha[j]w,-
12.5.9 'lf Tpest < Ipqq then
12.5.9.1 b'[a[f]] ¢ w;
13 fori+O0tol—1do
131 if |7(w;)| > 0 then
1311 by, Puin(wio
13.1.2 b& € Pr(wi)o
13.2 else
1321 by, ¢ po.
14 return((m,w))

Note that from algorithm DITREESEA we have again that we do not need to recompute arrays
b; and b? in algorithm DIEST.

The third and final search procedure is the BOA approach. As noted in section 3.4, the general
algorithm consists out of more than one case, depending on the value of k. This means that first of
all, we may present the general algorithm DIGRAPHSEA for the case of discrete random variables:

DIGRAPHSEA (k)
1 2f k=0then
1.1 (m,w) + UNIVARIATEDISTRIBUTION()
2 elseif k=1then
2.1 (m,w) + DIGRAPHSEAEXACT()
3 else then
3.1 (m,w) < DIGRAPHSEAGREEDY (k)
4 return((m,w))

When k = 0, the result is simply the univariate distribution, for which we had already defined
algorithm UNIVARIATEDISTRIBUTION. When we have k = 1, we noted in section 3.4 that we can
use Edmond’s algorithm. Edmond’s algorithm requires for each arc (i,7) in the graph to have
assigned to it a positive real value ¢((¢,7)) as defined in appendix B. The optimum branching is
then found with respect to these values. This optimum branching is in our sense a PDS graph where
each node has at most 1 parent, meaning that the 7(-) vector for all nodes has length at most
1 (Viego,1,....1—13{|7(é)] < 1)). Note that Emond’s algorithm computes a mazimum branching,
whereas we proposed in section 3.4 to minimize the entropy measure. In order to be able to
maximize and to have all positive values, we maximize the negative entropy, which is equivalent
to minimizing the entropy measure. As the PDS that results holds no information on the measure

20

or metric used, this is completely irrelevant to the result. For Edmond’s algorithm, we require to
have only positive real values. To this end, we go over the metric for each of the arcs and find
the minimum value. By subtracting this minimum value from the value for each arc, the value
¢((, 7)) becomes a real value larger or equal to 0. To get only positive values as required, we add
1 to every value in addition. We can now specify algorithm DIGRAPHSEAEXACT that employs
Edmond’s optimum branching algorithm to find the PDS in the case of discrete random variables:

DIGRAPHSEAEXACT()
define type edarc as (stack of integer, stack of integer, stack of real)
vP «— new array of vector of integer with size [
V < new vector of integer
A « new vector of edarc
fori+—0tol—1do
5.1 p; « new array of real with size ny
52 forj+<0tong—1do
52.1 plj] <0
53 for j+ 0to |tn] —1do
531 pilX(V] XV +
5.4 hi = 204! pilkln(pilk])
6 fori+~0Otol—1do
6.1 forj«i+1ltol—1do
6.1.1 p;; &< new array of real in 2 dimensions with size ng x nq
6.1.2 pj; &< new array of real in 2 dimensions with size ng x nq
6.1.3 for jo+< O0tong—1do
6.1.3.1 for j1 < 0tong—1do
6.1.3.1.1 p,'j[jo,jl] <0
6.1.3.1.2 pji[jl;jo] <0
6.14 fork<«Oto|mm|—1do
6.1.41 pylX {5 X iy [x(T*, XD 4 Lo
6142 pu[X{V* XM e pul XV X 4+ &
6.2 forj«0tol—1do
6.2.1 <fi+#jthen
6211 hyi + — STy Sy pyilho. klin(pjilko, k1)
6.2.1.2 c+ hjz' — h;
6.2.1.3 S? + new stack of integer
6.2.1.4 St < new stack of integer
6.2.1.5 S¢ ¢+ new stack of real
6.2.1.6 PUSH(S®,1)
6.2.1.7 pusH(St,)
6.2.1.8 PUSH(S®, —c)
6.2.1.9 A|A| — (SS,St,SC)
7 v min(ss,si,sc)eA{TOP(Sc)}
8 fori+0to|Al—1do
81 (S§%,8% 8% « A;
8.2 ¢« POP(S9)
83 c+c+1l—7n
8.4 PUSH(S®,c)
9 B <+ GRAPHSEAOPTIMUMBRANCHING(V ,Al)
10 fori« Oto|B|—1do
10.1 (S%,S%,5°) « B;
10.2 s« poP(S?®)
10.3 t « popP(S?)
104 vP[t] ey < 8

Tt W N =

21

11
12

13

(m,w) < GRAPHSEATOPOLOGICALSORT(v?)

for
12.1

12.2

i1+ 0tol—1do
if m(ws)| > 0 then
12.1.1 bu; ¢ Puin(wio
12.1.2 b8, < Pr(wi)o
else
12.2.1 by, < DPu;

return((m, w))

Again, we find from algorithm DIGRAPHSEAEXACT that we do not need to recompute arrays
b; and b? in algorithm DIEST. Algorithm DIGRAPHSEAEXACT calls other algorithms to compute
the optimum branching. These algorithms are independent of the type of density model that is
used and concern only the finding of the optimum branching, given ¢(i, j). Therefore, we need to
state them only once. The additional algorithms can be found in appendix E. The running time
for algorithm DIGRAPHSEAEXACT is O(I% 4 12n2 +127n), which is subsumed by the running time

of the greedy graph search algorithm for the case when x > 1.

We conclude the summary of the search algorithms for discrete random variables by presenting
the greedy graph search algorithm for the case when x > 1. The outline for the algorithm was
given in section 3.4. Combining that outline with the discrete entropy we have already used in

the above search algorithms, we can now state algorithm DIGRAPHSEAGREEDY:

1

U W N

D1GRAPHSEAGREEDY (k)

a < new array of boolean in 2 dimensions with size [x [

vP v

+— 2 new arrays of vector of integer with size [

h™, ¢ + 2 new arrays of real in 2 dimensions with size [x [

h° +

new array of real with size [

fori+—0tol—-1do

5.1
5.2

5.3

5.4

5.5
5.6
fori
6.1

ph; « new array of real with size ng
for j«—0tong—1do
521 phljl« 0
for j«<0to || —1do
53.1 ph[XGM] « phIXEM] + g
forg+—1ltol—-1do
5.4.1 pf;z. + new array of real with size ng
542 for j+ 0tong—1do

5.4.2.1 pf;z[j] — po;l7]
heli] & = 3252y philkIn(pf;[K])
+~0tol—-1do
forj+—i+1ltol—1do
6.1.1 p;; + new array of real in 2 dimensions with size ng X nq
6.1.2 pj; + new array of real in 2 dimensions with size ng x nq
6.1.3 for jo+0tong—1do

6.1.3.1 for j1 +0tong—1do

6.1.3.1.1 pij[jg,jl] <0
6.1.3.1.2 pji[jl,jo] 0

6.14 fork<«O0to|mn|—1do

6.1.4.1 piy[XI*, XM o pyy[XF, XM 4 2

6142 pulX{V" XM e pu[x (O x4 L

J YT %

22

6.2 forj+<0tol—1do
6.2.1 <fi#jthen
6.2.1.1 a[i,j] « true
6.2.1.2 i, j] < — X5, EZf ~o Pjilko, kaJn(pji[ko, k1))
6.2.1.3 h"[i,j] < h™[i,] — h°[i]
6.2.1.4 c[i,j] < h™[i, 5] — h°[j]
6.3 afi,i] + false
T oy 1?2-1
8 while y>0do
8.1 (vo,v1) « arg ming ;y{c[i,j] | ali,j] A (5,5) € {0,1,...,1 = 1}*}
8.2 if clvg,v1] >0 then
8.2.1 breakwhile
83 ~ v — GRAPHSEAARCADD(k, vg, v1, a, ¥P, V%)
84 ho[’l)l] < hn[Uo,Ul]
85 b0 b,
8.6 by, < Puiuvg
87 fori+0tol—1do
8.7.1 if afi,v1] then
8.7.1.1 py,; ¢ new array of real in |vP[v1]| + 2 dimensions
with size ng X ng X ... X ng
8.7.1.2 pi ; + new array of real in |vP[v1]| + 1 dimensions
with size ng X ng X ... X ng
8.7.1.3 fO’I‘ (jo,jl, N ,j|vp[v1”+1) — (0, 0,..., 0)
to (ng—1,ng—1,...,nq—1) in crossproduct do
8.7.1.3.1 pv1i[j0;j1; e ,j‘vp[vl]l_l'_l] <0
8.7.14 fO’I‘ (jo,jl, N ,j|vp[v1”) — (0, 0,..., 0)
to (ng—1,ng—1,...,ng—1) in crossproduct do
8.7.1.4.1 Pp”[Jo,Jla c s Jlopua]] < 0
8.7.1.5 for j<«<O0to |tn|—1do
8.7.1.5.1 ko X2V

8152 ky = X5 (Vaeqionfurfonl)

vP[v1]g-1
8.7.1.5.3 kjyp[vy]l4+1 < Xz(s)]
8.7.1.54 pvli[ko, kl, ceey k‘|vp[vl]‘+1] —
Doilko, k1, - - -5 Bjopwy)+1] + LTl—nJ
8.7.1.5.5 pﬁli[k‘h kg, - k|vp[v1”+1] «—
Purilky, ks - ooy jypfog)41] + |_-,—nJ
8.7.1.6 h"[i,j] < — SpiTy Spis 3 D D
pvlz’[kO;kla k\’ul’[vl |+1]1n(pv11[k07k1; . k|v1’[v1]|+1])
8.7.1.7 h™[i,j] < h"[i,]] (— Zko —0 EZ;FO Ezl‘i;[ml
pzli[ko, k‘l, ey k‘vp[m”]ln(pv”[ko, k1, ey k‘|vp[v1”]))
8.7.1.8 ([i,j] + h"[i,v1] — h°[v1]
9 return(GRAPHSEATOPOLOGICALSORT(vP))

Also in the general graph search algorithm DIGRAPHSEAGREEDY, which runs in O(I3k +
Png+ 1?mn + lsnfit' + 1627n) time, we find that we do not need to recompute arrays b; and b7
in algorithm DIEST. The reason for this in all cases is that the information that is used to guide
the search is largely the same information that is used to build the estimates. In the algorithm,
we have called algorithms GRAPHSEAARCADD and GRAPHSEATOPOLOGICALSORT. Just as was
the case for the exact algorithm for the case when k = 1, these subalgorithms are independent of
the type of density model that is used. More detailed information on the additional algorithms
can be found in appendix E.

23

10
— —— T —— FE T i
to#F oL+ o + Tty 4 ¢t
e L + + oy b oy F A
N LEE R e T Bty s ++ e S
F ¥ Gt + +
" + + F Fy bt Lt P +
+ iy s w4 M * R SN F A s
PO A o L i v R e 1
" R S ARk T Fy + g
Y & 4+ + e+ e M O T
HF e + o4 B W L R T
54, PR AT e F T 5 e g 4
St % topn T J& oy p} autr A T
Fa #+ L o +; R ++f*++ y ¥ &* +#++ FE +
¥ +, T+ + T £ Tt i
o+ T 1y + + o H k= +
& P T st % + 4 e + o Ayt ;f%ﬁ* 3
+ i EAA N LRI + gt et F o
AL T + LT e Tt i 4 ﬁﬂ#i{g
L I A I PR QR R e
t 3 + 4 . R Iy b T T
S0 pt T ST LR $O0F 4 ow ot FaTe
T P +H + Pt
o y) T et LA Plitgd 4+ T ¢+&#¢++ﬁ§¥
[MR L A P ﬁ Tre v 4 o B
T e T T T R R A
+ + e A+ h + haid ot
B e T T e B 13, e e
b Tty Loty ¥ R o
+ 4+ 0 L W o +4t+ s
Fr+++++ F+ F,t + + St + ++ o+ H
R Th S FSt AR T ;
S Boa e T R SEotey ¥+#**% o 1
+ + + o T+ + £a AR
+ + * + + + o o + +
4o+ o+ T hh s £
-+, f++ o+ + i# gt oW WAL TR R s haat o+ +
ot S T + A TR 1 En + 5, T
e S Lttty T L T +a wE
P S PR G 4 4 hy
Eanig A Mo S BT i Pha &%:*
+ P SR SN ST A AL S %g
10 Lyt L Gty A A S S S 10 i L .
10 -5 0 5 10 10 -5 0 5 10
YO YO

Figure 4: A uniform and a clustered data set over Yy and Y; with DY = [-10, 10].

To complete this section on the algorithms for discrete random variables, we refer to the articles
that presented the original algorithms for obtained results. Given the general framework of IDEA
and the implementation of the original algorithms, it will probably immediately become clear as
to how a similar algorithm within the IDEA framework would perform.

5 IDIEAs for continuous random variables

Having noted the type of information that is required in previously created algorithms in section 3
and having presented the algorithms for discrete random variables in section 4, we are ready to
present IDEA strategies in which density estimation for continuous random variables is performed.
Density estimation can be seen as model fitting where given the structure from equation 7, we
have to estimate the individual probabilities in the product. In general, we find from probability
theory that we can distinguish three important classes of density estimation models: parametric,
non—parametric and mizture. None of these have ever been explicitly mentioned in previous work
on algorithms for discrete random variables. A reason for this might be that the frequency count
approach is the most straightforward and most precise one in the case of discrete random variables.
The distinction between the three classes is classicly found in continuous models.

In this section, we concentrate on the continuous model. To provide additional insight in the
distribution estimations, we give examples of the resulting density function for two data sets. In
both cases we have only two dimensions with DY = [~10, 10]. The data sets are plotted in figure 4,
which shows a uniform distribution on the left and a clustered distribution on the right. We shall
make figures for the joint distribution that was estimated by using a certain density model. In
addition, we shall also make figures for the univariate distribution over both variables Yy and Y;.

In this paper, we present two approaches with different density models. One approach is from
the class of parametric distributions and uses the normal distribution. This approach is presented
in section 5.1. The other approach is from the class of non—parametric distributions and uses the
histogram distribution, which is closely related to the empiric probabilities for discrete random
variables from section 4. The histogram approach is presented in section 5.2. In section 6, some
preliminary work and ideas are presented for another model in the class of non—parametric distri-
butions, namely the normal kernel distribution. Also, the relation of that kernel distribution to
the normal mizture model distribution, which belongs to the class of mixture models, is presented.
Finally, we note again as we did for the case of using discrete random variables, that the running
times of the algorithms are stated in section 6.

