Component-wise Formal Approach to Design
Distributed Systems

[.S.W.B. Prasetya, S.D. Swierstra* B. Widjajaf

Abstract

Giving a compositional proof for progress properties of distributed sys-
tems has always been problematic. Without compositionality, the correct-
ness of a component cannot be verified in isolation (without full knowledge
of its would-be partners), which in many contexts is a severe restriction.
This paper presents an approach in which properties, and in particular
progress properties, can be proven compositionally.

1 Introduction

Compositionality is a property of a programming logic that enables us to fac-
torize a property of a program into properties of its components. It is useful as
it reduces the number of proof steps (properties local to a component P only
need to be verified against P rather than against the whole program) and leads
to a better way to organize specifications and proofs (and hence it also helps to
improve documentation and maintenance).

Compositionality is also an important aspect in the formal treatment of
components in the component-based approach in software engineering, like when
using COM, CORBA, or JavaBeans, because it enables separate development
of components. This in it turns enhances the reusability of the components.
However, having to develop a component separately, its developer usually has
little knowledge nor control on the environment in which the component will
be placed. With only partial knowledge on the environment, compositionality
is the only way to separate the overall specification of the component into its
own and its environment’s local specifications. These can be tested and verified
separately.

The assertional method is one of the earliest methods to reason about dis-
tributed programs [4, 3]. It has many variants, but essentially one decorates each
location 7 in a program P with an assertion ¢; to specify the possible states of
the program when control reaches the location. Its correctness is proven by
proving that all P’s actions leading to location ¢ establish the assertion ¢; and

*Informatica Instituut, Universiteit Utrecht. Email: wishnu@cs.uu.nl, doaitse.cs.uu.nl.
TFakultas Ilmu Komputer, Universitas Indonesia. Email: bela@cs.ui.ac.id

that P’s partners preserve it. The method is compositional, but is based on par-
tial correctness. Hence we cannot, within the logic, show that the program will
actually progress from one location to another. To deal with progress in con-
current systems we need some form of temporal logic, like Manna and Pnueli’s
Linear Temporal Logic (LTL) [6], Lamport’s Temporal Logic of Actions (TLA)
[5], or Chandy and Misra’s UNITY [1].

Early theories on composition of temporal properties [1, 7] actually believe
that progress in general is not compositional. Later work such as [2] shows that
this is the case. [2] specifies a component P by a pair (A, C) of assume-guarantee
properties, stating P’s commitment to behave as C' when operating in any
context that meets assumption A. The approach is compositional, but creates
another problem. Progress is expressed in terms of the combined execution of
a component and its environment. Eventually of course, we must reduce this
to local properties of either the component or its environment. This reduction
is unfortunately just as uncompositional as in [1]. This sounds like a paradox,
and indeed it is. [2] is right in its view that we can always compose properties.
The problem is in the amount of additional information needed to make a set
of properties compose in the way we want. In [1, 2], if P’s progress from p to
q is to be preserved by its environment, the environment must respect all P’s
intermediate progress, and therefore this information must be maintained in P’s
specification. In many cases this is too much to ask.

A ’more compositional’ approach would attempt to reduce the required extra
information, though at the expense of setting more constraining requirements
on the components. For example, [11] proposes a stronger kind of progress with
nice composition properties, but unfortunately is limited in its use. [13] proposes
to use an abstract component to specify a program’s environment. Abstract
components compose well, but require the actual environment of a component
to refine its abstract environment in an action-wise way, which poses a quite
severe restriction.

Our work takes a different approach. We observe that many techniques
for synchronizing components are based on alternately scheduling one party
to temporarily suspend interference on a certain data segment to allow others
to progress. By specifying the moment on which this non-interference period
starts, its duration, the data segment being released from interference, and the
way the non-interference period may end we can infer how components influence
each other. An earlier form of this idea first appears in an unpublished work of
A K. Singh [14] —the theory still suffers from lack of proof heuristics, formality,
and consistency [8], although later work by Prasetya [9] manages to cast it
in a formal and consistent framework. Both [14, 9] only capture temporary
non-interference on a fixed set of variables shared by two components. This
is a severe limitation because in general the uninterfered portion of the data
segment changes at the run-time.

Our theory has also been mechanically checked in the theorem prover HOL,
so it should be quite trustworthy. A full listing of the theory and its HOL proof
is available at www.cs.uu.nl/ wishnu.

Paper Content

Section 2 illustrates the usefulness of compositionality and the issues that con-
front us there. Section 3 presents our theory for composition. Section 4 gives
some simple examples to show how to employ theory. Section 5 presents a
formal model, and Section 6 gives some conclusions.

2 Compositionality

To illustrate the usefulness of compositionality and the issues that challenge us,
let us start with an example. Consider a component called Remote Terminal
Unit (RTU) used to monitor the flow and water level in a portion of a river
and to control a set of gates guarding the flow into and from that portion of
river. The RTU does not have intelligence of its own to decide on the best gates’
configuration at any given moment, and this decision is delegated to an external
component called Control Centre (CC).

