Factorizing Fault Tolerance

[.S.W.B. Prasetya, S.D. Swierstra*

Abstract

This paper presents a theory of component based development for
exception-handling in fault tolerant systems. The theory is based on a
general theory of composition, which enables us to factorize the temporal
specification of a system into the specifications of its components. This is
a new development because in the past efforts to set up such a theory have
always been hindered by the problem of composing progress properties.

1 Introduction

The design of software systems becomes more and more dependent on the use
of components. This is for a good reason. The approach stimulates the sepa-
rate development of software components, which in turn greatly enhances the
components’ reusability, maintainability, portability, and scalability. A theory
for reasoning about the behavior of a complicated system, starting from the be-
havior of its components, is crucial for such an approach; it enables us to infer
the behavior of a system of concurrent components by looking at the individual
specification of the components. A prerequisite for this approach is that compo-
nents can be specified and verified independently from the actual environment
they will be functioning in.

Most software systems of nowadays are capable of detecting and handling
faults on its own, although the degree of fault tolerance may of course vary.
This paper presents a theory of components composition for a certain class
of fault tolerant systems. Such a theory has not been sufficiently addressed
in the past. Most approaches are restricted to a rather loose composition of
synchronized components such as layering [6, 1, 10], which is too weak to express,
for example, overriding of the main function of a system by a fault handler. This
is not surprising because the needed underlying theory of composition is thus
far lacking: such a theory essentially provides laws of the form:

Psat A, Qsat B
P[Q sat C(a,B)

which states that if components P and @) satisfy respectively properties A
and B, then the composite P[Q satisfies C, which is some combination of A

*Universiteit Utrecht, Informatica Instituut, Postbus 80.089, 3508 TB Utrecht, Nederland.
Email: wishnu@cs.uu.nl, doaitse@cs.uu.nl

and B. Applying the law backwardly direction enables us to factorize a global
specification of a system into local specifications of its components, which in
their turn can be analyzed and verified separately. However, the ’composition-
ality’ of reactive properties, which are used a lot in specifying fault tolerance, is
difficult. Many theories were developed [7, 3, 4, 12, 13], but all fail for various
reasons to satisfactorily address the issue. In this paper we first present a more
general theory of composition based on a quite old approach by Singh [14] to
exploit information on when and where (on which data segment) a component
will temporarily suspend its interference. The resulting theory is quite ele-
gant and expressive. Its consistency has been checked in a theorem prover HOL
[11]. The proof code and theory listing are available at www.cs.uu.nl/ wishnu.
Compared to other approaches such as [3, 4] our approach uses more constrained
synchronization conditions, but what we gain is a great reduction in the amount
of ’extra’ information required to get a progress specification to compose well.

Building up on this theory we present a theory for composing components
of fault tolerant systems. In particular, we consider the use of exceptions and
exception handling. We will also show how one can use the theory to test
a system against an ’adversary’. In most other approaches [5, 2, 6, 8, 10] the
presence of an adversary is treated implicitly, resulting in confusion between the
'normal’ behavior of a system, and its behavior under faulty conditions. Because
the adversary is now just another component, we can also test the system against
different adversaries. The system’s reaction may then be calculated using the
composition theory.

Let us emphasize that this paper is not intended to provide a complete for-
malization of various fault tolerance techniques, but rather, it provides a skeleton
theory. The user can extend it or treat it as a template to build his/her own
specific fault tolerance model.

Sections Overview

Section 2 presents the underlying formalism and a general composition theory.
Section 3 describes our model of exception handling in systems, and presents
a theory to build such a system in a modular way. Only systems handling one
kind of fault are considered. Section 4 generalizes the theory in Section 3 to a
scenario with multiple faults.

2 A Basic Composition Theory

Earlier efforts [7, 3, 4, 12, 13] to set up a composition theory for temporal
properties have always been hindered by the problem of composing progress
properties. The problem can be described as follows. Suppose a component P
can progress from p to ¢, written as P F p — ¢q. What would be a reasonable
condition for @) (another component) such that the parallel composition of P and
Q (written P]Q) preserves the progress? In a non-component based approach
we would just fix the code of (), which is an easy solution, but will render P
non-reusable. So, to increase P’s reusability, we prefer the conditions on @ to

[J IF Prun /\ Ppc=m0 /\ gtStuckExc THEN Ppc:=ml

[IF Prun /\ Ppc=ml THEN gate,Ppc := resetGate(),m2

[1 IF Prun /\ Ppc=m2 THEN gtStuckExc,Prun,Ppc := False,True,m0

[1 IF Qrun /\ Qpc=m0 /\ senDeadExc THEN Qpc := mi

[1 IF Qrun /\ Qpc=ml THEN log,Qpc := append "sensor dead" log, m2
[1 IF Qrun /\ Qpc=m2 THEN senDeadExc,Qrun,Qpc := False,True,m0

Figure 1: An example of a UNITY program

be as weak as possible.

A first attemp might be to require that) preserves p. This would make a
powerful composition law, except that it is not valid. During its progress from p
to g, the component P can pass through some intermediate states outside p. @
would then be unconstrained, and may thus block P’s progress. We can require
@ to preserve all intermediate states passed by P during its progress to q. The
good thing is that this constraint on () is almost the weakest possible. The
bad thing is that a progress specification of a component must now explicitly
mention ’extra information’, namely all its intermediate states. This can be
unacceptable for several reasons: (1) too cumbersome, (2) the information is
not always available, and (3) changes in implementation are likely to change the
set of intermediate states.

In our approach we parameterize a temporal property of a component with
a set of variables V' for which the property may be sensitive to external changes
(changes resulting from external actions). If there is a way for P to indicate that
it is in the process of progressing from p to g, for example by raising a flag a, the
progress can be preserved in P]|@Q by requiring () to suspend interference on V'
while a holds. This is a stronger requirement than the one proposed before, but
the approach also reduces the amount of ’extra information’ needed to compose
progress specifications, which hopefully will result in a reasonable compromise.

