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Abstract

The shape of real objects can be so complicated, that only a sampling data point set
can accurately represent them. Analytic descriptions are too complicated or impossible.
Natural objects, for example, can be vague and rough with many holes. For this kind
of modelling, a-complexes offer advantages over triangulations and hulls at little extra
computational cost. Geometric and topological descriptions are well-formalised, with the
flexibility to capture holes, up to a complete separation. Spatial distribution of the point
set and the attachment of weights make “special modelling effects” possible. We explore
in this paper the merits of geometric modelling with a-complexes, with the objective of
evaluating their practical value. We discuss the a-complex as a model description and as a
representation scheme. Varying the a-value is intuitive, but weighting can be tedious. We
present a few strategies. We also show how to run FEM computations on a-complexes.
a-Complexes form a useful addition to existing approaches and are applicable to a number
of problems not (easily) handled by existing approaches.
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Nomenclature

o = alpha value in [0..00)

p — index into ordered a-family A = {C%(S)}
of all a-complexes for a given set S

Ca(S) a-complex; Co(S) € A and Co(S) C T(S)

T(S) = regular triangulation of point set S

S = finite sampling data point set, S C E?

w = set of real weights to attach to S

S = weighted sampling data point set, S =S Q@ W

k-face = simplex of dimension k, —1 < k < d

Ed = d-dimensional euclidian space, d > 0

X = point in E¢

X2 (x,w) = weighted point in E¢ x W



Figure 1: example of an evolving zero-weight a-complex: left: o = 3.096634e + 01, yielding a complex that is little
more than just the point set with a few singular edges, developing into right: an overly fat (o = 1.805128e + 03) complex
obscuring all the fine details of the face and the neck, almost grown into the convex hull. The best a for the details of
the face is approx. a = 1.444991e + 02, the value of the centre picture (data set by Silicon Graphics, n = 2780).

1 Introduction

Over the past couple of decades, engineers and designers came to understand how to unambigu-
ously describe physical objects in terms of boundaries and volumes. Today, using predefined
primitives, sweeps, extrusion and part-whole descriptions, fairly complex objects and assem-
blies can be created. Practical implementations exploiting these capabilities, however, target
primarily at engineering objects and assemblies, with regular mathematical properties. As
soon as natural or measured objects are to be modelled, many such practical approaches fall
short. The more so if modelled objects of this type are to be submitted to some numerical
analysis tool, e.g. for stress or tolerance analysis. Also, many of today’s modelling approaches
are incapable of handling changing topologies. Finally, objects may get too complicated to
find an analytical description, with the only remaining form of representation being a sampling
data point set. Faceted polyhedral objects are typical representatives. But similar problems are
encountered in complex motion planning, assembly planning, visibility analysis and a wealth
of other geometry-dominated problems.

This is exactly the field where a-complexes came up-front as an alternative, capable of
modelling typical engineering as well as natural objects. a-Complex-modelling offers a ma-
chinery to study various appearances of the “shape” of a set of points. Roughly speaking, it
may be seen as a triangulation of that point set governed by a single geometric parameter
a, giving rise to the term a-complex. The spatial occupancy by an a-complex is called an
a-shape (see fig. 1). If the partitioning of the underlying space is irrelevant, a-shape can also
be read where a-complex is written. The sample data points can be attributed a weight; a
real-valued magnitude expressing the dominance of that point over other points. In a neigh-
bourhood of points with higher weights, the a-complex tends to develop at lower a-values,
whereas negative weights discourage the a-complex to develop. Sometimes, a distinction is
made between non-weighted and weighted a-complexes. Here, that distinction will not be
made and a-complexes herein shall always be weighted. Of course, all weights can be chosen
equal, possibly zero. Weighting, on top of variation of «, makes “special modelling effects”
possible, and is in fact the key to practical applications.

This paper is organised as follows. After this introduction and a brief recapitulation of
previous work, an informal introduction to a-complexes will be given, followed by the distinct
steps of modelling with a-complexes. Next, weighting strategies will be introduced, both for
“free form” modelling and for shape reconstruction. Evaluation criteria for representations of
the models are presented next. Then, a few geometric modelling case studies are discussed:
free form shapes, reconstructed polyhedral engineering and natural objects, and dynamic and
numerical problems. FEventually, the merits of modelling with a-complexes are evaluated
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Figure 2: the sequence of basic steps involved in modelling with a-complexes, some steps may be void. Starting point
is always a sampling data point set and the final result is always an a-complex, that may be transcribed into another
representation. Dashed boxes represent optional steps. Triangulation and a-complex computation are steps with no or
little human interaction. The modelling ingenuity is chiefly in the first steps.

against the earlier defined criteria, with regard to their practical value for the industrial and
engineering community. The paper concludes with conclusions and suggestions for further
research. An appendix reviews the mathematics underpinning the case studies carried out.

2 Previous Work

a-Complexes are mainly due to Edelsbrunner (|9];[10];[12]) and build on the results of regular
triangulations of weighted point sets (e.g., [18];[8]). Studies on the geometry of spheres and
balls are classical (e.g., [6];[5];[19]), with recent work in [25],[16] and [4]. Paoluzzi et al., in [22],
pointed out the suitability of multi-dimensional simplicial complexes for geometric modelling.
They did not encompass, however, non-regular complexes, like a-complexes. Edelsbrunner et
al., in [11], described an application of a-shape-modelling to molecular geometric modelling
and Gerritsen, in [13] described applications in earth sciences. Literature on weighting strate-
gies is sparse; the theory of weighting is fairly well understood, particularly in conjunction
to sphere-geometry (e.g., [2];[3];[9], [10]), but the use form a modellers’ perspective is faintly
addressed ([1]; [13]). The mathematical foundation of representation schemes is mainly due to
Requicha and Voelcker ([23]). In more recent work, Kalay, in [17] further works out a number
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Figure 3: schematic view on the relationship between sampling data point set organisation, geometry and numerical
model geometry. Gray-ed boxes show the path followed with a-complexes. Observe that both irregularly sampled data
and regularly sampled data can be turned into an a-complex. For regularly spaced data samples (e.g., digital pictures),
the use of unequal weights is a prerequisite.