Suppose now we want to develop the CC, and are allowed to specify the
minimal requirement of the RTU. We do not make RTU. We also do not want
to base our design on a fixed RTU for two good reasons: (1) to broaden our
market, and (2) to better shield our CC from being affected by implementation
changes by RTU developers. We start by writing down its specifications. Since
CC is intended to work in conjunction with RTU, we start with a specification
of the joint behavior of CC[RTU where | stands for parallel composition, as in:

CC[RTU (1)
I_

RTU,dyTorep A gates,sensors = XY

—

gates = (Execute o Decide o Pack)(X,Y)

where RTUrgyTorep is a location in RTU indicating that it is prepared to send
its report (in the ’dummy’ RTU in Figure 1 this corresponds to r4). The
specification states that whenever RTU is ready to report its gate and sensor
data, then eventually the gate will be properly reconfigured based on the data
the RTU says it wants to report.

In the mean time we manage to come up with a prototype of CC which is
displayed in Figure 1. An RTU is also displayed there, but this is just a dummy
because we do not want to fix the RTU. The ¢; and r; in the code are labels
indicating program locations. As we will refer to this examples later, we will
first explain how the protocol between CC and RTU works. This is not essential
for understanding the theory, and can be skipped if the reader wishes.

The Protocol

The communication between RTU and CC is assumed to be error
free and synchronous. They use 'ports’ to communicate. There are
two: c and r. Port ¢ is used by CC to send commands to RTU, and
port 7 is used by RTU to send status reports to CC. A message can

CC :: RTU ::
[OUT ©c,r : Int [OUT c,r : Int
LOCAL report,newConf : Int LOCAL command,gates,sensors : Int
[c0] c:=Inquiry ; WHILE true DO
WHILE true DO [[r0] WAIT WHILE c=0 ;
[[c1] WAIT WHILE r=0 ; [r1] command,c := c,0 ;
[c2] report,r := r,0 ; [r2] gates := Execute command ;
[c3] newConf := [r3] ‘‘sample sensors’’ ;
Decide report ; [r4] r:=Pack(gates,sensors)
[c4] ¢ := newConf]]
]]

Figure 1: The CC and the RTU in SPL

only be written to a port when it is ’empty’'. Conversely, a message
can only be retrieved from a port if it is filled. To keep it simple, an
empty port is represented by value 0 and real messages are assumed
to be non-zero.

RTU listens to commands sent by CC. When it receives one it im-
mediately executes it. Next, it samples the new state of the sensors.
The new gates and sensors states are then packed and sent back to
CC. CC begins by sending an Inquiry command to RTU to have it
report its starting state to CC. Upon receiving a report from RTU,
CC will decide on the next configuration of the gates, which is then
sent to RTU.

O

Before releasing the product, surely we want to verify that our CC meets (1).
There is one big problem: this is not possible. The specification is expressed as
a property of CC|RTU, so to verify it we need RTU’s code too, which we do not
have. To insist on its availability would mean to stick to certain RTU(s), and
would cancel the previously mentioned advantages of not fixing the RTU.

To overcome the above problem we need so-called composition laws which
enable us to compose specifications without having to know the code. Such laws
take the following form:

P satisfies A , () satisfies B @)
P|@Q satisfies C(A, B)

where P and Q) are components and A, B and C are properties, and C' is some-
how obtained from A and B. Applying the law in reverse direction would allow
us to factorize (1) into local specifications of CC and RTU which can subse-
quently be verified separately.

IThis is not directly visible from the program in Figure 1, but will follow from the invariant
in Figure 3.

Composition of temporal properties, in particular progress properties, has
always been a difficult issue. To show where the difficulty lies, consider the
following law proposal:

PFpr—gq, QF stablep 3)
PlQFp—q

stating that if P guarantees progress from p to ¢ and if () maintains p then
the progress holds in the composite. This would make a powerful law, but
unfortunately it is not valid. On its way to ¢, P may pass some state outside
p. @ would no longer be constrained and may block P’s progress to q. Hence
progress to ¢ in the composite is not guaranteed. Is there any way to get around
this? Well, consider this property of RTU in Figure 1:

RTUF rOA (c = X) A (¢ # 0) = r3 A (gates = Execute X) (4)

where the predicate r; means that the program is in location r;. It states
that when RTU is ready to receive a command, and one is present in port c,
this will be executed and the result is the new gates configuration. To realize
(4) RTU goes through several intermediate ’stages’ (see RTU’s code): from
rOA(c = X)A(c # 0) it goes to r1A(c = X)A(c # 0) then to r2A(command = X),
and then to r3 A (gates = Execute X). To keep (4) in the composite CC[RTU
we can strengthen the earlier law proposal by requiring CC to maintain all
intermediate stages of (4). This would work, and the good thing is that the
constraint on the CC side is almost the weakest possible. The bad thing is
that a progress specification of a component must now explicitly mention ’extra
information’, namely all its intermediate stages. This is too cumbersome, and
we do not always have that information available either.

In our approach we will require CC to temporarily cease interference on ¢
while RTU completes (4). This is a stronger requirement than the one above.
On the other hand the approach also reduces the amount of ’extra informa-
tion’ needed to compose progress specifications, which hopefully will result in a
reasonable compromise.

