CWI, P.O. Box 94.079, 1090 GB Amsterdam, The Netherlands,

Termination of Term Rewriting

Hans Zantema
Dept. of Computer Science, Universiteit Utrecht,
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands,
and

E-mail: hansz@cs.uu.nl

Contents

1

2

Introduction

Semantical methods

2.1
2.2
2.3
24
2.5

Well-founded monotone algebras
Polynomial interpretations 0oL
Polynomial interpretations modulo AC
Lexicographic combinations00 L.
Other examples L

A hierarchy of termination

3.1
3.2
3.3

Simple terminationo Lo
Total termination Lo oL
The hierarchy oL

Syntactical methods

4.1
4.2
4.3
44

Recursive pathorder L oo
Justification of recursive path order
Extensions of recursive pathorder
Knuth-Bendix order

Transformational methods

5.1
5.2
5.3
5.4
5.5
5.6

Basic transformations o oo
Dummy elimination
Applying abstract commutation
Semantic labelling o oL
The dependency pair method
Type introduction L Lo

1 Introduction

Given a TRS (X, R), how to prove or disprove that it is terminating? It is well-
known ([35]) that this question is undecidable for finite TRSs. This means that
it is impossible to develop a method that decides whether a given finite TRS is
terminating or not. However, we may expect that there are methods that can
be used to establish termination for many TRSs occurring in practical situations.
Indeed such methods have been developed, and in this chapter an overview of them
is given.

Roughly speaking three kinds of methods can be distinguished: semantical meth-
ods, syntactical methods and transformational methods. Proving termination by a
semantical method means that a weight function has to be defined in such a way
that by every reduction step the weight of a term strictly decreases. If the weight is
a natural number, or, more generally, a value in a set equipped with a well-founded
order, then this cannot go on forever so termination is ensured. As a framework this
is the most basic idea for proving termination; it serves as the basis of a hierarchy of
different kinds of termination. About how to choose suitable weight functions only
some rough heuristics are available. This approach easily generalizes to termina-
tion modulo equations. A special case of this approach is the method of polynomial
interpretations.

Syntactical methods are based upon orders on terms that are defined by in-
duction on the structure of the terms. Given such an order, if it can be proved
that it is well-founded, and if every reduction step causes a decrease with respect
to the order, then termination has been proved. Taking the set of terms equipped
with such an order makes this approach fit in the general framework of semantical
methods. A typical order of this kind is the recursive path order. Orders of this
kind are usually precedence based: they depend upon an order (called precedence)
on the function symbols. The advantage of this method is that it provides an al-
gorithm that checks whether termination can be proved by this method or not.
This algorithm is easy to implement. The disadvantage is that it covers only a
very restricted class of terminating systems. Generalization to termination modulo
equations is hardly possible.

Transformational methods provide non-termination preserving transformations
between rewrite systems: a transformation ® falls in this category if termination
of a TRS (%, R) follows from termination of ®(X, R). If such a ® can be found
in such a way that termination of ®(X, R) can be proved by any other method,
then termination of (X, R) has been proved. This approach easily generalizes to
termination modulo equations.

On each of these kinds of methods a section will be spent. After the treatment
of semantical methods a hierarchy of kinds of termination will be given, based on
different kinds of well-founded orders in which the weights are taken.

For most methods the notion of order plays an important role. Before the various
methods are discussed some basic facts due to Lankford ([46]) about the connection
between termination of TRSs and orders are treated. A strict order < is called well-
founded if it does not admit an infinite descending sequence tg > t1 >t > t3-- -

Proposition 1 A TRS (X, R) is terminating if and only if there exists a well-
founded order < on Ter(X) such that t > wu for every t,u € Ter(X) for which
t >R u.

Proof: If (X, R) is terminating then choose < to be «F%. On the other hand if
< is an order satisfying the requirements then termination of (X, R) follows from
well-foundedness of <. O

Since usually there are infinitely many pairs of terms t,u € Ter(X) for which
t — R u, this proposition is only rarely useful for proving termination of a TRS. In
the next proposition we see that with an extra condition on the order it suffices to
check t > w only for the rewrite rules instead of for all rewrite steps. Since usually
the number of rewrite rules is finite this is much more convenient. First we need a
definition.

Definition 2 A reduction order on Ter(X) is a well-founded order < on Ter(X)
that is

o closed under substitutions, i.e., if t < u and o is an arbitrary substitution then
t7 < u?, and

o closed under contexts, i.e., if t <u and C is an arbitrary context then C[t] <

Clu).

A reduction order < on Ter(X) is called compatible with ¢« TRS (X, R) if | > r for
every rewrite rule | — r in R.

Proposition 3 A TRS (X, R) is terminating if and only if it admits a compatible
reduction order < on Ter(X).

Proof: If (X, R) is terminating then again choose < to be <+%. By definition < is
closed under substitutions and contexts.

On the other hand, if < is a reduction order that is compatible with (X, R),
then for an arbitrary rewrite step ¢t = C[l7] =g C[r?] = u we obtain ¢t > u due to
compatibility and closedness under substitutions and contexts. Now termination of
(%, R) follows from well-foundedness of <. O

2 Semantical methods

Consider the following two simple examples of TRSs.

R { f(f@) = g@) 5 { flg(z)) = [f(h(f(2)))
"loglel@) = fl@) TP @) = flg(h(z)

Many people immediately see why these TRSs are terminating: R; is terminating
since at each reduction step the size of the term strictly decreases, and R is termi-
nating since at each reduction step the number of g-symbols strictly decreases. For
checking that indeed this kind of weight decreases at every reduction step, it suffices
to check that for every rule the weight of the left hand side is strictly greater than
the weight of the right hand side. In this section this kind of termination proofs is
formalized and generalized.

2.1 Well-founded monotone algebras

Let ¥ be a signature, being a set of operation symbols each having a fixed arity.! A
Y-algebra (A,X 4) is defined to consist of a non-empty set A, and for every f € &
a function f4 : A™ — A, where n is the arity of f. This function f4 is called the
interpretation of f; we write X4 = {fa | f € }.

1Having a fixed arity is not an essential restriction: if a symbol allows more arities, simply
replace it by distinct symbols, one for every allowed arity.

Definition 4 A well-founded monotone ¥-algebra (4, X 4, <) is a X-algebra (4,3 4)
equipped with a well-founded order < on A such that each algebra operation is
strictly monotone in every argument. More precisely, for every f € X and all
a1,...,0n,01,...,b, € A with a; < b; for some ¢ and a; = b; for all j # i we have

fA(al, .. .,an) < fA(bl, .. ,bn)

Let (A, ¥ 4, <) be a well-founded monotone X-algebra. As before Ter(X) denotes
the set of terms over ¥ and a set X’ of variable symbols. Let o : X¥—A. We define
the term evaluation

[-1,: Ter(®)—A

inductively by

[z]l. = ol2),
H:f(tla ce 7tn)]]a = fA(l[tl]]aa LR I[tn]]a)

forx e X,f € ¥,t1,...,tn, € Ter(X). This function induces a strict partial order
<4 on Ter(X) as follows:

t<at & Va:X—A: [t], <[t],.

Stated in words, t <4 t' means that for each interpretation of the variables in A
the interpreted value of ¢ is smaller than that of ¢'.

We say that a well-founded monotone algebra (A, X4, <) is compatible with a
TRS if [> 4 r for every rule [— r in the TRS.

Now we arrive at the basic result for this section, which essentially goes back to
an unpublished note of Lanford of 1975.

Theorem 5 A TRS is terminating if and only if it admits a compatible well-
founded monotone algebra.

In order to give the proof we need two lemmas.

Lemma 6 Let 0 : X — Ter(X) be any substitution and let o : X — A. Let
B: X—A be defined by B(z) = [o(z)],,. Then

[[to]]a = |[t]]ﬁ
for all t € Ter(X).

Proof: Induction on the structure of ¢t. O

Lemma 7 For any well-founded monotone algebra (A, X 4,<) the partial order <4
is a reduction order.

Proof: Well-foundedness of <4 is immediate from well-foundedness of <. It re-
mains to show that <4 is closed under substitutions and contexts. Let t <4 t' for
t,t' € Ter(X) and let 0 : X — Ter(X) be any substitution. Let a : X — A. From

Lemma 6 we obtain
[t°1, = [tls < [t']s = [t“],

for some 3 depending on o and «. This holds for all & : X — A, so t7 <4 t°.
Hence <4 is closed under substitutions.

For proving closedness under contexts assume t <4 t' for ¢t,¢' € Ter(X¥), and
let f € 3. Since t <4 t' we have [t], < [t'], for all & : X — A. Applying the
monotonicity condition of f4 we obtain

LGt Il = faCoostly,--)
< FaCoIt],,--2)
= [fC.t,.)],

This holds for all & : X — A, so

Floity) <a floo b0,

Closedness under arbitrary contexts follows from this result by induction on the
context. O

Now we give the proof of Theorem 5.

Proof: If a TRS admits a compatible well-founded monotone algebra (4,¥ 4, <)
then termination follows from Lemma 7 and Proposition 3.

On the other hand, assume the system is terminating. Define A = Ter(¥),
let fa(ti,...,tn) = f(t1,...,ts), and define < to be the transitive closure of the
inverse of the rewrite relation. One easily verifies that (A,¥ 4, <) is a well-founded
monotone algebra. We still have to prove that I >4 r for each rewrite rule I — r.
Let a : X - A. Since A = Ter(X) we see that « is a substitution. Then [t],, = t*
for each term ¢, which is easily proved by induction on the structure of ¢. Since
I — r is a rewrite rule, the term [* can be reduced in one step to r*. So

[, =1 >r* =[r],-

This holds for every a: X = A, s0l >4 r. O

A way of proving termination of a TRS is now as follows: choose a set A equipped
with a well-founded order <, define for each operation symbol f a corresponding
operation f4 that is strictly monotone in all of its arguments, and for which [I]_, >
[r], for all rewrite rules I — r and all @ : X — A. Then according to Theorem 5
the TRS is terminating.

The problem is how to choose the partially ordered set and the operations. The
simplest useful choice for (4, <) is (N1, <), the set of strictly positive integers with
the ordinary order. In many applications this is already a fruitful choice.

Example 1 The two simple examples in the beginning of this section can be seen as
applications of Theorem 5 with this choice for (A4, <) as follows. The size of terms
over f,g is modelled by choosing fa(z) = ga(z) =z + 1 for all z € A. Indeed f4
and g4 are both strictly monotone, and

falfa@) =2 +2> 0 +1=ga(@) and galga(®) =z+2>a+1= fa(2)

for all x € A. Hence f(f(z)) >a g(z) and g(g(z)) >a f(z), proving termination of
Ry by Theorem 5. The number of ¢’s in terms over f, g, h is modelled by choosing
fa(z) = ha(z) =z and ga(z) =z + 1 for all z € A. Clearly fa,g4 and hy are all
strictly monotone, and

fa(ga(@)) =z +1>2 = fa(ha(fa(z))) and

ga(ga(@)) =z +2>z+1= fa(ga(ha(z)))

for all z € A, proving termination of Ry by Theorem 5.

