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Abstract

Scalable evolutionary computation has become an intensively studied research topic in
recent years. The issue of scalability is predominant in any field of algorithmic design, but
it became particularly relevant for the design of competent genetic algorithms once the
scalability problems of simple genetic algorithms were understood. Here we present some
of the work that has aided in getting a clear insight in the scalability problems of simple
genetic algorithms. Particularly, we discuss the important issue of building block mixing
and show how the need for mixing places a boundary in the GA parameter space that
together with the boundary from the schema theorem delimits the region where the GA
converges reliably to the optimum of problems of bounded difficulty. This region - or sweet
spot as it has been called - shrinks unfortunately very rapidly with increasing problem size
unless the building blocks are tightly linked in the problem-coding structure. In addition
we look how straightforward extensions of the simple genetic algorithm - namely elitism,
niching, and restricted mating - are not significantly improving the scalability problems.

1 Introduction

Simple genetic algorithms (sGA) have been around for decades now. Holland pioneered
their development during the sixties and seventies (Holland, 1975), and ever since the mid
eighties genetic algorithms have enjoyed an ever increasing popularity. sGA did lead to a
number of successful applications, and users are commonly attracted to them by their ease
of use, general applicability, and promise of robustness. Like any other search algorithm
however genetic algorithms make assumptions - although implicitly - about the structure of
the search space, and if these assumptions match the problem and the way it is represented
to the GA well enough, then successful results can be achieved. Understanding these as-
sumptions is not only important for properly applying the genetic algorithm, but it is also
a prerequisite to be able to design more competent extensions.

In the next section we will review the search assumptions or inductive bias of the simple
genetic algorithm, and look at the possible strategies to deal with it. Section 3 discusses
the mixing issue and its relation with the selection process. Section 4 analyses the effect
of the interaction between selection and mixing on the scalability properties of the simple
genetic algorithm. In section 5 we consider whether some straightforward extension to the
simple GA might improve the scaling problems. Finally we discuss the ramifications of our
findings. Part of the work reported here has been published in (Thierens & Goldberg, 1993;
Thierens, 1995).



2 Inductive Bias of Genetic Algorithms

Genetic algorithms are search procedures and by definition this implies that they have to
make some assumptions about the underlying structure of the search space which guides
their decision making in order to be more efficient than enumerative search would be on the
same problem. To put it another way, search procedures perform induction on the solutions
yet encountered to generate new, potentially better solutions. Suppose they would use no
such inductive information then there would be no correlation of whatever kind between
successive steps in the search space, and therefore this would be equivalent to a random
or enumerative process. At the other hand, if the inductive mechanism leads one away
from better solutions then the search algorithm is actually worse off than a random or
enumerative algorithm. These observations have been known since long - see for instance
(Watanabe, 1969) and (Mitchell, 1982) or in a somewhat different formulation (Wolpert &
Macready, 1996). In the context of black box optimisation and specifically in relation to
genetic algorithms an insightful analysis is made in (Kargupta & Goldberg, 1996).

In general the genetic algorithm’s search mechanism can be viewed upon as an adaptive
sampling and recombining of particular similarity subsets - often called schemata. Reliable
information processing is only achieved for those schemata that receive enough samples or
equivalently, are tried in many different combinations with other promising schemata. The
particular set of schemata that is well processed depends on the problem-coding and the
genetic operators, particularly crossover. It is here that the genetic algorithm’s main in-
ductive bias can be found: those schemata that are well sampled and can be juxtaposed by
crossover are guiding the search trajectory, and whether this leads to optimal solutions de-
pends on the match between problem space and inductive bias. It is clear that the building
block hypothesis (Goldberg, 1989) which states that highly fit, short, low-order schemata
combine to form better solutions is basically a matter of correspondence between the in-
ductive bias of a specific genetic algorithm implementation (particularly the recombination
operators), and the problem-coding.

There are a number of different strategies one can undertake to deal with the inductive
bias.

1. Ignore bias assumptions

Although every search algorithm has its bias to explore a given search space, this does
not necessarily mean that a user has to take the bias into account in order to use the
algorithm successfully. Many search algorithms have an implicit bias so the kinds of
problems on which they perform either well or poorly is not known to the inexperienced
user. Ignoring bias only becomes problematic when the problem’s structure and the
algorithm’s inductive assumptions do not match. Ignoring the mismatch will result in
disappointing results. When the algorithm’s bias is however quite robust - this is, when
many problems most likely tried to be solved do indeed match the bias to some degree
- the simple strategy to ignore the bias assumptions pays off. Simply taking ”of the
shelf” standard implementations will lead to quick and satisfying results. The many
successful applications of standard GAs reported in the literature are a testimony of
the GAs robustness, so ignoring its bias does not necessarily lead to poor performance.
Clearly however there is a limit to this approach: a lot of problems do not fit into this
category and high performance can only be obtained when the GA is no longer used
as an ”of the shelf’ recipe ready to use as it is.

2. Experimental design of representation plus genetic operators

For many problems the inductive assumptions or bias of the standard GA do not
match the problem’s structure well enough to give an efficient search process. By
far the most commonly applied strategy to fix the mismatch problem is to design an
appropriate genotype representation and accompanying genetic operators.

One class of problems where the strategy to adapt the GA’s bias by experimental
design of genotype representation an operators is the so called ordering problem class,
for instance travelling salesman problem where a large number of representations and
genetic operators have been proposed.



