
A Case Study of a Multiobjective Elitist Recombinative Genetic Algorithm
with Coevolutionary Sharing

Martijn Neef1, Dirk Thierens2 and Henryk Arciszewski3

1 Cognitive Artificial Intelligence, Dept. Of Philosophy, Utrecht University,
PoBox 80089, 3508 TB, Utrecht, The Netherlands (neef@phil.uu.nl)∗

2 Dept. Of Computer Science, Utrecht University,
PoBox 80089, 3508 TB, Utrecht, The Netherlands (dirk.thierens@cs.uu.nl)

3 Command, Control and Simulation, TNO Physics and Electronics Laboratory,
PoBox 96864, 2509 JG Den Haag (arciszewski@fel.tno.nl)

Abstract: We present a multiobjective genetic algorithm that incorporates various genetic algorithm techniques that
have been proven to be efficient and robust in their problem domain. More specifically, we integrate rank based
selection, adaptive niching through coevolutionary sharing, elitist recombination, and non-dominated sorting into a
multiobjective genetic algorithm called ERMOCS. As a proof of concept we test the algorithm on a softkill
scheduling problem.
Keywords: genetic algorithms, multiobjective optimisation, coevolutionary sharing, softkill scheduling

1. Introduction
Characteristic to most engineering problems is that they are multiobjective. A problem is said to be multiobjective or
multicriteria if it involves optimising multiple goals at once. It is clear that it is not always possible to find a solution
which is optimal with respect to all objectives. A solution may be optimal regarding one objective, but at the same
time be inferior regarding another objective. For instance, the cost and quality of a product are typically two
objectives one cannot adequately optimise independently, nor can they be easily combined into a single objective
function. In other words, usually the design goals are competing and many trade-offs are possible. Therefore the
decision which design or solution is best is often taken by an external (human) decision maker. More recently
evolutionary techniques have been applied to multiobjective problems as well. Because of their massive parallel
search these techniques are especially suitable for multiobjective optimisation. These multiobjective evolutionary
techniques have nevertheless scarcely been applied to real-world problems. In this paper we present a multiobjective
genetic algorithm that is applied and tested on a practical optimisation case.

The next section contains a brief introduction on multiobjective problems and the evolutionary approaches
that have been developed previously. In Section 3 a new multiobjective GA called ERMOCS is proposed and which
is battle-tested against a real-world problem, softkill scheduling, in section 4. Finally, in section 5 a conclusion is
posed and remaining issues are discussed.

2. Multiobjective Genetic Algorithms

2.1 Pareto-optimality
Multiobjective problems are special in the sense that they do not have a unique solution. Usually there is no single
solution for which all objectives are optimal. The solution to a multiobjective problem therefore comprises a set of
solutions for which holds that there are no other solutions that are superior considering all objectives. These

∗ please send all correspondence to the second author

solutions are called Pareto-optimal. Hence, optimising a multiobjective problem is comprised of finding Pareto-
optimal solutions.

The notion of Pareto-optimality is defined in terms of dominance. Let's assume that a multiobjective problem
has k objectives. Assuming that this is a minimisation problem, then a solution x = (x1, x2, … , xk) is said to
dominate another solution y = (y1, y2, … , yk) if ∀i xi ≤ yi and ∃i xi < yi. Solution x is a member of the Pareto-set, or
said to be non-dominated, if there is no other solution y such that y dominates x. The multiobjective problem can
now be defined as finding solutions which are non-dominated.

Over the years, several evolutionary approaches to multiobjective problems have been introduced. The most
commonly used approach is to combine the objective function into a single objective function using weighting
coefficients and penalty functions. This problem-transformation enables the use of a simple single-objective genetic
algorithm to find a single solution, which may be feasible, so requiring no further searches. Weights and penalty
functions are generally hard to set accurately though, whereas both are very problem dependent (Richardson et al.,
1989). As a result, the solution a GA comes up with, may not fulfil all the designer’s needs. The solution may not
even be non-dominated. Setting the weights correctly requires a certain amount of search space knowledge, which is
often not available in advance. This way of dealing with multiobjective optimisation is therefore not always
applicable or efficient.

Another, and perhaps more effective approach, is to use genetic algorithms to locate Pareto-optimal
solutions. These solutions are, by definition, located on a boundary, known as the Pareto-front. We would like the
solutions to cover the Pareto-front as well as possible, as to obtain a good representation of this front. This
approach requires an extensive exploration of the search space and it is this requirement that makes evolutionary
algorithms extremely applicable in this case. Their massive parallel exploration of search spaces is an invaluable
advantage over other more conventional techniques in locating Pareto-optimal solutions. This Pareto-based
approach has additional benefits as well. This approach offers multiple solutions from which a decision maker can
select the solution that is best suited according to additional criteria, without requiring additional searches. Pareto-
based optimisation is hence a more transparent and efficient way of dealing with multiobjective problem.