The programming logic we use is based on UNITY. A UNITY program is
a set of terminating, atomic, and guarded actions —if the guard is false the
action can still be executed (enabled) though with no effect (skip). An ex-
ecution of a UNITY program is infinite, in which at each step an action is
non-deterministically selected but the selection is weakly fair (no action can be
indefinitely ignored). There are no primitive control structures (like sequencing,
loop, or branch), but they can be programmed. Figure 1 shows an example of
a UNITY program. It is the translation of a fault handler (FHO) in Figure 4
—this will be explained later. The code in Figure 1 shows a program consisting
of a list of actions, separated by [1 symbols.

Before presenting our composition theory, the next subsections introduce
a some new notions (like sensitivity to external changes and temporary non-
interference).

Some Note on Notation
In the sequel P and @ are UNITY programs; a, b, p, q, r, s, and J are predicates;

a and B are actions; and V and W are sets of variables. We write J F p to mean
(Vs :: J s = p s), meaning that under assumption J, p holds everywhere. We
use var(P) and loc(P) to denote respectively: (1) the set of all variables read
or written by P, and (2) the set of all local variables of P (variables writable
only by P). O

2.1 Predicate Confinement

Total functions f and g of the same type, are partially equal over subdomain
V, written f =y g, if f £ = g x for all x € V. The set of all functions of f such
that f =y g is denoted by [g]y. A program state is a function from variables to
values, so we can talk about partially equal states in the above sense. A state
predicate is a function from state to bool, or equivalently a set of states. Given
a predicate p and a set of variables V', we define p to be confined by V if it only
constrains the value of variables in V. This can be formally defined as follows:

peonf V. = (Vs.ps=([s]lv Cp)) 1

For example, z > y + z is confined by {z,y,z}, but not by any set smaller
than {z,y,z}. Notice also that a predicate which is confined by V cannot be
falsified by a program only updating variables outside V. A predicate confined
by V is also confined by a larger set. Predicate confinement is also closed under
predicate operators. Formally:

VCW A pconfV = pconf W (2)
p,qconf V = (pV qconf V) A (—p conf V) (3)

2.2 Capturing Temporary Non-interference

We introduce a relation preserves to capture temporary non-interference by a
component on a given set of variables. Note that the temporariness plays an
important role because the set of variables un-interfered by a program typically
changes during the execution of the program. We write p F @ preserves Vg,
stating that once p holds @ will maintain p and also preserve the value of
variables in V', and that this period of non-interference is ended by establishing
g. Formally:

Definition 2.1 : PRESERVES
J,pk Q preserves Vg = (Va,p' :a € QAp conf V:{JApAD'}a{(pAD)Vq})
O

The « in the formula range over the actions of). We have also added an extra
parameter J which is intended to be a stable predicate of). This is just a
predicate which cannot be falsified by any action of). The J parameter is
not an essential addition, but helps in the presentation later. Since actions are
assumed to be terminating, it does not matter whether the Hoare triple above
means partial or total correctness. Here is an example of a preserves property
of the RTU component in Figure 4:

Irtu,r #[] F RTU preserves {r}|false (4)

The variable r is an ’output port’ of RTU. The value [| represents an empty
port. So the above states that if r contains something, the RTU promises not
to overwrite its value. Irry is just some invariant of the RTU.

There are some special cases of the preserves relation. The property J, true -
@ preserves Vg states that the only way @ can interfere on V is by establishing
g. The property J,true - Q preserves V|false, which we also write as simply
J F @ preserves V, states that () never interferes with V. This is the same as
saying that () has no write access to V', or in other words V only contains local
variables of other components.

Theorems 2.2 and 2.3 below are properties of preserves which will be used
later. The first follows easily from the definition of preserves , the second follows
from the definition and properties (2) and (3) of confinement.

Theorem 2.2 : Theorem 2.3 :
J,p+ P preserves Vg VCW, J,pt P preserves W|q
JAJ',pk P preserves Vg J,p P preserves Vg

O

2.3 Properties and Composition

In UNITY temporal properties of programs are expressed in terms of unless,
ensures, and — (leads-to) operators. Their meaning is quite standard —see for
example [3]. However we will have to extend these operators to fit in our theory.
For example now we would like to write P,V,J F p — ¢ to express that P’s
progress from p to q is sensitive to external changes to variables in V', but not to
external changes to non-V variables. The latter is in many cases too restrictive
for P: it is more realistic to limit this ’insensitivity’ to (external) changes to a
given set of states. This constraining set of states is specified by the predicate
parameter J in the specification. Because all changes are contained within J,
we can expect that both the component and its environment preserve J. Or, in
other words, J is stable.
Here is now how we define unless and ensures:

Definition 2.4 : STABLE, UNLESS, AND ENSURES

P | stable J = Ma:aeP:{J}a{J})

P,V,JF punless q = (P Fstable J) A (p,q conf V) A
NVa:a€eP:{JApA-q} a{pVq})

I:|P,V,Jl-pensuresq = (P, J,Vtopunlessq) A (Ba:a€ P:{JApA-q}a{q})

Note that relative to [3] we add an additional constraint to unless and ensures
requiring p and ¢ to be confined to V. Hence, both p and ¢ are insensitive
to changes to variables outside V', and hence the described behavior is also in-
sensitive to those changes. Note also that we only require the J parameter to
be stable. In many cases J is actually also an invariant, but there are situa-
tions, like when composing P with a component that can only support a weaker
invariant, where we really need to consider predicates which becomes stable dy-

Let Rel be either unless, ensures, —, or until.

Theorem 2.5 : PRE-STRENGTHENING AND POST-WEAKENING

PV,Jrq—r,JrFrp=>q,JFr=s, p,sconfV
P,V,JEFpr—s

The r-argument of unless or ensures can also be weakened as above, but the g-argument
cannot be strengthened though it can be replaced by p if J,V F p = ¢ (the infamous
Substitution Law).