3. Prior domain knowledge

Some problems have such an obvious structure that the linkage between interacting
decision variables is known beforehand, and it would be foolish not to exploit this
knowledge. An example of such a problem is the map labelling problem (figure 1)
where the names of geographical entities (for instance cities) have to be layed out
on a map following a number of constraints. Due to the local topological interaction
between the decision variables it is immediately clear where the building blocks are
situated and a crossover operator respecting this structure can be readily designed
(van Dijk, Thierens, & de Berg, 1998).
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Figure 1: Map label placement by a GA.

4. Linkage learning techniques
Ever since the first research efforts in genetic algorithms the idea of learning the
right linkage has inspired people to come up with computational methods to achieve
this. Holland proposed to use the inversion operator (Holland, 1975), although earlier
research indicated it was not a sufficiently efficient operator for this task (Bagley, 1967;
Frantz, 1972).
Especially during recent years some effort was spent in trying to design more efficient
linkage learning, but it is not always clear how well the proposed methods scale with
increasing problem complexity (Paredis, 1995; Smith & Fogarty, 1996, Harik, 1997).
The aforementioned work all tried to get the linkage right adaptively, that is during the
normal runtime of the genetic algorithm. A different approach to linkage learning is
taken in the messy GA and its successors. Here the building blocks are first identified
and this information is subsequently used to code tight building blocks. Research in
the messy GA is still continuing but has already achieved impressive results (Goldberg,
Korb, & Deb, 1989; Goldberg, Deb, & Korb, 1990; Goldberg, Deb, Kargupta, & Harik,
1993; Kargupta, 1996; Kargupta, 1998).

3 Selection versus Mixing

Holland identified building-blocks as the fundamental unit of GA processing primarily by
examining the schema theorem (Holland, 1975). A somewhat generalised version of the
theorem may be written as

m(h,t + 1) > m(h,t)¢p(h,t)[1 — e(h,t)]

with ¢(h,t) the reproduction ratio, e(h,t) the disruption factor, and m(h,t) the number
of strings within the schema h at generation ¢. This inequality is basically saying that we
can grow building blocks if the number of instances created by selection is larger than the
number of instances that are destroyed by the genetic operators such as recombination, or

o[l —e] > 1 (1)



where ¢ is the growth rate under selection only and € is a conservative estimate of the
probability of a schema being disrupted by the genetic operators. The schema theorem is
very important to understand GA performance, but that it is not the only factor may be
established with the following reasoning. Since the schema theorem contains the product
of two terms we may establish the necessary condition either by (1) increasing selection
pressure ¢ to counterbalance some bounded loss € or by (2) decreasing e through parametric
control of the disruption loss. Pushing harder does not necessarily mean running the risk
of premature convergence because now we can also be more disruptive. Increasing the
selection pressure ensures that we are able to grow the building blocks (BBs) without any
need of linkage information, so why would we worry about tight codings as in the traditional
GA approach, where one only looks at the disruption factor e. Whenever GA difficult or
deceptive problems are faced, the emphasis is put on the use of low disruptive crossover
operators and tight linkage so € is kept small.

Increasing the selection pressure ¢ or decreasing the disruption factor ¢ however does
have a cost. This can easily be seen if we take either of these approaches to their logical
conclusions and end up with an absurdity. If a selection pressure is chosen to counterbal-
ance a very high loss, all population diversity will be lost almost immediately resulting in
no exchange and an extreme form of premature convergence. If disruption is made very
small, exchange will never take place and despite meeting the schema theorem criterion, the
growing building blocks will never exchange. This points out an often ignored fact of GA
practise: growing building blocks is one thing, mixing them is another. The schema theorem
does not talk about the crucial issue of building block exchange: having the building blocks
in large proportions in the population is not by itself a guarantee to find a good solution.
Good building blocks of one string also have to be combined with good building blocks of
another string to form a new string with a larger number of effective building blocks. There
are two contradicting requirements on the recombination operator: on the one hand we wish
to minimise the disruptive effect of crossover on the building blocks. On the other hand
we want to maximise the building block exchange or mixing capability. Making copies of
(or selecting) good building blocks and recombining building blocks are somewhat opposing
processes.

To understand how genetic algorithms do their job it is instructive to break down their
complex search dynamics into meaningful subprocesses. In the initial population we start
with one or very few building blocks juxtaposed on certain individuals. Selection increases
their proportion and by using the recombination operator we hope that eventually all BBs
will come together in one optimal solution. In (Goldberg, Deb & Clark, 1992) the six
pieces of the GA puzzle were identified as (1) knowing what GAs process - building blocks
- (2) ensuring an adequate initial supply, (3) guaranteeing that BBs grow, (4) making BB
decisions well, (5) solving problems that are not too BB-difficult, and (6) ensuring that
BBs exchange to form better solutions.

Here we will specifically be concerned with the last point, namely the BBs exchange
or mixing, and study its interaction with selection. In particular we look at simple GAs
without linkage information, so no assumptions about tight BB linkage can be made, and
therefor no positional biased crossover operator can be used. Instead we have to use uniform
crossover and compensate for its destructive properties by increasing the selection pressure.
First, we discuss the notion and probability of mixing events. Next, we quantify the mixing
of two building blocks, and finally this is generalised to m BBs by developing the mizing
ladder climbing model. Mixing is interrelated with selection to obtain a dimensional GA
model (Ipsen,1960). All analytical predictions are verified with computational experiments
on fully deceptive trap functions using uniform crossover.