2.2 Previous efforts
The first algorithm to exploit the parallel properties of genetic algorithms on multiobjective problems was

the Vector Evaluated Genetic Algorithm (VEGA), designed by Schaffer (Schaffer, 1985). His algorithm also was
the first to treat objectives separately in order to find multiple non-dominated solutions in a single run of the
algorithm. In VEGA, each generation subpopulations are formed in turn from the existing population by using
proportional selection according to each of the objectives. These subpopulations are then shuffled together again,
forming a new population on which ordinary crossover and mutation can take place. This way offspring, which is
created by parents from different subpopulations, is expected to perform well on both the objectives of the parents,
and the population is expected to evolve towards the Pareto-optimal front. However, by independently selecting
individuals that score well on a single objective there is consequently a bias against solutions that do not have high
fitness values for all of the objectives, but are still non-dominated. VEGA hence performs well in locating the
extreme parts of the Pareto-set, but has problems finding middling points. In short, all non-dominated points should
have equal reproduction probabilities.

This notion was first recognised by Goldberg (Goldberg, 1989), giving rise to a alternative kind of
multiobjective genetic algorithms, known as Pareto-based approaches. Goldberg suggested using a ranking
procedure, in which all individuals obtain a rank, relating to the number of individuals that dominate them. After
population domination sort, all non-dominated solution are set aside temporarily, giving rise to a new group of non-
dominated solutions, which are assigned rank 2, after which this group is temporarily removed and so on. This
procedure continues until all individuals have obtained a rank. This rank can function as a fitness-measure. A
another way to assign a rank-based fitness to an individual (Fonseca & Fleming, 1993) is by carrying out a single
full population domination sort, apply ranking and use a linear or non-linear scaling like 1/ranki to obtain a fitness

measure. Hereafter the fitness values of the individuals with the same rank are averaged, as to ensure all equal
individual will be sampled at the same rate.

Fonseca and Fleming used this ranking method in their Multi-Objective Genetic Algorithm (MOGA)
(Fonseca & Fleming, 1993). Furthermore, they introduced a niching scheme that calculates distances in the criteria
space (in contrast to distance measurements in decision variable space). The fitness sharing niche counts of
individuals is in their scheme calculated within the various ranks. Horn and Nafpliotis (Horn & Nafpliotis, 1993) did
not use explicit ranking, but focused on local domination tournaments. Their Niched Pareto Genetic Algorithm
(NPGA) uses a tournament selection scheme that compares two individuals on their dominance status. Using a
comparison set of randomly selected individuals each of the two candidates is classified as locally dominated or non-
dominated with respect to the comparison set. In the case that one is non-dominated whereas the other is
dominated, the non-dominated individual is selected for reproduction. If both or neither of the two candidates is
non-dominated, the tournament is decided using a fitness sharing scheme. In this case the candidate with the lowest
niche count wins. The size of the comparison set (tdom) is used to control selection pressure. As Horn (Horn 1996)
recognises, the main difference between the dominance tournament as used in NPGA and the ranking procedure as
used in MOGA is that the former is locally calculated, whereas the latter is much more globally defined. Srinivas and
Deb followed Goldberg's original ranking method more precisely in their Non-dominated Sorting Genetic Algorithm
(NSGA) (Srinivas & Deb, 1993). The sharing procedures are performed within categories of individuals with the
same ranking. After a non-dominance sort of the entire population, all non-dominated individuals are shared with a
dummy fitness value, which is based on the number of individuals in the current population. After this procedure,
the first class of non-dominated individuals is removed from contention and a next class of non-dominated
individuals is determined and shared with a smaller dummy value and removed as well. In this way the entire
population is classified and shared fitness-wise. This procedure gives a large reproduction chance to non-dominated
solutions, and allows for quick convergence to non-dominated regions.

More recently, the focus has been on implementing multiobjective genetic algorithms in real-world
situations. On the whole, these algorithms are based on either of the mentioned established algorithms with
problem-specific enhancements. Examples can be found in (Todd & Sen, 1997), (Obayashi, Tsukahara, &
Nakamura, 1997), (Cunha, Oliviera & Covas, 1997) and (Loughlin & Rajithan, 1997). Recently Shigura (Obayashi,
Takahashi & Takeguchi, 1998) compared several sharing schemes in multiobjective evolutionary optimisation,
including Coevolutionary Shared Niching, which is implemented in the algorithm that will be described in the next
section. A comprehensive overview of evolutionary approaches to multiobjective optimisation can be found in
(Fonseca & Fleming, 1995), and (Coello, 1998).