3 A Theory of Composition

This section presents our composition theory. The following notational conven-
tion will be used:

Notation

Programs or components range over by P and (). Predicates range
over p, q, r, 8, J, and I. Sets of variables range over V, W, and
Z. We write J - p to mean (Vs :: J s = p s), meaning that under
assumption J, p holds everywhere, in which s refer to the state of
the system.

O

3.1 Predicate Confinement

Total functions f and g of the same type, are partially equal over subdomain
V, written f =y g, if f £ = g x for all z € V. The set of all functions of f such
that f =y g is denoted by [g]y. A program state is a function from variables to
values, so we can talk about partially equal states in the above sense. A state
predicate is a function from state to bool, or equivalently a set of states. Given
a predicate p and a set of variables V', we define p to be confined by V if it only
constrains the value of variables in V. This can be formally defined as follows:

peonf V. = (Vs.ps=([s]lv Cp)) (5)

For example, z > y + z is confined by {z,y,z}, but not by any set smaller
than {z,y,z}. Notice also that a predicate which is confined by V' cannot be
falsified by a program only updating outside variables V. A predicate confined
by V is also confined by a larger set. Predicate confinement is also closed under
predicate operators. Formally:

VCW Apconf W = pconfV (6)
p,gconf V. = (pV qconf V)A (—p conf V) (7)

3.2 Capturing Temporary Non-interference

In many standard models for concurrent systems, programs (even a high level
one) can be regarded as simply a set of actions where each action is simple
enough to be assumed atomic and terminating. Concurrent actions are modelled
to be executed in interleaving, which is helpful in simplifying the theory. We
also use this model.

Let A be a property of a component P which would be sensitive to external
interferences on variables in V. Obviously, composing P with with another
component) which does not interfere on V will preserve A. However, requiring
@’s to never interfere on V will in many cases be too restrictive, and thus
we look for some form of temporary non-interference. To express this, we write
p b Q preserves V|q, stating that once p holds @ will maintain p and also preserve
the value of variables in V', and this period of non-interference is ended by
establishing ¢q. Formally:

Definition 3.1 : PRESERVES
J,pt Q preserves Vg = (Va,p' :a € QAP conf V:{JApADP}a{(pAD)Vq})
O

The a in the formula range over the actions of (). We also add an extra param-
eter J which is intended to be a stable predicate of). This is just a predicate
which cannot be falsified by any action of (). The J parameter is not an essential
addition, but helps in the presentation later. Since actions are assumed to be
terminating, it does not matter whether the Hoare triple above means partial
or total correctness. Here is an example of preserves property:

IrTu,” # 0 F RTU preserves {r}|false (8)

stating that when r # 0 then RTU promises to preserve the value of r. Using
the ’invariant’ gty in Figure 3 it can be shown that this holds in the RTU of
Figure 1.

There are some special cases of the preserves relation. The property J, true -
P preserves Vg states that the only way P can interfere on V' is by establishing
g. The property J,true - P preserves V|false, which we also write as simply
J I P preserves V, states that P never interferes with V. This is the same as
saying that P has no write access to V', or in other words V only contains local
variables of other components.

3.3 Composition

Suppose we have a component @ satisfying J,p F @ preserves V|g. This de-
scribes (Q’s temporary non-interference on variables in V. As noticed before,
during this period of non-interference) will obviously preserve P’s behavior
A if A is only sensitive to changes of variables in V. However, in many cases
this is too much to require from P. Very often, this insensitivity needs to be
restricted to changes which maintains a certain stable predicate or invariant .J.
This means that @’s updates outside V' will not affect P’s A as long as they
result in states which are still within J.

The above is a very important observation, and in fact this is what we exploit
to build up our theory. For a temporal property A let P,V,J F A means the
conjunction of the following:

1. P satisfies property A.

2. J is stable in P. Formally :
PtrstableJ = (Va:a€ P:{J}a{J}) 9)

3. The property A is insensitive to external changes on variables outside V,
as long as these changes respect J. We also say that A is confined by V
and J.

In the sequel we will only consider temporal properties which are expressed
using the following relations. Their informal meaning is quite standard, but the
formal definition of some of them cannot be given without referring to a formal
semantics. This will be postponed until Section 5.

1. P,V,J I punless ¢ means that if at any moment during P’s execution
J A p holds, ¢ may (but does not have to) hold eventually. Furthermore,
p will remain to hold until ¢ holds.

2. P,V,J F p+— g means that if at any moment during P’s execution J A p
holds, g will hold eventually.

3. P,V,JF p until ¢ means that if at any moment during P’s execution J Ap
holds, ¢ will hold eventually. Furthermore, p will remain to hold until ¢
holds. It can be defined as:

PV,JEpuntilq = PV,Jbkp—qg A P,V,JFpunlessq (10)

Moreover, properties of the form P,V,J F p Rel q also require both p and ¢ to
be confined by V.

As an example, consider again property (4) of the RTU in Figure 1. This
would be a well formed formula in standard temporal logics e.g. [1, 5, 6], but not
in ours. It misses the J and the V parameters. Consider now this specification:

RTU, Z,Igtu F rOAc= X Ac#0 — 13 A gates = Execute X (11)

where Z = {pcR, ¢,command, gates} and pcR is RTU’s program counter. This
is a variable used by RTU to keep track of its point of control (the location it
is at). So the ’'predicate’ r0 is actually equal to pcR = r0.