Theorem 2.6 : PROG.-SAFETY-PROG. Theorem 2.7 :
P,V,J+p Rel q JFq =q
P,V,J 7 unless s P,V,Jt (pA—¢') Rel q
P, V,JF(pAT)Rel (gAT)Vs P,V,JFpRelq
Theorem 2.8 : UNL. COMPOSITION Theorem 2.9 : ENS. COMPOSITION
P,V,J F punless ¢ P,V,J F pensures ¢
Q,V,J F punless q Q,V,J - punless q
P|Q,V,J I punless g P]Q,V,J | pensures q

Figure 2: Some standard UNITY laws expressed in the new logic.

namically rather than all the way from the start (invariant); however, we will
retain the habit of calling J an invariant.
And here is how — is now defined:

Definition 2.10 : LEADS-TO
For all P,V,J, the relation (A p q. P,V,J F p — q) is defined as the smallest relation
— satisfying:

Lifting: if P,V,JF pensures g then p—gq.

Transitivity: if p—q and g—r then p—r.

Disjunctivity: let W be non-empty; if for all € W we have p; —»¢q

then (Fi:7€ W :p;) —q.
O

Notice that P,V,J F p — ¢ actually specifies progress from JAp to q. A derived
operator which we will use later is the so-called until:

PV,Jkpuntilq = PV,JFkp—~q A P,V,JF punlessq (5)

All UNITY laws in [3] can be lifted to apply to the new operators —with small
adjustments. Some of those laws are displayed in Figure 2. A complete listing
of can be found on-line at www.cs.uu.nl/ wishnu.

Figure 3 shows some of the new laws. The Locality Lift Law states that a
property which is sensitive to external changes on variables in V is also sensitive
to external changes on any set that includes V. The J-strengthening Law allows
us to strengthen the J-parameter; weakening is however not allowed. The J
parameter of — is also not disjunctive. The J-Leftshift and R-Shift laws are

In the following theorems Rel represents either unless , ensures, or .

Theorem 2.11 : LOCALITY LIFT Theorem 2.12 : J-STRENGTHEN
P,V,J+p Rel q Ptstable J', J'+J, P,V,JF-pRelq
P,V,JUW F p Rel q P,J,V+pRelq

Theorem 2.13 : J-LEFTSHIFT Theorem 2.14 : J-RIGHTSHIFT
P,V,JF (J' Ap) Rel q P,V,JAJ'FpRel q
Pt stable JAJ', pconf V Pt stable J , J' conf V
P, V,JAJ FpRelq P, V,J+ (J' Ap) Rel (J' Aq)

Theorem 2.15 : SINGH Theorem 2.16 : SCHEDULING
P,V,JFp Rel q P,V,JFaAp Rel g
Q F stable J P,V,J F a unless q
a,bconf VUW Q@ - stable J
J,a F Q preserves Vb J,a b Q preserves V|false
PlQ,VUW,J Pl|Q,V,JFaApRelq

F(pAa)Rel ((gAa)V-aVb)

Theorem 2.17 : TRANSPARENCY Theorem 2.18 : UNTIL COMPOSITION
P,V,JFpRelq P,V,J + puntil ¢
Q - stable J, J I Q preserves V' Q Fstable J, J,pF Q preserves Vg
Pl|Q,V,J - p Rel q P]Q,V,J I puntil ¢

Figure 3: Composition Laws

used to shift part of the J parameter in and out of the ’precondition’ (the p) in
p Rel q.

In Sigh Law, the V, J,a F Q preserves V'|b condition states that @ will tem-
porarily cease its interference on V' as soon as J Aa holds, and that this will last
at least until b holds. The law states that during this period of non-interference,
if it lasts long enough, P’s local property of the form p Rel ¢ can be preserved
in the composition P|Q. If the period prematurely ends, then at least we know
that b should hold.

The Scheduling Law is a very useful corollary of Sigh Law. Suppose a com-
ponent P can behave as p Rel ¢ and that this property is only sensitive to
external changes to variables in V. Moreover, at the start of this behavior P
sets a 'flag’ a to indicate its wish to realize p Rel ¢ uninterfered. This flag stays
high until g holds. If () promises to suspend interference on V' as long as a is
high, the law states that P’s property p Rel ¢ will be respected by . The Until
Composition Law is just a special case of the Scheduling Law. The Transparancy
Law is another corollary of the Singh Law, stating that properties of P sensitive
to external changes on variables in V' are respected by any partner () that does
not write to V. This, for example, is trivially the case if V' only contains P’s
local variables.

The Singh Law is a fundamental composition law in our theory. The law
appears first in Singh’s unpublished June-89 Notes on UNITY [14]. This work
did not get much support however. There were problems: the set up was not
formal enough and some technicalities are quite subtle and may render the law

inconsistent if not treated properly [9]; and the proto-form of the law used a
fixed parameter V, which severely restricts its expressibility. The application is
also not explored enough (for example the Scheduling Law was not identified).
We reinvent the theory, and manage to overcome all those problems challenging
Singh’s earlier attempt.

3 Fault Tolerance by Exception Handling

Exception is a familiar fault tolerance technique. Typically, exceptions are han-
dled by a separate component which may have the capability to override some
part of the main system. We want to formalize this and customize the basic
theory of the previous section to reason about composition of components in
exception-handling based systems.

For the rest of this paper we simply write ’fault tolerant system’ rather than
the mounth-full ’exception-handling based fault tolerant system’.

3.1 How it Works

Although a system can internally generate faults, it is useful to think of faults as
being externally generated. Firstly because external faults are less controllable,
and hence we assume for the worse. Secondly, it enables us to concentrate on
analyzing the system’s fault-free behavior, which usually is the main concern
of the system. To test a system’s actual reaction to faults, we can compose it
with an adversary that actually injects faults. The resulting behavior can be
calculated using the composition theory.

Consider now a fault tolerant system FTS, consisting of a main component,
mainly responsible for realizing whatever the desired behavior of FTS in the
absence of faults (so-called the main functions of FTS), and a fault handler.
The fault tolerance strategy is as follows:

1. The main component is responsible for detecting faults.

2. When a fault is detected, the main component suspends those activities
which may be affected by the fault and throws an exception.

3. Throwing an exception activates the fault handler.

4. When the fault handler has finished, it awakes the suspended activities of
the main component and suspends its own activities that may interfere
with the main component.