Figure 4: left: irregularly spaced but equally weighted points, right: regularly spaced, but unequally weighted
points. Spheres represent weight; same size means same weight. Points with no spheres (right) have zero weight.
The a-complex here is a 1-skeleton (“wire-frame”). Observe the similar and inter-changeable effect of o and weight:
Ca:w(s X W\w,-:o) = Ca:O(S X W|w,-=o¢)

of details of various representation schemes. Further, refer to [24];[29].

3 a-Complexes

A formal description of a-complexes can be found in the Appendix. Less ponderously, given
a sampling data point set S, sampling (or: probing) the target object, an a-complex based on
that S, uniquely and unambiguously defines the object’s interior and exterior, including holes.
Here, the term holes is used for a variety of features; cf. fig. 18. Neither interior nor exterior
need be connected and topologies may be manifold or non-manifold. The a-value reflects
the distance over which neighbouring data points can connect. A low value of « yields an
a-complex close to just the data point set, with no or few neighbours connected, a higher value
of a results in an a-complex which matches or nearly matches the triangulation (see figure 1).
With weights attached to the points, the evolvement of an a-complex is not only determined
by prozimity (as reflected by «), but also by dominance (weights). In a neighbourhood of
high weights, points tend to connect more easily than in neighbourhoods with lower weights.
The a-complex and the eventual regular triangulation share faces (vertices, edges, triangles,
tetrahedra, ---). Finally, a triangulation is for example also a cellular decomposition, paving



Figure D: Left: leftmost three figures show the zero-weight a-complex of a goblet data set (n = 520). Close
examination shows extraneous faces in the stem-to-cup transition. Applying a non-zero weight set (fig. 14) lifts this
defect. The final result in shown at the right (data set obtained from GEOMVIEW DISTRIBUTION).

Figure 6: rabbit-like animal, shaped by spraying a coloured weight on a 4002400 regular rectangular canvas. RGB-
colours are translated to normalised weight w € [—-1..1]: w = :I:%R + %G + %E’, where R,G and B denote normalised
colour components (gray-levels) for red (heavy) weight, green (medium) weight and blue (light) weight, resp. Left:
blue-coloured S (observe sparsely sampled spots). Centre: a-complex of the blue-mask rabbit. Right: rabbit overlaid
with green weight mask; the 6 handles (holes) of the central figure have now vanished.

the way to various “transcriptions”.

4 Modelling Steps

Modelling with a-complexes is a multi-step process, see fig. 2. Basically, after the preparation
of the sampling data point set S and the weight set W, under optional transformations, the
Cartesian product of S and W is triangulated. Then, sorted by «, the finite set of a-complexes
is determined. As « grows, the a-complex grows into an ever greater sub-complex of the
triangulation. Once identified, the appropriate a-complex may be converted into alternate
representations. a-Complex modelling is best explained by making the following subdivision:

Problem 1; free form shaping: the a-complex representing the object is built from a
modeller-generated, synthetic sampling data point set, thereby honouring geometric and
topological constraints. Generally, the set of possible solutions to the problem is not
limited to a single solution and changes to the sampling data point set S and/or the
weight set W may be used to alter the shape.

Problem 2; shape reconstruction: the sampling data point set is now based on observed
data. Generally, the observation will be subject to noise and errors. Although basically
multiple solutions can be found, a single “best fit” can generally be identified according
to optimisation of some cost function. The sampling data point set S is commonly



left untouched (you don’t change observations) and control must therefore come from
changes to weight set W.

Both classes of problems may be submitted to numerical analysis. Under certain conditions,
the use of transformations of S can be justified, to “precondition” the data. Transformations
cause the spacing to alter and, as shown in figure 4, the effect is complementary to the effect
of changing weights.

5 Weighting Strategies

In the presence of regularly spaced data (figure 3), if not in most cases, the use of weight is
essential to gain control over the geometry of the a-complex-model. With weighting strategy,
we refer to the process of obtaining a weight set W such that for some a € [0..00) the resulting
a-complex is fulfilling all the geometric and topological constraints imposed upon the object’s
model.

5.1 Unstructured Weighting

Weight can be assigned on a per-point basis. This form of weighting will be referred to as
unstructured weighting. The use of unstructured weighting, applicable to both regularly and
irregularly spaced data, is of limited practical value. It is typically used in combination with
free-form shaping of simple shapes. To some extend, the painting (spraying) of weight can be
regarded as unstructured weighting (cf. fig. 6). Unfortunately, such tools are still lacking for
3D. A best-practice solution would be the use of sliced data.

5.2 Masking
Consider the following weighting strategy for a regularly spaced sampling point sets S:

step 1 Create an empty canvas to contain the eventual weight set W of the size of the data
set and initialise the canvas to zero-weight.

step 2a Instantiate a (library-based standard) weight mask by generating it with appropriate
parameters.

step 2b Translate, rotate and scale the mask, as appropriate.

step 2¢ Map the instantiated mask onto the canvas. Mapping onto is essentially a “pixel”-
based logical or mathematical operation.

step 3 Construct the weighted a-complex, based on § x W.

Repeat steps 2 and 3, as appropriate.

This strategy is referred to as masking. Fig. 7 depicts this process, and fig. 9 shows an example
using a mask that cuts out a folium-of-Descarte-shape. Standard masks can be collected in
a library. Masks will be based on standard weight function, like the ones in table 1. These
functions can be taken relative to a point, a line, a plane, etc. Arbitrary constrained weight
functions can be compiled using for example Lagrange polynomials. Basically, masking is
applicable to regularly shaped sampling data point sets of any model space dimension E¢,
although tools become increasingly sparse for dimensions larger than 2.



Figure 7: schematic overview of the masking technique; the aim is to compose a weight set W, that “highlights” the
desired geometry (Co) in the regularly spaced sampling data point set S. Starting point is an empty canvas (grid) of
the size of S. Successively, masks (partial, basic weight sets) are added to the weight set W using transformations and
one or more logical or mathematical operations. The Cartesian product S X W is then input to Cg.

log w(§)
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Figure 8: Weight functions with “cut-off” effect. wi(¢) has upper-bound for 0 < ¢ < ¢~1. The rapid weight drop at
& = ¢~! can readily be seen from the figure. Vertices within this ¢~!-ball centred at £ = (0,0, ... ,0) will be attracted
to one another, those outside the ball will be distracted for equal values of a. Weight functions w2(¢) and w3(€) have
similar effects

5.3 Physical Properties

Shape reconstruction is relevant as far as object models are to be derived from real-live coun-
terparts. For example when a measuring robot establishes the tolerance misfit of a cast-iron
part. Commonly, when visualising observed sampling data, characteristic physical parameters
are expressed in terms of colour. The target object to reconstruct the shape of, is determined
by the value of these colours. The exact geometry depends on a number of things. Among
others:

The observation technique features.