Example 2 As another application of the choice (4,<) = (N1, <) we consider
associativity. Consider the system consisting of one single rule

f(f(@,y),2) = fle, f(y,2))

and choose fa(z,y) = 2z +y for all 2,y € A. Clearly f4 is strictly monotone in
both arguments, and

fa(fa(z,y),2) =4z + 2y + 2 > 20 + 2y + 2 = fa(z, fa(y, 2))

for all z,y, 2z € A, proving termination according to Theorem 5.

Exercise 1 Prove termination of the following TRSs, each consisting of a single
rule, by choosing (4, <) = (N7, <).

o fg(x)) = 9(f(2));
o fg(x)) = 9(9(f(2)));
* f(9(z)) = alg(f(2)), 2)-

Theorem 5 admits many generalizations. In paricular, it extends to rewriting
modulo equations and to context-sensitive term rewriting. Context-sensitive term
rewriting is a kind of term rewriting in which reduction is not allowed inside some
fixed arguments of some function symbols. By restricting the monotonicity require-
ments for f4 to the arguments of f in which reduction is allowed, a generalized
notion of monotone algebras is obtained for which a context-sensitive TRS is termi-
nating if and only if admits a compatible generalized monotone algebra; for details
we refer to [67].

We conclude this subsection by extending Theorem 5 to termination modulo
equations. A TRS (X, R) is called terminating modulo a set E of equations over ¥
if no infinite sequence of the following shape exists:

t1 rRtao=gts3s >pts =pts >rtsg..--

In typical applications of this notion the set E consists of commutativity and asso-
ciativity for one or more binary symbols, usually abbreviated to AC.

We say that a X-algebra (A,X4) satisfies a set E of equations over X if [t] , =
[u], for all @ : X = A and all equations ¢t = u in E.

Theorem 8 A TRS (X, R) is terminating modulo a set E of equations if and only
if R admits a compatible well-founded monotone algebra satisfying E.

Proof: For the ‘if’-part assume that (A, X 4, <) is a compatible well-founded mono-
tone algebra satisfying £ and an infinite sequence

ti “rt2=pts 2rts=pts >rts....

exists. Let @ : X — A be arbitrary (here we use the assumption that A is not
empty), then compatibility, Lemma 7 and the fact that A satisfies E yield

[ti], > [t=1,, = [ts], > [tal, = [t5], > [tel, - - -

contradicting well-foundedness.
For the ‘only if’-part assume that R is terminating modulo E. Define A =
Ter(X)/=Eg, i-e., A consists of the equivalence classes [t] of terms ¢ modulo the

equivalence relation =g. For f € ¥ of arity n the operation f4 : A™ — A is defined
by
fA([tl]J R [t”]) = [f(tla RN t")]7

due to the congruence property of =g the result is independent of the choice of
representatives in the classes [t;]. Now we define

< ' [u] & W, :t=pt' Au gt Au =p u.

One easily checks that <’ is well-defined. We define < to be the transitive closure of
<'. Since R is terminating modulo E we conclude that (4,% 4, <) is a well-founded
monotone algebra. We still have to verify that [> 4 r for each rewrite rule [— r of
R. This is similar to the corresponding part of the proof of Theorem 5. O

2.2 Polynomial interpretations

In the basic applications of Theorem 5 the well-founded monotone algebra (A, ¥ 4, <)
consists of the natural numbers with the usual order, and for all f € ¥ the function
fa is a polynomial in its arguments. For this kind of polynomial interpretations
some heuristics have been developed to choose the polynomials, and some tech-
niques to prove that [>4 r for rewrite rules [— r ([11]). Here we give an overview
of these techniques. We start with a number of definitions.

Definition 9 A monomial in n variables over Z is a function F : Z"™ — Z defined

by F(x1,-..,%,) = ax’flac]z” ---xFn for some integer a # 0 and some non-negative
integers ki, ko, ..., kn. The number a is called the coefficient of the monomial. If
ki =ky=--- =k, =0 then the monomial is called a constant.

For functions F; : Z™ — Z, i =1,...,m, the sum and the product are defined
respectively as follows:

O - F)(z1,.. - xn) = Fi(z, ..., zn),
(HFi)(m,...,x"):HF,-(xl,...,a:n).

A polynomial in n variables over Z is the sum of finitely many monomials in
n variables over ZZ.
Choose
A={neN|n>2}

A polynomial interpretation for a signature ¥ consists of a polynomial f4 in n
variables for every symbol f € X, where n is the arity of f, such that for all f € 3:

o fa(z1,-..,x,) € A for all Tq,...,1, € A (well-definedness), and
o f4 is strictly monotone in all of its arguments.

Now (A, X 4,<) is a well-founded monotone algebra and the order <4 is defined as
before.

A polynomial interpretation {fa | f € £} is compatible with a TRS (2, R) if
I >4 for every rulel — r in R, or stated equivalently, if the well-founded monotone
algebra (A, X 4, <) is compatible with (X, R).

A TRS is polynomially terminating if it admits a compatible polynomial inter-
pretation.

Usually the monomial F' defined by F(zx1,...,2,) = z; is denoted by X;, for
i =1,...,n; if n < 3 one often writes X = X;,Y = X5,7Z = X3. A constant
monomial is denoted by its coefficient. In this way the monomial F : Z" — Z
defined by F(z1,...,2,) = az¥ x5 ...k for an integer a # 0 and non-negative
integers ki, ko, . .., ky, is written as aX ¥ X% ... xkn,

One easily sees that

e the product of finitely many monomials is again a monomial,
e the sum of finitely many polynomials is again a polynomial,
¢ the product of finitely many polynomials is again a polynomial.

For instance, 3X Z + Y? is a polynomial.

Due to Theorem 5 polynomial termination indeed implies termination. We like
to stress here that strict monotonicity in all arguments is essential for this statement.
For instance, the rule f(s(z),y) — f(z,f(s(z),y)) is not terminating although
f(s(x),y) >a f(z, f(s(z),y)) holds in the interpretation fq4 = X,s4 = X + 1.
This interpretation does not fulfil the requirements of Theorem 5: f4 is not strictly
monotone in its second argument.

The reason for choosing A = {n € N | n > 2} instead of A = N is merely
for convenience. For the power of the interpretations this does not have any ef-
fect since this set is order-isomorphic to IN by an order-isomorphism adding 2 to
every element, and the composition of polynomials and such isomorphisms again
yield polynomials. But this choice has a few advantages over the natural numbers,
for instance excluding zero yields that multiplication is strictly monotone in both
arguments, and excluding 1 yields that the polynomial XY pointwise exceeds the
polynomials X and Y. As a drawback of this choice for a constant we may not
choose a value less than 2.

The following proposition gives sufficient (but not necessary) conditions for well-
definedness and strict monotonicity.

Proposition 10 Let F = Y7 a; X" X3 --- X" be a polynomial in n > 0
variables for which a; > 0 fori=1,...,m, and for every j = 1,...,n there exists

it with1 <i<m and k;; > 0. Then F is well-defined, and F is strictly monotone
in all its arguments.

Proof: Every non-constant monomial with coefficient > 1 yields a value > 2 for
every interpretation of the variables in A. Since n > 0 there exists k; ; > 0, hence
at least one of the monomials is non-constant. Hence F' is well-defined.

A monomial aXF X% ... X with a > 0 is strictly monotone in the i-th argu-
ment if k; > 0, and is weakly monotone in all other arguments. Hence F is strictly
monotone in all its arguments. O

The condition in Proposition 10 that every variable occurs in at least one of
the monomials can not be weakened: if some variable does not occur in any of
the monomials then the polynomial is not strictly monotone in the corresponding
argument. For instance, the polynomial Y + Y Z? in 3 variables X,Y, Z is not
strictly monotone in the first argument.

The condition in Proposition 10 that all coefficients are positive is not neces-
sary: for instance X2 — X is a well-defined and strictly monotone polynomial in
one variable. However, in most applications negative coefficients do not occur and
Proposition 10 can be applied for concluding well-definedness and strict monotonic-

ity.

For a rewrite rule I — r let x1,...,2, be the variables occurring in [and r.
Given a polynomial interpretation define Fj, : A™ — Z by

-Fl,r(ala very a’n) = |[l]]a - [r]]a

for a defined by a(z;) = a; for i = 1,...,n. One easily checks that Fj, is a
polynomial in n variables; often some coefficients will be negative. By definition
!l >4 rif and only if Fj,(a1,...,a,) > 0 for all a1,...,a, € A. A polynomial
F is called strictly positive if F(a,...,a,) > 0 for all a1,...,a, € A. The next
proposition states that strict positiveness is undecidable.

Proposition 11 Given an arbitrary polynomial F over Z in n > 2 variables it is
undecidable whether F(ay,...,a,) >0 for all aq,...,a, € A.

Proof: For an arbitrary polynomial F' over Z it is undecidable whether there exist
ai,-..,an € Z with F(ay,...,a,) = 0. This was proved by Y. Matiyasevich in
1970 and solved Hilbert’s tenth problem ([56]).

Assume that a decision procedure exists deciding whether F(aq,...,a,) > 0 for
all ay,...,a, € A for any F' to be given. Since for every x € Z we have x > 2 or
4 — x> 2 we can write z = f(a) for a € A and f is either the polynomial X or the
polynomial 4 — X. Let F' be an arbitrary polynomial over Z in n variables. Then

dai,...,an€Z : F(al,...,an)ZO =

-Vai,...,an€Z : F(ai,...,a,) #0 &
-Vay,...,an €Z : (F(ai,...,a,))>* >0 &

—1(/\ val7"'7an€A : (F(fl(a1)7"'7fn(an)))2 > 0)7

fi=XVfi=4-X

in the last line the conjunction runs over all 2" choices of f; being either X or
4 — X for i = 1,...,n. By applying the assumed decision procedure on all of
these 2™ conjuncts this yields a decision procedure for Hilbert’s tenth problem,
contradiction. O

According to [36] Hilbert’s tenth problem is even undecidable if only polynomials
in n < 9 variables are considered. Since the number of variables is preserved by the
construction in the proof of Proposition 11, it also holds for polynomials in n < 9
variables. But also for polynomials of a low degree in far less variables, checking
for positiveness or for zeroes seems to be practically unfeasible. As an example we
mention that the polynomial F = X2 — 991Y2 — 1 indeed admits integer values
a,b > 1 with F(a,b) = 0, but only with values exceeding 10%8.