24

1(Y0)
f(v1)

Figure 5: Fitting the univariate data from the uniform data set with a normal distribution para-
metric model.

5.1 Parametric model: normal distribution

The first type of distribution estimation model we discuss, is the parametric model. In this model,
a density function as stated in equation 2 is given on beforehand. This means that the general
form of the density function is fixed. The goal is to set the parameters for the density function in
such a way that the result represents the distribution of the data points as good as possible.

The most widely used parametric density function for real spaces is the density function that
underlies the normal distribution, which is a normalized Gaussian. It follows from section 2.2 that
we require to have the conditional density function conditioned on one variable. In appendix C it is

shown that this density function for one variable Y; conditioned on n other variables Y7,Y5,...,Y,
equals:
f(yOlyl;yQ;---;yn) :g(yap’OJ&O) (19)
—(y—p?
9(y,p,0) = e 27
where { & =1
0 V00
ﬁO — MOUGO—Z%gO(Z/i—W)U;o

In equation 19, we use the notation o;; = (271)(4,j) with X the nonsingular covariance matrix
over variables Yy, Y7, ..., Y,. The density function over the variables taken univariately for the two
datasets is plotted in figures 5 and 6. Note that for the uniform data set, the centers are placed
just about over 0 as expected, whereas this is not completely the case for the clustered data set.
Still, it is clear that there is no great distinction between the two estimated distributions, which
shows the obvious deficit of this parametric model in modelling clusters. This can be observed
again from the joint distributions as depicted in figure 7. The distributions are quite identical.
The difference lies in that the joint distribution over the clustered data set is somewhat skewed
and lies more around the diagonal from (—10,—10) to (10, 10) instead of being complete uniform
in all directions. By observing again the clustered data set in figure 4, this can be seen to indeed
slightly be the trend for this data set. So even though this model is able to represent the general
features of the data, it fails in representing the specific features.

In order to sample from equation 19, we need to compute figp and &o. It becomes clear that
to this end, we require to compute the inverse of the covariance matrix, as we need values from
> L Computing the inverse requires O(n?) computing time, where n x n is the size of the matrix

25

0.1

0.1

0.09 41 0.09 4
0.08 | b 0.08 - -
0.07 | 1

1(Y0)
f(v1)

Figure 6: Fitting the univariate data from the clustered data set with a normal distribution

parametric model.

(Y0,Y1) f(Y0,Y1)
0.00016 0.00016
0.00014 0.00014 |
0.00012 0.00012 |
0.0001 0.0001 '.
8e-05 8e-05 7 I
280y, O
6e-05 - 77 7 . 60-05 |- AT
TS N 7201111 O DRO0RERR
4e-05 SRRz Ak 4e-05 |- I RS
G
0 L A R R R o A L L L A R RITIRREL
L R R AR REIRIR e
Qs I R R LIRSS 10
QR s
s 5 S £
16 -10
Y1 Y1

Figure 7: Fitting the joint data from the uniform (left) and clustered (right) data sets with a
normal distribution parametric model.

26

to be inverted. However, we observe from equation 19 that we only require entries from the first
column of the inverse matrix, meaning that we have to solve the linear system of equations:

n—1 n—1
D o0ioio =1 A Yieqi 2, no1} <Z 0jioip = 0> (20)

i=0 1=0
We shall use matrix notation for the remainder of this paper to write systems such as the one

from equation 20. The use of matrix notation gives better insight into the linear system to be
solved and eases both notation and implementation. In the case of equation 20, we may write:

!
00 oo1 ... Oo(n—1) T00 1
!
010 o11 O1(n—1) U}O 0
20 o2 .- O2n-1) 7 | =|0| = 5(=7!(+,0)) = I(x,0) (21)
O(n—-10 O(n—1)1 --- O(n—-1)(n—1) Uén_no 0

Solving this system of equations unfortunately also takes O(n?®) time, but can be done faster
than computing the complete inverse, especially when the diameter of the matrix becomes rather
large. The above linear system of equations is of the form (27! (x,0)) = I(*,0). The matrix X
is the non-singular symmetric covariance matrix, where o;; = £(4,) and o';; = £7'(i, j). In the
algorithms that follow, we shall first have to construct 3. At this point, we must note that this
matrix concerns certain variables and that so far, we have not pointed out exactly which these
variables are. We therefore introduce the following notation:

(Gjojo Gjoja s Gjojn—1
Gj1jo Gjij1 s Gj1jn—1
3{J0, J1sJ25 -« s Jn—1) = Tjajo Tjaja SRR < Y -
! (22)
Ojnrjo Ojnorit +++ Ojn_rjnoa
| Fij (= Gji) = ’L;%J_lm(S)L’:;j“)(Yj(S)kiw)

It should be clear that by using equation 22, we have that o, = X{jo, j1,- .. Jn-1) (% k) = Fj;js-
In this way, we have filled the positions of the matrix ¥ that we use in equation 21 with the actual
covariances &;;. Just as we did for the entropy in the univariate and bivariate case as stated in
section 3, we shall assume in the pseudo—code that p; (Vicqo,1,....—13) and 7i; (Y(i5)ef0,1,...1-1}2)
are global variables, for which we do not allocate additional memory in the algorithms. Using
these definitions, we can now specify algorithm REPANOEST to estimate the density functions
once the structure is known:

REPANOEST()
1 m + new array of boolean in 2 dimensions with size [x [
2 fori+0tol—1do
21 forj«0tol—1do
2.1.1 mfi,j] + false
2.2 mli,i] « true

3 fori+0tol—1do
Z[;nj—l Yi(s)k

27

4 fori+0tol-1do

[‘rnJ l(Y(S)k 2

—pi)

4.1 G4 « [7n]
42 for j+ O0to|n(i)]—1do
421 if -m[i,n(i);] then
o O) (V)),
[7n]

4.2.1.1 6iﬂ(i)j «—
4.2.1.3 mli,n(i);] + true
4.2.1.4 m[n(i);,i] < true
422 forq+«0toj—1do
4221 if -m[r(i)q,7(i);] then
Y b >q)(Y,,(l ~lx(i);)
[mn]

4.2.2.1.1 On(i)gn(i);
4.2.2.1.2 Gn(i);n(i)g € On(i)qgn(i)s
4.2.2.1.3 m[n(i)q,n(i);] < true
4.2.2.1.4 m[n(i);,7(i)q] < true
5 fori+0tol—1do
5.1 Find oy in O((|r(w;)| +1)%) from
2(&11', 7T(W’i)()a 7T(wi)la LR 7T(‘-")i)|7r(w,-)|71>(271(*7 O)) = I(*’ 0)
5.2 Gy, — —~

1 % (wi)|—1
~ “‘%0’00 E"w1 (yn(wi) M (w;))O'Ik 1)0
5.3 fly; = k k/7 (k+1)
00 5
—(Yw; —Bw;)
1 2(Fw;)2
5.4 (7r w,)O,Yﬂ(w,’)lﬁ‘“,Yﬁ(wi)hr(wi”_l) <« Gw 271-6

6 return(P(-))

Step 5.1 from algorithm REPANOEST requires the polynomially bounded time of O((|7(w;)|+
1)?) for solving the linear system of equations. This means that if we specify a complete acyclic
PDS (which models the complete joint probability), we still have a polynomially bounded algo-
rithm. That algorithm is bounded by Zé;é 0(i®) = O(I*). Note that we mentioned earlier in
section 2.1 that for the complete joint probability distribution in the case of discrete random vari-
ables, the computational requirements would be an exponentially growing function. The reason
why this is not the case here, is because we are using an estimation instead of counting frequencies
for all possible combinations. Indeed, in the case of using histograms, we do end up with an
exponentially growing function as we shall see in section 5.2.

Steps 5.2 and 5.3 in algorithm REPANOEST compute the &, and f,, parameters for the
one-dimensional normal distribution to sample from. In the expression for fi,, however, we have
variables yr(.,),- These are function variables in accordance with equation 2. This means that
fiu; cannot actually be computed until values for those y, (., are given. This is exactly according
to the definition of conditionality, where the probability density function is specified, given values
for the conditional variables. Values for these conditional variables are given when we sample
for a new vector. This means that when sampling from the distribution generated by algorithm
REPANOEST, we must first actually compute fi,,.

Sampling from the distribution thus made, requires to be able to sample from a normal distri-
bution. Sampling from a “standard” normal distribution ¥; ~ N (0,1)(x = 0,0 = /1) is mostly
available, so we shall assume to have an algorithm for this. From the form of the normal distribu-
tion it follows that if we have Y = p + oY}, variable Y} is normally distributed with parameters
pand o (Y; ~ N(u,02)). We call this one line algorithm SAMPLENORMALDISTRIBUTION(u,).
Using this primitive, we can now sample a vector Y = (Y,Y:,...,Y;_1) from the distribution
made by algorithm REPANOEST() as follows?:

2Note that ¢’ values here refer to the inverse of the covariance matrix for variables with indices {w;} Um(w;), so
we need to have stored these values globally in an actual implementation of REPANOEST().

28

REPANOSAM()
1 fori+1[l-1downto0do

|m(w;)=1
1.1 frw, He; 000 = ko (l;t(“i)k _“"(wi)k)azk-%l)o
00

1.2 Y, + SAMPLENORMALDISTRIBUTION(fiy;, Gu;)

A special case for using the normal distribution parametric model, is when using univariate
probabilities. This is modelled in algorithm UNIVARIATEDISTRIBUTION, which we introduced
earlier in section 4. Using the univariate distribution gives an approach that is close to being
similar to the approach named PBILc [29]. All variables are regarded independently of another.

As we did in the discrete case, we shall now derive the application of using the normal distri-
bution as an instance of the parametric distribution class in the search procedures. In order to
implement the framework of MIMIC in our parametric setting, we require to know the differential
entropy for the normal distribution. It has been shown [8] that the joint entropy over n normally
distributed variables yo, y1,---,¥n_1 can be written as follows:

Mo, 1,) = 3 (n +In((2m)" (det) (23)

It is clear that the entropy of a normally distributed random variable is completely determined
by the value of o. Using the above differential entropy information, we can specify algorithm
REPANOCHAINSEA that uses the greedy algorithm employed in MIMIC to pick the chain of
conditional dependencies and algorithm REPANOTREESEA that builds the tree of conditional
dependencies:

REPANOCHAINSEA()
1 a <+ new array of integer with size [
2 fori+0tol—1do

21 afi]+i

3 e+ 0
4 w1 « ale]
5 fori+0tol—1do
o Yan
5.1 Hafi) ¢ o
B2 Gafiali] ¢ =

5.3 hgp) < %(1 + ln(QW&a[i]a[i]))
54 f ha[i] < hy,_, then
541 wj—1 + aff]
542 e+
6 7T(wl_1) «~0
ale] «+ a[l — 1]
8 fori<+I1—2downto0do
81 e+ 0
8.2 w; « ale]
83 forj+0toido
w1 i+1)(Ya([5_;])k7“a[j])

8.3.1 Gu.ial] [7n]
8.3.2 Gafjluiys ¢ Owitalj]
8.3.3 Tuiyralj] ¢ 3(2 + In(4n? (Owisrwis1Falilals] ~ Owirrali]Taljlwisa)))
8.34 hafjluizr ¢ hwiyiali]
8.3.5 if ha[jluizs — hwizs < hwwipy — hw,y, then
8.3.5.1 w; <+ a[j]
8352 e+
8.4 W(wi) — Wit
8.5 ale] « ali]
9 return((w,w))

BN

15:81 - (Y(S)k —Hw

29

REPANOTREESEA()

1 a <+ new array of integer with size [

2 fori+Otol—1do

21 ali] «
bt «— new array of integer with size | — 1
e < RANDOMNUMBER(!)
Wi—1 ¢ €
7T(wl_1) — @

i

Py & ——Tmm7

n]
LfnJ 1 S)k
(Y() _N wy_ 1)

6wt—1wt—1 _Tnj

he,_, %(1 + (2760w, _ywi_,))
ale] « afl — 1]
fori+—0tol—2do

Lrnl—1y(S)k
Wl phagy & ==t
11.2 Gqfijap ¢ Zh=o (L}:'arlzjl ~Hati)
11.3 ha[z] — (1 + ln(ZWUa[z]a[Z]))
11.4 b[a[d]] Z wi_1
Lrn =1y ($)k

. k=0 tias)] Mot lal]])(a[2 p/a[i])
11.5 Gpefafifjal] ¢ b [ald]] —

= O © N OUt kW

—

L6 Gafilpt[afi]] <= Obt[a[llali]
117 Ryefafiafi] < 5 (2 + (472 (Gt afif]pt [afi) T aliali] — Tbt[ali]]ali]Talilp[ali]])))
11.8 hafijpt alil) <= Pot[a[iljali]
12 for i<+ 1l—2 downto 0 do
121 e+ arg maxj{ha[j] + hbt[a[j]] - h/a[j]bi[a[j]] | 7€{0,1,...,4}}
12.2 w; + ale]
12.3 W(wi) «— bt[wi]
124 ale] + ali]
125 forj+ 0toi—1do
LT"OJ 1(y(S)k Heo)(Y(S) [j])

alj]
[rn]

12.5.1 Guyalj) <

12.5.2 Gafjjw; < Uw,a[]]

12.5.3 hyap) ¢ (2 + In(47? (aw,’wi&a[j]a[j] - (Vfwia[j](vfa[j]wi)))

12.5.4 hgpjlu; ¢ hwiam

12.5.5 Ipest ¢ h 1+ hbt lalf]] — h 1§16 [al4]]

12.5.6 I,4q < h 4§+ hy, —

12.5.7 ’I,f Ibest < Iadd then
12.5.7.1 bta[f]] + wi

13 return((m,w))

a[jlwi

It follows from both algorithm REPANOCHAINSEA and algorithm REPANOTREESEA that we
do not need to recompute the values for p; and &;; in algorithm REPANOEST if one of these
search procedures is employed. This follows from the definition of algorithm IDEA for the same
reasons as in the case of discrete random variables in section 4.