The specification says more than (4), namely that the progress is also insen-
sitive to changes in variables outside Z as long as these changes are kept within
IrTu- IrTU is some stable predicate. For example the IgTy in Figure 3 has been
proven to hold. Its full meaning is not important now, but it does imply that
while RTU is in r1 or 72 CC is waiting for a report from RTU (expressed by
CCuait) and hence can be expected not to interfere variables in Z (in particular
c).

Note also that in properties of the form P,V,J I p Rel q we only require
J to be stable rather than invariant. This spares us from having to explicitly
specify the initial condition of a program. This is also useful when we want
to analyze the behavior of a program beyond a certain point in its execution
rather than all the way from the start. We will however retain the ’habit’ to call
J the ’invariant’. This has the same flavor of invariant subscript in the work
of Sanders [12], but note we also use J to constrain interferences on variables
outside V.

Let now Rel be either unless, until or — and suppose that P,V,J F p Rel q
holds. This property can be preserved in the composite P]Q if from the
moment p holds @ ceases its interference on V, or in other words if J,p F
@ preserves Vfalse. Well, we can also generalize this. Suppose now @ satisfies
an arbitrary preservation constraint J,a F @ preserves V'|b. If p holds, and it
happens that a holds too, then we know that as long as a holds @) will preserve
V' at least until b holds. So, unless a prematurely goes down, or b prematurely
goes up, during this time P can realize q. Formally:

Theorem 3.2 : (GENERALIZED) SINGH LAW

P,V.J+Fp Rel q

Q F stable J

a,bconf VUW

Jya - @ preserves Vb

P|Q,VUW,JF (pAa) Rel ((gNa)V -aVb)

The law is originally due to Singh in his June-89 Notes on UNITY [14], but the
above is significantly more expressive than the original one where the choice of
V is fixed, namely the entire set of variables shared by P and). This is too
restrictive. For example (8) states that RTU preserves r if # 0. The property
is needed to synchronize RTU and CC and is required to prove (1). However,
¢ is also a shared variable of RTU and CC. In [14, 9] we would have to require
that under condition r # 0 RTU preserves both r and ¢. This is unrealistic and
would in fact put RTU in deadlock (r # 0 means RTU has put something on
port r, so by its protocol it should now empty port ¢, but insisting it to preserve
¢ would prevent it from emptying c).

The law above is a fundamental one that enables us to calculate in terms of
P,V,J F p Rel q and preserves properties, but we need several more. These
are displayed in Figure 2. The Locality Lift Law states that a property confined
by V is also confined by a larger set. The J-Leftshift and J-Rightshift Laws
are used to shift the stable predicate into and from the pre-condition (the p-
argument) of p Rel q. The J-Strengthening Law states that we can strengthen
the J-parameter. Weakening it is however not allowed. The J parameter of —
and until is also not disjunctive.

The next three theorems are corollaries of the Singh Law. Due to limited
space the proof cannot be presented here.

The Transparency Law states that P’s properties confined by a V' consist-
ing only of P’s local variables is respected by any other component (). The
Until Composition Law states a condition under which an until property of a
component can be preserved by a composition. The Scheduling Law is a more
general version of Until Composition and is very useful. Suppose a component
P can progress to ¢ and that this progress is only sensitive to external changes
to variables in V. Moreover, at the start of the progress P set a ’flag’ a high to
indicate its wish to progress uninterfered. This flag stays high until g is reached.
On the other hand @ promises to suspend interference on V as long as a is high.
The theorem justifies that in this case P’s progress to ¢ will be respected by Q.

In addition to those laws we of course still need the usual laws governing
unless, until, and —. These can be found in the standard literature [1, 5, 6].
Due to limited space we cannot list them here.

4 Synthesizing Contextual Requirements

This section will briefly show how the laws from the previous section are used.
Recall that in component based engineering components are developed sepa-
rately. Separate development requires each component to be specified in the
context of its environment without fixing the code of the environment. Without
a composition theory such as presented in the previous section this would render
separate verification of the component impossible.

Consider again CC’s specification (1). Using the laws this can be verified
without the code of RTU (we of course also need standard laws for temporal
relations [1, 5, 6]). The result is shown in Theorem 4.1. As can be expected,

In the following theorems Rel represents either unless, until, or —.

Theorem 3.3 : LOCALITY LIFT Theorem 3.4 : J-STRENGTHEN
P, V,JFpRel q P |- stable J’
PV,JUW FpRel q JEJ

P V,JF pRelq
P,J,VFpRelq

Theorem 3.5 : J-LEFTSHIFT Theorem 3.6 : J-RIGHTSHIFT
P,V,JF (J Ap) Rel q P, V,JAJ FpRelq
Pt stable JA J’ P I~ stable J
pconfV J' conf V
PV,JAJ FpRelq P, V,JF (J Ap) Rel (J' Aq)
Theorem 3.7 : TRANSPARENCY Theorem 3.8 : UNTIL COMPOSITION
PV, JFpRelq P, V,JF puntil ¢
Q F stable J Q@ F stable J
J F Q preserves V J,p F Q preserves Vg
P|Q,V,J+FpRelq P]Q,V,J - puntilg

Theorem 3.9 : SCHEDULING

P, V,JFaApRel q
P,V,JF a unless q

Q F stable J

J,a - Q preserves Vfalse
PlQ,V,JFaApRel q

Figure 2: Confinement and Composition Laws

the proof generates constraints on RTU. These are listed in the theorem.