Surprisingly, the problem of deciding strict positiveness of polynomials over the
real numbers instead of over the integers is decidable, by means of techniques from
algebraic geometry. In practice these techniques are not useful; for our purpose
much simpler techniques suffice for proving strict positiveness of polynomials.

Back to rewriting. In order to prove termination of a TRS (X, R) by means
of a polynomial interpretation we have to choose a polynomial f4 in n variables
for every symbol f € ¥, where n is the arity of f, satisfying the following three
conditions:

e The polynomial f4 is well-defined. For a constant this means that we have to
choose a value > 2; if the arity of f is positive and f4 is of the required shape
this is obtained for free by Proposition 10.

e The polynomial f4 is strictly monotone in all of its arguments. For a constant
this condition is empty, if the arity of f is positive and f4 is of the required
shape this is obtained for free by Proposition 10.

o The interpretation has to be compatible. This means that F} ,(a1,...,a,) >0
for all a1,...,a, € A and every rule | — r.

We conclude that the method now consists of two main steps:

e Choose suitable polynomials with positive coefficients for all symbols f € X
in which all variables occur.

e Prove that Fj,(a1,...,an) > 0 for all a1,...,a, € A for the corresponding
polynomials Fj , for all rules I — r of R.

Regarding the first step only some rough heuristics can be given, after giving a
number of examples we will summarize a few. Often the first choice is not yet
successful and some backtracking is applied for finding the right choice.

For the second step we now describe a technique from [11]. It is based on the sim-

ple observation that if kg ; >k, ; >0forall j=1,...,n,and ¢ = 221=1(k"’j_k"’j),

kq,i—kp,1 kq2—k -y
then z7®! " " Plp, @27 2 gt TP > ¢ for all @y, T, ..., T, € A, and hence
kg1 k kpa Kk
wlq’lxzq’2 - ;L-,I;:Lq)" — C-Z-lp‘lxzp’Q - mﬁ}’)" Z 0
for all z1,x2,...,2, € A.

Let F =Y, ain"’le""" .- X" be a polynomial of which strict positiveness
has to be proved. This is done by the next non-deterministic procedure, trying to
stepwise decrease the polynomial until a strictly positive polynomial is obtained
only having positive coefficients.

whiledp : ap <0
do
choose p, g satisfying ap <0Aag >0AVj € {1,...,n} : kg > kpj;
¢ = 22:=1(kq,j _kp,j);

if ap + cag > 0 then a4 := a4 + (ap/c);

ap:=0
else a, :=ap + cag;
aq:=0
fi
od

If this procedure ends in a situation in which no p exists with a, < 0 and at least
one remaining coefficient is strictly positive, then the last version of the polynomial
is strictly positive. Since during the whole procedure the polynomial only decreases,
this proves that also the original polynomial is strictly positive.

For example, assume that we have to prove that | >4 r where [I],, = b1b3 + b3
and [r], = 3b2 + 5 for a defined by a(z;) = b; for i = 1,2. Then we have to prove
strict positiveness of the polynomial XY?2+4 X2 —3Y —5. Let the four coefficients 1,
1, —3 and —5 be a1, as, as, ay, respectively. The above procedure may choose p = 3
and q = 1 for its first step, trying to eliminate —3Y by decreasing the coefficient of
XY?2. This succeeds by replacing the polynomial XY? + X2 — 3Y — 5 by

1
ZXY2 + X% —5.

10

In the next step the above procedure may choose p = 4 and ¢ = 2, trying to
eliminate —5 by decreasing the coefficient of X2. For this the coefficient of X? is
too small, and X?2 is eliminated, yielding

1 2
4X Y® —1.
Finally, in order to eliminate —1 the above procedure chooses p = 4 and ¢ = 1,
yielding
1X Y2
8
Now indeed the only remaining coefficient is positive, hence this last polynomial
is strictly positive. Hence the same holds for the original polynomial, successfully
finishing the proof. Note that in general during the process the coefficients do not
remain integer; powers of 2 appear as denominators.

If during the procedure at least one value of p with a, < 0 remains, but for none
of them a value ¢ exists satisfying ag > 0AVj =1,...,n : kg ; >k, ;, then the
procedure fails to prove strict positiveness of the original polynomial. The same
holds if the procedure ends in a situation in which a, =0 for allp=1,...,n.

Often the procedure allows more than one possibility for choosing suitable p and
q. Sometimes the success of the procedure depends on this choice. For instance,
a failing execution of the procedure of the same example as above is obtained by
choosing p = 4 and ¢ = 1 in the first step and p = 3 and ¢ = 1 in the second step,
yielding

XY?+X?-3Y -5

gXY2+X?—3Y
3
X2 -Zv.
2

A good heuristics for the procedure is choosing p,q in such a way that

> j=1(kg,; — Ky ;) is as small as possible.

Exercise 2 Prove strict positiveness of the following polynomials over the natural

numbers > 2:
Xt - X34+ X211,

XY —-X-Y +1,
XYZ-X-Y-Z-1,
X%y +Y?2 - X -3Y.

The procedure allows lots of modifications and improvements. The basic idea
of the procedure is that for proving strict positiveness of a polynomial it suffices
to prove strict positiveness after subsequently subtracting some polynomials known
to be non-negative. In the version presented here only the fact is used that the
product of k values from A is always > 2* by choosing the required non-negative
polynomials all being positive multiples of polynomials of the shape

k k k k
X14’1X2q’2 ...qu,n _ ch”’lXQ"’z . ..Xﬁp,n_

The present version is not able to establish strict positiveness of X2+Y?2 — XY, for
example. The method can be improved covering this example by making use of more
kinds of always non-negative polynomials, like (X — 2)? and (X — Y)2. However,
in practice the version discussed here suffices very well, and due to Proposition 11
no improvement of the procedure will cover all strictly positive polynomials.

11

There is no fundamental reason to restrict to polynomials. In [47] this ap-
proach has been extended to so-called elementary functions: functions for which
the building blocks addition and multiplication for polynomials have been extended
by exponentiation.

We conclude this section by some examples and some heuristics for choosing the
polynomials.

Example 3
0O+z — =
s(x)+y — s(z+y)
Oxz — O

s()xy = y+(zxy)
This system describes the usual arithmetic on natural numbers. Choose 04 =
2,54 = X +3,44 = 2X +Y,x4 = XY. Then the polynomials Fj, for the four
rules are4,3,2X —2 Y, respectively, all of which are clearly strictly positive, proving
polynomial termination.

Example 4
r+r — T
(+y)-z = (z-2)+(y-2)
(-y)-z = z-(y-2)
r+d — =
b-x — 0

This system describes part of a process algebra where 4+ denotes choice, - de-
notes sequential composition and § denotes deadlock. Choose 64 = 2,+4 = X +
Y,-4 = X?Y. Now the polynomials Fj, for the five rules are X,2XYZ, X*Y?Z —
X2%Y27,2,4X — 2, respectively, all of which are checked to be strictly positive au-
tomatically by the above method, proving polynomial termination.

By combining Propositions 21 and 29 from Section 3.1, we will see that rules for
which the right hand side can be embedded in the left hand side, don’t need to be
considered. For instance, this holds for the first and third rule of Example 3 and
the first, fourth and fifth rule of Example 4.

As heuristics for choosing the interpretations we mention:

e Choose ¢4 = 2 for constants c.

e Concentrate on rules for which the right hand side looks more complicated
than the left hand side.

o If the operations have some arithmetical meaning, try to choose an interpre-
tation that slightly exceeds the arithmetical meaning.

e If the operations have a natural precedence, try to choose polynomials with
a low degree for the lowest symbols and polynomials with a higher degree for
higher symbols.

e If a left hand side of a rule [— r is of the shape f(z1,...,2,) then try to
choose fa(ai,...,a,) = [r], + 1 for o defined by a(z;) = a; fori=1,...,n.

e For an associative rule z + (y + 2) — (z +y) + 2 try to choose + 4 to be one of
the polynomials X + 2Y, XY?2 X + Y2 XY +Y; for the reversed associative
rule interchange X and Y.

e For a distributive rule z * (y + 2) — (x *y) + (z * 2) or an endomorphism
rule f(z +y) = f(z) + f(y) try to choose either +4 = aX + bY for some
a,b>1,%x4 = XY?% fy = X2, or +4 = aX + bY + ¢ for some a,b,c > 1,
x4 = XY, fa = 2X.

12

Exercise 3 Prove termination of the following TRSs by means of polynomials.

o fg(x)) = h(z), h(z)— g(f(2));

O+=z - T
z+4+0 - x
zx0 - 0
zx(y+z) — (xx2)+ (y*x).

2.3 Polynomial interpretations modulo AC

Instead of proving termination by applying Theorem 5 to polynomial interpretations
we can also prove termination modulo equations by applying Theorem 8. The only
extra condition is that the polynomials have to satisfy the equations. Often the
equations consist of associativity and commutativity (AC) of one or more binary
operators.

Example 5
O+z — =z
s(x)+y — s(z+y).

This system describes addition on natural numbers as in Example 3. There the
interpretation for + was associative and not commutative. However, by choosing
04 = 2,54 = X + 1,44 = XY the polynomials Fj, for the rules are X,Y —1,
respectively, which are both strictly positive in natural numbers > 2. Since + 4 is
both associative and commutative now, we have proved termination modulo AC of
this system.

As a second example we mention that the rewrite system of Example 4 is termi-
nating modulo AC of the +-operator since for + 4 an operation was chosen which
is both commutative and associative. In fact this was the motivation of this rewrite
system, see [8]. There the purpose was to prove completeness of the following
equational axiomatization for bisimulation equivalence:

r+y = y+<zx
z+y+z2) = (z+y)+=z
r+r = I
(z+y)-z = (z-2)+(y-2)
(z-y)-z2 = z-(y-2)
x+d = =z
o-x = 6.

If such an equational system can be described by a confluent terminating TRS, then
for proving completeness of the axiomatization it suffices to prove that for normal
forms the notions of equality and bisimulation equivalence coincide. However, due
to commutativity such a TRS does not exist. That’s why the system is taken
modulo associativity and commutativity of the 4-operator: then the remaining
rules yield the TRS given in example 4 which is terminating modulo AC as we
saw, and which is confluent modulo AC since all critical pairs are joinable. Now the
proof of completeness of the equational axiomatization can be given by proving that
for the normal forms with respect to this TRS the notions of equivalence modulo
AC and bisimulation equivalence coincide. A similar approach can be followed for
various extensions ([8, 27]); this application of rewrite techniques can be considered
as a standard approach for proving completeness of equational axiomatizations.