3. Elitist Recombinative Multiobjective GA with coevolutionary Sharing (ERMOCS)
The primary goal of the ERMOCS algorithm is an efficient and robust optimisation of multiobjective problems. To
achieve this aim we have set out to integrate well-known evolutionary techniques, which have proven to be effective
within their specific domain. Furthermore, we have adapted the techniques to cope with multiobjective problems.
All these approached are integrated into a Pareto-based genetic algorithm. In this section we will discuss the several
techniques that are used in the ERMOCS algorithm and clarify why they are, in our opinion, indispensable for our
aims.

3.1 Conventional techniques
First, since a Pareto-optimal set is defined in terms of its non-dominance, selecting a selection scheme that respects
this notion is inevitable. A sensible choice therefore is a rank-based selection scheme instead of the established
proportionate selection, which if often used in basic genetic algorithms. An additional ground for this decision is that
multiobjective optimisation should be devoid of any criteria preference. Pareto optimisation depends on non-
dominance instead of raw fitness values. Rank-based selection consequently seems to be the only valid choice in this
matter. To this end in ERMOCS all individuals are given a rank, based on the number of other individuals that

dominate them. Individuals are given rank 1 + n, where n is the number of individuals that dominate them. Non-
dominated individuals consequently obtain rank 1, others obtain a rank 1 + pi, where pi is the number of individuals
that dominate them. A fitness conversion is made by a simple linear transformation.

Regarding the selection scheme, we have chosen to use an elitist recombinative scheme instead of the usual
tournament selection scheme. Elitist schemes have several interesting advantages (Thierens & Goldberg, 1994).
First of all, by using an elitist scheme there is no need for specifying a crossover probabili ty, since elitist schemes use
crossover unconditionally. This reduces the overall number of parameters that have to be set, and consequently
making it easier to apply the algorithm. Secondly, elitist schemes are less sensitive to undersized populations than
tournament selection, also enhancing the overall performance in case of poorly set parameters. Finally, and also the
most importantly, using elitist recombination ensures that good solutions are never lost during the search process.
This is especially useful in time-constrained problem areas, since it allows the algorithm to come up with its best
solutions at any given time.

To preserve diversity in the population, a niching scheme seems unavoidable as well. We need to maintain
multiple optimal solutions, since we are looking for an optimal set of solutions. Almost all established multiobjective
genetic algorithms have applied some form of niching technique, and niching has proven to be a efficient way to
promote and maintain genetic diversity and to prevent genetic drift in multimodal function optimisation. Goldberg
(Goldberg, 1989) was the first to propose a niching scheme in conjunction with the rank-based selection technique
when optimising multiobjective problems. A niching technique promotes the development of stable niches along the
Pareto-optimal front. The most commonplace and successful niche formation scheme is fitness sharing (Goldberg &
Richardson, 1987). Fonseca and Fleming implemented fitness sharing in their MOGA, with distances being
calculated in the objective domain. They also recognised the difficulties in setting niche size σshare correctly, which is
hard to do without prior knowledge of the fitness landscape. To this end, they provided a theoretical basis for
estimating σshare, which, although accurate, is not practically applicable, since it requires extensive knowledge of the
search space.

The conjunction of tournament selection and sharing schemes causes chaotic behaviour in the dynamics of
the algorithm and limits the number of stable niches that can be maintained (Oei, Goldberg & Shang, 1991). Since
elitist recombination is in essence a tournament selection scheme, our algorithm will suffer from the conjunction as
well. In Pareto-based optimisation it is essential that we can maintain a sufficient number of stable niches. The
straightforward solution Oei offers is continuously updated sharing. The sharing information in the target
population is constantly updated as new individuals are entered. During a tournament, the shared fitness of a
competing individual is based on the number of niche-members it will have in the population that is being created.
This simple modification of the standard fitness sharing scheme produces stable dynamics and thus allows for
preservation of many niches. It is easy to use the elitist recombinative scheme with continuously updated sharing.
After reproduction of the two competing parent individuals, the shared fitnesses of both the parents and the
offspring should be calculated on the basis of the target population. From these four competitors the two top
solutions can enter the target population. Since we employ an quasi-steady-state algorithm, we use a slightly
modified kind of continuously updated sharing, in which the relevant sharing information within the population is
constantly updated. This approach will be described more clearly later on.

3.2 Coevolutionary Shared Niching

As noted, one of the drawbacks of fitness sharing is setting the sharing radius σshare properly. This parameter has a
significant effect on the performance of the algorithm and should be set as accurate as possible. Ideally σshare should
be set adaptively, allowing the algorithm to optimally capture the characteristics of the fitness-landscape. There is a
specific need for this in real-world problems, since in these cases fitness-landscapes are non-uniform and thus
require non-uniform niche sizes. To this end, Goldberg and Wang (Goldberg & Wang, 1997) devised a sharing
scheme, Coevolutionary Shared Niching (CSN), that eliminates this parameter and nevertheless allows the
algorithm to adaptively find optimal niche locations. Their technique is inspired by the economic model of

monopolistic competition, which describes the geographical interaction between customers and businessmen.
Businessmen will distribute themselves among the customers so as to maximise their profit, while at the same time
customers will go to the shop that minimises their costs. Both populations, customers and businessmen, therefore
have separate interests, which leads to the placement of shops where customers benefit the most.