To prove the theorem we will also need an invariant Icc of CC. Finding out
the right l¢c is not trivial, but this is also not what this paper is about. Figure
3 shows an lcc which is sufficient to prove Theorem 4.1. Its invariance has been
mechanically checked in HOL. A brief explanation on what it means is given in
Subsection 4.1.

Notice that (1) is not a formula in our logic. For this to be the case we
have to be more specific by specifying the confining set of variables (V), and
the existence of some common invariant I that constrains RTU’s interferences

10

outside V. Here is the new version:

CCIRTY, Z, I (12)
I_

RTU dyTorep A gates,sensors = XY

—

gates = (Execute o Decide o Pack)(X,Y)

where Z contains all variables of CC and RTU and I is some combined invariant
of CC and RTU. The theorem is given below, and the following notation will
be used:

P,V,J k) 1 Rel s abbreviates P,V,J-pAr Rel pA's

Theorem 4.1 : COMMITMENT-REQUIREMENT SPECIFICATION OF CC

Let CC be a program as in Figure 1 and let Icc be CC’s invariant as specified in
Figure 3. For an arbitrary RTU the composition CC[RTU satisfies (12) provided
RTU meets the following requirements:

Ryar : pcR, gates, sensors € loc(RTU)
Ro : cC F stable |CC A IRTU
R1 : RTU F stable |CC A IRTU

Ry : RTU, IOC(RTU)a lrTU I_[gates,sensors:)li',Y] RTUrdyToRep = RTUyair
Rs: RTU, IOC(RTU), lrTu +
RTUjustGetcmd A gates,sensors = X,Y
H
gates = (Execute o Decide o Pack)(X,Y)
Rs: RTU,loc(RTU) U{c}, IrTU
l_[gates,sensors:X,Y] RTUwait A ¢ # 0 until RTUjustGetcma

Rs: RTU F stable Igty A RTUyait A gates,sensors = X, Y Ac=10

Rs: IrTu,7 #0 F RTU preserves {r}|false
R;: RTU F stablec=10
Rg : RTU, IOC(RTU), lrTy F true = RTUyai

for some invariant gty of RTU. We assume the following locations in RTU:
RTU gyTorep is the location where RTU is ready to send its report to the port r;
RTUyait is the location where the RTU waits for a command to arrive in port ¢;
and RTUjystgetcmd is the location just after RTU retrieves the command.

O

The list of requirements on RTU looks long, but they are not excessive. Ry,
requires variables named pcR, gates, and sensors to exist in RTU. Rqg specifies
that lcc A lgTy is invariant in CC. However, since Icc is already an invariant of
CC it actually says that CC should respect the invariance of lgty. The latter is
an invariant of RTU and should be part of RTU’s specification supplied by its
developer. Similarly, R; states that RTU should respect the invariance of Icc.

R, essentially says that after sending a report RTU eventually waits for a
new command from CC. Ry says that if a command arrives RTU will eventually

11

consume it. Rz says that after consuming a command RTU will execute it and
the effect is as prescribed by Execute released on the state of the gates and
sensors as it was when the last report was sent. Then we also have a set of
safety requirements. Rs says that while waiting for a command from CC the
RTU will continue to wait until a command arrives. Rg says that once it puts
a report in port r, RT'U must not overwrite it before it is consumed by CC. Ry
says that RTU should not fill port ¢ (quite obvious, since r is assumed to be its
read port anyway). Finally we have one last progress requirement Rg stating
that RTU always returns to a state of waiting for a command from CC. Since
the invariant Icc states that RTU and CC cannot be both in the waiting state,
Rs is required to prove that CC does not have to wait forever for a report from
RTU.

Due to limited space only a small fraction of the proof will be shown. The
full theorem has however been mechanically verified with HOL and the code is
available at www.cs.uu.nl/ wishnu. See also [10] for a more step-by-step guide
on the proof. In general our approach was to partition a progress specification of
a component in operation with its environment into pieces. Each piece is either:
(1) implementable by internal progress (progress on local variables) of either the
component or its environment, or (2) require synchronization. The first kind
is reducible to local properties using the Transparency Law. The second kind
really requires one party to temporarily cease interference on a certain set of
variables while the other party continues.