13

In these two examples we saw that X + Y and XY are suitable interpretations
for AC operators since they obey both commutativity and associativity. On can
wonder whether more choices are possible. Indeed there are, like 2XY +3X +3Y +3.
The following characterization is from [11].

Proposition 12 A polynomial in two variables satisfies commutativity and asso-
ciativity if and only if it is of the shape aXY + b(X +Y) + ¢ with ac+ b = b2,

Proof: If the degree in X is greater than one, then considering the degree in the
associativity equality yields a contradiction. Similar for Y, hence the polynomial is
of the shape aXY + bX + dY + ¢. Commutativity yields b = d. The polynomial
aXY + bX 4 bY + c is associative if and only if

(@aXY +bX +bY +¢)(aZ +b)+bZ+c=(aX +b)(aYZ+bDY +bZ+¢c)+bX +¢

which is easily checked to be equivalent to ac +b = b2. O

Not all polynomials satisfying the criterion from Proposition 12 are suitable for
polynomial interpretations since not all are strictly monotone and well-defined. The
next proposition characterizes these extra conditions.

Proposition 13 A polynomial of the shape aXY +bX +bY +c is strictly monotone
in both arguments and well-defined in A = {n € N | n > 2} if and only if a > 0,
b>1—2a and ¢ > 2 — 4a — 4b.

Proof: Let F be such a polynomial. If ¢ > 0 and b > 1 — 2a then F(x + 1,y) —
F(z,y) = ay +b > 2a+ b > 1, proving strict monotonicity in the first argument,
and similar for the second argument. Due to monotonicity for well-definedness it
suffices to prove F'(2,2) > 2, which is equivalent to ¢ > 2 — 4a — 4b. The converse
is similar. O

Exercise 4 Prove that the following single rule TRSs are both terminating modulo
AC.

e s(x+y) — s(x) + s(y);

e 5(s(x)) +z — s(s(z + s(x))).

2.4 Lexicographic combinations

Sometimes, while trying to prove polynomial termination, one achieves interpreta-
tions for which the left hand side is not strictly greater than the right hand side,
but only greater or equal. This can still be fruitful in proving termination: if the
smaller TRS consisting of the rules for which this non-strict inequality holds is ter-
minating, then the whole system can be concluded to be terminating as well. In
the general framework of monotone algebras this is stated in the next proposition;
for a well-founded monotone algebra (A, ¥ 4, <) write

t>au & Va: X = A : [t], > [u],.
Note that > 4 is essentially more than the union of >4 and equality.
Proposition 14 Let (X, R) be a TRS for which R = R'UR" and let (A,X4,<) be

a well-founded monotone X-algebra for which

14

o [>4 for every rulel = r in R', and
o [>4 for every rule l = r in R”, and
e (X, R") is terminating.

Then (X, R) is terminating.

Proof: Due to Theorem 5 R" admits a compatible well-founded monotone algebra
(B,Xp,<). Now define C' = A x B with the lexicographic order

(a,b) < (d',b') & a<dV(a=d Ab=<D),
and for every f € X:

fo((al, bl), ey (an, bn)) = (fA(al, .. .,an),fB(bl, ey bn))

for ai,...,a, € A,by,...,b, € B. For v: X — C we can write y(z) = (a(z), 8(z))
for every z € X, for some o : X — A, f: X — B. One easily checks

[t], = ([l. [t1)

for every term ¢, and hence the well-founded monotone algebra (C, X, <) is com-
patible with R. Due to Theorem 5 now (X, R) is terminating. O

Example 6 The following TRS is closely related to the one from Example 3:

O+z — =z
s(z)+y — s(z+y)
Oxz — 0

s(x)xy — (z*xy)+y

However, the choice 04 = 2,54 = X +3,+4 = 2X 4+ Y, %4 = XY now fails for the
last rule. It can even be shown that this system is not polynomially terminating: no
other choice of polynomials is possible?. A termination proof can be given by using
elementary functions instead of polynomials: choose 04 = 2,44 = 2X +Y,s4 =
X+2andxxqy =y *2%.

However, using a lexicographic combination there is no reason to leave polyno-
mials: choose 04 = 2,44 = X +Y,54 = X + 2,x4 = XY, then we get equality
for the second rule and strict inequality for the other rules. Hence we can apply
Proposition 14 by choosing R to consist of the second rule and R’ to consist of the
rest. Termination of R” follows from the interpretation +4 = 2X +VY,s4 = X + 1,
hence termination of the full system follows from Proposition 14.

Clearly Proposition 14 easily extends to n-tupels of TRSs instead of only pairs
(R',R").
2.5 Other examples

We conclude this section by three examples of termination proofs by means of
well-founded monotone algebras in which the orders are not total. In Example 11,

2A rough sketch of the proof is the following. Write +4 y = z * f(z,y) + g(y). Taking z
constant in the last rule yields p(y) > q(y) * f(q(y),y) + g(y) for two polynomials p,q of the same
degree. Considering degrees in this inequality yields that f is a constant. Then the second rule
yields that f > 1 and s4 = X + c for some constant c. Again take = constant in the last rule, then
considering the leading coefficient gives rise to a contradiction.

15

Proposition 29 and Example 12 we shall prove that choosing non-total orders is
essential for these examples. For all three cases we define:

A=1{0,1} x N and (a,n) < (bym) & a=bAn<m;

note that < is indeed a well-founded partial order on A which is not total. The
overloading of the symbol < does not cause confusion since from the shape of the
arguments it is clear which of the two orders is intended.

Example 7 Consider the TRS consisting of the rule:

f(F@) = Fg(f(2)))-

The intuition is that if f is applied to f(---) we want to obtain a higher weight then
if f is applied to g(---). To be able to distinguish between these arguments f(---)
and g(---) we let fa(---) always result in (1,...) and we let ga(---) always result in
(0,...). Define

fA(Oan) = (]-7")7 fA(]-an) = (1>n+ 1)7 gA(Oan) = (0,’!1), gA(]-an) = (0,’)1)
for all n € N. Both f4 and g4 are strictly monotone, and

fa(fa(O,n)) = (Ln+1) (1,n) = fa(ga(£a(0,n))),
fa(fa(,n)) = (L,n+2) (Ln+1) = falga(fa(1,n)))

for all n € N, proving termination.

>
>

Example 8 Consider the TRS with the two rules:
flg(@)) — [f(f(2)),
9(f(x)) — g(g(x)).

Define
fa(0,n) = (1,2n), fa(l,n)=(1,n+1),

94(0,n) = (0,n+ 1), ga(l,n)=(0,2n).

Both f4 and g4 are strictly monotone, while

fa(ga(0,n)) = (L2n+2) > (L2n+1) = fa(fa(0,n)),
fa(ga(l,n)) = (1,4n) > (Ln+2) = fa(fa(1,n)),
gA(fA(O,TL)) = (0,4“) > (O,TL + 2) = gA(gA(O,TL)),
gA(fA(lan)) = (072n+2) > (072n+1) = gA(gA(lan))'

for all n € N, proving termination.
Example 9 Let the TRS consist of the rule:

f(0717$) ‘_) f(mJZ.J'Z-)'

The origin of this TRS is the example of [62] showing that termination is not
modular, after that it has served as a counter-example for many properties. Define

04=(0,1), 14 =(1,1),

fA((a7 n): (b7 m)7 (C, k))

O,n+m+k) ifa=05b
O,n+m+3k) ifa#bd

16

The function f4 is strictly monotone in all three arguments. For all (a,n) € A we
have

fA(0A7 La, (a’:n)) = (073n+ 2) > (0,3”) = fA((aan)7 (aan)7 (aan))a

proving termination.

Exercise 5 Prove that the following single rule TRSs are both terminating.
o flg(x)) = f(s(s(9(2))));
o f(0,2) = f(s(0),).

3 A hierarchy of termination

In this section we introduce a number of properties of TRSs that are slightly stronger
than termination. The most important of them are simple termination and total ter-
mination. We introduce them by restrictions on corresponding monotone algebras
but we also give more syntactical characterizations. One motivation for considering
these notions is in the observation that most syntactical techniques (to be described
in Section 4) not only prove termination, but also simple termination and total ter-
mination. As a consequence for a TRS for which by results from the present section
it can be seen that it is not simply terminating, or not totally terminating, we know
in advance that its termination can not be proved directly by means of that kind
of syntactical techniques. Readers only interested in positive results may skip most
of this section.

3.1 Simple termination

The basic semantical method of proving termination of a TRS consists of choosing
a well-founded monotone algebra compatible with the TRS. If the carrier set of the
algebra is chosen to be a well-known set equipped with a well-known well-founded
order as we did in our examples, then well-foundedness is no problem. However,
if some other carrier set is chosen, for instance a set of terms, and for the order
some recursive definition is given, then proving well-foundedness can be a non-trivial
issue. In fact this is what happens in the syntactical approach to be discussed in
Section 4.

In case of finite signature it is possible to replace the well-foundedness condition
in the definitions of a reduction order and a well-founded monotone algebra by a
simplicity condition. In recursive definitions this simplicity condition is far easier
to verify. First we give the definition.

Definition 15 A simple monotone X-algebra (A,X4,<) is defined to be a X-
algebra (A,X) for which the set A is provided with a partial order < such that
each algebra operation is strictly monotone in all of its arguments, and

fA(a17"'7an) > a;
for each f €%, a1,...,a, € A, i €{1,...,n}.

Definition 16 For a set ¥ of operation symbols we define Emb(X), or, shortly,
Emb, to be the TRS consisting of all the rules

fl@e,...;2) — x;

with f € ¥ and i € {1,...,n} where n is the arity of f. These rules are called
embedding rules.

17

The following propositions state that for proving termination by a simple mono-
tone Y-algebra, well-foundedness is essentially obtained for free if ¥ is finite. The
key argument is Kruskal’s Tree Theorem([44]); the next proposition can be seen as
a reformulation of its basic version.

Proposition 17 Let ¥ be a finite signature. Let {“i}ieIN be any infinite sequence
of ground terms over .. Then there is some i < j such that

*
Uj = Emb(z) Yi-

Proof: It is straightforward how terms can be considered as labelled trees in the
terminology of Kruskal’s Tree Theorem, where the set of labels corresponds to the
signature. Since the signature is finite, the equality relation on the signature is
a well-quasi-order. It is easy to check that for this choice of the well-quasi-order
the embedding relation in Kruskal’s Tree Theorem coincides with <—Emb(2). Now
Kruskal’s Tree Theorem states that <%, .) is a well-quasi-order from which the
required result follows from the definition of a well-quasi-order.