The “contrast” in the data.

The threshold value chosen to discriminate “background” (embedding environment) from
“foreground” (the object).

The suite of properties observed.



FuNcTION | DEFINITION

gamma(¢) | Ty(¢) = [;°¢" e %d(, v >0
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normal(¢) | p(¢) = —=€ 27
-1 for (<0
sign(¢) | sign(Q) =49 0 for¢=0
1 for{ >0

0 for ¢ & [a,b]
1 for ¢ € [a,b]

block(¢) | p(¢) =

Table 1: natural weight functions exhibiting a “cut-off” effect. We may use the linear transform ¢ = 31§ + B2, with
B1,B2 € R, to allow shifting and scaling of the “cut-off” point.

——

Figure 9: the masking process: the regularly gridded set S, forming the canvas (bottom), is weighted using predefined
masks (middle); here a mask containing Descarte’s folium. The resulting a-complex is shown at the top.

We refer to such shapes as property-ruled shapes. Many natural objects, “extracted” from
observed data, are in fact property-ruled. An example may illustrate this: a surgeon removing
a tumour will somehow rely on (a suite of) tissue properties to determine where to cut.

Often, observed sampling date get blurred by noise and other undesired effects. If such
features hamper the finding of the right a-complex, filtering away remote areas outside the
region of interest is easily accomplished with an AND-mask, i.e., a logical & =-operation.
Another problem with observed data is the translation of vector- and tensor-properties to
scalar, omni-directional weights.

5.4 Neighbourhood Weighting

In fig. 4, the complementarity between distance and weight has been shown. The weight-
ing strategy based on nearest neighbour distances exploits exactly that. Fig. 10 shows the
distribution of the nearest neighbour distances for the scapula-sampling data set of fig. 17.
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Figure 10: distribution of the nearest neighbour distances of the scapula-sampling data set of fig. 17.
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Figure 11: the increase of a vs. a-rank of the scapula-sampling data set of fig. 17.

The goal with nearest neighbour distances based weight assignment is to accomplish that
the variance of the Laguerre distances (see App.) is minimised. This also affects the relation
of a vs. a-rank, which is related to the accumulative distribution of the nearest neighbour
distances (see fig. 4), and the curvature K vs. a-rank. The a-rank is the index into the finite
a-family sequence, ordered by increasing a.

6 Evaluation Criteria

Computer models capturing real world objects and phenomena can be regarded as languages
of representation composed of symbol structures and grammar rules to manipulate them,
assigning a meaning to a collection of symbols and an interpretation in terms of the real
world objects they represent([17]). For computer modelling purposes, different approaches in
describing the geometry and topology of modelled objects exist ([17];[29];[27]). E.g.,

Volumetric description: The objects’ geometries and topologies are described in terms of
underlying space or hyper-volume.

Boundary description: The objects’ boundaries are described, bounding the objects interi-
ors and separating the interior from the exterior. When partitioned, the objects’ internal
boundaries, separating the internal cells are also part of this description.



Part-whole description: In this approach the objects’ compositions are described in terms
of primitive parts.
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Figure 12: “chain” of representation-to-representation mappings in modelling with a-complexes. S is the sampling
data point set, sampling the real world objects R. C' is the set of a-complexes, @ the set of conversions. Dotted arrows
and question mark-labelled elements refer to the questions raised in the text.

This subdivision suggests a much sharper distinction between these approaches than practical
implementations permit. Object descriptions can be qualified by a number of criteria ([17];[29],
chapter 7). Apart from well-formedness, generality and completeness, the following criteria
are considered:

Solidity: a convex polytope P (e.g., a simplex), divides space into two regions: interior
Int P and exterior Ext P, separated by boundary Bd P. Point location, for example,
is feasible when this criterion is met.

Homogenous dimensionality: Bd C, shall be fully incident upon the interior Int C, and
shall be composed of regular faces only.

Rigidity: the geometry of the modelled object shall not depend necessarily on its position,
i.e., on its location or its orientation in space. This implies that a mapping from sample
space S to model space A shall cause the a-complex to be position invariant.

Continuity: the represented object shall not be composed of disjunct (unconnected) parts.

Closure: k-faces shall have no incidences to singular faces. For example, in the case of a
triangulated object, every k-simplex shall be incident upon exactly d+1 (k—1)-simplices.
If so, k-faces can be represented as regularised set (r-sets).

Disjunct interiors: the interior Int f; and Int f; of any two k-faces f; and f; shall be
disjunct, i.e., Int fi N Int f; = 0,Vi,j. This also excludes self-intersection.

Orientability: all k-faces shall be orientable. Notice that holes usually have a “negative”
orientation, for area, volume, etc.

10



Finite time and storage complexity: supporting finite time complexity of operations and
finite storage complexity of the results.

Loosely formulated, a representation scheme is a way to describe real world objects in a
symbolic notation. Widely used schemes are: Constructive Solid Geometry (CSG), boundary
representation (B-rep), cell decomposition, spatial enumeration and voxel representation. In a
sense, a-complexes can also be seen as a means of representation. Criteria for representation
schemes are:

Uniqueness: the cardinality of all representations that describe the modelled object under
this representation scheme.

Completeness: the richness of description, in support of operations, analysis and conver-
sions.

Domain: the class of physical objects that can be represented and the class of valid repre-
sentations that the scheme can produce.

Validity: the validity of the objects produced under this scheme.

These criteria will be applied to the evaluation of a-complexes in sect. 8. Question marks and
dashed mapping arrows in fig. 12 will be discussed therein.

7 Experimental Cases

In this section, a number of a-complex-based geometric modelling cases, of both engineering
objects and natural objects will be presented. Also, a few words will be spent on numerical
modelling with a-complexes.