This economic model has some interesting properties which can be applied to an evolutionary optimisation
scheme. The coevolutionary shared niching scheme is designed to form stable subpopulation of best solutions
regardless of the solution spacing, extent and modality. The customer population may be viewed as the common
population of solution candidates, searching for areas with a high fitness values through selection and
recombination. The businessmen population has as primary aim to locate niches at optimal places. The businessmen
population is a population of solution candidates as well, though the businessmen interact with the customer
population to find those locations which yields them the highest payoff. Their fitness function enables them to place
niches at highly fit regions of the search space. The interaction between the populations is accomplished through the
separate fitness function for both populations. Keeping the original economic model in mind, we recall that
customers will go to the store that is closest to them. This shop is defined by a businessman. Since an overcrowded
shop is not desirable, customers will want to move towards other shops. This is actually a plain standard fitness
sharing concept. The fitness function of the customers therefore is a modification of the standard fitness sharing
scheme. Assuming that at generation t an individual c is served by businessman b, who has a total of mb,t customers,
the fitness of an individual in the customer population is calculated as follows:

f c
f c

mb t c Cb

' ()
()

,

=
∈

where Cb denotes the customer-set of businessman b. In short, a customer shares its fitness with the number of
other customers that use its shop as well.

The businessmen determine the location and extent of the niches. They should therefore be located at peaks
in the landscape with a certain minimal distance between them. This distance, denoted a dmin, is important to ensure
a good distribution of the niches. A businessman’s fitness is simply the sum of the raw fitness values of its customers
and it is calculated as follows:

φ () ()
,

b f c
c C b t

=
∈
∑

Goldberg and Wang suggested two schemes to accommodate evolution within the businessmen population, simple
CSN and the imprint operator. In the simple CSN scheme, each businessman is chosen in turn, and a mutation on a
randomly chosen site on the businessman string is performed. If the resulting businessman is an improvement over
the original businessman, than the new individual replaces the original. Improvement is judged on two issues: a) the
resulting individual have a higher fitness than the original and b) the resulting individuals should be at least dmin away
from all other existing businessmen. This procedure is done up to a certain number of times. If none of the
mutations prove to be an improvement, then the businessman is retained in the population in its original form. This
scheme is effective on easy problems, but proves to be inadequate on hard and deceptive problems. An imprint
operator is suggested by Goldberg and Wang to enhance the performance. This operator simply chooses candidate
businessmen from the customer population. If a customer proves to be an improvement over its competing
businessman, the businessman is replaced by the customer, and the businessman is retained if none of the randomly
chosen customer outperforms the businessman. This procedure is, again, performed up to a certain number of times
for each businessman. This approach was more effective than the simple scheme and will therefore used in the

ERMOCS algorithm as well. The ERMOCS algorithm though uses a slightly modified version of the imprint
operator, which we be described later on.

In (Goldberg & Wang, 1997) CSN has been tested and analysed on massive multimodal deceptive function
(Deb, Horn & Goldberg, 1992). CSN (with imprint operator) proved to be a effective technique for optimisation on
this complex landscape. In their paper, Goldberg & Wang proposed additional testing on other families of problems,
notably multiobjective and real-world problems. When applied to multiobjective optimisation several issues have to
be addressed. The original scheme uses the actual fitness values to calculate customer and businessman fitness. Of
course, since solutions to multiobjective problems have several objective values, raw fitness values are not directly
applicable. Consistent to the ranked-based selection we favoured earlier, a logical solution is to use ranks as fitness
values. By doing so customer fitness is defined as the (transformed) rank divided by the niche count of the shop it
attends. Consequently a businessman’s fitness is the sum of the (transformed) ranks of all its customers.

A little less obvious is the measurements of distances in the multiobjective case. In this case it makes more
sense to use phenotypic measurements in stead of genotypic measurements, like Goldberg & Wang used in their
experiments. Pareto-optimality and dominance are defined in terms of objective fitness values. Therefore it is more
logical to use phenotypic distance measurements. There is a slight issue here though. We have noticed that in our
case simple Euclidean distance measurements suffice. This will only work, however, if both objectives are scaled to
approximately the same domain size. If one objective is scaled to a much larger domain than the other objectives
then consequently the movements in the direction of the larger-scaled domain will have less effect, and can disrupt
the optimisation process.