It remains to specify the most involved approach, which is the general graph search approach.
First of all, we present the general algorithm REPANOGRAPHSEA for the real parametric case
using a normal distribution that distinguishes between the different cases of the amount of allowed
parents k:

30

REPANOGRAPHSEA(k)
1 2f k=0then
1.1 (m,w) + UNIVARIATEDISTRIBUTION()
2 elseif k=1then
2.1 (m,w) + REPANOGRAPHSEAEXACT()
3 elsethen
3.1 (m,w) <+ REPANOGRAPHSEAGREEDY (k)
4 return((m,w))

In section 4, we already elaborated on the implementation of Edmond’s algorithm for the
case when k = 1. Because the entropy measures are the same as in the case of algorithms
REPANOCHAINSEA and REPANOTREESEA, since in all cases only a single parent is allowed,
the computation of the cost of each arc is now straightforward. The remainder of the search
procedure consists of calling the optimum branching algorithm and deriving the PDS from the
so obtained results. Referring to appendix E for the subalgorithms used, we can therefore now
present algorithm REPANOGRAPHSEAEXACT:

REPANOGRAPHSEAEXACT()

define type edarc as(stack of integer, stack of integer, stack of real)
vP + new array of vector of integer with size |

V + new wvector of integer

A + new vector of edarc

fori+—0tol—1do

lmn]=1,(S)k
A A

CU b W N =

5.1 i + ZLTTH-fJ(Y.(S)k_u')Z
5.2 Gy 4 k= e —H
5.3 Vv«
6 fori+O0tol—-1do
6.1 forj<i+1ltol-1do
b T O) ()
[r]

6.1.1 6'1']' «—
6.1.2 5']‘1' «— &ij
6.2 forj«0tol—1do
6.2.1 <fi+#jthen
6.2.1.1 ¢+ %(2 + 1n(47r26jj6,~,» — 6'3‘,'6',']')) — %(1 + 111(271'6',',’))
6.2.1.2 S? «+ new stack of integer
6.2.1.3 St « new stack of integer
6.2.1.4 S° + new stack of real
6.2.1.5 PUSH(S?,1)
6.2.1.6 PuUsH(S?,)
6.2.1.7 PUSH(S®, —c)
6.2.1.8 A4 « (5°,8%,5°
7 Y~ min(ss,sz,sc)eA{TOP(Sc)}
8 fori« 0to|Al—1do
8.1 (S8%,8%,8° « A;
8.2 ¢+ POP(S°)
83 c+c+1l—vy
8.4 PUsH(S¢,c)
9 B+ GRAPHSEAOPTIMUMBRANCHING(V ,A,])
10 fori<+ Oto|B|—1do
10.1 (S°%,S% 5°) « B;
10.2 s + POP(S?)
10.3 t « por(S?)
104 'Up[t]‘vp[t]l — s
11 return(GRAPHSEATOPOLOGICALSORT(v?))

31

When using algorithm REPANOGRAPHSEAEXACT, the conditional entropy is computed for
every arc (4,j) with ¢ # j. This requires to compute all variables p; and &;;. This implies that
again we do not need to recompute those variables when using algorithm REPANOEST. The
running time for algorithm REPANOGRAPHSEAEXACT is O(I® +1%mn), which is subsumed by the
running time of the greedy graph search algorithm for the case when x > 1..

To implement the greedy algorithm for the case when k > 1, we note from the algorithm in
section 3.4 that we require to update the entropy measures once an arc is added to the graph. As
the entropy measure is a decomposable sum of values, it is of the form Zé;(l] a;. Moreover, the
a; factors are independent of each other, meaning that when we add arc (vg,v1) to the graph, we
only have to recompute a,, .

If we now recall equation 23, the joint entropy is a function of the determinant of the covariance
matrix of the involved variables. This covariance matrix for vertex v; is enlarged by adding one
additional row and column when we add an arc (vg,v1) to the graph. We can avoid recomputing
the complete determinant by using an update rule. To this end, we note that we have the following
from linear algebra:

det(2<j07j1:"'7jn>) — 1 (24)
det(X(jo, j1,---,Jn—-1)) X{jo,J1,---,Jn) "t (n,n)
Therefore, by computing o7 ,, from the linear system of equations X (jo, j1, - - - i) H(x,n) =

I(xn), we get o!,,,. If we have stored the determinant for the previous state of the vertex to which
we are to add another parent in d°, by using equation 24 we can determine the new determinant
as d" = d°/o},,. Formalizing the remainder of the concepts from the algorithm in section 3.4, we
can now present the greedy algorithm REPANOGRAPHSEAGREEDY:

REPANOGRAPHSEAGREEDY(K)

a + new array of boolean in 2 dimensions with size [x [

vP v 2 new arrays of vector of integer with size [

h",d%,dy, c < 4 new arrays of real in 2 dimensions with size [x [
h°, $,dp < 3 new arrays of real with size [
fori+—0tol—1do

Tz

CU s W N =

5.1 p; + pry .
] —1
5.2 Gy Zame (00w

5.3 d?[l] — G

5.4 df,[i] <0

5.5 h°[i] + %(1 +1n(27rd?[i]))
6 fori+Otol—1do

6.1 forj«i+1ltol—1do

Lrnd =1y ()b 3 oy (b
< k=0 i Nt)(Yj Bi)
6.11 o —

6.1.2 6]',' «— 6'1']'
6.2 forj+<0tol—1do
6.2.1 <fi#jthen
6.2.1.1 ali,j] « true
6.2.1.2 deL[Z,j] «— 6‘7']'5,',' — 5]'1'5'1']'
6.2.1.3 dZ’[Z,j] — Gy
6.214 h"[i,j] « 3(2+In(dnd}[i, j])) — 3(1 + In(2ndz[i, 1))
6.2.1.5 cli,j] & h"[i,] — h°[j]
6.3 ali,i] + false
T oy

[7n]

32

8 while y>0do
8.1 (vo,v1) « arg ming ;y{c[i,j] | ali,j] A (5,5) € {0,1,...,1 = 1}*}
8.2 if clvg,v1] >0 then
8.2.1 breakwhile

8.3 <« v — GRAPHSEAARCADD(k, vg, v1, a, vP, v°)

8.4 d?[’Ul] «— d?[’l}o,vl]

8.9 dzo,[vl] «— dg[’Uo,’Ul]

8.6 ho[’l)l] «— hn[Uo,Ul]

87 fori+0tol—1do

8.7.1 if afi,v1] then
8.7.1.1 Find ol oy, 42 i1 O(([vP[u1]] +2)°) from
3(vy,vPv]o, vP[v1]1, - - -, VP[VL] o [0g] —1,8) -
(BT (x, JoP[od]| + 2)) = I(x, [oP[od]] + 2)
8.7.1.2 d}[i,n] « d?‘[Ul]/az\vl’[m]l-i-l)(lv?’[v1 +1)
8.7.1.3 Rh"[i,v1] + S(|vP[v1]] + 2 + In((27) ”P[vl]‘“d}‘[i,vl]))
8.7.1.4 Find o) oy, 1) i O(([vP[o1]| +1)°) from
E(Pvi]o, vP[vi]r, - - -, vP[V1] wp[ur] -1, 9) -
(B0 (s, JoP[or]| + 1)) = I(x, [oP[od]] + 1)
8.7.1.5 dpli,v] « dg[vl]/allvp[vl]llvp[vl]l
8.7.1.6 h"[i,vl] — hn[i,’Ul]—
L(|oP[or]] + 1 + In((2m) 1 (] +1Lg (i, vy)
8.7.1.7 ([i,j] + h"[i,v1] — h°[v1]
9 return(GRAPHSEATOPOLOGICALSORT(v?))

As was the case for the discrete random variables, we have that we do not need to recompute
variables p; and ¢;; in all cases of applying a search algorithm, because they will already have
been computed.

5.2 Non—parametric model: histogram distribution

In a non—parametric model, the form of the distribution is not determined at the outset as is
the case for the parametric model. There are no parameters that need to be chosen to best fit a
function over data points. Instead, a transformation of the data points constitutes the resulting
density function. Note that we may still have parameters, but they do not solely determine the
form of the fit. Examples of non—parametric models are histograms and kernel-based methods.

Out of all models, the histogram is perhaps the most straightforward way to estimate a proba-
bility density. In the continuous case, the histogram can arbitrarily well represent the distribution
of given datapoints by choosing an arbitrarily small bin width. In the case of discrete random
variables, the histogram is actually what has been used implicitly so far in all discrete EDA
approaches.

If we have to estimate the distribution of the data points Yz-(s)k in a certain range [min*, max"+),
we specify r bins b;[j], j € {0,1,...,r — 1} that divide the range in r subsequent and equally sized
subranges. Define range¥: by max¥s — min¥*. The basis of the empiric probability that y falls into
bin b;[j], is a frequency count:

bilj] = ‘ {Yi(s)k

(S)k

Y. — min¥
1,... -1 I i+ 1 2
EE{0L L]~ 1) Aj < S < H (25)

An exponentially growing amount of bins in the form of 7" is required in the multidimensional
case for variables Y;,,Y;,,...,Y;,_, and according bins b;gi; .51 [Jos J1;- - -»Jn—1]- It is clear that
r™ bins are required for a PDS with a parent arity of n — 1 as equation 3 dictates we require to
estimate the density for a probability over n variables in that case. We should realize this curse
of dimensionality as it limits the amount of bins we can use when the parent arity goes up.

33

Figure 8: Fitting the univariate data from the uniform data set with a histogram density model,
using 20 bins.

In figures 8 and 9, the density function using histograms over the variables taken univariately
is plotted. We should be aware of the scale differences for the two sets of graphs. This difference
amplifies the non—uniformity of the fit over the clustered data set. As opposed to the resulting
fits with the normal distribution in section 5.1, from these figures, as well as from the joint
density function in figure 10, it is clear which data set is sampled from a uniform distribution and
which is sampled from a clustered distribution. Using histograms is in general a more localized
method. Depending on the bin width, more or less details are conveyed in the resulting density
estimation. As the figures show however, we might very well require quite a large amount of bins
to representably estimate the distribution. If the amount of parents « in the PDS graph grows, this
results in a drastic increase of computation time because of the exponential growing function 7++1.
In the case of binary random variables, the situation was comparable to using histograms with
r = 2. If we however use 10 bins in each dimension, two parents already amounts to 103 = 1000
bins, whereas in the binary case we could go as far as k = 9 parents to get 2!° = 1024 bins. Clearly,
we are trying to solve different types of problems in the case of discrete and continuous random
variables, but we should nevertheless be aware of the underlying problem in using histograms.

In the case of discrete random variables, we don’t have real valued data. We can however set
the minimum and maximum of the range we want to use bins for, to 0 and ng — 1 respectively
and specify to use ng bins. By doing so, we have defined bins for the discrete case. This stresses
again the strong correspondence between the algorithms for discrete random variables and the use
of the histogram density model for continuous random variables.

We now move to specify the algorithms in the continuous case using the non—parametric
histogram model. The estimation of the density functions are exactly the empiric probabilities
that result from the frequency count. This leads to the algorithm REHIEST to estimate the
distribution once the structure (w,w) is known. The algorithm requires a parameter r for the
amount of bins to use in each dimension:

34

008
007 b
006
005

o4
003
002
001

{

Figure 9: Fitting the univariate data from the clustered data set with a histogram density model,

using 20 bins.

012
008
S oo
004
002

[ovel

<68l
<4
<v'el
<agl
<g'p
<v'el
<2
<zl
<1'a
<0
<1-2d
<t
<€'r)
<5
<691
<0-1]
<1787
<667

<6701

¥

35

Figure 10: Fitting the joint data from the uniform (left) and clustered (right) data sets with a

histogram density model, using 20 bins in each dimension.

REHIEST(r)
1 fori<O0tol—-1do
1.1 minY" <« minke{o,l,...,LmJ71}{Yi(5)k}
1.2 max" + maxke{o,l,...,LTnJ—l}{Y;'(S)k}
1.3 range¥’ « max¥ — min"?
1.4 BY « @
2 fori+0tol—1do
2.1 b, < new array of real in |r(w;)| + 1 dimensions
with size r x r x ... xr
22 b, + new array of real in |7(w;)| dimensions
with size r xr x ... xr
2.3 for (ag,a1,--.,0x(w;)) < (0,0,...,0)
to(r—1,r—1,...,r — 1) in crossproduct do
2.3.1 bwi[ag,al,...,ah(wi”] <0
2.4 for (ag,a1,...,q5(w,)-1) + (0,0,...,0)
to(r—1,7—1,...,r — 1) in crossproduct do
24.1 bgi[ao,al,...,a|7r(wi)|,1] 0
25 fork<«+O0to|mn|—1do
251 ag + min{r — 1, [(VD* — min¥e:) /8% |}
2.5.2 for g« 0to|n(w;)|—1do
2521 agy < min{r — 1, (VD% minYr@na)/g¥re0a |}

m(wi)g
253 buao,a1,..., a|7f(wi)|] + by,lao, as, - .., a\w(wi)|] + LTI—"J
2.5.4 bpwi [ala A2y e v ey alw(wi)‘] — bpwi [al, A2y . vy alw(wi)‘] + _7’1—nj
26 P(Yw,— Yﬂ'(wi)07 Yﬂ'(wi)l P Yﬂ(wi)lﬂ(wi)l) —
o Yu; € [minY“’i,mawai] A
i ...) f i
So(w17 a07 a17 I alﬂ'(w‘t)l) 1 v] (Yﬂ,(wi)j € [minYﬂ(w")j ,maXY"(“’i)i])
0 otherwise
(a; = min{r — 1,a;}
-~
a; = .Y,
h J i (ws)s 4 — m(wi)j—1
e {(y (’)]_ly"(rjl,l)r,l_l :)J otherwisel
bu; ko sk 1, oK ()] : _
(P(wz', kOa kla .. 3k|7r(w1)\) = bgi [k1,k2,...,k‘,,(wi)|] if |7r(wz)| >0
\ bu;[kos ki, - -, Kjx(w;)] otherwise

~

3 return(P(-))

The exponential factor in the running time for algorithm REHIEST when we take a fully
connected graph, is O(r"*1) because of the fact that in step 2.4, at most k + 1 counters are
enumerated in crossproduct. Each enumeration consists of exactly O(r) steps. This can be
compared to the algorithm for discrete random variables from section 4 that has an exponential
factor of O(n%i™"). Just as was the case for algorithms REPANOEST and DIEsT, line 1.6 does not
actually have to computed, because the required information is stored in arrays b,,; and b?_. Line
1.6 does however give us a way to sample from the distribution. Based on the proportionality
of the frequencies stored in the bins and a randomly drawn real number between 0 and 1, we
select a bin. In the case of discrete random variables, we would select the so found bin as the
result for the discrete random variable. Now however, the bin stands for a range of values for a
continuous random variable. To justify this, after we have selected a bin, the resulting value for
the continuous random variable is a random number drawn from the uniform distribution on the
range that the selected bin resembles. This is formalized in algorithm REHISAM:

36

REHI1SAM(r)
1 fori+1[l-1downto0do
11 f ¢ menge™
1.2 a+ Ranpom01()
1.3 ¢+ RanpoMOL()
14 9«0
1.5 for j<+ 0to|m,|—1do
1.5.1 ajy1 < min{r — 1, [7(Ya(w); — min""“;) /range’)i |}
16 nel
1.7 if |m(ws)| > 0 then
171 np< b, [a1,a2,..., a|r,, ‘]
1.6 foray+«0Otor—1do
1.6.1 9+ Jd+ %bw,- [ao, a1, ..., ar,]
1.6.2 if ¢ <® thenY,, « min*™: + (ag + a)3; breakfor

As in the parametric case, we are now able to create a full algorithm by using UNIVARIATE-
DISTRIBUTION, JOINTDISTRIBUTION or any other a priori fixed distribution. It may be clear that
because of quite similar reasons as we came across for the algorithms for discrete random variables,
the recomputation of arrays b; and b in method REHIEST is not required after having applied
any of the search algorithms we will present next.