7.1 Engineering Objects

A goblet is a simple central axis circular symmetric object, as depicted in fig. 5. It is easily
approximated by a zero-weight a-complex, with only few defects. A single-zone/single value
weight model (cf. fig. 14) removes these defects, yielding a perfect goblet.

Figure 13: the effect of improper weight sets for the goblet a-complexmodel. Left: the negative stem-to-cup weight
zone is too great. By the time the increasing a can override the negative weight, the entire zone will be bridged at once
(observe the singular edges). Right: the negative weight zone is too small; the points at the inside bottom of the cup
are able to connect, whereas the points from stem-to-cup are not. Compare to fig. 5
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Figure 14: single zone/single value weights, obtained by the block(¢)-function (table 1). Observe the bolder dots in
the zone from stem-to-cup. Left: front view, right: top view

Figure 15: the comet West, as observed and produced by Laborde, March 1976. (image obtained from Univ. of Ari-
zona Internet site)

7.2 Rabbit

A very simple example of a free-form natural object is given by the rabbit-like creature of
fig. 6. The rabbit has been created by spraying coloured weight on a canvas. Sprayed weight
can be homogenised for example using a “smearing™filter. Approx. the same result could have
been obtained (refer to fig. 3 and 4) by spraying properly-spaced zero-weight data points.

7.3 Comet West

A comet is a irregularly shaped natural object of frozen gas and rocky debris, orbiting around
the sun. A comet has a focal bright approx. 10 km wide kernel, called the nucleus. When
approaching the sun, a comet develops three tails: the coma, a large trailing cloud of diffuse
material, the ¢on tail of ionised plasma, and the hydrogen enwvelope, with hydrogens that
escaped the comet’s gravity. Refer to figure 15. The comet West! has been observed by
various observers during its bright appearance in 1976.

The model of fig. 16 was obtained by exploiting the effect demonstrated in fig. 4. Rather
than turning physical properties (represented here by complementary colours yellow and

'named after the astronomer West, who first described his observation of the comet
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Figure 16: a-complex of the comet West. Left: the initial model, by gray-scale weighting (threshold: 0.4), centre:
nucleus plus ion tail, right: a-complex of the colour parameter space. X-axis represents red, Y-axis green and Z-axis
blue. Multiple “clusters” are visible: a blue cluster (dark) representing the ion tail and the edges of the dust tail, a gray
cluster along the main diagonal representing the dust tail and a rest cluster (nucleus, coma, dust tail).

blue) directly into weight, we augmented the 2-dimensional sampling point space S by a
3-dimensional parameter space R X G x B, thus obtaining a 5-dimensional hyper-space S.
Generating an a-complex of the so obtained augmented set S causes a “natural” clustering to
appear, by colour value. Intersections and projections can be used to extract the part of the
a-complex seeked for. This approach works best for strong clusterings. Notice that the colour
determines the “direction”, but the intensity distribution (contrast) determines the distances
within and between clusters. The clustering in this case is weak, but nevertheless the approach
works.

7.4 Medical Modelling

Organ imaging is an important aid in clinical diagnosis. a-Complexes can be used in (multi-
dimensional) modelling of organs. See for example [26]. Fig. 17 shows an a-complex of the left
and right shoulder blade (scapula). The picture shows a zero-weight a-complex, o = O(10%),
w = 0,V8 € S, that captures the bones fairly well, except for relatively few singular triangles
at the glenoid cavity (not visible). Weighting was required to turn the complex into a model
good enough to be fed into an FEA-tool. This sampling data point set, with nearest neighbour
distance distribution as in fig. 10, is a good candidate for neighbourhood weighting.

7.5 Numerical Modelling

An oa-complex, in terms of numerical computing, is generally an unstructured grid and in
practice, Finite Element Analysis (FEA) will be the analysis method to apply. The problem
with a-complexes emerges from the fact that an a-complex may contain topological features
that cannot be coped with by state-of-the-art FEA-codes, such as singular faces and non-
connected parts. In addition, a-complexes often contain “slivers”: sharp tetrahedra with a
very odd aspect-ratio. We developed a new approach to run FEA over a-complexes, that
overcomes most of these problems. The framework of our methods is to turn the tetrahedra
of the a-complex (“foreground material”) into tetrahedra FEM-elements. The a-complex is
embedded in the corresponding convex hull (“background material” or “bulk”). After applying
boundary and/or initial conditions, computations can be started.

13



Figure 17: a-complex of the left and right shoulder blade (data set by courtesy of Delft
Univ. of Techn., dep. Elec.Eng., n = 1717).

Our method exploits the fact that an a-complex and a convex hull of a point set share faces:
every vertex,edge,triangle and tetrahedron of the a-complex also belongs to the corresponding
triangulation. A convex hull, a cellular decomposition continuum, can always be input to any
FEA-package, and boundary conditions can be attached to its boundary faces. Sometimes,
FEA-codes run tests with respect to tetrahedra aspect-ratio’s. Slivers will not pass such tests.
Most slivers are developed when the a-complex approaches the convex hull. Therefore, rather
than taking the convex hull itself, we lower « a bit and take an a-complex close to it (fig. 11).
The rank of the a-complex to embed must be smaller, which is generally the case.

The approach is then:

step 1: Compute the a-complex family and select the embedding background a-complex
a number of ranks before reaching the convex hull. The number of ranks to drop is
determined by the presence of slivers. Assign background material properties to the
elements of the selected a-complex.

step 2: Compute the normals of all the triangles in the border, in order to find out how
(directional) boundary conditions need to be attached.

step 3: Assign foreground material properties to the target a-complex to analyse and “in-
ject” this complex into the embedding background-complex. IL.e., for each tetrahedron
in the foreground a-complex, locate the corresponding tetrahedron in the embedding
background complex, and replace the background material properties by foreground
properties.

step 4: Run the FEA-analysis and optimise the a-complex as appropriate.

An application of this approach can be found in [13].