Note that to allow a maximum degree of parallelism we specifically require that
suspending a component only suspends relevant activities —a more naive strategy
would be to simply suspend the whole component.

To give a better idea, Figure 4 shows the code of a simple Remote Terminal
Unit (RTU) used to monitor the state of a number of water gates and sensors and
to drive the gates in a flood control system. What RTU does is to repeatedly:

1. wait for a command arriving at port c.

2. in two parallel blocks, rearrange the gates according to the command and
read the sensors.

3. send the gates and sensors data out via port r.

The program RTU has three components: Main, FHO, and FH1. Main is the
component implementing the actual task of RTU. FHO is level 0 fault handler,
and FH1 is level 1 fault handler. The program detects and handles three kinds
of faults: gate failure, sensor failure, and memory corruption. See the table
below. Faults are multi levelled: higher level faults can disrupt not only the
main component, but also lower level fault handlers.

[fault [level | test | exception raised | handling |
gate failure 0 gate[i] gtStuckExc reset the gates
=gtStuck
sensor failure 0 sensor[i] senDeadExc log the event
=senDead
mem. corruption 1 checkMem() memCorruptExc reset F'TS1
=CheckSumErr

The code is in some C-like language. The symbol || denotes parallel com-
position. Throwing (signaling or raising) an exception is done by the THROW e
statement, which simply switches e to true. From that point on a fault handler
listening to e can become active. The statement SUSPEND P suspends process
P and all its internal concurrent processes. RELEASE e,P,Q,... lower the ex-
ception again and at the same time enables processes P, (), and others in the
list. So, for example, the code of FTS1 contains a process (parallel to Main and
FHO) modelling some regular check on the checksum of the memory segment
on which Main and FHO run. A checksum error would indicate memory corrup-
tion, in which case Main and FHO have to be reset. This is coded by throwing
memCorruptExc exception, which will activate the fault handler FH1, and sus-
pend Main and FHO. Translation to UNITY is quite standard. The program
in Figure 1 shows the translation of component FHO to UNITY. Notice that
the variables Ppc and Qpc are program counters used to encode sequencing of
FHO’s actions. The variables Prun and Qrun guard the actions of FHO and can
be switch on and off to resume or suspend some part of FHO.

3.2 On Terminology

Some literature distinguishes between fault, error, failures, and so on. It is
imaginable that people have different ideas about what they mean, so before we
go on with formalization we describe first what we mean with ’fault’. Here, we
define a fault as a set of states of a program that the developer would consider
as abnormal. Note that such a set of states can be defined by a predicate. For
example, in the program in Figure 4 the predicate (3i : 0 < i < 4 : gate[i] =
gtStuck) specifies a fault in which one of the gates controlled by RTU becomes
stuck. A fault e has occurrences or instances. An occurrence of e is just the

PROG RTU::

VAR PUBLIC c,r : port ;

VAR gtStuckExc, senDeadExc, memCheckSumErrExc: bool ;
gate, sensor: array of int ;

DECL

{

PROG Main::

VAR i,command : int
[REPEAT FOREVER

[command := fetch c ;
PROG P::
[gate := setGate command ;

FOR (i:=0, i<4, i++)

IF gate[i]=gtStuck THEN [THROW gtStuckExc; SUSPEND P]
1
PROG Q::

[sensor := checkSensor() ;

FOR (i:=0, i<10, i++)

IF sensor[i]l=senDead THEN [THROW senDeadExc; SUSPEND Q 1;
r := send (gate,sensor)]]

1{
PROG FHO::
[[IF gtStuckExc THEN [gate := resetGate();
RELEASE gtStuckExc, P 1]
I
[IF senDeadExc THEN [append "sensor dead" to log ;

RELEASE senDeadExc, Q]]]

{

PROG FTS1::
[Main ||
FHO ||
REPEAT FOREVER
[IF checkMem()=CheckSumErr
THEN [SUSPEND Main; SUSPEND FHO ;
SUSPEND FTS1 RAISE memCorruptExc]]
{

PROG FH1::
[IF memCorruptExc
THEN [...do something ;
RELEASE memCorruptExc, Main, FHO, FTSO]]
1{

ENDDECL {-- of RTU --}

[FTS1 || FH1]

Figure 4: Example: RTU

10

occurrence of one of the states in e at some point during an execution of the
system.

A fault e is said to be removed when the system is brought to a state outside e.
As a fault may not be handled immediately, it may cause further inconsistencies.
Consequently, the removal of a fault does not necessarily mean that the system
is again in a correct state. We do not define the goal of fault handling as the
recovery of disrupted behavior because there are situations where recovery is
either unnecessary, impossible, or too costly. Rather, we broadly define it as a
system’s reaction to the fault to bring itself to some defined states. Recovery is
then just a special kind of fault handling. For example, what the RTU in Figure
4 does in the case of sensor failure is to simply log the occurrence of the fault.
It does not even try to remove it. Obviously the designer hopes that the fault
will corrected once reported. In many situations, this is all that we can do.

3.3 Single Fault System

Let us first consider a system capable of only detecting and handling a single
fault. This is simpler and enables us to focus on the composition of the main
component and the fault handler. We will show later how the result may be
extended to a multiple faults system.

Let in the sequel FTS be a fault tolerant system, consisting of a main com-
ponent Main and a fault handler FH. The fault handler handles a single fault
characterized by the predicate fault. When Main detects an occurrence of fault,
it establishes a predicate detect. Establishing detect can be thought of as mod-
elling the exception event. The final result of handling fault is modelled by a
predicate handled. Recall that we do not require fault handling to remove the
fault, but if it does then we have handled = —fault.