A straightforward proof of this finite version of Kruskal’s Tree Theorem can be
found in [16]. O

Proposition 18 Let X be finite and let (A, X4, <) be a simple monotone L-algebra.
Let A" C A be the homomorphic image of the ground terms. Then < is well-founded
on A'.

Proof: Let h be the homomorphism from ground terms to A. Assume that < is
not well-founded on A’. Since every element of A’ is in the image of h there is an
infinite sequence

h(to) > h(tl) > h(tQ) > h(tg) >y,

Applying Proposition 17 yields ¢; *Emb(z) t; for some i < j. Using the simplicity
condition of (4, ¥ 4, <) it easily follows that h(t) > h(u) for ground terms ¢, u satis-
fying t — gmap(s) u. Hence h(t;) > h(t;), contradicting irreflexivity and transitivity
of <. O

Proposition 19 Let X be finite and let (A, X4, <) be a simple monotone L-algebra.
Let (£, R) be a TRS such that 1l >4 r for all rewrite rulesl — r of R. Then (X, R)
18 terminating.

Proof: Apply Theorem 5 and Proposition 18: A’ is a well-founded monotone
algebra compatible with R. In the case that ¥ does not contain constants, add one
dummy constant symbol. Choose an arbitrary interpretation in A for this dummy
constant. This enforces A’ # (. O

This proposition does not hold without the restriction of ¥ being finite as is
shown in the following example.

Example 10 Let X consist only of the constants a;, i € N, and let R consist of the
rules a; — a;y1 for i € N. Then clearly R is not terminating, but choosing A = Z,
a;, 4 = —i for i € N, and the usual order on Z yields a compatible simple monotone
3-algebra.

Definition 20 A TRS is called simply terminating if it admits a compatible simple
well-founded monotone algebra.

18

The above propositions state that for finite & the well-foundedness condition can
be removed without changing this definition. For infinite ¥ this is not true as
we saw in Example 10. In [52, 53] an alternative more complicated definition of
simple termination is given, which coincides with the definition given here for finite
signatures, and also implying well-foundedness in case of infinite signatures.

The following proposition gives a characterization of simple termination not
referring to monotone algebras.

Proposition 21 Let (X, R) be a TRS. Then the following assertions are equivalent:

(1) R is simply terminating;
(2) RUEmMb(X) is simply terminating;
(3) RUEmMb(X) is terminating.

Proof: The implication (2) = (1) is trivial. For proving (1) = (2) let (A,%4, <)
be a simple well-founded monotone X-algebra compatible with R. Since we allow
equality in the definition of simplicity but need strict inequality for compatibility,
we have to modify the algebra. We do this by adjoining an extra argument keeping
track of the size: we choose

B=AxN

having the lexicographic order
(a,k) < (d',k') & a<dV(a=d Nk<EK).

From the arguments of < it should be clear which of the three meanings of < is
intended. Define

fe((at, k1), (an, kn)) = (falas, ... an),1+ Zk)

Now (B,Xp,<) is a simple well-founded monotone algebra compatible with both
R and Emb(X), proving (2).

The implication (2) = (3) is trivial. Finally, assume that (3) holds. Then
according to Theorem 5 there is a well-founded monotone X-algebra (A,¥ 4, <)
compatible with R U Emb(X). Since it is compatible with Emb(X) it is also a
simple well-founded monotone ¥-algebra. This implies (2). O

Example 11 In Example 7 and Example 9 in Subsection 2.5 we proved that the

two single rule TRSs
f(f(@) = flg(f(2)))

and
f(0717$) % f('Z.Jme)

are terminating. From Proposition 21 we easily see that neither is simply terminat-
ing, since adding embedding rules yield the infinite reductions

[(f@) = fg(f(@) 2ems F(f(2)) =

d
. FO.L£(0,1,0) = f(£(0,1,0),£(0,1,0), £(0,1,0))
—Emb f(O:f(OJ]-JO)Jf(Oa]-J))
—Emb f(Oa]-af(O)]-a))
_) . .’
respectively.

19

Exercise 6 Prove that the TRSs from Exercise 5 are not simply terminating.

Exercise 7 Prove that the TRS f(f(g(g()))) = 9(g(g(f(f(f()))))) is not simply
terminating.

(An extensive analysis of termination of this kind of single rule TRSs, including
the challenging proof of termination of this particular copy, is given in [68])

For some kinds of TRSs, however, the notions of termination and simple termi-
nation coincide.

Definition 22 The size |t| of a term t is defined inductively by

|z| =1 =1 for constants ¢ and variables x, and
|f(t1, .. tn)| =1+ >0 || for function symbols f.

A TRS R is called size-non-increasing if [t| > |u| for all rewrite steps t — g w.

Size-non-increasingness of a TRS is immediately established from its rules by
the following lemma.

Lemma 23 A TRS R is size-non-increasing if and only if it is non-duplicating and
[I| > |r| for oll rulesl — r in R.

Proof: If R is size-non-increasing then by definition |I| > |r| for all rules I — r in

R. Substituting a sufficiently big term for a duplicating variable always contradicts

size-non-increasingness. Hence if R is size-non-increasing then it is non-duplicating.
Conversely one easily checks that

C[t°]l = ICla]l =1+ el + D n(t,2) (27| = 1)

zE€Var(t)

for all terms ¢, contexts C' and substitutions o, where Var(t) is the set of variables
occurring in ¢ and n(t,x) is the number of occurrences of z in ¢. Let R be non-
duplicating, then n(r,z) < n(l,z) for all z € Var(l) for all rules | — r in R. Further
let |I] > |r| for all rules I — r in R, then for every rewrite step C[I°] =g C[r°] we
obtain

lCEel = 1Cll =1 =Irl+) (lz) —n(r2) * (27| = 1) > 0,
z€Var(l)

proving size-non-increasingness of R. O

Proposition 24 A size-non-increasing TRS is simply terminating if and only if it
18 terminating.

Proof: The ‘only if’-part is by definition. For the ‘if’-part assume (X, R) is any
terminating size-non-increasing TRS. Let A = N, let < be the usual order on IN and
let ¢4 = 1 for constants ¢, and fa(z1,...,2,) =1+ > ., ; for function symbols
f. Choose R' = Emb(X), then reading R" for R all requirements of Proposition 14
are fulfilled, concluding termination of RU Emb(X). By Proposition 21 we conclude
that R is simply terminating. O

For example, we conclude that Example 8 in Subsection 2.5 is not only termi-
nating but also simply terminating.

Next we characterize simple termination by means of properties of reduction
orders.

20

Definition 25 A simplification order ([16]) is an order < on terms, closed under
substitutions and contexts, for which f(x1,...,z,) > x; for all operation symbols
fand alli € {1,...,n}. A TRS R is called simplifying ([39]) if there exists a
simplification order < such that t' < t for all terms t,t' satisfying t —gr t'.

Proposition 26 Let < be a simplification order on Ter(X).

1) Ifu —)Emb():) t then u > t.
(2) If X is finite then < is well-founded.

Proof: Statement (1) is immediate from the definitions. For (2) assume by con-
tradiction there exists an infinite descending sequence {ti}z’eIN of terms over X, i.e.,
t; > t;41 for all 4 € N, for some simplification order <. Assume some t;;; contains
a variable z not contained in ¢;. Then by choosing 27 = t; and y? = y for y # x we
obtain a contradiction t; =t > t7,; = C[t;]. So all variables in ¢;1 are also con-
tained in ¢; for all i € IN. Hence only finitely many variables occur in the sequence.
By considering these variables as constants, the signature remains finite. Applying
Proposition 17 yields t; —=%,,,, ti for some ¢ < j. Since t; > t; by transitivity of <,
this contradicts (1). O

Now we can extend Proposition 21 in the case of finite signature.

Proposition 27 Let (X, R) be a TRS over a finite signature .. Then the following
assertions are equivalent:

(1) R is simply terminating;

(2) RUEmMb(X) is terminating;
(3) R is simplifying;

4) -k, Emb(x) i irreflezive.

Proof: The equivalence (1) < (2) was proved in Proposition 21 and the implication
(2) = (4) is trivial. The implication (4) = (3) follows since «}, | Emb(x) Satisfies all
requirements of being a simplification order.

It remains to show (3) = (2). Assume (3), then R admits a compatible simplifi-
cation order <. By definition any simplification order is compatible with Emb(X),
hence < is compatible with R U Emb(X). Due to Proposition 26 the simplification
order < is a reduction order; by Proposition 3 then R U Emb(X) is terminating,
concluding the proof. O

As we saw in Example 10 this proposition does not extend directly to infinite
signatures. A first investigation of this kind of problems for infinite signatures has
been given in [54]. In [52, 53] the notion of simple termination is revisited in such a
way that all these notions coincide, and Proposition 19 can be generalized to infinite
signatures. For finite signatures modularity of simple termination has been proved
in [45].

3.2 Total termination

If <1C<3y for two well-founded orders <; and <2, and <j succeeds in proving
termination of a TRS, then the same holds for <,. Hence the bigger the order is,
the more powerful for proving termination. This observation holds for both the
semantical view (monotone algebras) and the syntactical view (reduction orders).
From both viewpoints it is natural to consider the maximal kind of orders: total
orders. It turns out that both the semantical and syntactical notion of ‘termination
provable by a total order’ are equivalent: total termination.

21

Definition 28 A TRS (X, R) is called totally terminating if it admits a compatible
well-founded monotone X-algebra (A,¥ 4, <) for which the order < is total on A.

Proposition 29 Total termination implies simple termination.

Proof: Let (X, R) be a totally terminating TRS and let (A, ¥ 4, <) be a compatible
well-founded monotone ¥-algebra for which the order < is total on A. Assume it
is not a simple monotone X-algebra. Then there exist f € X, a1,...,a, € A
and 7 € {1,...,n} such that fa(ai,...,a,) > a; does not hold. From totality we
conclude:

a; > fA(al, . an).

Define g : A — A by g(z) = fa(ai,...,a;-1,2,a;11,...,0,), then g is strictly
monotone. We obtain an infinite sequence

ai > g(a;) > g(g(ai)) > g(g(g(a:))) > ---,

contradicting the well-foundedness of (A,<). Hence (A4,%¥4,<) is a compatible
simple monotone Y-algebra, proving simple termination. O

If the alternative definition of simple termination is used as it is given in [52, 53],
then Proposition 29 does not hold any more for infinite signatures.