8 Evaluation
In this section, the a-complex will be evaluated against the criteria stated in section 6. Both

as a model description and a representation scheme. There is not so much known about a-
complexes in this regard. Some reasoning is possible, however, by comparing the a-complex
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model description to triangulations, simplicial complexes and cellular models, and the repre-
sentation scheme to CSG-, B-rep and cellular decomposition representations.
Modelling with a-complexes carries some characteristics of a:

e Part-whole description, with primitive instancing of k-simplices.

e Volumetric description, with a cellular complex built from d-simplices (possibly, after
regularisation).

e (Faceted) boundary description, built from (d — 1)-faces (facets) of the a-complex.

The solidity-criterion becomes slightly more complicated if we relax the convex polytope to
become an a-complex, with internal voids and possibly singular faces (fig. 18, table 2). Singular
faces can be identified (see App.) and removed, and voids can be identified. Removal of singular
faces ensures homogenous dimensionality, only if « is high enough to permit the forming of
d-faces. It also ensures closure. The exterior can be composed of disjunct parts, all but one
bounded and one unbounded. Continuity of the interior cannot be guaranteed, moreover,
a-complexes can scatter into many disjunct parts. This behaviour can be very beneficial
in dynamic object description, like growing cracks, oxidation or eroding sand bodies, but
complicates validity and consistency verifications on the model as well as further operations
on the model. For many problems, the background-embedding approach of sect. 7.5 can be
followed. For finite complexes, finite storage complexity can be shown to exist, as well as
finite time complexity for operations upon them. To a great extend, characteristics are as
with cellular decomposition. The faces of an a-complex are orientable. Voids usually have a
“negative” orientation, for area, volume, etc. If Bd C, (i.e., the corresponding a-shape) can be
triangulated (tessellated with triangles), such that the boundary is closed and connected, then
these two properties ensure well-formedness. But generally, continuity is not guaranteed and
boundary is not connected, only on a part-by-part basis. The rigidity-criterion is obviously
met: the a-complex is determined by distance and dominance, not by position or orientation.
Transformations that can be represented by a homeomorphic mapping do not change the
order within the a-family. They only change « in the ordered pairs (p, ), in contrast with
transformations that change the nearest neighbours, like scaling by different factors in different
directions. The interior of any two k-faces is always disjunct, as they are faces in the underlying
triangulation. This also excludes self-intersection.

In a sense, a-complexes can also be seen as a means of representation. First question to
be raised (see fig. 12) concerns the domain: can every physical object be represented by a
sampling data point set? One may argue as to whether an object can always be measured, or
represented by the pixels of photograph? For the class of natural and engineering objects of
interest in this paper, the answer is yes. How adequately this can be done, depends mainly on
the observation/generation technique. This question cannot be addressed in the frame of this
paper. A sampling data point set does not uniquely represent a physical object: many such
sets can sample the same object, and one sampling point set can represent multiple physical
objects. Data may also be added subset by subset, like with sliced data. The step to account
for discretisation with finite-precision computer internal number representations, like in [28],
is not explicitly shown but assumed to be implicit in this step.

Once a data point set has been sampled, the next question is, can every point set be trian-
gulated? Disregarding degenerate cases (that can be perturbed) all sets can be triangulated.
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Some remarks have to be made, however. Points must be in general position (see App.). Du-
plicates must be dropped, and also redundant vertices, too close to dominant points. Singular
(minimum) objects, sampled by a single point, result in a O-triangulation of a single 0-face
(vertex). The only a-complex in the a-family is identical to this triangulation. Generally, a
proper spatial distribution of the sampling points is required, in order to obtain a good-quality
triangulation. It can be shown (|12]) that a unique relation exists between the sampling data
point set, the a-complex and its underlying space (fig. 1). Variations in the a-value, even
though constrained, may instantiate a finite family of models (e.g., fig. 1) that cannot be
thought of as equivalent classes, due to different topologies. a-Complexes cannot be traced
back uniquely to sampling data point sets. But they can be uniquely reproduced from them,
which makes an unevaluated description feasible, thus reducing storage requirements. With
regard to the completeness; the data structure storing the a-complex can be easily augmented
with auxiliary parameters, like material properties, central moments, etc. The simplex, the
basic building block, allows for relatively simple computational schemes.

Conversion mapping transforms an a-complex representation of an object onto another
such representation @ (fig. 12). Its characteristics depend heavily on the target representation
of the conversion. If the representation in C, and in @ are homeomorphic, then a bijective
relation can be shown to exist ([21]) and conversion mapping is basically without loss of
information. Topological relations existing in C, are preserved under conversion. Examples of
homeomorphic representations in C, and ) are transcription of a non-degenerate regularised
a-complexinto a cellular decomposition. An example of a non-homeomorphic representation
is a projection from E? onto E4~'. Multiple conversions may exist for a single a-complex
and, depending on the type of the conversion, generally, multiple a-complexes may lead to
the same conversion.

Let us now contrast the a-complex description with B-rep and CSG. What sets out a-
complex modelling is the capability of handling a large number of cells, singular faces and
disjunct parts. For example, inserting massive amounts of cells in a CSG-model is not very
convenient. Unless regularised, singular k-faces will cause a CSG-representation to fail on an
arbitrary a-complex. For example, when determining the union of a cellular volume with a
singular point. An a-complex is not necessarily convex. As a result, boundary representations
will fail to describe the d-volume of an arbitrary a-complex. The representation that comes
closest to what is needed to accurately and unambiguously describe a-complexes would be a
part-whole description, built up using instantiated simplicial primitives.

Finally, the handling of holes will be addressed in greater detail. Assume a connected
interior for a while. Further, using less ponderous definitions (see fig. 18):

A cavity is a hole, or a depression lying in the boundary of the object, accessible via the
(unbounded) exterior of the object.

A pocket is a cavity with a small “neck”.

A void is an entirely internal hole. This is a special hole in that it creates an additional
(bounded) exterior of the object.

A tunnel is a pathway from boundary to boundary, piercing the objects. It can be regarded
as a void with two distinct connections to the single unbounded exterior of the object.

Zeid, in [29], distinguishes four classes of polyhedral objects. For example, a triangulation
classifies as a class 1 object. Refer to fig. 12 and table 2. Every convex polyhedron can
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Figure 18: diapir with various forms of holes, to illustrate the terminology; left to right: a): diapir without a holes (a
simple shape), b): diapir with cavity or boundary hole, c): diapir with pocket, d): diapir with internal hole, or void, e):
diapir with tunnel or handle causing the genus to become nonzero. A void induces a separation of the exterior, while
the others do not.