Now let us have a look at some proof examples. Let loc(P) denotes the set
of all local variables of P. Notice that if P #) then J b @Q preserves loc(P).
Consider again the specification 12. Since progress is transitive, this is implied
by:

CCHRTU, Z, I |_[ga\tes,sensors:X,Y] RTUrdyToRep = RTUwait (13)

CCHRTU; Z: I I_[gates,sensors:X,Y] RTUwait — RTUjustGetCmd (14)

CCIRTU, Z,I F (gates,sensors = X,Y) A RTUjustGetcmd (15)
H

gates € Execute(X, (Decide o Pack)(X,Y))

(13) and (15) would be good candidates to be implemented by RTU’s internal
progress. Look at the following derivation of (13):

CCHRTUa Z,I |_[gates,sensors:X,Y] RTUrdyToRep = RTUuwait

(1) < { Locality Lift (Theorem 3.3), require pcR, gates, sensors € loc(RTU) }
CC[RTU,10¢c(RTU), I F[gates,sensors=x,¥] RTUrdyTorep = RTUyait

(2) < { CC preserves loc(RTU), Transparency Law (Theorem 3.7) }

RTU, loc(RTU), I F[gates,sensors:X,Y] RTU,dyTorep — RTUwait
A
CC + stable I

(3) < { J-strengthening (Theorem 3.4) }

12

RTU, IOC(RTU), IRTU I_[gates,sensors:X,Y] RTUrdyToRep = RTUwait
A
RTU F stableI A CC | stable I

The decision to make (13) internal occurs in the first derivation step when we
apply the Locality Lift Law to shrink the set of variables that confines (13)
from Z to loc(RTU). Subsequently the Transparency Law is used to ’coerce’
the property to become RTU’s local property. Because a component’s local
property should be provable using only the component’s own invariant, we apply
the J-Strengthening Law in the final step to weaken the invariant to RTU’s own
invariant.

Notice also that the above derivation also produces requirements R,, and
Ro,1,» of Theorem 4.1.

Property (14) is much harder to prove. When RTU is waiting for a command
to arrive in port ¢, there are two possibilities. First, if a command has already
arrived then we expect RTU to eventually retrieve it. Second, if the port is
empty then we expect CC to eventually fill it. Here is a property capturing the
first possibility:

CCHRTUJ Z: I |_[gates,sensors:X,Y] RTUyaie A € 7é 0 RTUjustGetCmd (16)

Achieving this would require synchronization. The RTU can consume the com-
mand in port ¢, but CC must temporarily suspend updates to ¢. Consider the
following derivation:

CC[RTU, Z, I F[gates,sensors:X,Y] RTUwait A ¢ # 0 —= RTUjustGetcmd
(1) <{ Locality Lift (Theorem 3.3) }

CC[RTU,loc(RTU)U{c}, I *_[gates,sensors:X,Y] RTUwait Ac # 0 = RTUjustGetcmd
(2) <{ definition of until }

CCHRTU, lOC(RTU)U{C}, I l_[gates,sensors:X,Y] RTUyaitAc # 0 until RTUjustGetCmd
(3) < { compositionality of until (Theorem 3.8) }

RTU, loc(RTU) U {c}, I Flgates,sensors=x,¥] RTUwait A ¢ # 0 until RTUjystGetcmd

A

CC |- stable I

A
I, (gates,sensors = X,Y A RTUyait A c # 0)

F CC preserves loc(RTU) U {c}|RTUjustGetcma
(4) < see lemma below }
RTU, loc(RTU)U{c}, I Fgates,sensors=x,¥] RTUwait Ac # 0 until RTUjystGetcmd
A
CC |- stable
A
lcc, RTUwait A ¢ # 0 F CC preserves loc(RTU) U {c}|false
(5) < { J-strengthening (Theorem 3.4), CC does not write to loc(RTU) }
RTU, lOC(RTU)U{C}, lrTU }_[gates,sensors:X,Y] RTUaitAc # O until RTUjustGetCmd
A

13

RTU | stable I A CC | stable I
A
lcc, RTUwait A ¢ # 0 F CC preserves {c}|false

Again we use the Locality Lift Law in the first step to shrink the confining set of
variables. So obviously it is decided that the progress in (16) can be confined to
the loc(RTU) and ¢ rather than to the entire Z. Next we strengthen the progress
to an unless-kind of progress. This puts an extra requirement on RTU but in
exchange we can use the Until Composition Law which is easier to deploy than
the Singh Law. Applying the law produces a preserves condition on CC. Step
4 is a little bit complicated. It uses the following lemma:

J,p1 b P preserves V| false
p2 conf V
J,p1 Ap2 - P preserves Vg

The reader can verify it himself. We just use it to make the preservation condi-
tion on CC stronger, but simpler. The new preservation condition (after step 4)
states that CC does not interfere on loc(RTU) and ¢ as long as RTU is in RTU
state and port c is filled. Since CC obviously does not write to RTU’s local vari-
able, the condition can be simplified further in step 5. The J-strengthening
Law applies to step 5 for the same reason as it did in the derivation of (13): it
weakens the invariant on the RTU’s progress to RTU’s own invariant.
The derivation above also produces requirement (R4) of Theorem 4.1.

4.1 The System Invariant

For completeness sake the system invariant we come up with for CC (called lcc)
is displayed in Figure 3 as a conjunction smaller predicates. How we come up
with it is beyond the scope of this paper, but its invariance has been verified in
HOL. The total invariant of the system CCJRTU is lcc A lrTu where IgTy is left
unspecified. Of course later on when a specific RTU is composed with CC then
its IgrTu has to be supplied too and its invariance with respect to CC will have
to be checked. For the sake of completeness Figure 3 also shows an Igry that
matches the dummy RTU in Figure 1.