4 Scalability Issues of Exchanging Building Blocks

There are basically two different ways for the crossover operator to increase the number of
BBs on a particular string:

1. One possibility is that building blocks are created or emerge at a certain position.
When both parents have for instance one half of the desired bit values of a particular
building block, it is possible that crossover will combine them to create the BB. When
the fitness function and coding is deceptive, most bit value combination that are not
building blocks will differ only a few bits from the deceptive local optimum because
they have a higher fitness contribution. The longer the deception length the more
likely it is that less than half of the BB bit values are present, and therefore the less
likely it becomes that building blocks can be created.

2. The alternative is that building blocks get mized. The crossover operator now transfers
complete building blocks from both parents to form an offspring that has a higher
number of building blocks than either one of its parents. In fact this is really what a
recombination operator is supposed to do: recombine basic entities in order to build up
a better solution. Fortunately the proportion of these building blocks steadily increases
by the work of the selection mechanism. Selection and building block mixing are the
two fundamental mechanisms of Genetic Algorithms. The creation of BBs is just good
luck: since all schemata of lower order than the BB-length k lead to the deceptive
attractor there is no information available to the GA that enables it to create BBs in
a systematic way.

To reach the global optimum we have to steadily increase the number of mixed building
blocks until all of them are juxtaposed on one single individual. A particular crossover
operation is successful if one of the offspring has more BBs than each of the parents: in
the remainder we will call such a successful recombination a mixing event. Let us call
Pmiz the probability that this happens - pmiz is thus a measure of the crossover efficiency.
To calculate pmiz we introduce the following notations: b1 (resp. b2) is the total number
of BBs of the first (resp. second) parent, b = |b; — b2| is the different amount of BBs
between the parents, d is the number of BBs that occur only in one of the parents (i.e.
the unmatched BBs), and finally d, is the number of matched BBs. It is easy to see that
of the d unmatched BBs one parent has ¢5% BBs while the other has %. Therefore a

2
mixing event takes place when one of the children has at least 1+ %2 BBs.

A conservative view of mixing is obtained when we consider all non-BBs alleles to con-
sist of all zeros versus the all ones BBs. So each individual string consists only of BBs

and deceptive attractors. For uniform crossover with swapping probability p, = 0.5 the

probability that a BB is transferred to the other string is (%) * as is the probability for the

BB be kept intact at the original string. The building block survival probability is therefore
Dsurv = 2 (%)k

The probability to juxtapose 7 specific BBs and to disrupt the remaining d — ¢ BBs is
given by (2%)1(1 — %)d’i. Computing all possible BB combinations that give one child a
higher number of BBs than its parents, and realizing that a mixing success can happen at
either one of the two children (which brings in a factor 2), we can calculate the probability
Pmicz that a mixing event between two parents will take place by:

( ; ) (5= ) (2

The chance for a mixing event is thus very low and has a pronounced maximum value
when the two parents have the same number of BBs (b = 0) and only two unmatched BBs

d=2).

d
g



4.1 Mixing Two Building Blocks
4.1.1 Dimensional Model

Before considering the exchange of building blocks in its general form, we first look at the
most elementary mixing problem, namely constructing the optimal solution in a problem
with only two building blocks. In this case a single mixing event will juxtapose the two
building blocks and create the global optimum. If the selection pressure is high enough, we
expect that enough copies of the optimum will be made so that some of them survive the
recombination phase and can start to take over the population. In the conservative view the
recombining strings consist of a building block and a deceptive attractor (e.g. if “11111”
and “00000” represent resp. the building block and deceptive attractor, the mates are for
instance “11111 00000” and “00000 11111”). With uniform crossover the probability that
an offspring will inherit the optimal allele is % The mixing probability pmi, for juxtaposing
2 BBs of length k is thus pmis = 2(3)>*, where the factor two comes in because the mixing
event can happen at either one of the offspring. This is only a lower bound and in a less
conservative view we might hope that the parents have a few optimal alleles in common so
we can write the mixing probability as:

2
Pmiz = ouk (3)

with p < 2.

We now calculate the mixing time ¢, as the expected number of generations to obtain
one mixing event; assuming a population size n, a crossover probability p., a building block
length k, and 2 BBs, there are §.p. recombinations in one generation so the mixing time
te iS:

1 2rk
te = g—" = —. (4)
3PcPmix NPc

To interrelate recombination with selection we can use the takeover-time model for the
selection time (Goldberg & Deb, 1991):

Inn

ts = s (5)
When we increase the selection pressure s too much, or when our population size n is
too small, selection will be too fast for the BBs to get exchanged well enough. So when
the selection time ¢, is smaller than the mixing time ¢, we expect premature convergence
to occur. On the other hand when the selection time ¢; is larger than the mixing time
t., we expect that the mixing process will have time enough to juxtapose all BBs in one
single individual - the global optimum. Note that the selection and time equations are
dimensional models and express exact relationships up to a constant factor ¢. Therefore a

necessary condition for converging to the global optimum in the 2 BB case is thus:

ts > c.ily

or

21k
nlnn > ¢ pns. (6)

Recall that these dimensional models only say something about the functional interre-
lations between the GA parameters: for instance we can conclude from Equation 6 that
the boundary between sufficient building block exchange and premature convergence will
decrease linearly with the crossover probability p., and will grow logarithmically with the
selection pressure and exponentially with the BB—length.

In Figures 3 and 4 we have plotted the predicted functional relations between the popu-
lation size n and the crossover probability p., and between the selection pressure s and the
crossover probability p.. The enclosed region - or GA sweet spot (Goldberg, 1998) - between




the mixing and selection boundary is the region where the GA will reliably converge to the
global optimum.
In the next paragraph we will check experimentally the dimensional relation.