‘ CLass H k-FACES ‘ HOLES ‘ TUNNELS ‘ DESCRIPTION

1 x simple polyhedra, 1 loop, 1 shell, simple k-shell

2 X same, but with inner loops, non-conforming 2-faces
3 X X same, with cavities, pockets and voids

4 x x same, with handles (non-zero genus)

Table 2: topological classification of polyhedral objects, adapted, after Zeid (|29]).

be triangulated (e.g.,[21]). Triangulations of a point set in E? have only 1 unbounded cell;
the unbounded exterior. When a (triangulated) object contains one or more voids, m say,
there will be m additional (bounded) exteriors, completely surrounded by the interior. Notice
that disjoint exteriors imply multiply connected interiors, and vice versa. Starting out with a
triangulation (i.e., Co = 7), and assuming a monotonically decreasing value of «, voids may
grow into pockets, pockets into cavities and/or handles and handles may grow into separations
of the a-complex. Observe that during this process, the genus (number of handles) changes.
We may even have that closure Cl C, is not a separation, but Int C, is. An a-shape (the
underlying space of an a-complex) differs from the convex hull (the underlying space of the
triangulation) by the total amount of space occupied by the various holes. In other words,
for an arbitrary a-complex, the union of underlying space of the complex and the holes yields
the convex hull. If the a-complex is identical to the triangulation, then the underlying space
of the holes is a null-space.

The domain of the a-complex representation scheme is further expanded, if holes can be
explicitely represented and treated as part in a bigger assembly. Therefore, we now introduce
a nil-object, defined as follows. A nil-object in euclidian d-space E% is an object represented by
an a-complex containing the improper (—1)-dimensional simplicial face {(} as its only face.
This definition also holds for void space within an a-complex. Nil-objects, homeomorphic to
an open d-ball, are geometrically and topologically conforming (fitting) to any neighbouring
object. As a consequence, nil-objects can be inserted in between any two adjacent objects.
Nil-objects map to background elements in a conversion mapping onto FEM-models. With this
definition of a nil-object, consistent spatial occupancy of model space E% and well-formedness
of the modelled object are more easily obtained.

Overlooking all the above aspects, table 3 compares the a-complex representation with
CSG@G, B-rep and cellular decompositions. A few supplementary aspects have been added. In
daily practice, many hybrid representations exists, often tailored to particular purposes.
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|| FACETED B-REP CSG CELL DECOMP. a-COMPLEX

solidity yes yes yes if regularized

continuity yes yes yes no, only part-by-part

rigidity yes yes yes yes

homo. dim. yes if regularized yes if regularized

closure yes if regularized yes if regularized

orientability yes yes yes yes

disjunct Int yes yes yes yes

finiteness yes yes yes yes

domain rigid homogenous rigid homogenous rigid homogenous rigid homogenous
manifold (non-)manifold manifold non-manifold
complex shapes moderate complexity complex shapes very complex shapes
massive description lean description massive description massive description,

reproducible from S
validity euler rules, expensive | regularized, set- | validation expensive euler + a+weighted
theoretic metric, expensive

completeness homogenous proper- | homogenous proper- | homo. prop. per cell homo. prop. per face
ties ties

uniqueness no no yes no

Table 3: a-Complexes compared to B-rep,CSG and cell decomposition. Top part: a-complex as model description,
bottom part: a-complex as representation schemes

9 Conclusions

The a-complex description of an object can be compared, to some extend, with a part-whole
description using k-simplices as primitive instances. For a high-enough a-value, it is also a
volumetric description, with a cellular complex built from d-simplices (possibly, after regu-
larisation) and a boundary description, by the (d — 1)-facets. Compared with other model
descriptions, the biggest problem is occurring in the event of disjunct parts and singular
faces. As a result, the a-complex as an object description violates the criteria of continuity,
solidity, closure and homogeneous dimensionality. Regularisation is required to repair these
violations. In addition, the background-embedding approach (sect. 7.5) can be followed. The
rigidity-criterion is met, like finite time and storage complexity. The faces of an a-complex are
orientable. The boundary is generally not closed and connected, only after regularisation and
on a part-by-part basis. The interior of any two k-faces is always disjunct, self-intersections
are excluded. The a-complex as a representation scheme is unambiguous but not unique.
Validation is generally expensive.

We have evaluated the use of a-complexes in a couple of applications, among others, on
free-form shaping and polyhedral shape reconstruction, both of engineering as well as natural
objects. We designed and experimented with various weight strategies. We also ran FEM
computations on a-complexes. Relatively complex objects with many holes and separated
parts can be modelled conveniently using a-complexes. No tedious description is required;
just a sampling point set will do. Objects to be reconstructed can be sampled by a camera or
measuring robot, for example, offering a suitable entry point for reverse engineering. Varying
the a-value is intuitive, but the design of a proper weight set, an essential step in practice, can
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be cumbersome. Weighting has an omni-directional effect, ignoring tensor-like and vector-like
phenomena. Considerable effort has gone into finding suitable weighting strategies. A few
strategies have been developed and evaluated, but further research is still to be carried out
on this subject. Occasionally, working with the accumulating effects of transformations and
weight requires detailed knowledge of the underlying sampling data set and modelled object.
Line-oriented data and data with strongly directional patterns were found to be ill-suited.
Transformations can sometimes be used to precondition the spatial distribution. In shape
reconstructions where the geometry depends on some physical phenomenon, finding a strong
relation between properties and weight is usually the critical factor to obtain an intuitive form
of modelling. With respect to natural objects, still more “realism” is anticipated by the use of
a-complex-based object geometries with natural object texture maps.