The ERMOCS algorithm can be decomposed in four segments, population creation, fitness calculations,
recombinative schemes and imprint operations. We will shortly describe these segments as to clarify the procedures
within the algorithm.

a) create populations.
The algorithm uses integer strings for both populations. The genes correspond directly to the decision variables.
b) fitness calculation.
The algorithm uses ranked-based fitness assignment. The population is ranked in a single run, assigning a rank to
each individual i according to 1 + pi, where pi is the number of individuals that dominate individual i. This rank is
transformed into a fitness value by a simple linear transformation. Next for each individual in customer population a
nearest businessman in population is determined. If all customers have been assigned a businessman, the shared
fitness of each customer is calculated by dividing its rank-based fitness by the size of the customer-set of its
businessman. The fitness of the businessmen is calculated by taking the sum of the rank-based fitness values of all
the customer each businessman serves.
c) recombinative scheme
Pairs of individuals in the customer population are randomly selected to produce two offspring by crossover. During
crossover mutation may occur at a rate of pmut. The offspring are assigned a rank, based on the current customer
population. This rank is transformed into a fitness value. Subsequently, for each offspring it is determined which
businessman is nearest. The fitness values of the offspring is then divided by the number of customers the selected
businessmen serve. The fitness values of the parents and offspring are compared to each other, and the two
individuals with the highest fitness values are selected. This may imply replacement of parents by offspring. If
however both offspring are inferior to the parents, both parents remain in the customer population. If an offspring
enters the customer population, then the businessman to whom the parent belonged loses a customer and its fitness
is consequently degraded. The businessman to who the offspring belongs gets one extra customer and consequently
receives a higher fitness value. This procedure is done to keep the sharing information within the businessman
population as accurate as possible.

d) imprint operation

If all customers have participated in an elitist tournament, an imprint operation is performed. For each customer in
turn, random customers are chosen up to n times, and checked if they are an improvement over the competing
businessman. Improvement is decided on the basis of dominance. If the selected customer dominates the
businessman and is at least dmin away from all other existing businessmen, it is considered an improvement and
replaces the original businessman. Unlike the previous segments, the fitness values of the businessmen and
customers are not continuously updated. This is unnecessary, since in the next segment (b) all values are
recalculated again.
After segment d the algorithm starts again at segment b until termination. The pseudo-code in figure 1 is a simple
representation of the basic functions within the algorithm we described above.

ERMOCS algorithm

a. create customer population C
create businessmen population B

b. rank population C
find a businessman b ∈ B for each customer c ∈ C
calculate fitness of each customer in population C
calculate fitness of each businessmen in population B

c. do for all individuals in customer population C:
select two individuals p1 and p2
perform crossover, producing o1 and o2
rank o1 and o2 on current customer population C
locate nearest businessman in population B for o1 and o2
calculate shared fitness for o1 and o2
perform elitist recombination between p1, p2, o1 and o2
if offspring is fitter than parents:

replace parent by offspring in population C
adjust fitness of affected businessmen in population B

d. perform imprint operation between customer population C and businessman population B
go to section b

Note that the fitness sharing scheme is imbedded in the fitness calculations of both populations. Furthermore, the
selection scheme (section c) uses continuously updated sharing information. Each offspring that is created is
assigned a rank and a shared fitness on the basis of the existing population, without actually entering the population.
If an offspring is selected to be included in the population its rank and fitness are already up to date. The only
adjustment that has to be made is a niche count correction: since one individual is replaced by another, a business
loses one of its customers, while another gains a customer. On close inspection one can argue that the fitness
information is not accurate at all times. This is essentially true, since during the selection procedure fitness values of
existing, non-replaced individuals in the customer population are not fitness-wise corrected upon insertion of a new
individual. This correction would require a complete re-ranking of the customer population and consequently a
recalculation of all fitness values. and as an additional result recalculation of the fitness values of the businessmen
population. To put in another way, procedure b in the algorithm should then be performed after every insertion of a
new individual, which is computationally unacceptably expensive. Experimental investigation has proven that this is

not an extremely significant issue, since after each N/2 tournaments the fitness values of both population are
recalculated by section b in the algorithm. Consequently the errors are reasonably limited.

The main focus of our algorithm is a robust and efficient optimisation of multiobjective real-world problems,
which involves dealing with complex landscapes, hard constraints and specific requests regarding solutions. To this
extend coevolutionary sharing and elitist recombination have been implemented in ERMOCS, and have empirically
proven to be competent in practical multiobjective situations. In the next section we describe such an application,
and look whether the algorithm lives up to our expectations.

4. Case Study: Scheduling of IR decoys

4.1 Problem description
The ERMOCS algorithm, as described above, has initially been designed to cope with the resource scheduling on
board of naval ships, a time-limited and complex issue. The resource scheduling of a naval ship involves the
resource management of weapons, both lethal and non-lethal, of the ship during one or more engagements. Its
primary aim is such a deployment of the weapons that the threats are engaged as efficient as possible, i.e. with a
maximised likelihood of ‘killi ng’ the threats (possibly distracting or deflecting them by means of ‘electronic
warfare’) and a minimised expenditure of (scarce) resources. As the number and types of threats and the number of
possible combinations and deployment times of weapons (and their possible positive and negative interactions)
increases, the scheduling problem incurs a combinatorial explosion.