4.1.2 Empirical verification

All experiments in this section and the next are performed with fully deceptive trap func-
tions with signal value equal to % (Deb & Goldberg, 1993). For a single parameter com-
bination 50 runs are tried and called successful when at least 49 of them converge to the
global optimum. We use uniform crossover with allele-wise swapping probability p, = 0.5,
no mutation and block selection (i.e. the 2 best strings in the current population get s
copies in the next generation). For the two building block experiments we have to be careful
with the initial population: for uniform crossover with fully deceptive functions to work well
in a simple GA we need very large population sizes n. Since we are only interested in the
mixing behaviour of the two BB, all global optimal strings - those that already have the
two BBs juxtaposed - are removed from the initial population.
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Figure 2: Dimensional relation between BB-length k and population size n when mizring two
building blocks with selection pressure s = 4 and crossover probability p. = 0.5. The solid curve
represents nlnn with n values shown in table 1. The dotted line c'2'-%% (¢! = 20) indicates the
linear relationship between nlnn and 2** for mizing 2 building blocks.

In a first set of experiments we look at the relation between the population size n and the
building block length (kFigure 2). Results are shown for selection pressure s = 4, crossover
probability p. = 0.5, number of building blocks m = 2 and building block length k going
from 3 to 10. The experiments confirm the exponential growth relation between nlnn and
k. The p (= 1.6) coefficient is a little less than 2 as expected.

Figure 3 gives the relation between the crossover probability p. and the population size n
for s = 4, k = 4 and m = 2. The bottom part of the curve represents the mixing boundary
and has the functional form as expected by Equation 6. Below this curve the building
blocks initially grow but do not get exchanged before the population converges. The top
part represents the schema theorem (Equation 1): above this curve BBs do not grow. For
any parameter combination falling in the enclosed area the GA will reliably converge to the
global optimum.
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Figure 3: Dimensional relation between population size n and crossover probability p. when
mizing two building blocks with selection pressure s = 4 and building block length k = 4. The
region enclosed by the solid curve shows the n vs. p. parameter combinations where at least 49
out of 50 runs converged to the global optimum. The lower part of this region is determined
by the mizing boundary, which is well modelled by the dimensional relation p. > ¢'/nlnn as
indicated by the dotted line ¢/ /nlnn (¢ = 1000).

Figure 4 shows p. versus logs (k = 4, n = 600 and m = 2). Again the upper curve
represents the schema theorem. The part of the lower curve with small s—values is the mix-
ing boundary indicating a linear relationship between p. and log s. The vertical boundary
at s = 2" is the cross-competitive boundary where selection is too high (Goldberg, Deb &
Thierens, 1993).

4.2 Mixing Several Building Blocks
4.2.1 Dimensional Model

In the previous paragraph the simplest mixing process was considered - the exchange of
two building blocks. To extend this analysis to the general m building block case, we have
to look explicitly how the GA juxtaposes all the BBs. From Equation 2 we know that
the mixing probability pmi» between two parents rapidly decreases when the number of
unmatched BBs (= d) increases and the different amount of BBs between the parents
(= b) for a given d-value increases. By far the highest mixing probability pmi. is obtained
when the parents have the same number of BBs and they only have two unmatched BBs
(d =2,b=0). In this case pmiz = 22% or when taking into account that non-BBs also
have some optimal alleles pie = wik with p < 2.

Let us call the number of building blocks present in an individual string its mixing level.
The probability that a child will have two BBs more than one of its parents is negligible in
comparison with the probability of having only 1 BB more. We can safely assume that after
a mixing event has taken place one of the children will have one BB more juxtaposed and
therefore will be at a mixing level that is only one higher than its parents: so the increase
in mixing level goes step by step.

Another interesting consequence of the mixing probability calculation is that the level
increase has to occur more or less simultaneously for all building blocks: to see this let us
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Figure 4: Region of reliable convergence to the global optimum when mizing two building blocks
with building block length k = 4 and population size n = 600 in function of the selection pressure
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suppose that the mating parents are on a different mixing level. For instance the first parent
might be at level two and have its 2 BBs at the first and second position (’bb*** with 'b’
standing for the presence of a building block and '*' for a non-building block), while the
other parent might be at level four ("*bbbb’). In addition let us assume that the first BB is
covered until level 2, this means that there are no strings in the entire population that have
the BB in the first position and are at the same time on a mixing level higher than 2. Now
for the first BB to be covered at level four we need 2 mixing events: a first mixing event is
needed to create a level three individual that has the first BB and two others juxtaposed.
A second mixing event needs to mix the first BB with three other BBs to cover it at the
fourth mixing level. However, while we are waiting on these two mixing events to occur,
selection causes the strings at a higher mixing level to take over the population, hereby
pushing the first BB to extinction. The greater the difference between the different BB
coverage the more likely we will have premature convergence. To avoid this all BBs should
more or less go simultaneously to the successive mixing levels and in a simple GA this can
only be obtained by increasing the population size n.

To quantify this phenomenon we introduce the mizring ladder climbing model. We hy-
pothesise that only the most probable mixing events actually determine the mixing dynam-
ics: the mixing takes place between strings that are at the same mixing level and have
only 2 unmatched BBs (d = 2, b = 0). Although the model takes a conservative view of
GA mixing, it becomes sufficiently accurate with increasing building block length k. Any
serious deviation from it (for instance when the population size n is too small) will result
in bad BB exchange and premature convergence.