Generally, detailed models require vast amounts of data. For simple models (O(102..103)
sample points), results show that implementations can generally be made fast enough for in-
teractive use. For more complex and bigger problems (O(10%..108) sample points), storage
becomes increasingly critical. a-Complexes can be uniquely reproduced from point sets, which
makes an unevaluated description feasible. This reduces storage requirements. Finally, sur-
face/surface and other intersections of faceted objects, though not addressed in this paper,
remains a research area still suffering from great immaturity and concern (e.g, [29],chp. 7),
that may seriously hinder further applications of a-complexes. Further research is targeted at
improving weighting strategies, such as neighbourhood weighting and anisotropic weighting,
and tools.
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Appendix: Mathematical Concepts

Throughout, let E% denote a Euclidean d-space . Further, let @ € R be a non-negative
real number on ray domain [0, 00), let weight w be a real number, w € R, and let a finite set
S C E¢ of sampling data points be augmented with weights. As a result, the representations
for a weighted point § becomes a d + 1-tuples over the Cartesian product E? x R:

X = (21,%2,... ,Zg,w) = (X, w) (1)

Only when confusion might arise, we will use the tilde over data point symbols again, to
recall their weighted nature. We will drop the tilde-notation otherwise; in general, we will
assume data points to be weighted. The points s of a set S C E? are said to be in general
position in E? if every subset Y}, Y; C S, card(Y;) < d+ 1 is geometrically independent. A

set S C E% with S = {s1,89,... ,S441} is said to be geometrically independent if for all
i1<i<d41:
d+1 . _
i=1 @i = 0 =a;=0 (2)
Yifta =0
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cell decomposition D(S) & T(S)

simplcial complex C(5) = Jo*)

voronoi diagram V(S)
(power diagram II(S) = V(S))

a-complex Co (S) C C(S)
triangulation 7(S) = Capmas

. space partitioning
point set S == = e - = - -
underlying space

a-shape WL (8) £ [C| convex hull H(S) =

Qmaz

a-hull Ha(S) = ComplJ (BE(T)N S = 0)

a-diagram U, Sf:/U(Bg(S)

(space filling diagram F(S))

solid V(S) 2 #(S)

polytope P(S) = |Ca|

a=0 a = Omaz

k=0 k=d

Figure 1: relationships between mathematical concepts discussed in this paper.

1 .
Let d(p,q) = [[p—qll = (p—a,p—q)? = \/Eizl(pk — gx)? denote the Euclidean

distance between any two points p,q € E% and let ¢ € R denote a real number, with ¢ > 0.
A (d—1)-sphere S¢ !(c) with radius ¢ and centred at c is the set of points x € E¢, for which
Si=1(c) = {x € E*| ||x — c||? — €2 = 0}, or, in normalised form:

847 1(c) = {x € B¢ |xTx — 2cTx + |jc|? =2 =0} (3)

Let line L (figure 2) belong to a pencil through point x and be given by y = ul, such that

uTu = 1. Line L enters sphere § for A = A; and leaves sphere S at a point on L where
A = A2. The normalised equation for S (see equation (3)), takes the form:

AN+ AN+ 4 =0 (4)
where:

A2 = uTu =1

A1 = 2(XT — CT)ll (5)

Ay= xTx—2cTx+|c|? — &2

This is an ordinary quadratic equation in A which has two real roots A; g if D = A% —4A5A9 >
0, ie., if €2 > 0. If €2 < 0, roots will be imaginary, associated with a negative weight
w = —w = i%w where @w > 0 and i> = —1. A sphere with €2 < 0 is called an i-sphere .

The power of a point x (figure 2) has the following geometric interpretation ([2],[10],[4]).
With x a point in E¢ and §¢7!(c) a closed (d — 1)-sphere in E?, the power Powg,zcl) (x) of x
with respect to S97!(c) is the square of the distance m = d(x,p) = ||x — p||, with p being
a contact point of a line through x, touching the sphere. Refer to figure 2. p’ is the other
tangent point, and for p we may also read p’, so 7 = d(x,p) = d(x,p’).
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Figure 2: left: power Powg(c)(x) of x with respect to (d—1)-sphere 5¢=1(c), here depicted in E2 (left) and E3 (right).
Line L belongs to a pencil through point x and is given by y = ul, such that uT
In p and p’, A1 = A2 = X and A1 A2 = A? = 7%, Notice that if ¢ — 0, then 7 = ,/Powgc)(x) = ||x — c||. Right: the
geometric interpretation of two orthogonal weighted points % = (x,w.) and € = (c,wc) as (d — 1)-spheres with radius

m = /Powg(c)(x) and € = ,/Powg(y)(c), resp. The two spheres are orthogonal (meet orthogonally) if they intersect

exactly in p and p’. In that case, we have that ||x — ¢||? —w; —we = |[x — |2 =72 — €2 = 0.

u = 1. Power Pows(c)(x) = A1)2.

If radius € of S9! (c) grows, such that a point x becomes contained in the border Bd S4~!(c)
of the sphere or in the interior Int §¢~!(c) of the sphere, then its power Pow(x,c) becomes
zero, and negative, resp.

~d
A weighted closed d-ball B ;;-(c) can now be defined as a d-ball with radius /w,
centred at point ¢, of which the interior consists of points having a non-positive power with
respect to B:

= 2
B () = {x € B |[x —¢|* - yw:’ <0} (6)
For a negative weight w, = —w = i?w < 0, ¢ = (¢, w,) = (¢, —w) can be interpreted as

an i-sphere (d-ball) centred at ¢ with radius —iy/@. Often in geometry, therefore, weighted
points are treated as d-balls. If in the same equation, we define for the weighted norm :

% =&l = IIx — ¢|? — v’ (7)

or, for its associated (weighted) Laguerre distance:

dp ) (x) = d(x,¢)” = V" (®)

we can rewrite equation (6) into:

~d o
B () = {x € B | ||x — €| = dp(y(x) < 0} (9)
Notice that the norm ||X—&|| = ||x —¢||?> —w, resembles Pow‘é(c) (x). Alternate notations: ||Xx—

€|l = dpe)(x) = d(x,¢) = Pow(x,c) = Pode(c) (x), some of which were already introduced.
Two weighted points X; and X; are said to be orthogonal (figure 2) if:

1% — %5l = IIxi —x;1” —w; —w; =0 (10)

Following Edelsbrunner ([10]), with %X; = (x;, w;) and X; = (x;j,w;) two weighted points, we

also write:

i = R || = llxi = %511 = (wi + @) — (w) + wy) (11)

2

For example, in figure 2, we have that ||x_, — €| = ||x — ¢||? — (x — 7)%2 — €2 = ||y — ¢€]|, with

y = (x,0).
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A weighted alpha ball is defined as follows:
Bd

Yarar(©) = {x € B | |x —cf® — Vatw. <0} (12)
As special cases, a-ball Eii/m(c) with w, = 0 represents an unweighted point (unweighted
a-ball) and merely a weighted point if @ = 0. With « € [0..00), B has a “start™radius of y/w,
and grows proportional to v/« as « increases.