In order to define the search algorithms, we should remind ourselves again that we need to
be able to compute the entropy. In the case of the histogram distribution, this can be done in
a similar way as in the case of discrete random variables. In appendix D it is shown that the
multivariate entropy measure for continuous random variables that have a histogram distribution,
equals:

h(onanla'--ann—l) = (26)

-1 . r—1 r—1
H?:o rangeYJi

r—1
_T Z Z - Z (bjo,jl,m,jn—l [ko, kl; ey knfl]ln(bjo,jhm,jn—l [k‘o, kl, ceey knfl]))

ko=0k1=0 k,—-1=0
Y_(S)q
Jo

We now have enough tools to write out the algorithms for the chain search, the tree search
and the graph search. We denote these algorithms as REHICHAINSEA, REHITREESEA and RE-
Hi1GRAPHSEA respectively. When going over the algorithms, note the obvious similarity with the
algorithms for discrete random variables from section 4. The running time for algorithm REHI-
GRAPHSEAEXACT is O(I® + 1?72 + I27n), which is subsumed by the running time of the greedy
graph search algorithm for the case when k > 1.

where bjo,jl,...,jn_l[kOth---;kn—l] =

(S)e

. Y.
29 min*i
q€{0,1,...,[tn] — 1} AVicfo1,...n—1} <ki <]lranTr < ki + 1>}

REHICHAINSEA(r)

1 a+ new array of integer with size [

2 fori+0tol—1do

21 afi]+1

2.2 p; « new array of real with size r
e+ 0

4 w1 + ale]

w

37

5 fori+0tol—1do

6
7
8

9

10

5.1 minYelil mlnke{0,1, Slrnl— 1}{ a[z] }
5.2 maxYelil « manE{O,l,...,LmJ71}{Ya([z) }
5.3 rangeYell « maxYelil — min Yot
5.4 [Yalil ¢ range 7T iyd[i]
5.5 forj+0tor—1do
5.5.1 pglj] < 0
56 for j« Oto|rn]—1do
56.1 k< min{r —1, L(Ya([f)j — minYeti) /g%t |}
5.6.2 pupi[k] < pa z][I<c] + T
5.7 ha[z] A M Zk Opa[z] [k]ln(pa[i] [k])
9.8 ”/.f ha[z < hw,_l then
581 w1 « ali]
582 e+
m(wi—1) < 0

ale] « a[l — 1]
for i <1 —2downto 0 do

8.1
8.2
8.3

8.4
8.5

e+ 0
w; + ale]
for g+ 0toido

8.3.1 Pu,,ia[q & new array of real in 2 dimensions with size r x r
8.3.2 pyglwis, & mew array of real in 2 dimensions with size r x r

833 forjo+0tor—1do
8.3.31 forji+0tor—1do

8.3.3.1.1 Puw;yialql [jO;jl] +~0

8.3.3.1.2 pa[q]wi+1[jl7j0] +~0
834 for j+ 0to|mn]—1do

8.3.4.1 ko« min{r — 1, (V{7 — minYei1) /8%t |}

Wil

8342 ki « min{r — 1, (V) — min q])/g ata |}

8.3.4.3 Puwit1alq] [ko, k‘l] < Puwitialq] [ko, k‘l] + L‘rnJ
8.3.4.4 pa[q]w,+1[kla ko] Pafqlwiss [k1, ko] + Lrl—nj

8.3.5 Iy, ialq & __range*“i+1 range Yalal
Eko =0 Zkl 0Puwitialg] [kOJ kl]ln(pwi+1a[(1] [kO; kl])
8.3.6 hggluwiss < Puwiiialg

83.7 if hylglwirs — hwizr < hwiwipys — hwiy, then
8.3.7.1 w; + alq]
83.72 e+gq

7r(wi) — Wit1

ale] < ali]

fori+—0tol—1do

9.1

9.2

if |m(wi)| > 0 then
9.1.1 bw,- <_pwi7l'(wi)0
9.1.2 bgz «— pﬂ'(wi)o
else

9.2.1 by, ¢ Dy,

return((m, w))

38

REHITREESEA(r)

1
2

— O © 00 N O Utk W

—

[y
[\

13
14
15

a + new array of integer with size [
fori+—0tol—1do
21 ali] «
2.2 p; < new array of real with size r
bt < new array of integer with size | — 1
e < RANDOMNUMBER(!)
Wj—1 < €

m(wi1) < 0
min*“I=1 ¢ minge o, . rn) 1}{Yw(l)1}
maXY“l 14— MaXgefo,1,...,|rn|— 1}{sz 1 }
range Yor1 ¢ max™i-1 — min¥“-1
,BY“” 1 range Yor-1
forg(—Otor—ldo
11.1 py,_,[j] <0
for j«O0to|™m|—1do
121 k< min{r — 1, L(YJ?’{ — min¥i-1) /Y1 |}
12.2 py,_,[k] < Do, [K] + LmJ
hwl 15— M Zk Opwl 1[k]1n(pwl—1[k])
ale] « afl — 1]
fori(—Otol—2do

15.1 minYell mingeo1,.... | rn)— 1}{ }

15.2 max" el = maXgeqo,1,...,[7n|— 1}{Yaz] }

Yas) mlnYah]

15.3 rangeYell + max
15.4 pYalil _raﬂgiya“l
155 for j+<0tor—1do
15.5.1 pa[i][j] <0
15.6 for j<«<O0to |tn]—1do
1561k min{r — 1, (V3 — min¥ew)/gYem |}
15.6.2 Dali] (k] < Dali] [k] + L“'TLJ
15.7 h ali] — — M Zk opa z][k]ln@a[z][k])
15.8 b[a[i]] « w1
15.9 pyt[afilal ¢ new array of real in 2 dimensions with size r x r
15.10 pafipt[a[i]] < mew array of real in 2 dimensions with size 7 x r
15.11 for jo+ Otor—1do
15.11.1 for j1 + 0tor—1do

15.11.1.1 pye[afijja[i] [0, J1] < O
15.11.1.2 papigpt(afa[ii, Jo] < O
1512 for j« Oto |™n| —1do
15.12.1 ko < min{r — 1, L(Y(ngz]] — minYstlern) /g%t | }
15122 ki min{r — 1, (¥} = min)/gYaw 1}
15.12.3 pyt[afi)jafi)[Ko; k1] < pbt [a[i)]ali] K0, k1] + LrnJ
15.12.4 pafigpefafif) (k1. ko] < Pafapeafiy[k1s ko] + g
1513 Byt gfgjafy ¢ — 208 PUrangeeld

Zko o0 Ekl 0 Pvt[ai]]al4] [ko,kl]ln(pbi la[i]]ald] [kOakl])
15.14 ha,[i]bt[a[i]] — hbt[a [i]]a[i]

39

16 for i+ 1l —2 downto 0 do
16.1 e < arg maxj{ha[j] + hbt[a[j]] — ha[j]bi[a[j]]} (€{0,1,...,i})
16.2 w; < ale]
16.3 W(wi) «— bt[wi]
16.4 ale] < a[i]
16.5 for j«<0toi—1do
16.5.1 p,,q[;] ¢ new array of real in 2 dimensions with size r x r
16.5.2 py[jlu; ¢ new array of real in 2 dimensions with size r x r
16.5.3 for jo+ Otor—1do
16.5.3.1 for j1+O0tor—1do
16.5.3.1.1 pu;a[j) [Jo,71] < O
16.5.3.1.2 py[jlw: [71,J0] < O
16.5.4 for k<« 0to |™n| —1do
16.54.1 ko < min{r — L, [(YSI* — min¥e:) /8% |}
16.54.2 k; + min{r — 1, [(V'5)¥ — minYet) /g% |}
16.5.4.3 Puwialj] [k‘o, kl] & Duw;alj] [ko, kl] + ﬁ
16.5.4.4 Paljlw; [kla kO] <Y_ Paljlw; [kla kO] + ﬁ
16.5.5 hyqj] —L208¢ range o0,
S koo Xm0 Pusals) [kos k1 (P, oy [ko, k1)
16.5.6 hg[jlw; < huwialj)
16.5.7 Lyest <= hafj) + hr(als)) = Palile* [ali]
16.5.8 Ioaa < hapj) + hw — hafjjw;
16.5.9 tf Ipest < Iyqq then
16.5.9.1 bt[a[j]] + w;
17 fori+ 0tol—1do
171 if |7(w;)| > 0 then
17.1.1 b, « Puin(wido
17.1.2 b2, < Pr(wio
17.2 else
1721 by, < po.
18 return((m,w))

REHIGRAPHSEA(K, 7)
1 2f k=0then
1.1 (m,w) + UNIVARIATEDISTRIBUTION()
2 elseif k=1then
2.1 (m,w) < REHIGRAPHSEAEXACT(r)
3 else then
3.1 (m,w) <« REHIGRAPHSEAGREEDY (K, T)
4 return((m,w))

40

REHIGRAPHSEAEXACT(r)

1

T W N

define type edarc as
(stack of integer, stack of integer, stack of real)
vP < new array of vector of integer with size [
V < new vector of integer
A < new vector of edarc
fori(—Otol—ldo
51 min¥ « mingeqon, ., [rnj—1} 1Y}
5.2 max¥i maxXge{o,1,...,|7n|— 1}{Y()k}
5.3 range¥’ + max¥ — min"
54 Y « %
5.5 p; ¢ new array of real with size r
5.6 forj«0tor—1do
5.6.1 p[j] <0
5.7 for j<+<0to |tn] —1do
57.1 k+ min{r — 1, L(YJF’{ min¥ei-1) /g¥e-1 |}
5.7.2 pi[k] + pi[k] + LTHJ
5.8 hi — ﬂgﬁ P opz[k]ln(Pi[k])
fori(—Otol—ldo
6.1 forj+«i+1ltol—1do
6.1.1 p;; + new array of real in 2 dimensions with size r x r
6.1.2 pj; + new array of real in 2 dimensions with size r x r
6.1.3 for jo+O0tor—1do
6.1.3.1 forji+0Otor—1do
6.1.3.1.1 pij[jO;jl] «~0
6.1.3.1.2 pji[jl,jo] +~0
6.14 fork+ Oto|mn]—1do
6.1.4.1 ko ¢ min{r — 1, | (V;')¥ — min¥i)/8% |}
6.1.4.2 ki + min{r —1, L(Y(S)Ic mln Yiy /Y |}
6.1.4.3 Dij [ko,kl] — Dij [ko, kl] + L'rnj
6.1.4.4 p]z[k'l, k()] — pﬂ[kl, k()] + |_T7LJ
6.2 forj+<0tol—1do
6.2.1 <fi#jthen
6.2.1.1 hy; « —2ngeirange™,
Zko o k2o jilko, k1]In(pjilko, k1)
6.2.1.2 c+ hji — h;
6.2.1.3 S? + new stack of integer
6.2.1.4 St « new stack of integer
6.2.1.5 5S¢« new stack of real
6.2.1.6 PUSH(S?,1%)
6.2.1.7 PUSH(SY,)
6.2.1.8 PUSH(S®, —c)
6.2.1.9 A|A| — (SS,St,SC)
7Y ¢ minggs gt ge)ea{TOP(S)}
fori+ 0to|A|—1do
8.1 (87,5t 5% « A;
8.2 ¢+ PoOP(S°)
83 cé&c+1l—vy
8.4 PUSH(S,c¢)
B + GRAPHSEAOPTIMUMBRANCHING(V ,A,l)

41

10 fori<+ Oto|B|—1do
10.1 (S°%,5% 5°) « B;
10.2 s+ POP(S?®)
10.3 t <« popr(S?)
104 vP[t] o[y ¢ 5
11 (7,w) < GRAPHSEATOPOLOGICALSORT(vP)
12 fori+ 0tol—1do
121 if |7(w;)| > 0 then
12.1.1 bwi € Puw;m(wido
12.1.2 b& € Pr(wi)o
12.2 else
1221 by, + pu;
13 return((m,w))

REH1GRAPHSEAGREEDY (K, r)
a + new array of boolean in 2 dimensions with size [x [
vP,v® < 2 new arrays of vector of integer with size [
h™, ¢ < 2 new arrays of real in 2 dimensions with size [x [
h° + new array of real with size [
fori+0tol—-1do
51 min* ¢ mingeo,r,..,(rn)-1{"}
5.2 max¥ ¢ maxpe(o,,...(rn) 1} 1Y}
5.3 range¥’ + max¥ — min"
54 [Y% ¢ rangel
5.5 ph; < new array of real with size r
5.6 forj+0tor—1do
56.1 phlj]« 0
5.7 for j+<0to |tn] —1do
571 k<« min{r — 1, [(V{% — min¥ei-1) /%11 |}
572 ppy[k] PG, k] + 1y
5.8 forgq+1tol—1do
5.8.1 pgi + new array of real with size r
582 forj+<0tor—1do
5-8-2-1Y Pyild] po;ld]
5.9 hefi] ¢ —TREC ST pf (k]I (pfi[k])
510 b; + pgi
6 fori+0tol—1do
6.1 forj+<i+1ltol—1do
6.1.1 p;; < new array of real in 2 dimensions with size r x r
6.1.2 pj; <+ new array of real in 2 dimensions with size r x r
6.1.3 for jo+O0tor—1do
6.1.3.1 forj+0tor—1do
6.1.3.1.1 p,'j[j(],jl] <0
6.1.3.1.2 pji[jlajo] <0
6.1.4 forj« 0to|mn|—1do
6.1.4.1 ko < min{r — 1, | (V;V* — min")/8% |}
6.142 ki ¢ min{r — 1, (¥;%* — min'%)/8% |}
6.1.4.3 pij[kO; kl] — pij[kO; kl] + ﬁ
6.1.4.4 pj;[k1, ko] + pjilki, ko] + ﬁ