Suppose that in the current population all BBs are covered up to the mixing level
m; and all strings are at the same mixing level: each string has thus m; building blocks
juxtaposed. Since mixing is only likely to occur when the two mating parents have only 2
unmatched BBs between them, we can calculate the mixing probability pmir by realizing
that for each string with m; BBs there are m;(m — m;) different strings with which it
has 2 unmatched BBs (e.g. for ’bbb**** we have "*bb***b’ 'b*b**b*’|...). The mixing



probability is therefore:

my(m —my) 2

Pmic = —7 " o5.%
m

Now how do we reach mixing level m; when we are at level m; —1 7 After n, mixing events
we have n, individuals at level m;, and the question to be answered is how many mixing
events we need in order to have all BBs covered at this higher level. Since all of the n,
strings have m; BBs we expect that (1 — (1 — 72)"®)m BBs are covered. By increasing
the number of mixing events n, the probability that all BBs are covered comes arbitrarily
close to 1:

(7)

(1-(1=2H")m > (1 - a)m (®)
with a < %
After simplifying, approximating In(1 — Z2) & — 7L and letting Ina = —c we get:
m
z — 9
Ny > cml 9)

The number of mixing events needed to climb one step of the mixing ladder is thus
proportional to the number of building blocks.

We now have all the necessary pieces to calculate the mixing time ¢, - i.e. the number
of generations needed for n, mixing events to occur. This gives us:

bome™ L (10)
m; 3PcPmix

In order to allow the GA to climb each level of the mixing ladder step by step - and thus
preventing premature convergence - the selection takeover time ¢, has to be larger than the
mixing time ¢, at each level m;. The worst case will take place when ¢, is maximal and
because of the combinatorial factor in Equation 7 this will happen at m; = . By using
the Stirling approximation m! =~ (Z)™v/2wm, we see that:

( m ) _ m!
m/2 - (m/2)!(m/2)!

and thus

and Equation 10 can be simplified to:

2p,k 9m
ty = c— (11)
NPec m?2
Interrelating the selection time ¢; with the mixing time ¢, we finally obtain:
2#FIn s 2™
nlnn > ¢ ne = (12)
DPc m2

This dimensional relation shows the limitations of the basic genetic algorithm that has
no linkage information and uses uniform crossover: by increasing the selection pressure fully
deceptive building blocks can be grown but in order to mix them the population size has
to increase exponentially with the number of building blocks !

10
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Figure 5: Minimal population size n needed in function of the number of building blocks m in
order to converge to the global optimum in at least 49 out of 50 runs. Results are shown for
different building block lengths k, with selection pressure s = 4 and crossover probability p. = 0.5.

4.2.2 Empirical verification

In Figure 5 we have plotted the population size n versus the number of building blocks m
for different values of BB—length. Selection pressure s and crossover probability p. are
resp. 4 and 0.5. Clearly the exponential growth of n with m is confirmed. For low building
block length values (k = 3 and k = 4) the growth is a little slower: obviously the influence
of emerging building blocks on the pure mixing is more pronounced in these cases.

4.3 Conclusion

We have analysed the exchange of building blocks - building block mixing - in simple GAs
for GA-hard functions without the use of any prior linkage information. The traditional
view on genetic optimisation considers crossover to be a source of building block disruption
and therefore very disruptive operators such as uniform crossover are supposed to be of
no use for problems where one needs to process building blocks as a whole. The most
pronounced problem where this is the case are the fully deceptive functions, and general
GA wisdom says that a basic GA can only solve these problems to global optimality if
the building blocks are tightly linked and one uses one-point crossover, which has only a
small disruptive effect. Assuming that the building blocks are tightly linked is however an
extremely strong requirement which certainly limits the applicability of the basic genetic
algorithm.

We have argued that there is a way to solve - at least in principle - fully deceptive
functions by using uniform crossover. Since uniform crossover is linkage independent, this
means that there is no need to have the building blocks tightly linked. The key factor lies
in the selection pressure: by increasing the selection intensity, more copies are made of the
building blocks and thus we are allowed to use a more disruptive crossover operator. The
schema theorem can be used to see how much we have to increase the selection pressure.
Experimental results show indeed that fully deceptive functions are solved to global op-
timality by using uniform crossover and a high selection pressure. So do simple genetic
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algorithms need tightly linked building blocks ? As far as the schema theorem is concerned
they do not. There is however a caveat in all this, and it is here that the importance of
the need for mixing analysis shows itself most profoundly. Having a high selective pressure
ensures that the building blocks increase in number, but we have showed that in order to
juxtapose or mix them we need an exponentially large population size.

Until now we have restricted our attention to a building block mixing analysis for fully
deceptive functions with uniform crossover in simple GAs. By increasing the selection
pressure we can increase the proportion of BBs but unfortunately the BB mixing becomes
intractable. A number of extensions to the simple GA can be brought in to improve the
mixing complexity. Since the mixing probability pm:, is highest when the mating parents
have only two unmatched BBs, a mating scheme that restricts recombination to strings
within a certain Hamming neighbourhood should decrease the mixing time ¢,. Niching
techniques might help us to climb the mixing ladder in a more smooth way without the
need of excessive population sizes. It has been shown here that mixing events are rare,
therefore we should be careful not to destroy individuals at the highest mixing level and
elitism might help us to achieve this. These issues will be discussed in the next section.