Let in the sequel JM2" and J9t be two invariants of Main and J be an
invariant of FH. JM2" is needed by Main to perform its main function; Jdt
is needed by Main to do fault detection; and J" is needed by FH to do fault
handling. Note that fault may destroy J™?". The detection and handling mech-
anism must on the other hand be strong enough to withstand the kind of fault
they are supposed to handle. So, fault is incapable of destroying J9t and JFH.
It also follows that Jt and J should be on their own invariants of the whole
FTS, since if JM2" fajls because of fault, then FTS should still be able to detect
and handle fault. So, we assume:

(a) MainF stable J"* [(¢) FHF stable J77 [(d) FTS stable JV"
(b) Main stable J%t (e) FTS I stable J%t A J™

Let in the sequel V9t and V"2" be the sets of variables read or written dur-
ing, respectively, the detection and handling of fault. Since detection is Main’s
task and handling is FH’s task, we have V9 C var(Main) and V"4 C var(FH).
We assume that fault, detect conf V9t and detect, handled conf V" and also
JMain _ jdet JFH conf var(FTS).

11

(6)

3.3.1 Fault Detection

When fault occurs, eventually the system FTS must detect it. So its specification
has the form of FTS F fault — detect. The following theorem shows how this
specification can be factorized.

Theorem 3.1 :
(1) Main | stable J%* A J™M | FH I stable J% A J™

(2) Main, V9 J% | faylt i detect
(3) J™ —detect - FH preserves V|false
FTS, Ve, J% A JH | fault — detect

O

The conclusion of the theorem states that when fault occurs, FTS will eventually
raise detect. Condition (1) essentially states that each component respects the
other’s invariant (see the remark following Theorem 3.2). Condition (2) says
that the progress to detect is actually Main’s local property. Condition (3) states
that while detect does not hold, FH will not interfere with Main’s progress to
detect. Notice also that condition (3) does not say that the fault handler should
suspend all activity: only activities that may update variables in V9 need to
be suspended.

We can easily prove Theorem 3.1 using the general composition theory of
Section 2. We will first prove a few lemmas, since we are going to use them
again later.

Theorem 3.2 :
1) PrHJpAJg, QFJpAJg (3) a,bconf VUW
(2) P,V,JptFpRelq (4) Jg,at Q preserves (V UW)|b

PlQ,VUW,Jp AJg F (pAa) Rel (qV —a V b)
where Rel be either unless, ensures, —, or until. O

The above is just a variant of the Singh Law. Jp and Jg can be thought as the
invariants of P and () respectively. Jp A Jg is then a combined invariant of the
composite P[Q. Condition (1) of the theorem states that this combined invari-
ant holds in each component (P and @). Since a component can be expected to
maintain its own invariant, this condition essentially says that each component
respects the other’s invariant. Condition (2) states that we have some local
property p Rel g of P. Conditions (3) are (4) are as in the Sigh Law, stating
some confinement and temporary non-interference conditions of). Finally the
conclusion essentially states that as long as a and —b hold the composite will
preserve the behavior p Rel ¢ (also quite the same as in the Sigh Law).

Proof: (of Theorem 3.2)

PlQ,VUW,Jp AdgtFpAa RelqV-aVb
< { Sigh Law (Theorem 2.15) }
(P,VUW,Jp AJgFpRelq) A (a,bconf VUW) A
(Q *stable Jp A Jg) A (Jp AJg,at Q preserves (V U W)|b)
< { Theorem 2.2 }

12

(P,VUW,Jp AJgFpRelq) A (a,bconf VUW) A
(Q *stable Jp A Jg) A (Jg,at Q preserves (V UW)|b)
<= { Locality Lift (Theorem 2.11) }
(P,V,Jp NJg FpRelq) A (a,bconf VUW) A
(Q Fstable Jp A Jg) A (Jg,at Q preserves (V UW)|b)
= { J-Strengthen (Theorem 2.12 }
(P,V,JpFpRelq) A (PFstable Jp A Jg) A (QF stable Jp A Jg) A
(Jg,a F Q preserves (VUW)|b) A (a,bconf VUW)
O
Below are two lemmas which we will use later. The left one is a special case of

Theorem 3.2; the other can be proven from Theorem 2.18 in the way similar to
Theorem 3.2.

Theorem 3.3 :
(1) PFJoAJo, QFJpAJo (1) PFJpAJo, QFJpAJo
(2) P,V,JpkpRelq (2) P,V,Jpt puntilg
(3) Jo F Q preserves V/ (3) Jg,ptF Q preserves Vg

O Pl|Q,V,Jp ANJg Fp Rel q Pl|Q,V,Jp A Jg + p until ¢

Now we can easily prove Theorem 3.1:

By Theorem 2.7 it suffices to prove that FTS, Vdet, jdet A JFH 1 fault A —~detect —
detect follows from the assumptions of Theorem 3.1. But this is simply an
instance of Theorem 3.2.

O

3.3.2 Fault Handling

After detecting a fault, FTS should eventually handle it. The specification has
the form of FTS F detect — handled. This is how to factorize it:

Theorem 3.4 :
(1) Main - stable J%* A J™ | FH I stable J% A J™

(2) FH,vhad JF 1 detect until handled
(3) J% A J™ detect - Main preserves V" |false
FTS,vMard jet A JFF 1 detect +— handled

O

As in the case of fault detection, Condition (1) states that each component re-
spects the other’s invariant. Condition (3) states that Main activities that may
write to V1" will be suspended as long as detect is high —again, this does not
mean that Main should suspend all activities. Condition (2) says two things.
In the first place, it is FH’s task to actually perform the fault handling. Fur-
thermore, handled is maintained until the fault handling is completed, which is
necessary because otherwise Main can interfere with the FH before the latter
finishes its task.

Proof: (of Theorem 3.4) It follows from the definition of until and Theorem
3.3. 0

13

3.3.3 The Main Function

Main functions are the set of expected behavior of FTS in the absence of faults.
In other words, they are simply the behavior of Main without the fault detection.
They are expressed as a collection of properties of the form Main, A, JM2i |-
p Rel q where Rel is either unless, ensures, —, or until. Recall that A is a set
of variables on which p Rel q is sensitive to external change. Since the fault
handler FH is also in FTS, its interference on A may destroy the main functions,
and therefore we are interested in conditions that can prevent this.