Tk W N =

42

6.2 forj+<0tol—1do
6.2.1 <fi#jthen
6.2.1.1 a[i,j] « true
6.2.1.2 A"[i,j] + (- w
Do OZkl Lo pjilko, ki JIn(pjilko, k1)) — he[i]
6.2.1.3 c[i,j] < h"[i, 4] — h°[j]
6.3 ali,i] + false
7T oy« 12-1
8 while y>0do
8.1 (1)0,'1)1) < arg mln(z,]){c[laj] | a[ZJJ] A (/LJJ) € {07 1,.. ‘Jl - 1}2}
8.2 if clvo,v1] >0 then
8.2.1 breakwhile
8.3 < v — GRAPHSEAARCADD(k, vo, v1, a, vP, v°)
8.4 ho['l)l] <~ h”[vo,vl]
85 b, Phu,
8.6 by, < Puivg
87 fori+0tol—1do
8.7.1 if ali,v,] then
8.7.1.1 py,; « new array of real in |[vP[v1]| + 2 dimensions
with size r X r x ... xr
+— new array of real in |vP[v1]| + 1 dimensions
with size r x r x ... xr
8.7.1.3 fO’I' (j07j17 s 7j|vP[v1]H-1) « (07 0,..., 0)
to(r—1,7r—1,...,7r — 1) in crossproduct do
8.7.1.3.1 pvli[jo,jl, Ce ,j‘vp[vl]|+1] +«~ 0
8.7.1.4 for (jo,Jj1,--- 7j|vp[v1”) + (0,0,...,0)
to(r—1,r—1,...,7r —1) in crossproduct do
8.7.14.1 pf)]”[-yo’jl’ Ce ,j‘,up[m”] +«~0
8715 for j+ 0to|mn] —1do
8.7.1.5.1 ko + min{r — 1, (V¥ — min¥*1)/aY1 |}
8.7.15.2 ki min{r—1,
L(Y(S)j - min YoPluglg_1)//8 Yopioilgmy J}

vP[v1]q—
(qu{l,z,...7|vv[v11|})
8.7.1.5.3 Ejyr[y,]|41 + min{r — 1, | (V] v _ min Y /6% |}
8.7.1.5.4 pv1i[k07 ki,---, k‘|vp[v1”+1] —
Posilko, k-, Korfon]41] + T
8.7.1.5.5 pﬁlz[kl,kQ, .. k|vp[m”] +—
Pyilbu ko, Koo]+ oy

8.7.1.6 « + range"i H‘” oll=1 angeYr?ivle

8717 hn[/L’J] « - mngm% Zko OEkl =0 " Zk‘vp [ugll+1
Doyilko, ks - ooy Blopluy] |+1]1n(pm[ko,k1; . k|vP[v1]|+1])
8.7.1.8 h™[i,j] + hn[i;.?] (- ﬁf—%% Zko =0 Zkl =0- Zklvp o1l

pgli[k()a kla teey k\vl’[v1]|]ln(pu”[k07 kl; RN k|v1’ 111]\]))
8.7.1.9 ([i,j] + h"[i,v1] — h°[vy]
9 return(GRAPHSEATOPOLOGICALSORT(vP))

8.7.1.2 pP

V11

6 Discussion
The IDEA framework allows to implement density estimation based evolutionary algorithms in a

way that decomposes certain aspects within these algorithms. This allows us to clearly show how
different density models map onto different procedures that are parameters to the algorithmic

43

framework. Next to showing how the framework allows for applying certain density models to
optimization, the derived results should be brought into practice. Currently, we are in the process
of implementing all of the algorithms presented in this paper. The first aspect to be published on
short notice, is the results of running the proposed algorithms on benchmark tests and comparing
them with other methods.

Next to bringing the algorithms into practice in the sense of a runnable program, there are
some important additional issues in general in the use of the IDEA framework. For instance, many
theoretical questions can be addressed. Such questions vary from population size requirements to
selection issues and convergence. Here, we make special note of a few other issues that should
be taken into account. In section 6.1 we present the running times of the search algorithms we
presented in this paper and place some important notes. In section 6.2, we give some directions
for future work in applying different types of density estimation models.

6.1 A note on the running times

In sections 4 and 5, we have presented algorithms to be used within the IDEA framework. These
algorithms take a certain amount of time every iteration. If the search method becomes more
involved, the running time that is required every iteration goes up. This is of course hopefully
accompanied by better results, but we should be aware of how much time is spent on these
algorithms. Recalling that [stands for the length of the coding vector of variables, n stands for
the amount of samples in the collection, 7 stands for the truncation percentile, ng stands for the
size of the discrete domain set, r stands for the amount of bins in the histogram density model and
k stands for the maximum amount of allowed parents in the PDS for every variable, the running
times without regarding any of these as constants, are the following;:

| Algorithm | Complexity |
UNIVARIATEDISTRIBUTION() o)
JOINTDISTRIBUTION() O(1?)
DICHAINSEA() O(I’n? +1?rn)
DITREESEA() O(Pn? + I>1n)
DIGRAPHSEA() OBk + Png + I2mn + lsnft + 1k21n)
REPANOCHAINSEA() O(l?tn)
REPANOTREESEA() O(l?tn)
REPANOGRAPHSEA() OBk +2mn + 1k*)
REHICHAINSEA() O?r? + I%n)
REHITREESEA() O?r? + I%n)
REHIGRAPHSEA() OBk + I?r + >rn + lsr™ 1 + 1k%7n)
DIEST() O(In™ + IkTn)
REPANOEST() O(K® + > + lrn + K?n)
REHIEST() O(lr*+1 + lkn)
Di1Sam() O(lng + k)
REPANOSAM() O(lk)
REHISAM() O(lr + k)

If k, r, 7 and ng are seen as constants, the running times of the algorithms in that case are
easily derived using the table above.

It is common practice to measure the competence of an algorithm by the amount of evaluations
required to reach a certain value. However, in the case of using more sophisticated methods for
processing the available solution vectors, such as the methods discussed in this paper, such a
measure is not entirely fair unless the running time for evaluating a solution dominates all of the
running times above. Therefore, it is better to account for the time taken by the algorithm to
generate new samples. One way of doing this, is by recording the time in seconds or milliseconds
that the algorithm takes instead of the amount of function evaluations. However, in such a case,
results obtained on a certain computer are hard to compare with results from the literature because

44

the computer(s) used in the literature are very likely to differ in many ways from that of your own.
A way to compensate for this, is to use a factor based on time in which no additional dimensions
are introduced in the resulting expression. If we assume that the running of the algorithm is not
hindered by the operating system for swapping memory or something like that, this will be a fair
comparison®. If we have n. evaluations, a total running time 7" in (milli)seconds for the algorithm
of and a total running time 7, that the algorithm spent on performing evaluations measured in
the same precision, a measure that could be used to compare the results on instead of the amount
of evaluations, is the following normalized expression:

T-T,
T,

Another way would be to have a piece of benchmark code that for instance simulates some
operations that most evolutionary approaches would do. This would mean some iterations of a
lot of integer and real computations. Next, the running time for this benchmark program on the
computer to run the tests on should be recorded as Tp. An alternative to using the amount of
evaluations (again unless the evaluations clearly dominate the running time) is the normalized
running time of the algorithm, which is an index to be named according to the benchmark test:

Ne = Ne

(27)

= T
T=r (28)
The results that we are still to obtain for the algorithms presented in this paper, will be
subjected to such a measure. In general, it should be noted that because of the time spent
in finding and using models for covering the interactions between variables in an optimization
algorithm might become substantially different from other algorithms, the total time taken by
the algorithm should be taken into account in drawing conclusions about the efficiency of the
algorithm in terms of running time.

6.2 Density estimation models

In this paper, we have presented algorithms that use density estimation techniques in optimization.
Moreover, we have presented algorithms for continuous random variables within two different
classes, namely the parametric normal distribution and the non—parametric histogram distribution.
There are however more density models that are commonly used in practice. Two of these are
the normal kernel distribution and the normal mixture model. In sections 6.2.1 and 6.2.2 we give
some insights into using these methods within the IDEA framework.

Another thing that we would like to note in this discussion section, is that we have seen that a
problem of using histograms, is their exponential requirements in computation time. However, if
r = 1, the computation time requirements are no longer exponential. Taking = 1 in the histogram
method, we get the uniform distribution, which is somewhat like the Gaussian approach in that
we have a very global technique instead of local. Because of the fact that we introduced ranges
for the histogram distribution, we expect to get convergence. It would be interesting to see how
this very simple approach would work on real problems.

6.2.1 Normal kernel distribution

In section 5.2, we used a non—parametric model for density estimation. Next to that density
model, there are other density models with interesting properties. If we for instance again take
the normal distribution density function, but now fix the value of o, center one such density
function on every sample point and divide the sum of all of these density functions by the amount
of sample points, we get the normal kernel distribution. The use of the density functions centered
around the sample points is called a kernel method, where the density functions themselves are
the kernels. The method of using the Gaussian kernels underlying the normal distribution, has

3Not taking into account the quality of the code

45

0.065 0.065

0.06

0.055
0.055

0.05

0.045
0.045

1(Y0)
f(v1)

0.04

0.035

0.03 |-

0.025 L L L 0.02 L L L
-10 -5 0 5 10 -10 -5 0 5 10

Figure 11: Fitting the univariate data from the uniform dataset with a Gaussian kernel model
with o = 0.5.

some interesting properties. For instance, by changing the value of o, we can either get more or
less detail in the resulting density estimation. For a very large value of o for example, there will
hardly be any local features in the resulting density estimation. Like with the use of the histogram
distribution, we can scale an initially chosen value for ¢ with the range of the sample points and
thereby keep the level of detail during the optimization process constant.

The density function underlying the univariate normal kernel distribution with fixed standard
deviation o defined on N sample points y(5) i € {0,1,...,N — 1}, is defined by:

N—1

1 1 —(y—y(5)i)?
e 22 (29)

The multivariate version of the density function in n dimensions with fixed standard deviations
oi, is defined by:

1 N2 o3 mpm e
T Lej=0 T 2.2
f(yoayla--'ayn—l) = N ?6 275 (30)
i=0 Hj:O 0j

In figures 11 and 12, the density function taken over the variables univariately is plotted.
Note that the localized aspect of the kernel method becomes clear immediately. Even though the
samples were drawn from an uniform distribution, there are still peaks in the distribution. It is
clear that this method is well suited for representing local features of the distribution. Because of
the local aspect, the kernels show a much better representation of the clusters as can be seen in
the joint probability distribution using Gaussian kernels, which is depicted in figure 13. The joint
distributions are not identical at all.

Equation 3 dictates that we require to know the conditional density function for n variables
conditionally dependent on one single variable. It is not clear however whether that density
function will be convenient to sample from or whether more sophisticated techniques are required
to this end. However, it would be very interesting to investigate the use of this density function
because of its properties.

6.2.2 Normal mixture distribution

The kernel method for density estimation has some useful properties, amongst which the possibility
to select the amount of detail in the resulting density estimation, based on the value for o. However,

46

0.075

0.07

0.065

0.055

0.05

f(Y0)
f(v1)

0.045

Figure 12: Fitting the univariate data from the clustered dataset with a normal kernel distribution
model with o = 0.5.

f(Y0,Y1)

f(Y0,Y1)
N
N RRTIN
0.0035 - R RRRNNON 0.009 .
0.003 - NN "\‘\"M‘wﬂ'i‘”\\\ 0008 N AL JiioN
00025 | TS W% S ‘\x&&?}‘*‘\\"’@’.‘#’.‘.\\\}\{\ o007 1 /’" ARy AN o
- R 0 R X F JLLM 4 P
ocox | AN Al S AN SN boos [[OOSR A
AHMIRORR e ZAURN N ; SRR AN TR
oomss [HIIRSEAIE N oone | EEARNOES IR R R
. gty gt rifrides NN 000z 1 A7 NNOUZE A R IR
0.001 T A AR SRS : A DRI MR &
4 IR AR L LR TORRONY
oo | i U R AV Y
o RN 0 LI I~
10 10
1 -1
10 -10 10 -10
Figure 13:

Fitting the joint data from the uniform (left) and clustered (right) datasets with a
Gaussian kernel model with o9 = o7 = 1.0.

47

if we have n data points, we require n kernels. This might become a problem when the conditional
density function is hard to sample from, as it will take a lot of time to evaluate it. As a trade—
off between the very global model of the normal distribution as a parametric model on the one
side and the normal kernel distribution as a non—parametric model on the other side, we have
the normal mixture distribution as a mixture model in between. The intuitive idea is to take
more than one kernel, but not to take as many kernels as we have data points or to place them
necessarily over the data points. Furthermore, each density function within such a mixture need
not be weighted just as heavily as any other. This gives the following density function underlying
the univariate normal mixture distribution defined on M models:

M-1 | e
fly) = aj———e % (31)
; ViV 27
Viefo,1,..,m-13(0 < o < 1)
where Mt
i=o @i =1

In equation 31, ¢; and v; stand for the center and the variance of the i—th normal distribution
density function in the mixture respectively. We use this notation to prevent confusion with
the single normal distribution or the normal kernel distribution. To find the centers ¢; and the
variances v;, different approaches can be used. One well known method to this end is the EM-
algorithm (see for instance [5]).

The multivariate version of the density function in n dimensions with ¥ = (yo,y1,---,¥Un—1),
is defined by:

M—1 (2)_1
— . m) 2 —i-c)TV jl(y—c,-)
s UYly e ooy Yn— —E a; e 2 32
f(yo Y1 Y 1) v (det V)3 ()

M—-1

{Vie{0,1,...,M—1}(0 <a; <1)
where
Yimg @i=1

In equation 32, we have that ¢; = (cig, Ci1, - - -, Cin—1) is the vector of means and V; = E[(y —
¢;)¥(y — ¢;)] is the nonsingular symmetric covariance matrix. Both of these are defined with
respect to index 4, which stands for the i—th multivariate normal distribution density function.
The EM algorithm can for instance again be applied to find values for these variables.

The normal mixture model has convenient properties in that it is a trade off between the
global distribution that is the parametric normal distribution and the local distributions that are
the histogram distribution and the normal kernel distribution. The amount of computing time
can be regularized because of the limit M on the amount of density functions within the mixture
model. Further exploring the possibilities of using the mixture model seems to be very worthwhile.