5 Extending the Simple Genetic Algorithm

The previous section discussed where we could expect reliable convergence to the global
optimum for the simple genetic algorithm, and how the failure boundaries scaled with the
GA parameters (population size, string length, building block length, selection pressure,
and recombination rate). Specific attention was given to what we have called the mixing
failure, and an important conclusion was that due to this mixing failure, simple genetic
algorithms are severely limited in their building block processing capability, unless these
building blocks are tightly linked.

In this section we will go beyond the simple genetic algorithm and ask ourself whether
some straightforward extensions to the simple GA might significantly improve the mixing
problem. In particular we will add three mechanisms to the simple GA: elitism, niching,
and restricted mating. A need for these three mechanisms can be reasoned upon by making
the following observations:

1. First, in the simple GA the children produced by applying crossover are always replac-
ing there parents. For hard problems good parent strings are difficult to construct,
and it is a waste of computational effort to simply replace them by their offspring
who have a distinctly high chance of being less fit. The philosophy in simple GAs
behind this blind replacement strategy is that due to the ever increasing proportion
of building blocks the chance of juxtaposing them becomes better all the time, so it
does not matter if we throw good solutions away, they can easily be reassembled latter
on. Again this philosophy is a testimony of how simple GAs are conceived to operate:
problems are coded such that the substructures needed to compose (near)-optimal so-
lutions have a low chance of being destroyed by the crossover operator and - although
this is often more implicitly assumed - they have a high chance of being assembled (or
mixed) together.

A classical way of ensuring that the best solution is never lost is to copy the best
individual to the next generation. However from a mixing point of view this does
not help much. Instead of keeping the best (or a few best) solution, we would like
to minimise the impact of mixing failures by keeping all parents that are more fit
than their offspring. One way of achieving this is by using the Elitist Recombination
algorithm (Thierens & Goldberg, 1994), which we will discuss in the following section.

2. Next, since in the simple GA the building blocks are involved in a selection versus
mixing race, it might be beneficial to significantly decrease this race against time
by using a niching technique. Niching is traditionally being used when optimising
multimodal problems in order to let multiple optima coexist in the population. Since
building blocks are typically member of different local optima, the use of niching can
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keep them in the population and effectively buying them time to get mixed with other
building blocks. In section 5.2 we will go into this in more detail.

3. Finally, since the mixing probability is dependent on the hamming distance between
the parents, an obvious candidate to improve the mixing success is to restrict mating to
parents which are neighbours in Hamming space. When the mating parents are close
together in Hamming space, most building blocks will be the same in both parents and
cannot be disrupted by any crossover operator, thus increasing the mixing probability.
Section 5.3 discusses the mating restriction.

5.1 Elitist Recombination

In the basic genetic algorithm individual strings are copied during the selection phase and
then recombined to create new strings. To reduce the schema disruption factor e(h,t), the
probability of applying crossover p. is often less than one, so some of the string copies simply
go to the next generation without further modifications. However the best solutions from
the current generation will not necessarily be present in the next generation. To make sure
that the best solution found so far is always present in the population we can simply copy
the best string from the current population to the next generation. This approach - called
elitism - has however a disadvantage: if the problem is very hard and recombination cannot
create new, better strings in a small number of generations, then the amount of copies of the
best solution will increase rapidly and will take over a large part of the population, driving
out other good solutions and thus severely decreasing the search quality. An additional
problem is that with this elitist method only the best is preserved while other strings that
might have potentially good building blocks juxtaposed may be destroyed by recombination.

An interesting alternative is to use a population-wide elitism where the offspring has to
compete with the entire parent population. This approach has been applied successfully
in many implementations, for instance CHC, Genitor, (1 + A)-ES, and the Breeder GA. In
population-wide elitism, offspring that is worse than their parents often replace other parents
which have a low fitness. From a selection point of view this is what we want, however from
a mixing point of view this might not be optimal because there is no direct correspondence
between entering the next generation and successful mixing events. Recall that we have
called a mixing event successful whenever one of the children was better than one of its
parents. In population-wide elitism, offspring can enter the next generation even after
unsuccessful mixing. In order to have a more direct ” credit assignment” between successful
mixing and entering the next generation we here apply the elitist recombination algorithm.
In the basic genetic algorithm, selection and recombination are separated into two distinct
phases. For every generation, selection first generates an intermediate population by making
extra copies of the best individuals and by eliminating the worst performing individuals.
Thereafter recombination is applied to generate the next generation. In order to promote
building block growth one typically chooses a crossover probability value p. < 1.0. There
are however no guidelines - except from some empirical studies - on how to choose a value
for pe.

The elitist recombination GA is a much simpler implementation: no separate selection
and recombination phases are needed and crossover is applied for every mating pair so
there is no need to specify a value for p.. Elitist recombination works entirely at the level
of each family: for every mating pair two offspring are created and the best two of these
four individuals go to the next generation. Parents are replaced by their offspring when
these have a higher fitness value, but this elitism is only working at the family level not at
the population level. There is also no separate selection phase where copies are made of
good strings. As a result elitist recombination does not suffer from the danger of extreme
premature convergence that often jeopardises other elitist schemes (of course premature
convergence might still occur, for instance when the population size is much too small). It
has also been shown that this family competitive scheme has the same selection intensity
as tournament selection with tournament size 2, which is in general a fairly good selective
pressure for most problems.

Elitist Recombination algorithm:
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1. initialise population
2. for every generation
(a) random shuffle population
(b) for every mating pair:
e generate two offspring
o keep best two of the four individuals

Having ensured that hard found good solutions are not lost anymore, we now incorporate
the use of niching to combat the race against time seen in the simple genetic algorithm.