If this interference occurs during FH’s active time (detect high), it means
a fault has occurred before and obviously the interference is part of FH’s fault
handling procedure. The net result of this interference has been formalized in
Theorem 3.4, namely the establishment of the predicate handled. It remains
to see how FH interferes on A during its ’suspended’ state. Interferences can
still happen because the conditions of Theorem 3.1 only constrain FH from
interfering on V9, and not on A. A possible (but not the weakest) solution is
to strengthen this requirement to:

JFH —detect - FH preserves var(Main)|false (7

stating that during its suspension FH will not interfere with Main at all and
therefore can only perform internal computation. This yields the following the-
orem, stating the conditions required to preserve a main function, up to the
point when fault is detected.

Theorem 3.5 :))
(1) Main I stable JMan A jFH (2) FHF stable J¥n A JFH
(3) A C var(Main) (4) Main, A, JY¥" |- 5 Rel g

(5) J™, —detect - FH preserves var(Main)|false
FTS, AUV gV A JFH 1 p Rel g V detect

Proof:
Notice first that since detect conf V¥ and by (2) and (3) it follows that ~detect conf AU
VY. Now we derive:

FTS, AU Vet gMan A JFH L p Rel g V detect
<= { Theorem 2.7 }
FTS, AU Vet gMain A JFH L A —detect Rel g V detect
<= { Theorem 3.2; the remark above }
(Main, A, JM3" | p Rel ¢) A (Main | stable JM2" A JFH) A
(J™, ~detect - FH preserves A U V% |false) A (FH I stable J¥3" A J™)
= { we have A C var(Main) and V%' C var(Main); Theorem 2.3 }
(Main, A, JM3" | Rel ¢) A (Main | stable JM2" A JFH) A
(J™M —~detect - FH preserves var(Main)|false) A (FH F stable J"" A JF")

14

3.3.4 Testing with Adversary

In the previous three subsubsections we have formally captured the interaction
between the main component and the fault handler of FTS. It is true that
occurrences of fault have been taken into account, but since neither component
is assumed to be capable of generating fault, we cannot justify yet that the
theorems presented so far reflect FTS’s actual tolerance to faults. To do this
we must subject FTS to a component (usually called adversary) that actually
injects faults, and subsequently use our theory of composition to calculate the
resulting behavior.

This approach has another advantage. Different faults may have different
reactive behavior. Certain faults are permanent: they persist until removed.
The handling of this kind of faults should include their removal, or else the
handler will be reinvoked indefinitely. Some faults are transient: they are only
present for some limited duration. Sometimes, a transient fault does not de-
stroy the safety requirement of an FTS, though it may block some progress,
in which case FTS can simply suspend Main until the fault is over, and then
resume its operation. By treating an adversary as a component we have the
freedom to construct different adversaries to model different faults’ behavior,
and subsequently calculate FTS’ reaction.

To show how to deploy the theory, let us consider the transient kind of faults.
Note that the detection and handling of a fault e may fail if the fault rapidly
oscillates during a short period (oscillation burst). This oscillation can be in
the form of a sequence e, —e, e, ..., or an internal oscillation among the states
inside e (remember that a fault is defined as a set of states). For example, the
gate failure in the RTU example in Figure 4 is identified with (3 : 0 <i < 4:
gate[i] = gtStuck). That is, a fault occurs if one of the gate is stuck. The
program tries to detect this using a loop that scans the gates one by one. If the
gates get stuck and unstuck in random order and at high speed —not a realistic
situation, but hypothetically possible— then the loop may fail to ’catch’ a stuck
gate, and therefore fail to detect the fault.

To simplify the discussion let us just consider the correctness of FTS relative
to a no-oscillation-burst scenario. Here is then the specification of our adversary:

true, —fault I adv preserves var(FTS)|fault (8)
(adv F stable J9t) A (adv I stable JH) 9)
true, nonOsci F adv preserves V4t U V"™ handled (10)

The first specification states that the adversary does not interfere with FTS
except by establishing fault. In other words, the only purpose of the adversary
is to inject faults. Note that this implicitly assumes that during the test against
adv, FTS is treated as a closed system.

As said in the beginning of this section, although adv may destroy JM2" the
fault detection and handling mechanisms have to be strong enough to stay func-
tioning. So, as stated by the second specification (9), the adversary is assumed
to respect the invariants of fault detection and handling. Since the adversary
can generate faults, (9) prevents the trivial implementation of fault detection

15

and handling that simply excludes faults by maintaining J9 = —fault. In the
third specification nonOsci is a predicate characterizing moments in which no
burst of fault causing oscillation in the values of V9t and V" occurs. The
specification states that this no-oscillation period will last at least until FTS
has finished handling fault. Notice that this does not restrain the adversary
from corrupting other variables. In particular in the multiple faults scenario
this means that while in no oscillation burst state for fault e, the adversary can
generate other kinds of faults.

Now let us see how this kind of adversary influences our FTS:

Theorem 3.6 : INTERFERENCE ON THE MAIN FUNCTION
(1) FTS,Auvde gMain A g0 L p Rel g V detect

(2) FTSF stable 9 A J™

(3) adv I stable J%t A JFH

(4) true, —-fault F adv preserves var(FTS)|fault

FTS[adv, var(FTS)J% A JT7 + (JV3" A p) Rel (q V fault V detect)

O

Condition (1) is the same as the conclusion of Theorem 3.5, stating what we
know about the main function after possible interference by FH. Condition (2)
captures what is said earlier: J9t A J™ should on its own be an invariant of the
FTS so that when JM2" is destroyed by fault its detection and handling does
not fail too. Condition (3) and (4) are just the specifications of the adversary
as in (8) and (9). The conclusion states essentially that we can expect the main
function p Rel g to be preserved when no fault nor exception (detect going high)
occurs. The proof is not too difficult and, due to limited space, is left to the
reader.