Still, the same problem arises as with the normal kernel distritubion when computing the
conditional density function as it is not clear yet whether that distribution will be straightforward
to sample from. This problem within the use of conditional distributions is not present when
using univariate distributions as has been the case so far in density estimation based evolutionary
algorithms for real spaces [30, 29, 11]. The mixture model was used by Gallagher, Fream and
Downs [11] in a univariate distribution, but the full covariance matrix V'; for density function ¢ in
the model was reduced to a matrix with only entries on the diagonal.

7 Conclusions
We have presented the algorithmic framework IDEA for modelling density estimation optimization
algorithms. These algorithms make use of density estimation techniques to build a probability

distribution over the variables that code a problem in order to perform optimization. To this end,
a probability density structure must be found and subsequently used in density estimation. For a

48

set, of existing search algorithms, we have presented their application within the IDEA framework,
using three different density estimation models. One out of these is used in the case of discrete
random variables, whereas the other two are used in the case of continuous random variables.
This, in combination with the rationale of modelling solutions below a threshold in a probability
distribution, shows that the framework is both general and applicable.

Even though testing of the algorithms on short notice is required, together with different

density models that may be implemented in the future, the new approaches seem promising for
optimization of problems with continuous variables.

References

[1]

[4]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

T. Béck and H-P. Schwefel. Evolution strategies i: Variants and their computational implementation.
In G. Winter, J. Priaux, M. Galn, and P. Cuesta, editors, Genetic Algorithms in Engineering and
Computer Science, Proceedings of the First Short Course EUROGEN’95, pages 111-126. Wiley, 1995.

S. Baluja and R. Caruana. Removing the genetics from the standard genetic algorithm. Technical
report, Carnegie Mellon University, 1995.

S. Baluja and S. Davies. Using optimal dependency—-trees for combinatorial optimization: Learning
the structure of the search space. In D.H. Fisher, editor, Proceedings of the 1997 International
Conference on Machine Learning. Morgan Kauffman publishers, 1997. Also available as Technical
Report CMU-CS-97-107.

S. Bandyopadhyay, H. Kargupta, and G. Wang. Revisiting the gemga: Scalable evolutionary op-
timization through linkage learning. In Proceedings of the 1998 IEEE International Conference on
Evolutionary Computation, pages 603—608. IEEE Press, 1998. Also available as Technical Report
EECS-97-004, Washington State University, Pullman.

C.M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1995.

J.S. De Bonet, C. Isbell, and P. Viola. Mimic: Finding optima by estimating probability densities.
Advances in Neural Information Processing, 9, 1996.

P.A.N. Bosman and D. Thierens. Linkage information processing in distribution estimation algo-
rithms. In W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela, and R.E.
Smith, editors, Proceedings of the GECCO-1999 Genetic and Evolutionary Computation Conference,
pages 60-67. Morgan Kaufmann Publishers, 1999.

T.M. Cover and J.A. Thomas. Elements of Information Theory. John Wiley & Sons Inc., 1991.

K. Deb and D.E. Goldberg. Sufficient conditions for deceptive and easy binary functions. Annals of
Mathematics and Artificial Intelligence, 10:385-408, 1994.

J. Edmonds. Optimum branchings. J. Res. Nat. Bur. Standards, 71B:233-240, 1967. Reprinted in
Math. of the Decision Sciences, Amer. Math. Soc. Lectures in Appl. Math., 11:335-345, 1968.

M. Gallagher, M. Fream, and T. Downs. Real-valued evolutionary optimization using a flexible
probability density estimator. In W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar,
M. Jakiela, and R.E. Smith, editors, Proceedings of the GECCO-1999 Genetic and Evolutionary
Computation Conference, pages 840-846. Morgan Kaufmann Publishers, 1999.

D.E. Goldberg. Genetic Algorithms In Search, Optimization, And Machine Learning. Addison—
Wesley, Reading, 1989.

D.E. Goldberg, K. Deb, H. Kargupta, and G. Harik. Rapid, accurate optimization of difficult problems
using fast messy genetic algorithms. In S. Forrest, editor, Proceedings of the Fifth International
Conference on Genetic Algorithms, pages 56—64. Morgan Kauffman publishers, 1993. Also available
as IIliGAL Report 93004.

D.E. Goldberg, B. Korb, and K. Deb. Messy genetic algorithms: Motivation, analysis and first results.
Complex Systems, 10:385-408, 1989.

G. Harik. Linkage learning via probabilistic modeling in the ecga. IlliGAL Technical Report 99010.
ftp://ftp-illigal.ge.uiuc.edu/pub/papers/IliGALs/99010.ps.Z, 1999.

G. Harik, F. Lobo, and D.E. Goldberg. The compact genetic algorithm. In Proceedings of the 1998
IEEE International Conference on Evolutionary Computation, pages 523-528. IEEE Press, 1998.

49

[17]

(18]
[19]
[20]

[21]

[22]

23]

[24]

[25]

[26]

27]
28]
[29]

[30]

31]

32]
[33]

[34]

D. Heckerman, D. Geiger, and D.M. Chickering. Learning bayesian networks: The combination
of knowledge and statistical data. In R. Lopez de Mantaras and D. Poole, editors, Proceedings
of the 10th Conference on Uncertainty in Artificial Intelligence, pages 293-301. Morgan Kauffman
publishers, 1994. Also available as Technical Report MSR-TR-94-09.

J.H. Holland. Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan
Press, 1975.

H. Kargupta. The gene expression messy genetic algorithm. In Proceedings of the 1996 IEEE Inter-
national Conference on Evolutionary Computation, pages 631-636. IEEE Press, 1996.

R.M. Karp. A simple derivation of edmonds’ algorithm for optimum branchings. Networks, 1:265-272,
1971.

F.G. Lobo, K. Deb, D.E. Goldberg, G.R. Harik, and L. Wang. Compressed introns in a linkage
learning genetic algorithm. In W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D.B. Fogel, M.H.
Garzon, D.E. Goldberg, H. Iba, and R. Riolo, editors, Genetic Programming 1998: Proceedings of
the Third Annual Conference, pages 551-558. Morgan Kauffman publishers, 1998. Also available as
IIIiIGAL Report 97010.

H. Miihlenbein, T. Mahnig, and O. Rodriguez. Schemata, distributions and graphical models in
evolutionary optimization. Journal of Heuristics, 5:215-247, 1999.

H. Miihlenbein and G. Paaf. From recombination of genes to the estimation of distributions i. binary
parameters. In A.E. Eiben, T. Béack, M. Schoenauer, and H.-P. Schwefel, editors, Parallel Problem
Solving from Nature — PPSN V, pages 178-187. Springer, 1998.

M. Pelikan, D.E. Goldberg, and E. Canti-Paz. Boa: The bayesian optimization algorithm. In
W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela, and R.E. Smith, editors,
Proceedings of the GECCO-1999 Genetic and Evolutionary Computation Conference, pages 525-532.
Morgan Kaufmann Publishers, 1999.

M. Pelikan, D.E. Goldberg, and F. Lobo. A survey of optimization by building and using proba-
bilistic models. IIliGAL Technical Report 99018. ftp://ftp-illigal.ge.uiuc.edu/pub/papers/IIliGALs/
99018.ps.Z, 1999.

M. Pelikan and H. Miihlenbein. The bivariate marginal distribution algorithm. In R. Roy, T. Fu-
ruhashi, K. Chawdry, and K. Pravir, editors, Advances in Soft Computing — Engineering Design and
Manufacturing. Springer—Verlag, 1999.

A. Ravidran, D.T. Philips, and J.J. Solberg. Operations Research Principles and Practice. John
Wiley & Sons Inc., 1987.

D.W. Scott. Multivariate Density Estimation. John Wiley & Sons Inc., 1992.

M. Sebag and A. Ducoulombier. Extending population-based incremental learning to continuous
search spaces. In A.E. Eiben, T. Bick, M. Schoenauer, and H.-P. Schwefel, editors, Parallel Problem
Solving from Nature — PPSN V, pages 418-427. Springer, 1998.

I. Servet, L. Trave-Massuyes, and D. Stern. Telephone network traffic overloading diagnosis and evo-
lutionary computation technique. In J.K. Hao, E. Lutton, E. Ronald, M. Schoenauer, and D. Snyers,
editors, Proceedings of Artificial Evolution 97, pages 137-144. Springer Verlag, LNCS 1363, 1997.

C.E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27:379-423,
623-656, 1948.

R. Tarjan. Finding optimal branchings. Networks, 7:25-35, 1977.

D. Thierens and D.E. Goldberg. Mixing in genetic algorithms. In S. Forrest, editor, Proceedings of
the fifth conference on Genetic Algorithms, pages 38—45. Morgan Kaufmann, 1993.

C.H.M. van Kemenade. Building block filtering and mixing. In Proceedings of the 1998 IEEE Inter-
national Conference on Evolutionary Computation. IEEE Press, 1998.

50

A PDS graph search metrics
Given is a PDS:
(myw) = (7, (wo, w1, .-, wWi—1)) (33)
such that Vicqo,1,...1—13{wi € {0,1,...,1 = 1} AVgeqo,..1—1}—{i} (Wi # W)
Vie{o,1,...1-1} (Vker(w:) (k € {wir1,wita, - wi-1}))
The Bayesian Dirichlet metric [17] in the discrete case, which we denote ¢ ((m,w)), is defined by:

I-1ng—1ng4—1 ng—1

P((mw)) =p((mw)l&) TT TT 1T --- 11 (34)

=0 k1=0 k2=0 k|,‘.(ui)|=0

"((ws), @°)! nﬁl '(wi Um(wi), ko U %) + m(w; Uz(wi), ko U @%))!
(m! (7 (w;), 0%) + m(mw(w;), 0%))! Pt m! (w; U m(w;), ko U 0¢)!
0=
Qi = (k17k27"'7k\7r(u)i)|):(967917---707.91")

R o,) = Z“’”{l i Vrego,.. a1 (X5)T = Av)

0 otherwise
In the above, we have used LI for the notation of appending an element at the head of a vector:
zoU (21,22, ..,%n) = (%0, Z1,...,%,). The expression p((m,w)|£) stands for the prior probability
of network (m,w). The function m'(v, A) stands for prior information on m(v,A). In the BOA
implementation [24], the prior information is disregarded:

{p((mw)lﬁ) =1
m'w,A) =1

Disregarding the prior information results in the so called K2 metric. For numerical purposes, the

actual metric that we work with is a logarithm over the K2 metric, wich we denote in the case of
discrete random variables ¥ ((7,w)), given the same where clause as in equation 34:

P((m,w)) = (35)

I—1ng—1ng—1 ng—1 1 ng—1
In H H H H ((1+m(7r() Q))' H 1+m(wz|_|7i'(wz) kol_lg))> =

i= 0k1 0]92 0 k|,r(w)= =0 ko 0
-1 ng—1ng—1 ng—1 1+m(n(w;),e’) ng—1 1+m(w;Um(w;),kolig®)
D - > @+) > 1n(j)
=0 k1=0 k2=0 k|,,(w1.)‘=0 j:1 k0=0 j:1

The MIMIC algorithm [6] uses a metric based upon the Kullback-Leibler divergence distance
metric to the chain probability distribution structure. The same is done in the optimal dependency
trees approach [3], but with respect to the tree probability distribution structure. We find that
if we write p(¥,A) = Puo,u1,....v5—1 (Ros A5+ -+ Aaj=1), We have in accordance with equation 18
that m(v,A) = |mn|p(v,A). If we now apply the Kullback—Leibler divergence to the general
model from equation 7, we can derive another metric. Staying within the case of discrete random
variables, we may write the negative of this metric, which we denote ¢((m,w)), as follows?* (still
keeping the same where clause as in equation 34):

4The Kullback-Leibler divergence is thus equal to —((m,w)).

51

-1

((= _Zﬁ(XwilXﬂ'(wi)OJXﬂ'(wi)l7""Xﬂ'(wi)hr(ui”_l) = (36)
=0

o
l 1 ng—1ng—1 ng—1
(Y Y Y psUm(w) ko U gin(p(ws Un(ws), ko U @)

=0 ko 0]61 0 k|"'(“’z)| =0

ng—1lng—1 ng—1

-3 3 Y p(rw), @) in(p(r(wi), @) | | =

k1=0 k2=0 k|,,(w1.)‘ =0

ng—1
(—P(W(wi), o)n(p(m(wi), @) + Y plwi Um(w:), ko U o*)In(p(w; Um(ws), ko U Qi)))

ko=0
The goal using the K2 metric is to mazimize 1 ((m,w)). Using the Kullback-Leibler divergence,

according to the above, we can also propose to maximize 1((r, w)) or in other words to minimize
—4((m,w)). Introducing the notation 9((m,w)), we can state this minimization problem as follows:

-1

min(w,w) {"Z((”ra“‘))) z_:

i=0

71'(0.11)07X7'I'(wi)17“'7X7I'(wi)|,r(u1.)|_1)} (37)

As the entropy measure has certain interesting and useful properties, we choose to work with the
metric ¢((m,w)). However, there seems to be a certain correspondence between metrics ¥ ((, w))
and 9 ((7,w)). In a direct sense, because we have written out the definition of conditional entropy
for metric ¢((m,w)), it is clear that a single substitution transforms ¢((m, w)) into ¢((r,w)). This
substition is the following:

14+m(v,X)

> nG) ~ mL(:T’LJ)‘)m (mL(:T’LJ)‘)) = b, Vn(p(,)

We have introduced this substitution by writing ~~ because it is non—monotonic. However, in
the composition with the positive sum over all instances of the considered node, the two metrics
might distinguish between two networks in the same manner. If we observe closely, both of the
lastly bracketed expressions from ¢((m,w)) and ¢((r,w)) are a way of expressing conditionality
of a single variable on a set of parent variables. Whereas in ¢)((m,w)) it is a factorial of instance
numbers, in ¢((m, w)) it is close to the logarithm of the empiric probabilities. We will not attempt
to give an analysis of the correspondence between the two metrics. However, to give some insight
into the behaviour of the metrics, we have portrayed some experiments. Consider the following
trap functions:
{ —o(X)+1—-d ifo(X) <1

1 if o(X) =1

Here o(X) stands for the amount of ones in vector X of length [. The maximum value of 1 is
achieved for a vector with [ones and the suboptimum of 1 — d is found for a vector with [zeros.
When d goes to 0, the problem becomes fully deceptive for some value of d. This means that all
schemata of an order smaller than ! lead to the suboptimum (deceptive attractor) [9]. We have
set [= 5 and have taken only one such subvector as the problem. We then fixed the ordering of
the variables to w = (0,1,2,3,4). Because of the fact that the problem is not dependent on the
ordering of the variables in the vector, this will not restrict the results to a special case. Using
this ordering, we enumerated all of the 1024 possible combinations of parents and computed both