For the syntactical counterpart of the definition of total termination it is gener-
ally not useful to consider open terms:® two variables x,y are never comparable by
a reduction order since z < y would imply z° < ¢ for all o which does not hold if
z? and y? are chosen to be equal. Instead we consider ground terms. The algebra
of ground terms over X is denoted by Tero(X); for this algebra to be non-empty, we
require the existence of at least one constant. This is not a strong restriction: if the
original signature ¥ does not contain a constant we simply add one, without affect-
ing the definitions we already gave. Remember that a reduction order is defined to
be a well-founded order that is closed under subsititutions and contexts; for ground
terms there is nothing to substitute by which the requirement of closedness under
subsititutions is empty and may be omitted.

To speak about compatibility with a reduction order on Tero(X) we cannot
compare | and r for rewrite rules [— r directly any more since usually these terms
are no ground terms. Instead we give the following definition.

Definition 30 A reduction order < on Tery(X) is called compatible with a TRS
(3, R) if 19 > % for every ground substitution o and every rewrite rule | — r in R.

Proposition 31 Let X be a signature containing at least one constant. Then a
TRS (X, R) is totally terminating if and only if it admits a compatible total reduction
order on Tery(X).

Proof: If < is a compatible total reduction order on Ter¢(X), then (Tery(X), X, <)
is easily checked to be a compatible well-founded monotone algebra. Since < is
total, this proves total termination.

Conversely, let (A4, ¥ 4, <) be a compatible well-founded monotone X-algebra for
which the order < is total on A. For t € Terg(X) the interpretation [t], in A
does not depend on a : XY= A and we may omit the subscript a. Choose any total
well-founded order < on X; Zermelo’s Theorem (equivalent to the Axiom of Choice)
states that such < exists for every set ¥. In Proposition 43 we shall see that such

3For rewriting systems involving only one variable the existence of a compatible total reduction
order on open terms makes sense, but is not equivalent to our notion of total termination. For
instance, the TRS consisting of the two rules f(f(z)) — ¢(f(z)) and g(g(z)) — f(g(x)) is totally
terminating but does not admit a compatible total reduction order on open terms.

22

a total well-founded order < on ¥ gives rise to a total reduction order <,p, on
Tero(X). Now one checks that < defined by

t<u & [t <[u]l V[t =[u] At <rpou)

is a total reduction order on Tero(X) compatible with the TRS (X, R). O

In order to prove that a particular TRS is not totally terminating we can apply
Propositions 21 and 29: if RUEmb admits an infinite reduction then R is not totally
terminating. This only works if the TRS is not simply terminating. The following
theorem can be used to prove that a particular simply terminating TRS is not
totally terminating, concluding that standard techniques for proving termination
are not applicable.

Proposition 32 Let (X, R) be any TRS for which CJt] _)EUEmb(E) Clu] for some
context C and terms t,u. Then (X, R) is totally terminating if and only if (3, RU
{t = u}) is a totally terminating TRS.

Proof: The ‘if’-part is by definition. For the ‘only if’-part assume that (X, R) is
totally terminating. Add a constant to X if it does not contain one. By Proposition
31 the TRS (X, R) admits a compatible total reduction order < on Tero(X). If z7 >
(f(z1,-..,25))? for any ground substitution o and any rule f(z1,...,z,) = z; in
the TRS (X, Emb(X)), then this would give rise to an infinite descending sequence,
similar as in the proof of Proposition 29, contradicting well-foundedness. By totality
we conclude (f(z1,...,2,))7 > z¢ for any ground substitution ¢ and any rule
flzy,...,2,) = z; in (B, Emb(X)), hence < is compatible with the TRS (X, RU
Emb(Y)). Let o be an arbitrary ground substitution. Applying this compatibility to
(CH)” = b sy (Clu)) vields C7[t]) = (C[E)” > (Clul)” = C*[u7]). Suppose
u? > 17, then this contradicts the property that < is closed under contexts. By
totality we conclude ¢ > w?. This holds for arbitrary o, hence < is compatible
with (£, RU {t — u}). From Proposition 31 we conclude that (£, RU {t = u}) is
totally terminating. O

Example 12 In Example 8 we saw that the TRS R consisting of the two rules

flg(@) = f(f(2)
9(f(x)) — g(9(=))

is terminating. By Proposition 24 it is even simply terminating. Choosing ¢t =
g(z),u = f(z),C = f(O) the requirements of Proposition 32 are fulfilled. Since
RU {t —» u}) admits an infinite reduction g(f(z)) — g(g9(z)) = g(f(z)) — ---, we
conclude from Proposition 32 that R is not totally terminating.

Exercise 8 Prove that the TRS consisting of the three rules g(h(z)) = f(f(z)),
f(f(z)) = g(g(z)) and f(g(z)) = g(h(z)) is not totally terminating.

A more detailed study of total termination is presented in [22, 26]; generaliza-
tions of Proposition 32 are given in [24].

3.3 The hierarchy

Let (4,X4, <) be a well-founded monotone algebra. Depending on properties of
the corresponding well-founded monotone algebras we propose a hierarchy of types
of termination.

23

Definition 33 A TRS (2, R) is called polynomially terminating if it is compatible
with a well-founded monotone algebra (A,%X 4,<) in which A = N, < is the usual
order on N and fa is a polynomial for all f € X.

A TRS (X, R) is called w-terminating if it is compatible with a well-founded
monotone algebra (A, X 4,<) in which A =IN and < is the usual order on IN.

Proving polynomial termination was discussed extensively in Subsection 2.2.
Both for polynomial termination and w-termination for any fixed N we may replace
N by {n € N | n > N}, yielding equivalent definitions due to linear transformation.

Proposition 34 The following implications hold:

polynomial termination
—> w-termination
= total termination
= simple termination
= termination.

Proof: The implication from total termination to simple termination was given by
Proposition 29; the other implications are trivial. O

None of the implications in the hierarchy holds in the reverse direction, not even
for single rule string rewriting, as we see in the next proposition.

Proposition 35
(1) The TRS f(g(h(z))) = 9(f(h(g())))

is w-terminating but not polynomially terminating;

(2) the TRS [(9(=)) = 9(f(f(2)))

is totally terminating but not w-terminating;

(3) the TRS f(9(f(2))) = F(f(f(9(9(=)))))

is simply terminating but not totally terminating;

(4) the TRS [f(f(z)) = f(9(f(2)))

is terminating but not simply terminating.

Proof: For the proofs of (1) and (2) we refer to [64]. In Examples 7 and 11 we
proved (4). Non-total termination in (3) follows from Proposition 32 and the infinite
reduction

9(g(f())) = g(f(f(g(g(=))))) — f(f(g(g(f(g(9(2))))))) = ---

——"

of the rewrite rule g(f(z)) — f(f(g9(g9(x)))). Simple termination in (3) will be
proved in Example 32. O

The hierarchy of Proposition 35 allows lots of extensions and refinements. For in-
stance, within polynomial termination one can distinguish according to the degrees
of the polynomials. Between polynomial and w-termination one can distinguish ac-
cording to classes of functions allowed, like the elementary functions from [47], or
primitive-recursive functions.

Between w-termination and total termination one can distinguish according to
the order types of the total orders in the monotone algebras. For instance, in [26]
it has been shown that essentially the only relevant order types are ordinals of the
type w®, while for all ordinals & < w+ 1 a TRS has been given that is compatible
with a total well-founded monotone algebra of order type w®, but not with one
having a smaller order type. Note that this way of connecting an ordinal to a

24

TRS has nothing to do with the order type of orders on terms, or with the kind of
functions on natural numbers that are allowed. For instance, the system in Example
16 describing Ackermann’s function which is known not to be primitive-recursive,
can be proved to be w-terminating in our terminology.

Between total termination and simple termination one has the notion of non-
self-embeddingness from [55]: a TRS (X, R) is called self-embedding if it admits a
reduction of the shape

t =8 u =) b

Clearly such a reduction (called a self-embedding reduction) gives rise to an infi-
nite reduction of R U Emb(X). From Proposition 21 we conclude that simple ter-
mination implies non-self-embeddingness. Using Proposition 17 one easily proves
that for finite signatures non-self-embeddingness implies termination. Example 10
shows that for this implication finiteness of the signature is essential. For both
implications the converse does not hold, even not for single rule string rewrit-
ing: the rule f(f(z)) = f(g(f(z))) is self-embedding and terminating; the rule
f(g(x)) = h(g(g(f(f(h(x)))))) is non-self-embedding and not simply terminating.

The notion of termination can be weakened in various ways, including innermost
normalization, outermost normalization and weak normalization. It was shown in
1996 by Geser that the single string rewriting rule

F(g(f(9(2)))) = 9(f(9(f(f(9(2))))))

is weakly normalizing, even innermost normalizing, but not outermost normalizing
and hence not terminating.

Another way of weakening termination is non-loopingness as described in [69]:
a TRS (I, R) is called looping if it admits a reduction of the shape t -+ C[t] for
some term ¢, some context C' and some substitution o. Clearly termination implies
non-loopingness, on the other hand the TRS consisting of the rules

fg(2)) = f(h(h(2))), h(g(x)) = g(h(z)), h(c) = g(c)

is non-terminating and non-looping. In [69] also a one rule TRS and a two rule
string rewriting system with these properties are given; for one rule string rewriting
it is still open whether the notions of termination and non-loopingness coincide. A
further weakening of non-loopingness is acyclicity: a TRS (X, R) is called cyclic if
it admits a reduction of the shape ¢ —}, ¢ for some term t¢.

Except for polynomial termination for all properties in the hierarchy undecidabil-
ity of that property for arbitrary finite TRSs has been proved ([35, 55, 13, 66, 30]),
sometimes even for single rewrite rules ([15, 50, 48, 31]). In [30] the stronger result
of relative undecidability has been proved: for all implications X = Y in the hierar-
chy (except for X being polynomial termination) the property X is undecidable for
finite TRSs satisfying Y. For polynomial termination undecidability is conjectured;
it does not follow from Proposition 11 since there the polynomial interpretation is
already fixed. In [31] most of these results are extended for single rules.

4 Syntactical methods

From Proposition 3 we recall that any TRS is terminating if and only if it admits
a compatible reduction order. Here compatibility means that every left hand side
is greater than the corresponding right hand side. Hence if there are finitely many
rules and the order is effectively computed, then this compatibility is effectively
computed too, yielding a mechanizable method for proving termination In this
section we discuss the two main classes of reduction orders suitable for mechanizing
termination proofs: the recursive path order and the Knuth-Bendix order. Several

25

extensions of these orders, in particular of the recursive path order, have been
proposed; see [61] for an extensive overview.

For the recursive path order a decision procedure for compatibility with a given
finite TRS is straightforward from the definition, for the basic version of the Knuth-
Bendix order such a procedure is described in [20]. We concentrate on the general
behaviour of these two typical orders. In Section 5 we shall see in various examples
how a termination proof of a finite TRS over a finite signature can be given by
proving termination of an infinite TRS over an infinite signature by means of the
recursive path order. Therefore we do not restrict to finite signatures here. Before
giving the definitions we introduce some auxiliary notions.