The following theorem states how the adversary can influence fault detection:

Theorem 3.7 : INTERFERENCE ON THE FAULT DETECTION
(1) FTS, Ve, jet A J™ F fault — detect

(2) adv I stable J%t A J
(3) true,nonOsci - adv preserves V% U V" |handled
(4) nonOsci conf Z
(5) FTS,var(FTS) U var(adv), true F nonOsci unless handled
FTS[adv, Z, J% A J™7 I fault A nonOsci — detect A nonOsci V handled
where Z = V¥t U VP U var(adv). O

Condition (1) of the theorem is the same as the conclusion of Theorem 3.1,
stating FTS’s promise to detect faults. Condition (2) and (3) are just the spec-
ifications of the adversary as in (9) and (10). Condition (4) states that nonOsci
is a predicate mentioning only adversary’s variables and variables relevant to
detection and handling of fault. Condition (5) is an addition requiring that
FTS cannot influence the no-oscillation-burst period of adv. The conclusion of
the theorem simply states that during a no-oscillation-burst period of adv, an
occurring fault will be either detected or handled. The next theorem will states
that when it is detected, then it will also be handled, and so we are done.

16

Proof: (of Theorem 3.7) First notice that by PSP law, the conclusion follows
from the conjunction of the following:
FTS[adv, VU V™™ U var(adv), J% A J™
|_
(a) fault A nonOsci — detect V —nonOsci V handled and
(b) nonOsci unless handled
The unless part follows from the 37¢ and conditions of Theorem 3.7.
The progress part follows from the fact that handled conf V9t holds and from
Theorem 3.2. O.
The next theorem states that during a no-oscillation-burst period of the
adversary, fault handling by FTS can be completed.

5th

Theorem 3.8 : INTERFERENCE ON THE FAULT HANDLING
(1) FTS,yhend jéet A JFH 1 detect — handled

(2) adv I stable J%t A JF
(3) true,nonOsci - adv preserves V% U V" |handled
(4) nonOsci conf V¥ U V" | var(adv)
(6) FTS,var(FTS) U var(adv),true - nonOsci unless handled
FTS[adv, V% U VP U var(adv), J% A JT7 |- detect A nonOsci — handled

O

Except for the first condition, which states that FTS promises to do fault han-
dling, the other conditions are the same as in Theorem 3.7, so we will not repeat
their explanation. The proof of the above theorem is quite similar to that of

Theorem 3.7.
Now, combining Theorems 3.7 and 3.8 we get the fault tolerance property
what we expect, namely:

FTS[adv, V¥t U V"3 | var(adv), J%t A JF F fault A nonOsci — handled (11)

stating that during non-burst time of the adversary, an occurring fault can
be completely handled by FTS.

4 One-Level, Multiple Faults Handling

The previous section shows a theory for composing a fault tolerant system from
a main and a fault handling component. We have also shown how the general
composition theory can be used to predict how a system actually reacts to an
adversary. However, so far we only discuss systems capable of dealing with
only one fault, which is not too realistic; in practice we are typically confronted
with multiple faults, each requiring a different way of detection and handling.
Fortunately, it is not too difficult to generalize the single fault theory to the
multiple faults case.

We will now assume a set F' of fault names or codes. For each fault code
e € F the fault that is associated with e is denoted by fault.. Remember that a
fault is here defined as a set of states which are considered as abnormal. This
can be described by a predicate. So {fault.|e € F'} is a set of faults, and F is

17

like a set of indices. Though obviously there is a distinction between a fault and
its code, in the sequel we will often use them interchangeably.

The detection of fault e € F is denoted by detect,, and the goal of its
handling by handled,. The invariants needed to detect and handle e are denoted
by, respectively, J%t and JFH. The sets V%t and V2" denote the set of variables
possibly read or written during, respectively, the detection and handling of e.
We also define:

fault = (Je:e € F:fault) J% = (Ve:ee€ F:J¥)
detect = (Je:e € F : detect,) JH = (Ve:ee F:JM)
handled = (Je:e € F:handled,) | V9 = (Ue:e€ F:V3)

It is possible, that when the system is handling an occurrence of fault d an
occurrence of another fault e causes the handling of d to fail. This requires
multi level fault handling. This will be discussed later, for now we exclude this
possibility. This implies that faults in F' cannot destroy each other’s detection
and handling invariants.

The conclusions of Theorems 3.5, 3.1, and 3.4 are actually what we can con-
sider as the specifications of an single fault FTS (since they state FTS’ fault
tolerance commitment). These specifications must be adapted to reflect multi-
ple faults. Here are the new ones. For all fault e € F':

Detection : FTS, Vdet gdt A JH |- fault, — detect, (13)
Handling : FTS,Vand gt A JFH |- detect, +— handled, (14)
MainFunction : FTS, Ay vdet gMain A 7FH Ly, Rel q V detect (15)

The first two specifications specify the detection and handling of each kind of
fault. Notice that the properties are specified using to the combined invariant
Je%t and J™ rather than Jdt A JFH separately. The latter would have been
sufficient, but since we have assumed that faults in F' do not destroy each
other’s invariants, we can just as well use the combined invariant —it yields
simpler formulas. The third specification above specifies a main function with
possible interruptions when faults are detected. Notice that the form is the
same as in the single fault case (Theorem 3.5), except that now fault and detect
are the disjunctions of all, respectively, fault, and detect.. In fact we can view
a multiple faults system as an ordinary single fault system, but with additional
specifications (13) and (14).

To factorize the new specifications we need to generalize Theorems 3.5, 3.1,
and 3.4 (these specify how to do factorization in the single-fault scenario). Since
(15) has the same form as in the single fault system, we can simply use Theorem
3.5 to factorize it. Subsequently, By instantiating V9, Vhand fault, detect, and
handled to Vet Vhand fault,, detect., and handled, we can reuse Theorems 3.1
and 3.4 to factorize the other two specifications. Merging them together, we
obtain the following theorem:

Theorem 4.1 : FACTORIZING MULTIPLE FAULTS
FTS satisfies the specifications (13), (14), and (15) provided it meets the following
conditions:

18

(1) Main I stable J% A J™ | FH I stable J% A JFH
(2) Main I stable JM™ A J™ | FH I stable JY2" A J!
(3) Main, V&, J%t |- fault, — detect.