In this case study we focus on the optimisation of the deployment of infrared decoys (flares). This particular
softkill scheduling problem is well understood in terms of goals and constraints, and the optimisation criteria are
clearly defined. Decoys are intended to either minimise the target a ship presents to an enemy platform or to lure
enemy weapons away from the ship. Flares present alternative targets to missiles guided by an infrared seeker. Since
flares have quite a short lifetime, they must be positioned carefully and in sequence. An additional constraint is
imposed by the small field of view of most infrared seekers, forcing a good alignment on the flare sequence with
respect to the seeker’s view.

Because electronic warfare is mainly a game of ‘hide and seek’ , geometry and visibili ty play a fairly large
part in it. So, the proper deployment of flares is an optimisation problem concerning the deployment times and
angles of a sequence of flares, with the optimal deployment depending on the geometry of the current engagement
(i.e. the bearing and velocity of the incoming missile, the heading and speed of the ship and the wind velocity).
Because at least four to five flares must be launched in order to get a sufficient distance between the last flare and
the ship, the number of dimensions of the search space is at least this large (it is quadrupled because there are four
launchers available at four different angles). It can be further enlarged if we take manoeuvrable or trainable
launchers in account. An exhaustive search of this search space (although it is bounded by maximum interval times
between the flares) has proven to take too long so we are looking for ways of speeding up this search and genetic
algorithms seem worthwhile to investigate for this speed-up. It goes without saying that with an on-line algorithm, a
solution must be found before the missile hits the ship (and preferably a long time before that).
In an on-line scenario, the amount of search time that is available to any algorithm is at most a few seconds. The
(sequential) ERMOCS genetic algorithm is in itself proficient to perform within such small amounts of time. If the
problem domain is extended however, with for example manoeuvrable launchers, it may be necessary to employ a
parallel version of the algorithm. Since genetic algorithms are by nature very suitable to be made parallel, this can be
done relatively easy. This property of genetic algorithms is a major advantage over other non-evolutionary
approaches.

4.2 Objectives and representation issues
A possible solution, a deployment sequence, consist of five variables, denoted as <d1, ... ,d5>, which range from 0 to
20 seconds. These variables define the intervals between the deployments of flares, starting at the moment a

deployment is initiated. These intervals are our decision variables. The algorithm makes use of a simulation to
calculate the effectiveness of a deployment. A deployment is judged on two objectives, a) the distance at which the
missile passes the ship (known as Closest Point of Approach (CPA)) and b) a measure P of the actual deception of
the missile.

A problem instance is defined by the bearing and velocity of the incoming missile, the heading and speed of
the ship and the wind velocity. Each instance consequently has a different search space, each with different
properties and location of the Pareto-optimal solutions. Additionally, each naval frigate has four possible launch-
sites from which flares can be deployed. This adds up to a problem domain, in which exhaustive search is not an
option. This search space has proven to be too large to be enumerated, especially since the scheduling has to be
completed within a reasonably small amount of time.

The ERMOCS-algorithm has a few parameters which must be set correctly, notably population sizes, dmin

and mutation rate. As for (customer) population sizing, Pareto-based multiobjective algorithms must have
sufficiently large populations to be able to obtain a good sampling of the Pareto-optimal set. In our trials, a
(customer) population size of 250 to 500 gave good results. Smaller populations may not be able to fill up all
niches, which leads to incorrect representation of the Pareto-optimal front. On the other hand, large populations
take up too much computational time due to the ranking procedures and since we are dealing with a time-
constrained problem in this case, care has been taken not too use an extremely oversized population. With respect to
the mutation rate, a value of approximately 0.005 proved to be efficient. Nevertheless, these values are educated
guesses and may not be ideal in all situations. Further analysis should be done to find better ways to optimise the
values. The dmin parameter, the minimal niche radius, is directly related to the size of the businessman population.
For example, if we think of the Pareto-optimal set as solutions located an imaginary front of a certain length s, the
maximal number of businessmen that can be placed alongside this front is of course s/dmin + 1. If the number of
businessmen exceeds this number, some businessmen will be located at suboptimal places, and consequently multiple
customers will be badly placed as well. If the number of businessmen too small, the Pareto-front will not be
completely covered by solutions. Parts of the front will then be neglected, due to a too small number of allocated
niches.

4.3 Experiments and Results
The algorithm has been tested on numerous instances of the softkill scheduling problem. As described earlier, a
problem instance consist of values describing the bearing and velocity of the incoming missile, the heading and
speed of the ship and the wind velocity. As a proof of concept we will apply the ERMOCS algorithm to a typical
problem instance1.