The two constants CCy,ir and RTU,,i; represent the locations where, respec-
tively, CC and RTU are stuck in a waiting state for an incoming message. For
CC this the location c1, and for our dummy RTU it is location r0.

The sub-invariants of Icc (and similarly those of IgTy) can be grouped into
three groups. The first sub-invariant encodes the range of the program locations.
The second and third ones state some synchronization conditions: the second
specifies the value the port r should contain when it is non-empty; the third
states that when both ports ¢ and r are empty, one of CC or RTU should be
waiting while the other is actively processing (excluding dead-lock). The last
four sub-invariants are ’local assertions’, asserting some known properties of the
state of CC at various program locations.

14

lec : cOVelVe2Ve3Vcd (17)
r # 0 = r = Pack(gates, sensors) A ¢ = 0 A RTUait
c=1 =0 = CCuit = "RTUwait
c0 = newConf = Inquiry = (Decide o Pack)(gates, sensors)
Ar=c=0ARTUuai
¢2 = r =Pack(gates,sensors) Ar # 0 Ac=0ARTUuai
¢3 = report = Pack(gates, sensors) A7 = ¢ = 0 A RTUwait
¢4 = newConf = (Decide o Pack)(gates, sensors) A r = ¢ = 0 A RTUwait

lRru: r™OVrivr2vr3vrd (18)
¢ # 0 = ¢ = (Decide o Pack)(gates, sensors) A r = 0 A CCuait
c=r=0= CCuit = "RTUuait
rl = ¢ = (Decide o Pack)(gates,sensors) Ac# 0 Ar =0 A CCuait
r2 = command = (Decide o Pack)(gates,sensors) Ac =7 = 0 A CCuait
r3 = c=1r=0ACCuai
rd = c¢=7r=0ACCui

Figure 3: The System Invariant of CC[RTU.

5 Semantics Issue

This section gives a model for the composition theory presented in Section 3.
The consistency of the theory within this model has been mechanically verified
with HOL. The model is based on UNITY [1] though using another kind of
temporal logic should also work. Essentially what we have to do is to provide
the semantics of properties confinement. That is, we define the meaning of the
parameter J and V in properties of the form P,V,J F A —this turned out to
be not quite trivial. Next, we need to lift standard temporal properties laws
to laws in terms of the P,V,J F A properties. This enables us to prove the
validity of our composition laws. The lifted laws are also used during program
development to replace the non-lifted ones.

A UNITY program is a set of terminating, atomic, and guarded actions —
if the guard is false the action can still be executed (enabled) though with no
effect (skip). An execution of a UNITY program is infinite, in which at each step
an action is non-deterministically selected but the selection is weakly fair (no
action can be indefinitely ignored). There are no primitive control structures
(like sequencing, loop, or branch), though they can be programmed. Figure
4 shows the UNITY translation of the CC and RTU code in Figure 1. The
actions of each component are listed, separated by []. Parallel composition of
components (between CC and RTU) is also denoted by [].

In UNITY properties of programs are expressed in terms of unless, ensures,
and — operators. The intuitive meaning of unless and +— has been explained.
Ensures expresses single action progress. Progress by — is essentially a transitive
and disjunctive composition of progress by ensures. We will have to modify the
standard definitions of these operators to express properties confinement. For

15

CcC :: [if pcC=c0 -> c,pcC := Inquiry,cl
[1 if pcC=cl /\ r<>0 -> pcC := c2
[l if pcC=c2 -> report,r,pcC := r,0,c3
[1 if pcC=c3 -> newConf,pcC := Decide report, c4
[1 if pcC=c4 -> c,pcC := newConf,cl 1
1
RTU:: [if pcR=r0 /\ ¢c<>0 -> pcR :=ri
[1 if pcR=r1 -> command,c,pcR := c,0,r2
[1 if pcR=r2 -> gates := Execute command
[1 if pcR=r3 -> ‘‘sample sensors’’
[1 if pcR=r4 -> r,pcR := Pack(gates,sensors), r0]

Figure 4: The CC and the RTU in UNITY

unless and ensures this is quite straightforward:

Definition 5.1 : UNLESS, AND ENSURES

P,V,JF punless g = Pt stable J A p,gconf V A
Va:a€P:{JApA—q}a{pVq})
P, V,JFpensuresq = P,J,VIFpunlessq A

. (Fa:a€eP:{JApA—q}adq})

Notice that it is the condition p,q conf V that imposes the confinement of the
described behavior by V.