(4) J% A J™ detect. - Main preserves V22" |false

(6) Main, A, J¥¥" |- p Rel q

(6) FH,Vhand | jFH 1 detect, until handled,

(7) J™, —detect. F FH preserves V,2|false

(8) J™M —detect F FH preserves var(Main)|false

(9) A C var(Main)

O

Notice that the theorem gives a factorization which is more general than the
simplistic sequential handling of faults. In the latter approach, when fault e
occurs when a detection or handling process of another fault d is still at work,
then the detection and handling of e will have to wait. In the above factorization,
the only safety conditions that may impose sequencing are (4) and (7). However,
(4) simply states that Main’s access to V9 is blocked when the ’exception’
detect, has been raised, and else Main is allowed to detect e (for which it needs
access to VI) regardless whether or not it is busy with detecting or handling
other faults. Similar reasoning applies to (7). So, concurrent detection and
handling of different faults is possible. Also: even though (3) and (6) delegate
fault detection and handling of all fault types to respectively Main and FH,
by the above argument we are allowed to partition Main and FH into smaller
components, each detecting and handling a specific partition of F.

We still have one remaining question: how would FTS now react to an
adversary? Obviously we need a different adversary to generate multiple faults.
The specification now reads:

true, ~fault F adv preserves var(FTS)|fault (16)
(adv F stable J*') A (adv I stable J*™) 17
true, nonOsci. F adv preserves V2 U V" |handled, (18)

The first two specifications are just the same as in the single fault adversary,
except that the interpretation is slightly different. In particular, the first states
that the only way the adversary can influence FTS is by generating a fault —
it does not matter which one. In (18) nonOsci, characterizes the periods in
which the adversary does not repeatedly change the variables in Vet U Vhand,
Theorem 3.6 states how a single fault adversary influences the main function.
However, the conditions constraining adv in the theorem only refer to that part
of adv’s specifications that for single and multi faults adv remains the same.
Consequently the theorem also applies to multi fault systems. Theorems 3.7
and 3.8, stating the adversary’s influence on the fault detection and handling,
can be reused using the same variables instantiation used to obtain Theorem
4.1. The following theorem summarizes this:

Theorem 4.2 : REACTION TO MULTIPLE FAULTS

If FTS satisfies the specifications (13), (14), and (15), and if adv satisfies (16), (17),
and (18), then the composite FTS]adv satisfies:

19

(1) FTS[adv, var(FTS), J% A JFH - (JM3n A p) Rel (q V fault V detect)
(2) FTS[adv, Z, J%* A J™ I fault A nonOsci. — detect. A nonOsci. V handled,
(3) FTSJadv, Z, J% A J™ I detect. A nonOscie — handled.

where Z = VI U V¢ U var(adv). O

4.1 Multi-level Fault Handling

In the RTU example from Figure 4 the occurrence of memory corruption fault
is quite disastrous. Not only that it threats RTU’s main function, but also the
detection and handling of other faults. This kind of situation occurs frequently
in practice. The fault handling strategy of previous sections unfortunately can-
not deal with this kind of faults. A commonly used technique is multi level fault
handling. The idea is to divide faults into several levels, each level consisting of
a set of faults which cannot not invalidate each other’s detection and handling
invariants. Faults of higher level may however destroy the invariants of lower
level faults. For each level ¢ we would need separate detection by Main and a
separate handler. A handler of higher level faults is capable not only to override
Main, but also the handlers of lower level faults.

The theory of the previous section can be generalized to multi level fault
handling. Let FH; denote the fault handler of level ¢ faults and FTS; denote the
composition Main[FHg]...]JFH;. The idea is that relative to FTS; 41 the composite
FTS; acts as Main and FH;;, acts as the fault handler in the ordinary one-level
multiple faults scenario of Section 4. So, the theory developed so far is also
applicable here by applying it at each level.

References

[1] A. Arora. A foundation for fault-tolerant computing. PhD thesis, Dept. of Comp. Science,
Univ. of Texas at Austin, 1992.

[2] A. Arora and M.G. Gouda. Distributed reset. In Proceedings of the 10th Conference
on Foundation of Software Technology and Theoretical Computer Science, 1990. Also in
Lecture Notes on Computer Science vol. 472.

[3] K.M. Chandy and J. Misra. Parallel Program Design — A Foundation. Addison-Wesley
Publishing Company, Inc., 1988.

[4] P. Collette. Composition of assumption-commitment specifications in a UNITY style.
Science of Computer Programming, 23:107-125, dec 1994.

[5] E.W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communication
of the ACM, 17(11):643-644, 1974.

[6] Ted Herman. Adaptivity through Distributed Convergence. PhD thesis, University of
Texas at Austin, 1991.

[7] L. Lamport. An assertional correctness proof of a distributed algoritm. Science of
Programming, 2:175-206, 1982.

[8] P.J.A. Lentfert and S.D. Swierstra. Towards the formal design of self-stabilizing dis-
tributed algorithms. In P. Enjalbert, A. Finkel, and K.W. Wagner, editors, STACS 93,
Proceedings of the 10th Annual Symposium on Theoretical Aspects of Computer Science,
pages 440-451. Springer-Verlag, February 1993.

[9] 1.S.W.B. Prasetya. Variable access constraints and compositionality of liveness properties.
In H.A. Wijshoff, editor, Proceeding of Computing Science in the Netherlands 94, pages
12-23. SION, Stichting Matematisch Centrum, 1993.

20

[10] I.S.W.B. Prasetya. Mechanically Supported Design of Self-stabilizing Algorithms. PhD
thesis, Dept. of Comp. Science, Utrecht University, 1995.

[11] I.S.W.B. Prasetya and S.D. Swierstra. Component-wise verification of distributed sys-
tems. Available at www.cs.uu.nl/ wishnu, 1999.

[12] Udink. R. Program Refinement in UNITY-like Environments. PhD thesis, Utrecht
University, 1995.

[13] N. Shankar. Lazy compositional verfication. Available at
www.csl.sri.com/fm-papers.html., 1999.

[14] A.K. Singh. Leads-to and program union. Notes on UNITY, 06-89, 1989.

21