5.2 Niching

In a simple genetic algorithm selection and mixing are actually involved in a race against
time: in order for recombination to have enough time to juxtapose the optimal alleles or
building blocks, the mixing time ¢, has to be smaller than the selection time t;. When
the problem is hard from a mixing point of view, the population size needs to be increased
considerably to allow good mixing before the population converges due to the selective
pressure. An alternative to the population size increase is the use of niching techniques.
Niching basically keeps multiple good solutions in the population and prevents the GA from
converging to a single string. Strings that are composed of different building blocks can
thus coexist in the population and crossover has all the time it needs to mix or juxtapose
the different building blocks. Put it another way, niching increases the selection time
dramatically while leaving the mixing time untouched, and the condition for good mixing
to occur - t; < ts - is now easily fulfilled.

A number of mechanisms to induce niches in a genetic algorithm population have been
proposed in the literature. These niching mechanisms can be classified into two classes:
sharing schemes and crowding schemes.

Here we will generalise the elitist recombination algorithm into a crowding algorithm
called the generalised crowding algorithm. De Jong’s crowding algorithm selects randomly a
subset of the population and replaces the string that matches the child most closely whether
or not the child’s fitness value is better. Deterministic crowding and elitist recombination
let the children compete only with their parents but they need to have a better fitness value
to enter the population. Generalising the subset selection mechanism and the local elitism
principle we obtain a generalised crowding algorithm that captures the characteristics of
both schemes:

Generalised Crowding algorithm:

1. randomly shuffle the population

2. for each pair of strings: create two children

3. for each child:
a) randomly select w — 2 strings from the population
b) determine the closest string from these

strings and the two parents

c) let the child compete with this string

To understand how the generalised crowding algorithm maintains different solutions in
the population it is instructive to compute how the growth of the highest valued string
is limited and thus prevented from taking over a substantial part of the population and
pushing other solutions out of the population. Assume the best solution has a proportion
of p;i(t) strings, the population has size n and the crowding window size w. The number of
copies of the best solution can only increase whenever a new copy competes with an element
that is not a copy of the best string. This can only happen if none of the w strings in the
crowding window are from the best set. Since the crowding window is randomly selected
without replacement we have:

(n(l—m(t)))
w

Plpi(t+1)>pi(0)] =~y
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Both inequalities are close to being an equality when the window size w is much smaller
than the population size n, and p;(t) << 1. The probability that the number of copies of the
best string increases is thus an exponentially decreasing function of the present proportion
and the crowding window.

5.3 Restricted Mating

Extending the genetic algorithm with a local elitist mechanism and with a niching technique
helps the basic GA in overcoming some aspects of the mixing problem. Elitism makes sure
that good solutions do not get lost unless they can be replaced by better ones. Niching
eliminates the race against time that is going on in a basic GA between selection and
recombination. Both mechanisms however do not change the mixing probability pmic-
The mixing ladder climbing analysis from the previous chapter showed that the mixing
probability for bounded deceptive problems is extremely low:

mi(m —my) 2

Pmic =
my

where m is the total number of building blocks, m; the number of building blocks that are
already juxtaposed and k the deception length (p is just a factor between 1 and 2).

In order to reduce the mixing complexity we have to increase the mixing probability pmic-
Recall that for a given deception length k£ the mixing probability py,, was minimal when
strings had half of the building blocks juxtaposed or m; = m/2. The mixing probability
was in this case :

V2 miym 1

Pmia = T T om T quk

The exponential term in the denominator causes the mixing to become intractable with
increasing number of building blocks for a basic GA without a priori linkage information.

The mixing probability pmi, decreases exponentially with both the deception length &
and with the number of building blocks m. The exponential dependence on the deception
length however should not concern us: the use of bounded but fully deceptive problems
was just intended to push the GA to its limits and each deceptive subfunction is basically
a needle in a haystack so there is no information in the search space that might help any
search algorithm of finding it. The mixing probability for the basic GA without a priori
linkage information, is also exponentially dependent on the number of building blocks.
From the previous section (Section 3) we recall that the factor my(m=m;) expresses the

m
probability that two randomly chosen strings with m; building blocké are neighbouring
strings in Hamming space. This means that the two strings each have only one building

block that is not matched by the other string, e.g.:

pl:111 000 000 111 111 000 000 111
p2:111 000 111 000 111 000 000 111

An apparently obvious way to increase the mixing probability is to replace the random
selection of mating strings by a restricted mating mechanism. For every mating string we

scan the population until we find a neighbouring string, so the factor W disappears

my
and the mixing probability becomes pmiz = 2'7#¥. This assumes that the population is
large enough so we can find a neighbouring string. Suppose - as we did in the building block
mixing analysis - that all strings have m; building blocks juxtaposed. The probability that
a string has a neighbouring string in a population of size n is then:
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my(m — my)

()

my(m—mp)
m

Plneighbor] =1— | 1—

This probability is lowest when the fraction is smallest, or when m; = m/2. Tak-

mi
ing this value for m; we can compute the necessary population size n to let the probability
P[neighbor] come arbitrary close to 1 as:

V21 m? "
1—(1——7”" ﬁ) >1—e¢

8 2

or
2 2m
n>lnet44/2

™ m2\/m
Of course it is not necessary for every string in the population to have a neighbouring string
but even if we relax P[neighbor] considerably the exponential increase in the number of

building blocks remains overwhelming.