Defining confinement on progress by — is more complicated. Here is an
obvious candidate:

PV,Jbkp—gq = (PFJAp—cum q) A(P F+ stable J) A p,q conf V(19)

where —¢u is the standard — as in Chandy and Misra’s [1]. But this is too
naive. The progress p — ¢ may pass through some intermediate stages. Since
above we only require p and ¢ to be confined by V, one of the intermediate stages
may break this confinement. In UNITY ~ is defined (inductively) as the least
transitive and disjunctive closure of ensures. So, a — property is constructed
from elementary ensures properties. The latter define the intermediate stages
of the — property. To confine a — property we must therefore also confine
all its constituting ensures properties. This can be achieved by including the
confinement condition within the inductive definition of —. Since the new
ensures operator already contains the required confinement condition, we can
define the new — as the least transitive and disjunctive closure of the new
ensures. Formally:

Definition 5.2 : LEADS-TO
For all P,V,J, the relation (A p gq. P,V,J F p — q) is defined as the smallest

16

Theorem 5.3 : PRE-STRENGTHENING AND POST-WEAKENING

PV,Jkgq—r, JVEp=g4q, JVEkr=s
PV, JFp+—s

The r-argument of unless or ensures can also be weakened as above, but the g-
argument cannot be strengthened though it can be replaced by p if J,V F p = ¢ (the
infamous Substitution Law).

Theorem 5.4 : PROGRESS-SAFETY-PROGRESS (PSP)

P, V,JFpRelq, P,V,JF runlesss
P V,JFE(pAr)Rel (qAT)Vs

Rel is either unless, ensures, or .

Theorem 5.5 : UNLESS AND ENSURES COMPOSITIONALITY

P, V,JEpunlessq, Q,V,JFpunlessq P, V,JFpensuresq, Q,V,J}+ punlessq

P]|Q,V,J * punless g P|Q,V,J & pensures q

Figure 5: Some standard UNITY laws expressed in the new logic.

relation — satisfying:
Lifting: if P,V,J F pensures g then p—gq.
Transitivity: if p—q and ¢—r then p—r.
Disjunctivity: let W be non-empty; if for all i € W we have p; —¢q

then (Fi:i € W :p;)—q.
O

All UNITY laws in [1] hold under this new definition, although as expected
they look slightly different. Just for illustration, some are displayed in Figure
5.

6 Conclusion

We presented a theory of composition based on capturing a component’s tem-
porary non-interference properties to infer how it influences other components’
temporal properties. The consistency of the theory has been mechanically ver-
ified with respect to UNITY model. Having UNITY as model, the theory also
inherits the usual UNITY laws to deal with non-compositional aspects of tem-
poral properties. The theory itself is not restricted to UNITY, and with proper
definition of properties confinement can be built on top of other temporal logics.

When used to factorize a specification of a composite P]Q, the theory would
typically result in stronger non-interference constraints than for example the ap-
proaches taken in [1, 2]. However, in exchange when specifying progress we do
not need to keep track of its intermediate stages which in [1, 2] are needed
for composing progress properties. We consider this a great advantage, since
carrying around the intermediate stages is cumbersome, and moreover, the infor-

17

mation is not always available. Despite the restriction, we believe our approach
to be useful based on the observation that many synchronization techniques
implement synchronization by alternately schedule one party to suspend its in-
terference while allowing the others to continue.

References

1]
2]
(3]

[4]

[7]
[8]

[10]

[11]
[12]
[13]

[14]

K.M. Chandy and J. Misra. Parallel Program Design — A Foundation. Addison-
Wesley Publishing Company, Inc., 1988.

P. Collette. Composition of assumption-commitment specifications in a UNITY
style. Science of Computer Programming, 23:107-125, dec 1994.

M. Hulst. Compositional Verification of Parallel Programs using Epitemic Logic
and Abstract Assertional Languages. PhD thesis, Dept. of Comp. Science, Utrecht
University, 1995.

L. Lamport. An assertional correctness proof of a distributed algoritm. Science
of Programming, 2:175-206, 1982.

L. Lamport. A temportal logic of actions. Technical Report 57, Digital Systems
Research Center, April 1990.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems—Safety. Springer-Verlag, 1995.

J. Misra. Notes on UNITY 17-90: Preserving progress under program composi-
tion. Downloadable from www.cs.utexas.edu/users/psp, July 1990.

1.S.W.B. Prasetya. Formalization of variables access constraints to support com-
positionality of liveness properties. In J.J. Joyce and C.J.H. Seger, editors, LNCS
780: Higher Order Logic Theorem Proving and Its Applications, pages 324-337.
Springer-Verlag, 1993.

1.S.W.B. Prasetya. Mechanically Supported Design of Self-stabilizing Algorithms.
PhD thesis, Dept. of Comp. Science, Utrecht University, 1995.

I.S.\W.B. Prasetya, S.D. Swierstra, and B. Widjaja. Component-wise for-
mal approach to design distributed systems (original). Draft. Availble at
www.cs.uu.nl/people/wishnu. This is the original version, containing a complete
proof matching the HOL proof as available at the same web-site., 1999.

Udink. R. Program Refinement in UNITY-like Environments. PhD thesis, Utrecht
University, 1995.

B.A. Sanders. Eliminating the substitution axiom from UNITY logic. Formal
Aspects of Computing, 3(2):189-205, 1991.

N. Shankar. Lazy compositional verfication. Available at
www.csl.sri.com/fm-papers.html., 1999.

A K. Singh. Leads-to and program union. Notes on UNITY, 06-89, 1989.

18