This particular, randomly chosen, instance is interesting, because it has some deceptive properties. We use
an customer population of 250 and a business population size of 10 and the dmin is set at 10. The mutation is set at
0.005. We are only using one launcher this time, thus generating only a single problem instance. Figure 12 and figure
2 show respectively the customer and businessman population on generation 0 and generation 50. The number of
times that possible candidates are selected from the customer population for imprint is set at 2. This proved to a
reasonable value. A higher value slows down the algorithm.

1 the problem instance variables are as follows: frigate speed: 5 m/s, frigate bearing: 00, wind speed: 10 m/s, wind bearing: -900, where
a bearing of 0o conforms to a eastbound direction; the missile bearing is -900 and is aimed directly at the frigate
2 the area below the dashed line indicates areas where solutions are located; these areas have been determined by an exhaustive search

figure 1 - customer population at generation 0 (left) and at generation 50 (right)

figure 2 - businessmen population at generation 0 (left) and at generation 50 (right)

Note, as one can see in the final population in figure 1, that the customer population has converged to the locations
close to the centres of the optimal niches, as defined by the businessmen. This is caused by the elitist recombinative
scheme, which results in a clean representation of the actual Pareto-set. The solution set the ERMOCS algorithm
has found is an accurate representation of the actual Pareto-optimal set. The businessman population has, as
expected, found the optimal niches which are located on top of the peaks. This has as a result that the customer
population is optimally distributed over this area as well. The subpopulations are stable as well.

We have applied the ERMOCS algorithm on numerous instances of the problem. Other problem instances
cause very different solution spaces, each having its own characteristics in terms of number of optimal niche
locations and distribution. The ERMOCS algorithm has invariably shown to come up with, at least, a reasonable
coverage of the Pareto-optimal front.

The dmin parameter is of great effect on the performance. In this experiment, several peaks are still
uninhabited. If we increase dmin beyond the number of peaks, we have noticed increasingly more customers located
at suboptimal niches. A dmin which is too small results in a less uniform distribution along the Pareto-optimal frontier
and less coverage of this frontier. The setting of this parameter in conjunction with optimal number of businessmen,
is where more research has to be done. These two parameters should be made more adaptive. For example, the
amount of convergence of the customer population could be used as a measure in this matter. If after an amount of
time still a lot of individuals are located at very much dominated regions, the number of businessmen may have to be
reduced, for this may imply that there are some businessmen located suboptimally. It may interesting to use a
combined dmin/business population size measure, since these two parameters are directly related to each other. A

�

�

� �

� �

� �

� �

� 	

�

� �

�

 �

� � � � � � � � � � � � � � � � � �
� � � � � �

�

�

� �

� �

� �

� �

 �

 �

! �

! �

� �

� � � ! � " � # � � � � � � � � ! �
$ % & ' ()

�

�

� �

� �

� �

� �

 �

 �

! �

! �

� �

� � � ! � " � # � � � � � � � � ! �
$ % & ' ()

�

�

� �

� �

� �

� �

 �

 �

! �

! �

� �

� � � ! � " � # � � � � � � � � ! �
$ % & ' ()

single parameter of this kind would make an adaptive setting of dmin and business size easier as well. Nevertheless,
the setting of dmin and the businessman population size is more comprehensive and translucid than setting the niche
size σshare

 and thus enhances the applicability of the technique.

5. Conclusion & discussion
This paper introduces a new multiobjective algorithm, which integrates rank based selection, adaptive niching
through coevolutionary sharing, elitist recombination, and non-dominated sorting, and is called ERMOCS. The
primary aim of the algorithm is to provide a robust and efficient way to optimise real-world problems and it seems
that ERMOCS performs quite well in these environments.

We have tested the algorithm on a softkill scheduling problem. The algorithm performs like intended, with a
steady efficiency and robustness. It has shown be efficient, considering the quality of non-dominated solutions it
produces. Furthermore it has demonstrated its robustness, because of its capabili ties on numerous problem
instances, each with varying properties in terms of search space properties. Still , the results are only an indication of
the performance of the algorithm since it has not been thoroughly analysed and the experiments have been
rudimentary. Nevertheless, the algorithm has exhibited promising properties and results. It has shown to be capable
to produce a large set of non-dominated solutions, which can be effectively processed and judged by an external
decision maker. Coevolutionary Shared Niching (CSN) in particular appears to be a beneficial addition to the field
of multiobjective optimisation. Its capabili ty to adaptively form niches of varying extent and location has a beneficial
effect on the performance of this algorithm.