Definition 36 Let X be any signature. A precedence is a (strict) partial order on
3.

We restrict to partial orders here; it is possible to generalize to quasi-orders,
but most of the power of this generalization is also covered by doing some basic
preprocessing on the TRS as we shall see in Subsection 5.1.

In order to be able to compare f(s1,--.,s,) and f(t1,-..,%,) by comparing the
arguments we sometimes need an order on sequences of terms, like the multiset
order or a lexicographic order. This way of lifting orders is called the status. We
shall need preservation of well-foundedness and some monotonicity requirements for
this status; we give the following definition.

Definition 37 A status function 7 maps every f € X to either mul or lex, for
some permutation ™ on {1,...,n}, where n is the arity of f.

For a partial order < on terms the partial order <™\ is defined on sequences
of length n. If 7(f) = mul then it describes the multiset extension. More precisely,

<81,...,8n> <mul <t1,...,tn) -~ [81,...,8n] <# [tl,...,tn]

where <y is the usual multiset order. If 7(f) = lex, then <) describes lexico-
graphic comparison in which argument w(1) has the highest priority, argument m(2)
has the next priority, and so on.

For constants and unary symbols the choice of the status has no effect: for
constants there are no arguments at all to compare and for unary symbols f all
possible choices of 7(f) satisfy

(s) <" (1) & s<t

There is no fundamental reason to restrict to multiset order and lexicographic
order, but in practice these two kinds of liftings suffice, while giving a fully general
definition of status will be rather complicated.

4.1 Recursive path order

The recursive path order with only multiset status goes back to [17]; a version with
lexicographic status was first described in [38].

Theorem 38 Let ¥ be any signature. Let < be a well-founded precedence on ¥
and let T be a status on X. Then there exists exactly one reduction order <,p, on
Ter(X) satisfying
S>mot & s=f(s1,...,8,) and
(1) si =t or s; =rpo t for some 1 <i<m, or
(2)t=g(t1,---,tm), 8 >=rpo t; for all 1 < i < m, and either
(a) f =g, or
(b) f =g and (s1,...,80) =58 (t1, .., tm).

26

The proof of Theorem 38 will be given in Subsection 4.2. Here we assume it holds
and discuss its power for giving termination proofs and some other consequences.

Definition 39 The reduction order <,p, implied by Theorem 38 is called the re-
cursive path order. In case all symbols have a lexicographic status, it is also called
the lexicographic path order.

Definition 40 A TRS is called rpo-terminating if it is compatible with <p, for
some well-founded precedence < and a status function 7.

Since <,p, is a reduction order by Theorem 38, we conclude from Proposition 3
that every rpo-terminating TRS is indeed terminating.

Note that well-foundedness of < is obtained for free in case the signature is
finite. For infinite signatures well-foundedness of the precedence < is essential for
well-foundedness of <p,: if ¢1 > co > c3 > --- for constants c;, ¢z, c3,. .., then also
€1 >rpo €2 >rpo C3 >rpo --- by clause (2a). Further note that always m = n in
clause (2b).

Given a precedence and a status, Theorem 38 yields a straightforward procedure
to check whether ¢ >,,, u holds for two given terms ¢, u or not, since for all recursive
calls the sums of the sizes of the arguments is strictly smaller. More precisely, if
we want to conclude that ¢ >, v holds then this is done by the characterization
of Theorem 38 by proving s; >pp, t; for ¢ = 1,... k, for some finite ¥ and terms
S1y.-+ySkyt1,--.,tx satisfying |s;|+|t;| < [t|+]|u|. All clauses of the characterization
are of this shape, including the requirements on multiset lifting and lexicographic
lifting in clause (2b). Considered as a recursive procedure this will always terminate
since in every recursive call the sum of the sizes of the arguments decreases. In a
high level functional language implementation of this procedure is hardly more than
copying the clauses of the characterization in the right format.

The next observation is that, given a finite TRS, it is decidable whether it is
compatible with the reduction order <,,, for some precedence and some status.
This can be done by checking for | >,,, 7 for all (finitely many) rules [— r and all
(finitely many) precedences and status functions. Much more efficient is starting
with the empty precedence, and only extend it by choosing f > g when it is forced
by clause (2a) in trying to prove | >, r for a rule I — r. In a similar way the
choices for 7 are not made before they are forced by the proof obligation. In this way
checking for compatibility with some <,,, and hence checking for rpo-termination
can be done purely automatically and very fast; it is one of the first things to try
when for a given TRS a termination proof has to be found.

Before giving some examples we give a useful proposition.

Proposition 41 Let t —)Emb u. Then t >,p, u for every precedence and every
status.

Proof: By clause (1) we conclude f(si,...,5,) >rpo s; for all i =1,...,n, for all
f. Since <y, is closed under contexts we conclude ¢t >, u for t = gmp u. Now
the proposition follows from transitivity of <,,,. O

This means that for trying to prove rpo-termination, all rules I — r for which
| —»%,.; v may be ignored.

Example 13 We recall the TRS from Example 3 describing integer arithmetic:

O+z — =

s(x)+y — s(z+y)
Oxz — O
s(@)xy — y+(z*y).

27

In order to prove termination we will prove [>,p, 7 for all rules I — r for a suitable
precedence <.

For the first and the third rule [— r we conclude ! >,,, r by Proposition 41, or
directly by clause (1).

For the second rule we have to choose + > s. Then in order to conclude
s(x) +y >rpo s(z + y) by clause (2a) it suffices to prove s(z) + y >ppo +y. This
follows from Proposition 41.

For the fourth rule we have to choose * = +. Then in order to conclude s(z) *
Y >rpo Y+ (x xy) by clause (2a) it suffices to prove s(x) xy >rpo y and s(x) xy >rpo
z * y, both following from Proposition 41.

Hence by choosing any precedence < satisfying s < + < * we have [>,,, r for
all rules I — r, proving termination.

Note that clause (2b) and the status function do not play a role in this example.
Further note that the same proof also holds if the fourth rule is replaced by s(z)xy —
(z xy) +y as we did in Example 6, where we saw that this causes complications in
the proof by means of polynomials.

The next proposition states that the requirement of s >,p, t; in clause (2) may
be omitted in some cases of clause (2b).

Proposition 42 Let ¥ be any signature, let < be a well-founded precedence on ¥
and let T be a status on X. Let s,t be arbitrary terms, then

S mot < s=f(s1,...,8n) and
(1) si =t or 8; =rpo t for some 1 <i<m, or
(2) t = g(t1,...,tm), and either
(a) f>g and s = t; for all1 <i<m, or
(bmul) f =g and 7(f) = mul and (s1,...,8,) >ms (t1,...,tm), or
(blex) f =g and 7(f) =lex,; and there exists 1 < i < n satisfying
Sx(j) = tr(y) Jor 1 < j <1, and
Sx (i) >rpo tn(i); and
8 =rpo tr(j) fori < j <mn.

Proof: Note that clauses (1) and (2a) are exactly the same as the corresponding
clauses in Theorem 38. We will prove now that clause (2b) in Theorem 38 holds
if and only if either clause (2bmul) or clause (2blex) holds. The ‘only if’-part is
immediate. For the ‘if’-part first assume that clause (2bmul) holds. In order to pove

clause (2b) in Theorem 38 we have to show that s >,p, t; holds for alli =1,...,n.
From clause (1) in Theorem 38 we know that s &5, s; holds for all ¢ = 1,...,n,
hence

(s) >—f;,‘f)1 (81,-+-58n) >—¥,‘,‘f,l (t1,. - ytm)

from which we conclude that s >, ¢; holds for all ¢ =1,...,n.

It remains to show that clause (2b) in Theorem 38 in case that clause (2blex)
holds. Again it suffices to show that s >,p, ty holds for all k =1,...,n. If kK = 7(j)
for i < j < n this is part of clause (2blex). If k = 7(i) then s >,p, sk >rpo tk
and if k = w(j) for 1 < j < i then s >,p, sy = t;. Hence s >, t; holds for all
k=1,...,n. 0

Example 14 As in Example 2 we consider associativity:

f(f(@,y),2) = [z, f(y,2))

Since only one operation symbol is involved, the precedence does not play a role here.
Choose 7(f) = lex, for w being the identity on {1, 2}. For proving f(f(z,y), 2) >rpo

28

f(z, f(y, 2)) it suffices by choosing ¢ = 1 in clause (2blex) to prove f(x,y) >rpo &
and f(f(x,y),2) >rpo f(y,2). Both follow immediately from Proposition 41. So
the TRS is compatible with <,,,, and hence terminating.

Example 15 Consider another variant of a TRS describing integer arithmetic:

0+z = =z
s()+y — s(@+y)
Oxz — 0
s(x)xy — y+ (y*x).
For the first three rules | — r we proved | >, for any precedence satisfying
+ > s in Example 13.

For the fourth rule again choose * > +. In order to conclude s(z) * y >,
y+ (y*z) by clause (2a) we have to prove that s(x)*y >rpo ¥ and s()*y > ppo Yy*2.
The first follows from Proposition 41, for the second we choose 7(*) = mul and by
clause (2bmul) it remains to prove that (s(x),y) > (y,). This follows from
y =y and s(z) >pp, .

Hence by choosing any precedence < satisfying s < + < * and 7(x) = mul we
have | >p, r for all rules | = r, proving termination.

Example 16 The following TRS describes computation of Ackermann’s function,
which is known not to be primitive-recursive.

a(0,z) — s(z)
a(s(x),0) — a(z,s(0))
a(s(z),s(y)) — al(z,a(s(z),y))-

Termination of this system follows from compatibility with <,p,, by choosing a > s
and 7(a) = lex, for 7 being the identity on {1,2}. Although the TRS is terminating,
small terms can have extremely long reductions. For instance, a(s(s(s(s(s(0))))), s(0))
reduces to its normal form of the shape s™(0) where both n and the length of the
reduction are numbers of far more than 10°%° digits.

Exercise 9 Prove termination of the following three TRSs by means of recursive
path order.

fg(z)) = alg(f(z)), 2);
a(f(z),y) — flalz, f(y))
a(c, x) - f(=x)

b(z, f(y)) — a(z,b(y,=))
b(x,c) =

7(0) - 0

f(s(z)) — s(s(f(2)))

9(0) - f(s(0))

9(s(z)) — flg(z)).

From Propositions 21 and 41 we conclude that rpo-termination implies simple
termination. It was shown in [24, 22] that rpo-termination implies total termination.
If the TRS is finite then rpo-termination implies w-termination; if moreover all
function symbols have multiset status then for the corresponding interpretations in
the naturals even primitive-recursive functions can be chosen ([33]).