52

-350 -3260
% % %2
% %X % w; R w; X 4
*#, theora ¥ RS SN S T A
¥ % xy ¥ JCE S I + 4
400 ¥ ES I 1 HOorx ¥ El)
R + £ P g
et g i £ E F o %*’%g -3300 - N L e
. % 4 r E .
R L T P G . C
* o, o~y i) *&% o o R o ! N PP
Fog Ko . et S S %M@%Xxyww S 3a0 b + preey
B A }?*ﬁ*fﬁ pes P g1 iy §§ g + LT T e
o it .
et Mt g B aptt gl S gt) RO . o T
o
@%%W s ol ¥ g st | o o T e e v g M g
x
OB x5 28R X iXng(M < R s B B s L= R x T T T e TR, AL S AR
soo [PV SRR g BT gl R T g T F e T Lm0
500 [Foa A — . o
st # . g5y 2T T e B360 4 g ot T e Y e, e .
i e Fox . TN s s
£ ik B X ik e g .
¥ oo B s gax -3380 |- Wt et ,
. N ; F S gy *:‘H** . * g W e
v A
SSOE, .+ + + b b i, T P S Rans Fhbe e+ -+
N
2100 [P, e e+ o . et . . |
- e H+ St
K2+ bt o+ o+ + N K2+
185*h(s) x 975%h(s) x
-600 -3420
Figure 14: Metrics for 7 = 0.2 (left) and 7 = 1.0 (right), d = 0.2.
-350 -3260
% + pn
+ . S E ;%*: Yot - ‘an
% P X ta ty
% g ;%: T R N ol 1
X g ¥y ¥y v TR o 44
-400 ¥ Ty Py A P N #4671
X 1 4
+ ., X L kI 3300 |- ++4]
+ + 3 x + 3 i ., H e A + + +
T A R *ﬁgﬁ@g%‘ S5 Sy .
x B RLRE %‘&%@ﬁ; R % e . - i
+ ¥ Kk X % + e Py
e i s Roplond RE O IRE T TR) + e
L s BB ol IR 00 B ot . Vv
450 | L Sk, Rl S g Soa Tt T T T X N T + “ +
X >< B " i
w ¥ T s R 2 B AT Y
L T ARE - A ¥ # "2 + + o o
*:;;%%:g{g{%% *Xx%gg% §§+ %ﬁiﬁ +§§§;§i §: ﬁ%f £ *%%f gﬁ; ’ 300 | A SR R 0. i 4 N
1 P i
K sk P ¥ Kk *XX**&«*g *3’5 % + + 4 e
P + Hid ¥ + + ot e R R
AR AR ¥ or, ,@f”gf Fo gk AR TR O e il
P B FL R PREN B B Lo R . + FPOTE.L M A
-500 %ﬁ*x& PRt F ST LN A R Bk A B ey R I -
[E T el Rpodtoe e &L 3360 | F vk bk g R ey g Hhy ey R
b X + #L +
24 #i +
o 4t gt ke S
¥ x X %é ?Y
BTt X 4 #i #i *
550 f A : R
et . v, = . "
3400 fry g, g, EvN e b
K2 o+ frt+ 4 + + + K2 +
185%h(s) x h() x
-600 -3420

Figure 15: Metrics for 7 = 0.2 (left) and 7 = 1.0 (right), d = 0.8.

the K2 metric as well as the negative entropy metric 1((r,w)). The computation of these metrics
is done using a set of samples. To simulate the IDEA approach, we have taken 1000 samples and
evaluated them according to function f(-). We then selected the top 10007 samples with respect
to this measure and computed the metrics based upon this selection. To show the results for a few
variants of the problem, we have chosen 7 € {0.2,1.0} and d € {0.2,0.8}. The results are shown

in figures 14 and 15.

B Edmond’s algorithm for optimum branchings

Given is the following;:

vV =1{0,1,..

ACV xV
G=(V,A)
s: A=V
t:A—>V
c: A— R

.,n—1}

such that s((¢,7))
such that ¢((¢,5))

53

=i
=J

The functions s(-) and #(-) respectively return the source and target of an arc, whereas function
¢(+) returns the weight of an arc in the graph. We seek to find a mazimum weighted branching
B C A. The weight C(-) of a branching B is the sum of the weights of the arcs in the branching.
A set B C A is called a branching if B does not contain a cycle and no two arcs in B have the
same target. We may now formulate problem P(-) as a function of the data D as follows:

n—1n—1

P(D) : maximize C(B) = > _ Y _ c(i,j)wi; (39)

=0 j=0

BCA

_ 1 if(i,j)eB
such that Vipes <$” - { 0 otherwise
—|E|a:(ao,a1,---,a\a|—1)€B|a| <vie{(0,1,...,|a|—2)}(t(az') = S(CLZ'_H)) A t(a\a\—l) = s(ao)))

Va,aneBxpla # a' = t(a) # t(a'))
The first step of the algorithm requires the notion of a critical graph. To this end, we introduce
predicates C(-), Cg(-) and Cg(-), which stand for the definition of a critical arc, a critical graph and
a help predicate for the definition of a critical graph respectively. The following three definitions
hold given the data D from equation 38 and given that we write a critical graph H for graph
G = (V,A) as H= (V,AH):

Cala) & c(a) > 0 AVaea(t(a) = t(a) —» c(a’) < c(a)) (40)
Cg(H) & AT C ANVYoyean(Calam)) AV oy apean xanfan # ay = tam) # t(ay)) (41)
Co(H) & Co(H) AV pi_y,amy(Co(H') — |A™'] < |AM]) (42)

In the algorithm, we have to be able to construct new data D for problem P from data D if
the critical graph has cycles. This is done by contracting the nodes in each cycle to a single
new vertex. Assuming that the critical graph H contains k cycles Cy,C1,...,Ck_1 such that
Viefo,1,...k—1}{Ci C A), these cycles concern disjoint sets of vertices: Vicqo1,....k— 1}(= {t(a)|a €
C;}). We may now define the new data D(-) as a function of a critical graph H:

(V. =V U{z2,21,...,2,_1} such that z; € N and unused
A ={ala€AA(s(a) eV Vt(a) €V)}
G = (V,A)
o 5(a) = s(a) if s(a) eV
D(H) = | 2z ifs(a)eV; (43)
v _ [t iftle)eV
Ha) = {zl if t(a) € V;
#a) = c(a) - ifta) €V
{ | ea) = c(@) + c(ai™™) if t(a) € V;
V=V-UV
where Vie{o,1,...k—1}{a; a™™ = arg mingec; {c(a)})

Vauean (f(tlan)) = an)
VoealVieqo1,...k-13 (t(a) € Vi = a = f(t(a))))

Karp [20] has shown that the following one-to-one correspondence holds between an optimum
branching B in P(D) and an optimum branching B in problem P(D(-)):

k—1

B=BU (U (C; — a?reak)> (44)

i=0

54

min-— gtherwise

where abreak {& if EIaeB(() = Zz)
a;

Edmond’s algorithm [10] computes a critical graph H, which is a graph H such that Cg(H) holds.
It has been shown by Karp [20] that if H is acyclic, it is an optimum branching. Otherwise, the
algorithm recursively computes an optimum branching B using data D(H) in problem P(D(H)).
By using the correspondence from equation 44, the optimum branching B for the original problem
can be determined.

C Multivariate conditional normal distribution

The univariate density function for the normal distribution is defined by:

1 —(y—p)?

f(y)=me 27 = g(y, 1, 0) (45)

The multivariate density function for the normal distribution in d dimensions with y = (yo,y1,- - -,
yq—1) is defined by:

(27) -5
(det)=

In equation 46, we have that g = (uo,p1,.-.,4q—1) is the vector of means and ¥ = E[(y —
)T (y — p)] is the nonsingular covariance matrix, which is symmetric. It is common practice to
define 0;; to be the entry in row ¢ and column j in matrix 3, meaning o;; = 3(4,). Note that it
follows from the definition of 3 that oy; = o7. We similarly define o}; = (2"4(4,4). We may now
rewrite matrix equation 46 as an equation involving only element variables (with the exception of
the determinant):

f(y) = e_%(y_,‘l")’rz_l(y_#) (46)

@M)7E (SIS i) o) (i) (a7)

f(yoayla"'ayd—l) = (det 2)%

We derive the density function for the conditional normal distribution for a single variable yo that
is dependent on ¢ other variables y1,ys2,...,y.. In the case of sampling, all u; and azfj parameters
are assumed to be known as well as are instance values for y;,¥a, .. .,y.. This leaves us only with a
single parameter yo and the remainder as constants, making the resulting pdf one—dimensional. In
a closed form, this means we are searching to find fip and &¢ so that the resulting density function
can be expressed as a one—dimensional normalized Gaussian:

1 ~=fig)? o
f(yOlyl;yQ;---;yc) = P \/ﬂe 274 :g(yJIU’OJUO) (48)
0

First, we note that we acquire from probability theory that

f(yO;yl;yQ; s ch)
f(y17y27' .- 7yc)

folyr,yz, .- ye) = (49)
Combining equation 49 with equation 46, we note that we get two covariance matrices of sizes

(c+1) x (c+1) and ¢ x ¢ for the the multivariate expressions in the fraction of equation 49.

We shall write the elements from the matrix containing (¢ + 1) X (¢ + 1) elements as a(])

the elements from the matrix containing ¢ x ¢ elements as a(). Actually, we require to denote
the elements from the inverse matrices, so we shall write these as o}, i; and a'; respectively. Note

that from the definition of X it follows that a(l) = UJ(Z) and even that 0(1) = O'Ez) (-1

i > 1A j > 1. However, in general we cannot state that 0'” (1_1)(i—1)- What we may state in

and

when

general, is that because X is by definition symmetric, so is £~'. This means that o; = 0j; and

that o}; = o7; It is very important in the following to note that o;; concerns variables y;1 and

95

yj+1 in terms of covariance. The mismatch in variable index is because of matrix indexing. We
can now derive the required expressions fig and G¢:

M (TS (=)

(det XMz

(27r>‘(f) e 3 (5 (i i)ty gy (Wi k9)
(det Xz

Fwolyr,y2s---,yc) =

From the form ae® it must become apparent what the the required expressions jig and G are. It
is clear to see from the equation in definition 45 that from computing a we will be able to find &g
and that from computing b we will be able to find both iy and 9. Even though only deriving b
will be enough, we will derive both and see whether we arrive at matching results for . First,
we determine a to get Go:

(27)~ % (det Z@)3 1 N det XV
a = D1 — = = o9 = — <
(det M)z (2m) 73 det 2O 5— det =

det @

Second, we determine b to get both fip and G¢:

) BTl —)ty (s —)
S T -)0l) — 1)

%((E 1 (i (i — Nz’)aéj)(yi - i)
—(Y0 — o) 2221 (yi — ki)
= —(yo0 — 1o)? a0
Eyo — ko) Z;=1 (y; — NJ)U(I)J

+ Z (Zi:l(yi Wi)og; OGi—1)(j— 1))(/‘J)))

%(_(ijl (E§=1 (yi — Mz’)aij)(yi — i)
—2yo Ef V(Wi — wi)ogy
+2H0 Z (Wi — pi)olg
= —2110000
+2Y0/0000
—,uéa(’)o

+(E;:1(Z§:1(yz Nz)a(z 1)(— 1))(NJ)))

(a0 = _(2;21(21':1(%’ - Ni)aij)(yi — i))
-2 Z§:1 (yi — i)
as = 2#0 i1 (Yi — 1) oo
as = —0'00
_) a4 = 2NOU(I)O |
def 3 a5 = — 15000
a6 = (3 (5 (s — 1)1y sy (W5 — 1)
= —as
B=—a;—ay
\ Y= —Qg — G2 — a5 — Ag)
2, B ol
%(ao + a1yo + as + asyp + asyo + as + ag) = —%(ayg +Byo+7) = (w5 +2Of/0 *a)
(e

QIR

So that when we realize that (yo — fi0)? = yo — 2fioyo + fig, we find that if we have (—2-)? =
(which can be checked to be the case), we may write:

flo =

SNF

—2a

56

Note that we now have a different expression for g, namely vVa=! = y/1/0{,. It can be checked

from linear algebra that indeed (det XV)/(det £®) = 1/0},. Finally, we thus arrive at the
definition of the required multivariate density function for the conditional normal distribution:

f(y0|y1ay27"'7yc) :g(yJﬂO;&O) (50)
~ 1
gy — n
where V700
~ _ M0ogo—5e 1(111 1i)oig
Ho = 760

D Differential entropy for the histogram distribution

As defined in algorithm REHIEST in section 5.2, the modeled distribution for variable Y; is defined
to be 0 anywhere outside of [minY" ,maxY:]. Inside that range, it is a stepfunction where the amount
of steps equals the amount of bins. First we need a generalized version of equation 25:

(S)q
(s

Now, starting from equation 12, for n variables Y;,,Y},,...,Y},_, that have a histogram distri-
bution as defined by algorithms REHIEST and REHISAM, we can derive the differential entropy

as follows:

bjoirsin K0y K1y k1] = (51)

Y9 _ minYs
q€{0,1,...,|mn] — 1} AVicfo1,...n—1} <kz~ < T ket 1>}
range Ji

h(onaYha -ann—1) =

/ / / (fJO,JI;I, f;:,g;,(yzlyi’(y;),jf .1.), Yn_1))) dyodyy ... dyn_1 =
- /max Jo/max 11. ‘ ./max Yin-1 (Fioitin1 Y05 Y1, -+ » Yn—1)) dyodys .. dy =
min¥io Jmin¥in Jmin"in—1 In(fjoja,eeesin—1 (Y0 Y15 - -+ s Yn—1)) %YL - - @Wn-1 =def
{p(L, A) = min"* + %rangey”}
r—1

Tzl Ti:l i </p(jo,ko+1)/p(j1,k1+1) /P(jn—lvkn—l)
ko=0 k1=0 kn—1=0 P 4

(joko) p(j1,k1) (n=1,kn-1)

Tiositsejmes M0, Y15 -+ -1 Yn—1)))
),] sJn))) d d . d _ —
(ln(fjo 1 seeesdn—1 (y07 Yi,---, ynfl)) Yody1 Yn—1

r—1 r—1 r—1) . .
Z Z rangeYJO rangeYJl rangeY]"—1
c.. ; ; c.. ;

ko=0k1=0 kn—1=0

Yjojtsesjme K0y K1y - - oy K11 (bjo gy jm K0 K1y - - -, K1)

The only fundamental difference with equation 10 for the discrete multivariate entropy lies in
the factor H?;()l range¥7s /r™. In the case of discrete random variables, 7 = n4 and the range is also
equal to ng, which makes this factor evaluate to 1 and disappear in the equation. We have arrived
at the definition of the multivariate differential entropy for n continuous random variables with a
histogram distribution according to algorithms REHIEST and REHISAM from section 5:

h(Yjo, Yias oy Yily) = (52)

r—1 r—1 T—

H 0 range -]Oajl,...,j"_l [k07 kl; RN knfl]ln(bjo’jlpn,jn—l [k07 kl’ B knil]))

1 1
ko=0 k1=0 kn—1=0

57

E Additional algorithms

Algorithm GRAPHSEAOPTIMUMBRANCHING computes an optimum branching using Edmond’s
algorithm as specified in appendix B. In order to do so, it first computes a critical graph and then
checks if the graph contains cycles. If it does not, the resulting selection of arcs is the optimum
branching. If it does contain cycles, the derived problem is created following the definitions in
appendix B. The algorithm is subsequently recursively applied to this smaller problem. From
the result obtained by the recursive call, the final result is constructed using the correspondence,
which is also stated in appendix B. The data that is used to achieve the computation of the
optimum branching, mainly consists of the nodes V' and the arcs A in the graph. As the source,
target and weight of an arc are subject to changes for the derived problem while the actual arcs
remain the same, the history of the source, target and weight for an arc during recursive calls is

placed on a stack.