There are still some issues though that have to be resolved. As mentioned before, the dmin parameter in
conjunction with the businessman population size setting should be made more adaptively, since these still have a
large effect on the performance of the algorithm. Furthermore, extensive testing should be done to investigate
performance under more complex domains. In the context of the case study, we could, for example add
manoeuvrabili ty to the launchers, which would increase the complexity extensively. Another issue that should be
studied is the optimisation of the speed of the algorithm. In its current sequential form it can be employed in an on-
line situation. With increasing complexity of the problem domain, one should consider using more efficient
programming and perhaps a parallel version of the ERMOCS algorithm.

References

Coello, C.A., An Updated Survey of GA-Based Multiobjective Optimization Techniques, Technical Report Lania-
RD-98-08, Laboratorio Nacional de Informática Avanzada (LANIA), Xalapa, Veracruz, México, december 1998.

Fonseca, C.M., and Fleming, P.J., Genetic Algorithms for Multiobjective Optimization: formulation, discussion and
generalization. Proceeding of the fifth International Conference on Genetic Algorithms, pp. 416-423, Morgan-
Kauffman, 1993.

Fonseca, C.M. and Fleming, P.J., An overview of evolutionary algorithms in multiobjective optimization, Technical
report, Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, U. K., 1994.

Goldberg, D.E., Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading,
Massachusetts, 1989.

Goldberg, D.E. and Richardson, J.E., Genetic Algorithms with Sharing for Multimodal Function Optimization,
Proceedings of the Second International Conference on Genetic Algorithms, 41-49, 1987.

Goldberg, D.E. and Wang, L., Adaptive Niching via coevolutionary Sharing. In Quagliarella, D., Periaux, J., Poloni,
C. and Winter, G. (eds.), Genetic Algorithms and Evolutionairy Strategies in Engineering and Computer Science,
pp. 21-38, John Wiley and Sons, Chichester, 1998.

Horn, J., Multicriteria Decision Making, In Handbook of Evolutionary Computation, Edited by Thomas Baeck,
University of Dortmund, Germany, D B Fogel, Natural Selection Inc, USA, and Z Michalewicz, University of North
Carolina at Charlotte, USA, 1996.

Horn, J., Nafpliotis, N. and Goldberg D.E., A Niched Pareto Genetic Algorithm for Multiobjective Optimization,
Proceeding of the first IEEE Conference on Evolutionary Computation, 82-87, 1994.

Cunha G., Oliveira, P., and Covas J.A., Use of Genetic Algorithms in Multicriteria Optimization to Solve Industrial
Problems. In Thomas Bäck, editor, Proceedings of the Seventh International Conference on Genetic Algorithms,
pages 682-688, San Mateo, California, Michigan State University, Morgan Kaufmann Publishers, 1997.

Loughlin, D.H. and Ranjithan, S., . The Neighborhood constraint method: A Genetic Algorithm-Based
Multiobjective Optimization Technique. Proceedings of the Seventh International Conference on Genetic
Algorithms, pp. 666-673, San Mateo, California, Michigan State University, Morgan Kaufmann Publishers, 1997.

Obayashi, S. Takahashi, and Y. Takeguchi. Niching and Elitist Models for MOGAs, In A. E. Eiben, M. Schoenauer,
and H.-P. Schwefel, editors, Parallel Problem Solving From Nature -- PPSN V, pages 260-269, Amsterdam,
Holland, 1998.

Obayashi, S, Tsukahara, T., and Nakamura, T., Cascade Airfoil Design by Multiobjective Genetic Algorithms.
Proceedings of the Second International Conference on Genetic Algorithms in Engineering Systems: Innovations
and Applications, pp. 24-29, September 1997.

Oei, C.K., Goldberg, D.E. and Chang, S., Tournament Selection Niching and the Preservation of Diversity,
Technical Report No. 91011, University of Illinois, Urbana-Champaign, 1991.

Richardson, J.T., Palmer, M.R., Liepins, G., and Hilliard, M., Some guidelines for genetic algorithms with penalty
functions. Proceedings of the third International Conference on Genetic Algorithms, pp. 191-197, Morgan-
Kaufman, 1989.

Shaffer, J.D., Multiple objective optimization with vector evaluated genetic algorithms, Genetic Algorithms and
their Applications: Proceedings of the First International Conference on Genetic Algorithms, pp. 93-100,
Lawrence Erlbaum, 1985.

Srinivas, N. and Deb, K., Multiobjective Optimization Using Non-dominated Sorting in Genetic Algorithms,
Evolutionary Computation, volume 2(3), pp. 221-248, fall 1994.

Thierens, D., and Goldberg, D.E. (1994), Elitist recombination: an integrated selection recombination genetic
algorithm, Proceedings of the IEEE World Congress on Computational Intelligence, pp. 508-512, 1994.

Todd, D.S. and Sen, P., A Multiple Criteria Genetic Algorithm for Containership Loading, In Thomas Bäck, editor,
Proceedings of the Seventh International Conference on Genetic Algorithms, pages 674-681, San Mateo,
California, Michigan State University, Morgan Kaufmann, 1997.