A hyperplane of d-space E¢ is a (d — 1)-dimensional bi-secting facet spanned by d + 1
affinely independent points x; € E¢. For a hyperplane:

H={x,x € E'| <x,a>=0} (13)

for some a # 0. Generally, d + 1 hyperplanes suffice to span a d-polyhedron (a d-simplex
in this case). A d-polyhedron can be seen as the subspace obtained by the intersection of all
closed half-spaces created by d+ 1 or more bisecting hyperplanes. A d-polytope P(d)(S) is a
bounded d-polyhedron. If the polytope is convex, it coincides with the convex hull #(S), the
smallest convex set that contains S, obtained by the intersection of all half-spaces containing
S.

A radical hyperplane is the hyperplane of equal powers with respect to two (d — 1)-
spheres S1(c1) and Sa(c2), ¢1 # co. With normal equations:

xTx — 2¢Tx + ||er||? — €2 = xTx — 2¢3x + |je2|® — €3 (14)

we obtain for the radical hyperplane:
H={x€E"| 2(c; —e1)'x — (Jlea]|* = & — [lex | + &3) = 0} (15)

Observe in figure 2 (right picture, spherical segment through p and p'), that H is perpendicular
to the line segment connecting both centres. Also notice that S1 N Se #0 = HNS; # 0 and
HNS, #0= HNSy # 0. It follows ([2],[4]) that in E¢, three (d — 1)-spheres in general
position span radical hyperplanes that intersect in a single (d — 3)-flat, called the radical
centre .

A finite simplicial k-complex C(S), with S = [JY] is a connected or unconnected
collection of simplexes (or: simplices), with 0 < k < d and (=1 = 0§, all satisfying two
properties ([20],[14],[21],[15]):

o ec o Veccc
J
P ec ol Ve =cnc=0 v (16)
J
cnc =¢

Apparently, every sub-face of a simplex needs to be in C too, and every sub-complex C' C C.
A simplicial complex may degenerate to a point set, a linear graph, etc., having some highest
dimension m < d.

A d-triangulation 7(#(S) based on a finite point set S C E%, s; not all in a common
hyperplane, is a subdivision of E¢ in d-simplices, such that ([9]):

Compl Conv S is the only unbounded d-cell in T
Uo-'(;'))g{slaSZa“',Sn}:S (17)

every bounded d-cell in T is a d-simplex
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where Conv S is the convex set, spanning the convex hull H(S). Compl denotes the comple-
ment of a set.

An a-complex C, is a one-parameter finite simplicial k-complex. As such, it is also a
sub-complex of the regular triangulation 7, which is a d-simplicial complex (figure 1). Let
U% ) e C, denote a k-simplex belonging to the complex, with Y; C S. Assume ([10]) that for

(k)

every such oy, there exists a (k — k)-flat (a point) that coincides with the radical centre r.

(k)

Further, we assume all subsets to be affinely independent. A k-simplex Iy, is a-exposed if
it has a radical centre ry such that:

0 7VYICEY} (1)
>0 ,VykES—Y} (11)

¥, — Tyl = (18)

Clearly, (7) states the orthogonality condition whereas (7i) states the regularity condition. A
k-simplex, with vertex set Yj, Card(Y;) = k+1, is called regular if ||§; —y,|| > 0, Vs; € S —
Y, ¥, € Y;. A weighted alpha complex C,(S) is a sub-complex of the regular triangulation
T(S), containing all a-exposed k-faces of 7. Notice that equation (18) defines exactly those
faces of the regular triangulation 7 that are a-exposed. Also notice that if ag; ) is made up
of zero-weight points, then d-ball B,(ry) reduces to a ball B,(r},), with ¥’ = (r/,0) and the
k + 1 vertices y;, € agj) will be contained in the boundary Bd B, (r},) and Int B,(r}y) = 0.
The following also holds:

o <aj = Cy C Caj (19)

Recall that for sufficiently low a value of «, e.g, & — 0, the a-complex C, = S?. This complex
is growing, with increasing value of «, into triangulation 7(S), and the underlying space
|Cs| into the convex hull Conv S = H(S) = |Ca—sool-

The set A of all ordered pairs (g,C,(S)) denotes the finite set of a-complexes of set S, called
the a-family, and a 2-tuple A = (g;,Cq,(S)) € A denotes a member of that set. Here, p is a
unique index into the a-family, such that:

0i <@ = 0 <aq (20)
and:
0i<oj & CqC Caj (21)

yields a proper sub-complex, whereas in general, equation (19) doesn’t. « only allows for a
partial ordering of the a-family, but g allows for a strict partial ordering using a linear order
relation “<”. Refer to [20] for further details. Notice also that this definition allows us to
topologically sort the set A, according to the index p.

A sub-complex €' C C, with k-faces k < [, is called an I-skeleton C). Generally, an o-
complex contains I-skeletons, with 0 <[ < d. As a result, k-faces contained in a-complexes
may be singular, regular or interior for a specific value of . Let 0 <7 <m=3j+1<d and
let o), 6™ € C,. Now we can tell singular k-faces apart from regular ones, as follows [12]:

oy; € BdCy A oy, € oy,, — singular (22)

oy; € BdCy A oy; € 0y, —regular

2redundant vertices may have been dropped
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A face in the interior of C,, i.e., oy, € Int C,, is classified as interior face.

For simplicial complexes, (specifically in E¢) finding expressions for the number of k-faces
is not trivial. However, a fully triangulated single d-skeleton serves as an upper bound: with
a — 00 = 0(Cq) = O(T), where T is a triangulation of point set S. Refer to Edelsbrunner,
[10],[12], Delfinado and Edelsbrunner, [7], Gross and Tucker, [15].

Weights can be generated on a per point basis, they can also be generated as a function
f : E¢ — R. Weights are called unstructured weights if two arbitrary functions values
(function images) f(x1) and f(x2), x1,%s € E¢ have auto-covariance covyy(x1,%2) — 0.
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