GRAPHSEAOPTIMUMBRANCHING(V | A4,2)
1 (V,AH) + GrAPHSEACRITICALGRAPH(A,?)
2 (C,f) + GraPuSEACYCLES(V ,AH 2)
3 if|C|=0then
3.1 B« AH
4 else
41 (V,A,7z,a™") « GRAPHSEADERIVEDPROBLEM(V ,A,C,f,2)
4.2 B + GRAPHSEAOPTIMUMBRANCHING(V,A,Z)
4.3 B + GRAPHSEACORRESPONDENCE(B,A,z,f,C,a™")
5 return(B)

Algorithm GRAPHSEACRITICALGRAPH computes a critical graph, given collections V' and A
of nodes and arcs respectively. To this end, all the arcs are considered. At each node v, the arc
with target node v and with minimum weight is stored. All the arcs so stored, constitute the

critical graph according to the definition as stated in appendix B.

GRAPHSEACRITICALGRAPH(A,?)
1 C + new array of edarc with size z
2 AP « new vector of edarc
3 fori+0toz—1do
3.1 Cli]+(L,1,1)
4 fori+ Oto|Al—1do
4.1 (8°%,5%,5°) « A;
4.2 t <+ ToP(S?)
4.3 ¢+ TOP(S°)
44 if C[t] = L then
441 if ¢>0then
4.4.1.1 C[t] + (S%,S¢,8°)
4.5 else
451 (S%,8" 8¢) « C[t]
452 ¢ + Tor(SY)
453 if 0<d <cthen
4.53.1 C[t] + (S°*, S, 5°)
5 fori+0toz—1do
5.1 4f C[i] # L then
5.1.1 ,;1}1}’4},‘ « Cli]
6 return((V,A™))

Algorithm GRAPHSEACYCLES checks whether a critical graph has cycles and returns all of
these cycles. To achieve this, a depth first search is performed at each non—visited node and as

58

soon as a node is visited that has been encountered earlier in a single depth—first run, the nodes
are traversed backwards and the cycle is constructed.

GRAPHSEACYCLES(V A 2)
1 f <+ new array of edarc with size z
2 m,m' « 2 new arrays of boolean with size z
3 C + new vector of (vector of integer,vector of edarc)
4 fori+0Otoz—1do

41 mfi] < true

42 m'[i] « true

43 fli]+(L,1,1)
5 fori«0tol|V|—1do

5.1 m[V;] + false

5.2 m'[V;] + false
6 fori<« 0to|AH|—1do

6.1 (57,5 8¢ « A

6.2 t <« TOP(S?)

6.3 f[t] « (S°%, 5,59
7 fori+O0to|V|—1do

7.1 if -m[V;] then

7.1.1 (b, VC, A v, b°) + GRAPHSEACYCLESVISIT(V;,m,m’,f)
712 1f bthen
7121 Cig + (VY AY)

8 return(C, f)

GRAPHSEACYCLESVISIT(v,m[-],m'[-],f[-])
1 T+ (false,L,1,—1, false)
2 if m'[v] then
2.1 V¢« new wector of integer
2.2 A¢ « mnew vector of edarc
2.3 T« (true,VC, A% v, true)
3 if —-m[v] then
3.1 mfv] « true
3.2 m'v] « true
3.3 (S5%,5%,5° « f[v]
34 if S*# 1 then
3.4.1 s+ TOP(S?)
3.42 (b,VC, A v°,b°) + GRAPHSEACYCLESVISIT(s,m,m’,f)
3.43 m'[v] + false
344 1if bthen
3441 <f b° then
3.4.4.1.1 Vlgcl —v
3.4.4.1.2 A&Cl + (8%, 8,89
3.44.1.3 if v°=wvthen
3.4.3.1.3.1 V¢« false
3.4.4.2 T « (true, VO, AC v b°)
4 return(T)

Algorithm GRAPHSEADERIVEDPROBLEM constructs the derived problem by first determining
for each node in V whether it lies in V or in the collection of nodes of some cycle V;. It then
straightforwardly constructs V and A. For each arc in A, the new source 3, destination # and cost
¢ are pushed onto the stacks of the arc, so that the top of the stacks hold the relevant problem
data for the next recursive call to algorithm GRAPHSEAOPTIMUMBRANCHING.

59

GRAPHSEADERIVEDPROBLEM(V,A,C, f[],2)
e’ « new array of integer with size z
™ pew array of edare with size |C|
V < new vector of integer
A « new vector of edarc
u + new vector of (integer,integer,real)
fori+—0toz—1do
6.1 e’[i] « -1
7 fori+0to|V]|-1do
7.1 e'[Vi] « |C|
8 fori+0to|C|—-1do
8.1 (VY A% « C;
82 forj<+0to|VY —1do
8.2.1 e'[VF]+i
8.3 a™n[i] « A§
84 for j<+ 1to|A®|—1do
8.4.1 (8°,8%,5°) « AY
8.4.2 ¢+ TOP(S°)
8.4.3 (S%,5",8) ¢« a™[i]
8.4.4 ¢ <+ ToP(S°)
845 if c<d then
8.4.5.1 a™n[j] « (S°%,5,5°)
9 fori+0toz—1do
9.1 if e'[i] =|C| then
9.1.1V g ¢
10 Z+ z+|C|
11 fori+ 0to|C|—1do
111 Vg < z+i
12 fori« 0to|A|—1do
12.1 (8%, St,S°) « A;
12.2 s + TOP(S?)
12.3 t « ToP(S?)
124 ¢+ TOP(S9)
12.5 (5,t,¢) « (s,t,¢)
126 if e’[s] = |C|Ve[t] =|C| then
12.6.1 if 0 < e[s] < |C| then
12.6.1.1 5+ z+e"[s]
12.6.2 if 0<e[t] < |C| then
12621 t+ z+e'[t]
12.6.2.2 (S%, 5, 5°) « f[t]
12.6.2.3 &< TOP(S°)
12624 (Somin, gUmIn, geminy o qmingufy]
12.6.2.5 (™t ¢ Top(SeMin)
12.6.26 T4+ c—é+cmin
12.6.3 wujy + (3,t,0)
12.6.4 Z\Z| + (57,5t 5°)
13 fori<« 0to|A|—1do
13.1 (S8%,5% 8°) « A4;
13.2 (5,t,¢) < u;
13.3 PUSH(S?,3)
13.4 pusH(SY,?)
13.5 PUSH(S%,¢)
14 return((V, 4,7, a™n))

Ut W N

60

Algorithm GRAPHSEACORRESPONDENCE computes the resulting optimum branching by first
taking all of the arcs from B and then adding arcs from the cycles while leaving some arc out for
each cycle to prevent cycles in the resulting branching B. To this end, the source and target of an
arc in the original problem are required as well as the source and target of an arc in the derived
problem. As these were stored on a stack, this data is readily available. Finally, as directly opposed
to the end of algorithm GRAPHSEADERIVEDPROBLEM, the relevant problem data is removed from
the top of the stack for each arc in the derived problem.

GRAPHSEACORRESPONDENCE(B,A,z, f[-],C,a™™[-])
1 f+ new array of edarc with size |C|
2 fori+ 0to|C|—1do
2.1 f[i] « (L, 1, 1)
3 fori«0to|B|—1do
3.2 1+« ToP(S?)
33 if0<t—2<|C|then
3.3.1 f[t— 2] « (S°,5¢,5°)
4 B+« {(5°,8%5° | (S5, 5° e B}
5 fori«0to|C|—1do
5.1 (VC,AC) «— C;
5.9 (Sgbreak7Stbreak,scbreak) . amin[i]
5.3 sbreak o pop(gebreak)
5.4 threak o pop(gebreak)
55 (S%,5°,5°) « fli]
5.6 if St# 1 then
5.6.1 %+« Pop(St)
5.6.2 (gebreak gebreak gebreaky . rrpop (Y]
5.6.3 sbreak . pop(gsbreak)
5.6.4 threak pop(gtPreaky
5.6.5 PUsH(SE,?)
5.7 for j+ 0to|AY| - 1do
5.7.1 (S%,8%,5¢) « A§
5.7.2 s+ TOP(S?)
5.7.3 t « TOP(S?)
5.7.4 4f (sPreak gbreaky £ (5 ¢) then
5.7.4.1 Bjp < (S°, 8,5
6 fori«Oto|Al—1do
6.1 (?, ?, ?) «— Zi

6.2 POP(S%)
6.3 PoP(S?)
6.4 POP(S°)

7 return(B)

Algorithm GRAPHSEATOPOLOGICALSORT performs a topological sort for an array v? of vectors
that contains for each node its parents. The algorithm places the ordering of the variables in the
w vector as required. Note that the topological sort is performed using the arcs backwards as the
base of an arc points to a parent and the parents have to be on the side with the larger indices in
the w vector.

61

GRAPHSEATOPOLOGICALSORT(vP[])
1 m + new array of boolean with size [
2 fori+0tol—1do
2.1 m[i] « false
2.2 7(i) + vP[i]
z+1-1
4 fori+0tol—1do

41 if —-m[i] then

4.1.1 z + GRAPHSEATOPOLOGICALSORTVISIT(i,m,v?,z)

5 return((7,w))

w

GRAPHSEATOPOLOGICALSORTVISIT(i,m[-],vP[-],2)
1 m[i] « true
2 for j«+ 0to |vP[i]] —1do
2.1 if ~m[vP[i];] then
2.1.1 2z < GRAPHSEATOPOLOGICALSORTVISIT(vP[i];,m,vP,z)
3 w, 1
4 return(z — 1)

Algorithm GRAPHSEAARCADD updates which arcs are still allowed to be added to the graph.
All arcs that will cause the graph to become cyclic when they are added, are marked as not allowed.
This is achieved by a depth—first search through the successor nodes vs of v; including v; and for
each encountered node to start another depth—first search through the precedessor nodes v, of vy
including vy so as to mark each arc (v,,vp) as not allowed. If the maximum amount of parents is
achieved for node vy, all arcs (i,v1),4 € {0,1,...1 — 1} are marked as not allowed. The algorithm
returns the amount of arcs that have become newly marked.

GRAPHSEAARCADD(k, vg, v1, af-,], VP[], v*[}])
m < new array of boolean with size [
n®,n?P < 2 new vectors of integer
S ¢« new stack of integer
0+0
US[U0]|US[UO]| «— V1
VPt joren)) 4= vo
if alvg,v1] then
7.1 afvg,v1] + false
72 d+d+1
8 fori+0tol—1do
8.1 m[i] « false
9 PUSH(S,v1)
10 while -EMPTY(S) do
10.1 v« poP(S)
10.2 if —-mv] then
10.2.1 m[v] « true
10.2.2 nfnsl —v
10.2.3 for k <+ 0 to |[v®[v]| do
10.2.3.1 pUsH(S,v)

N O U W N

11 pUSH(S,vo)
12 while -EMPTY(S) do
12.1 v « PoP(S)
12.2 if —-m[v] then
12.2.1 mfv] « true
12.2.2 nfnpl v
12.2.3 for k + 0 to |[vP[v]| do
12.2.3.1 PpUsH(S,v)

62

13 for i<+ 0to|n°| do
13.1 for j < 0to |n?| do
13.1.1 if afi,j] then
13.1.1.1 afi, j] + false
13112 §+0+1
14 if |vP[n]| = & then
141 fori+0tol—1do
14.1.1 if afi,v1] then
14.1.1.1 afi,v1] « false
14.1.1.2 §+d+1

15 return(d)

F Pseudo—code conventions in notation and data usage

All algorithms are written as functions by using capital letters, such as FUNCTION(). The assign-
ment operation is written using A + X, assigning X to A. Pseudo—code reserved words appear in
boldface, such as while. The scope of structures is related to the indentation and numbering of
lines. The scope of a grouping statement in line [is [.x. The remainder of the conventions concern
the assumed to be available data structures and elementary data types:

Elementary data types

Type | Description

boolean | Truth value (element of { false,true})
integer | Element of Z
real Element of R

Composite data structures

Type | Description

array | Typed array, memory block with fixed size.

e Starting index: 0

¢ Notation for indexing: A[3].

e Notation for determining the length of an array: |A|.

vector | Typed dynamic array, memory block with non—fixed size.

e Starting index: 0

¢ Notation for indexing: V;.

e Notation for determining the amount of elements in a vector: |V|.

e Special assignment notation: V|y| < X, appends X at the end
vector V] increasing its size.

stack | Typed collection of elements with non-fixed size, allowing the following
operations, all of which run in O(1) time:

e EMPTY(S), returns true if stack S contains no elements, false
otherwise.

e PusH(S, X), places X onto the top of stack S, increasing its size.

e PoP(S), returns the element that resides on the top of stack S and
removes it from the stack, decreasing its size.

e ToP(S), returns the element that resides on the top of stack S
without removing it from the stack.

63