5.3.1 Experimental verification

The above discussion indicates how family elitism, niching and restricted mating help to
improve the search properties of the simple genetic algorithm. Unfortunately the building
block mixing probability pp, is still very low due to two reasons:

1. The probability that two parents are neighbouring strings in Hamming space is signifi-
cantly higher when using restricted mating but it is still substantially low for problems
with a large number of building blocks m.

2. The mixing probability p,:. is proportional to 27#% and thus the mixing of building
blocks becomes very unlikely with increasing deception length k& and with increasing
p-factor. Recall that when the strings in the population consist only of building blocks
and deceptive attractors, the factor p is equal to two.

To illustrate the remaining problem we have integrated the mechanisms into the following
extended genetic algorithm:

Extended genetic algorithm
A. create random population
B. evaluate population
C. for t: 1 — max_generation
1. shuffle population
2. select mates:
for i: 1 — pop_size
for j: (i+1) — (i+1+mating window)
mates(i) = closest_string(j)
3. create offspring:
for i: 1 — pop-size
crossover(pop(i),mates(i))
evaluate(offspring)
4. insert offspring:
for i: 1 — pop_size
for j: i — (i+crowding_window)
competitor(i) = closest_string(j)
if fitness(competitor(i)) < fitness(child(i))
replace competitor(i) with child(i)
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As an example we have run this extended GA on the fully deceptive trap function with 10
building blocks of deception length k = 5, a population size n = 500, mating window size
wmy = 50 and crowding window size w, = 25. We assume no a priori linkage information
and use uniform crossover. Some typical strings after 25 generations were:

p1 : 00000000000000011111000000000000000000000000000000
p2 : 00000000000000000000000000000011111000000000000000
p3 : 00000111110000000000000010000000000000000000011111
pa : 11111000001111100000000000000000000111111111100000
ps : 11111000000000000000000000000000000000100000000000

Due to the elitism and niching the entire population consists almost solely of building
blocks and deceptive attractors. The p—factor in the mixing probability is thus approxi-
mately equal to 2: pmiz = 22% During the first generations the GA quickly identifies the
locally optimal bit combinations but then its performance is severely hampered by the de-
structiveness of uniform crossover. Uniform crossover is a blind recombination operator and
the probability of exchanging bit values is equal at all bit positions. Due to the extensions
though, all the building blocks remain in the population and if we would only change the
allele swapping distribution in function of the current population, then the mixing would
become much faster. This leads us to our overall conclusion: in order to be efficient and
scale up well with increasing problem size, genetic algorithms need to be given information
about the building blocks. This information can already be in the problem-coding - when
building blocks are tightly linked - or mechanisms are needed that identify the building
blocks such that they can be efficiently mixed together.

6 Discussion

We have discussed the mixing requirements of simple genetic algorithms and showed how
it forms a part of the boundary of the region in GA parameter space where reliable and
efficient search takes place. The need for proper building block mixing limits the simple
genetic algorithms performance on hard problems. Without any knowledge of the building
block linkage structure these problems can be solved by increasing the selection pressure and
applying uniform crossover, but unfortunately this does not scale up with increasing problem
size. From a mixing point of view algorithmic extensions such as family elitism, niching,
and restricted mating all have a beneficial effect on the building block mixing process, but
they do not result in scalable genetic algorithms. To obtain competent, scalable genetic
algorithms one need to ensure that the building block mixing is explicitly taken care off.

One approach might be to adapt the crossover recombination distribution at run time.
Traditional crossover operators do not change their recombination pattern during the search
process: one point crossover for instance always selects a cut point at random with equal
probability for all possible positions in the string. Uniform crossover exchanges each allele
with a fixed swapping probability. Building block exchange would be much more efficient
when the crossover operator is made adaptive such that its recombination probability dis-
tribution reflects the assumed position of the building blocks in the current population.
Identifying building blocks during the GA search does however holds the potential risk of
being misled early in the search and therefore missing some important information.

An alternative is to identify the building blocks before the actual GA search. This
method has been the basic principle of the messy genetic algorithm family (Goldberg, Korb
& Deb, 1989; Goldberg, Deb & Korb, 1990; Goldberg, Deb, Kargupta & Harik, 1993;
Kargupta, 1996; Kargupta, 1998).

Also, a number of recent genetic algorithms try to learn the building block information
by explicitly estimating the distribution of the promosing subregions in the search space (De
Bonet,Isbell, & Viola, 1997; Baluja & Davies, 1997; Miihlenbein & PaaB, 1996; Miihlenbein,
Mahnig, & Rodriguez, 1998; Pelikan, Goldberg, & Cantu-Paz, 1998). Here too, one first
tries to acquire the necessary information such that the problem becomes “mixing-easy”,
and fast, reliable, and scalable genetic algorithms are subsequently obtained.
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7 Conclusions

We have analysed the building block mixing capability of simple genetic algorithms when
given no linkage information. It was shown that with a sufficiently high selection pres-
sure and uniform crossover the simple genetic algorithm can solve GA-hard problems of
bounded difficulty without any knowledge (explicitly or implicitly) of the building blocks.
Unfortunately the process does not scale up with increasing problem size. Straightforward
extensions as family elitism, niching, and restricted mating help to combat the selection-
mixing time race, but are by themselves not enough to resolve the scalability problems.
Competent, scalable genetic algorithm performance can only be obtained when building
block linkage information is already in the problem-coding, or is identified before or during
the genetic algorithm’s search.
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