The latter result does not extend to infinite TRSs. Consider for example the
TRS R consisting of the rules

9(f()) = f(--(f(9(2)))--)
———r

29

for all n € N. Now rpo-termination of R follows by choosing the precedence g > f.
Conversely, assume that R is w-terminating. Then there exist strictly increas-
ing functions f,g:IN — N satisfying g(f(z)) > f™(g()) for all n,z € N. From
g9(f(z)) > g(x) one concludes f(z) > z, for all z € N. Hence g(f(0)) > f*(g(0)) >
" Yg(0)) > --- > f(g(0)) for all n € N, which is impossible. Hence R is not
w-terminating.

However, rpo-termination does not imply polynomial termination, not even
for one-rule string rewriting systems. As an example we mention f(g(h(x))) —
g(f(h(g(z)))). From Proposition 35 we recall that this TRS is not polynomially
terminating, while rpo-termination can be shown by the precedence f > g > h.

Conversely, neither w-termination nor polynomial termination imply
rpo-termination: the TRS consisting of the rules f(f(z)) — g(x),g9(z) — f(x)
is not rpo-terminating, while it admits the very simple polynomial interpretation
f(x) =242, g(x) = 2+ 3. A single string rewriting rule having the same prop-
erty is f(g9(f(z))) = g(f(f(h(x)))) with the polynomial interpretation f(z) = 2z,
g(z) =2+ 1, h(z) = .

Proposition 43 Let < be a well-order on ¥ and let 7(f) = lex; for all f € &
for suitable w, i.e., all symbols have lexicographic status. Then <,p, restricted to
Tero(X) is a well-order.

Proof: Since <,p, is a reduction order by Theorem 38 it is well-founded, and
it remains to show totality. This is done by proving the following assertion by
induction on n:

If ¢ # wand |t| + |u| < n for ¢t,u € Terq(X) then either ¢ >, u or
U >rpo t.

Let t = f(t1,...,tn) and u = g(u1,...,uy). I t; = uw or t; > u for some
i =1,...,n then from clause (1) we conclude t >ppo u. If u; =t or u; >pp, t for
some j = 1,...,m then from clause (1) we conclude u >, t. In both these cases
we are done. In the remaining case we conclude from the induction hypothesis that
U >ppo ti forall s =1,...,nand ¢t >,po uj forall j = 1,...,m. If f > g then
t > rpo u by clause (2a); if g > f then u >, t by clause (2a). In both cases we are
done; since < is assumed to be total in the remaining case we have f = g. Since
t # u there exists ¢ for which ¢; # u;. Let 7(f) = lex, and let k¥ be the smallest
value > 1 for which #(4) # un). By the induction hypothesis we either have
tr(k) >rpo Un(k) OF Ur(k) >rpo tx(k)- The first case yields t >,,, u by clause (2b),
the second case yields u >y, t by clause (2b). In all cases we are done. O

4.2 Justification of recursive path order

In this subsection we prove Theorem 38. As far as we know the first full treatment
was given in [22], which is roughly followed here. Surprisingly, in the literature
where recursive path order is introduced ([17, 18]) a characterization as in Theorem
38 is posed as being a recursive definition, followed by a case analysis for verifying
transitivity and irreflexivity. However, there it is left unclear what is meant by a
multiset lifting or lexicographic lifting of a relation which is not yet known to be
transitive or irreflexive. Only in the unpublished note [38] some incomplete hints
for justification are given.

We will construct <, as being the least fixed point of a continuous operator ®.
Readers familiar with lattices or complete partial orders will recognize V,>o®" (L)
as being the standard construction for such a least fixed point. In our case V
corresponds to ordinary set union and L corresponds to #. We will present the

30

proof independent from the theory of complete partial orders. Also the proof of
well-foundedness will be given independent from Kruskal’s Tree theorem, although
using a similar minimal bad sequence argument.

First we collect some required properties of the status function.

Proposition 44 Let n € N. Let 7 = mul or 7 = lex,; for some permutation ™ on
{1,...,n}, where n is the arity of f. Write <,<; for partial orders on a fized set
T, fori € N. Then

(1) If (t1,...,tn) <] (81,...,8n) and (t; <1 85 = t; <2 s5) for all i,j=1,...,n,
then (t1,...,tn) <% (S1,.-,5n)-

(2) If t; < s; for some i =1,...,n and t; = s; for all j # i then (t1,...,t,) <"
(8155 8n)-

(8) Let f : T—T be strictly monotone with respect to <, i.e., f(t) < f(s) for all
t,s satisfying t < s. If (t1,...,tn) <" (81,---,8n) then {f(t1),..., f(tn)) <™
<f($1), LR f(Sn))

(4) If <1 C <2 C<3C - then
Uz <) =UZi(<9)-

(5) If S C T and < restricted to S is well-founded, then <" restricted to S™ is
well-founded too.

Proof: All properties are easily checked by using the definitions of lexicographic
order and multiset order, and their standard properties. Note that the D-part of
the continuity condition (4) follows from the monotonicity condition (1). O

For the rest of this subsection we fix ¥ to be any signature, < to be any prece-
dence on ¥ and 7 to be any status on X.

Theorem 38 consists of an existence claim and uniqueness claim. Uniqueness is
stated in the next proposition.
Proposition 45 Let <! = and <2

TPO PO
requirements of Theorem 38. Then <

be two orders on Ter(X) both satisfying the

1 — 2
T™PO <'rpo ‘

Proof: By symmetry it suffices to prove that s =2 tif s =1 ¢. This is done

TPO TPO

by induction on the size: as the induction hypothesis we assume that s’ >, t' =

s' >2,, t' for all s',¢ satisfying |s'| + [t'| < |s| + [t|. Write s = f(s1,...,5n).

If s >}, t by case (1) then either s; = t or s; >, t for some i = 1,...,n.

Applying the induction hypothesis yields that either s; = ¢ or s; >%po t. By case
(1) we conclude that s =2 _ t.

TPO

If s >1,, t by case (2) then we can write t = g(t1,...,tm,). Foralli=1,...,m
we have s >—¥po t;; by the induction hypothesis we conclude that s >—%po t; for all
i=1,...,m. In case (2a) we have f > g and we conclude s -2, t by case (2a) and

we are done.
In the remaining case (2b) we have f = g and (s1,...,s,) >—i;§f) (t1,- - tm)-
From the induction hypothesis we conclude (s; >,, t; = s; >2,, t;) for all

i,7 = 1,...,n; from Proposition 44, part (1) we then conclude (s1,...,sy) >—%,T,§f)

(t1,...,tm). We already saw that s >2,, ¢; for all i = 1,...,m, hence s >, t by
case (2b). O

For proving Theorem 38 it remains to show the existence claim. This will be done
by giving a definition for <,,, and showing that it satisfies all required properties.

31

Definition 46 Let T be a partial order on Ter(X). Then the binary relation ®(C)
on Ter(X) is recursively defined by:

t®(C)s & s=f(s1,---,8,) and
(1)t =s; ort ®(C) s; for some 1 <i<mn, or
(2)t=g(t1,...,tm), t; ®(C) s for all 1 <i < m, and either
(a) g =< f,or
() g=17F and (ty,...,tn) C"F) (s1,...,5,).

Since in this definition of ¢ ®(C) s the recursive calls ¢ ®(C) s' all satisfy
|s'| +|t'] < |s| + |t|, as a binary relation ®(C) is well-defined. Next we prove that
it is a partial order again.

Proposition 47 Let C be any partial order on Ter(X). Then ®(C) is a partial
order on Ter(X) too.

Proof: We have to prove irreflexivity and transitivity. First we prove transitivity
by induction on the size of the terms. More precisely, for t ®(C) s and s ®(C) u we
shall prove ¢t ®(C) u, where as the induction hypothesis it is assumed that (¢’ ®(C
) s'As' @(C) w') =t ®(C) o for all ', s, u' satistying [¢'|+|s'|+ |u'| < |t|+]|s|+|ul.
Write s = f(s1,...,8,) and u = h(uy,...,ux). We do the following case analysis.

e Let s ®(C) u be by case (1). If s = u; for some ¢ we have t ®(C) uy; if
s ®(C) u; we apply the induction hypothesis to t, s, u; also yielding ¢t ®(C) u;.
In both cases we have t ®(C) u; from which ¢ ®(C) u is concluded by (1).

o Let s ®(C) w by case (2) and ¢t () s be by case (1). From the first assump-

tion we conclude t = s; or t ®(C) s; for some i = 1,...,n, from the second
we conclude s; ®(C) u. Applying the induction hypothesis on t, s;, u yields
t®(C) u.

e Let s ®(C) v and t ®(C) s be both by case (2), write t = g(t1,---,tm)-
Since t; ®(C) s for all i = 1,...,m we can apply the induction hypothesis on
t;,s,u yielding t; ®(C) wfor alli=1,...,m. If g < for f < hthen g <h
yielding ¢ ®(C) u by case (2a). In the remaining case we have ¢ = f and
(t1,. . tm) 7Y (s1,...,8,) and f = h and (s1,...,8,) C7F) (uy,...,up).
From transitivity of C7(/) we conclude t ®(C) u by case (2b).

Hence ®(C) is transitive.

For proving irreflexivity we again apply induction on the size of the terms. As
the induction hypothesis we assume —(s' ®(C) s') for terms s’ satisfying |s'| < |s|,
assume by contradiction s ®(C) s. Write s = f(s1,...,8n). Again we do case
analysis.

e Let s (C) s be by case (1). Then s = s; or s ®(C) s; for some i =1,...,n.
Since s; ®(C) s by case (1), we conclude s; () s; by transitivity of ®(C) ,
contradicting the induction hypothesis.

e Let s () s be by case (2a). This contradicts irreflexivity of <.
e Let s ®(C) s be by case (2b). This contradicts irreflexivity of C7(/).

Hence ®(C) is irreflexive. O

Example 17 Let X consist of two constants a,b and a unary symbol f. Let C be
defined by
sCt & s=f"a)At=f"() for some m,n > 0.

32

Let < be defined by b < a < f. Then &(C) restricted to ground terms is the
following linear order:

b ®(C) a ¥(C) f(a) ®(C) f(f(a)) ®(C) f(F(f(a)))---
o(C) £(b) (C) F(f(b)) ®(C) F(f(F(D)))---

Note that [is closed under contexts, but ®(C) is not. Note that C is not contained
in ®(C) .
Proposition 48 Let C; C Cy. Then ®(C1) C $(C2).

Proof: Again we do induction on the size of the terms: we assume ¢ ®(C;) s and
we have to prove t ®(C2) s. As the induction hypothesis we assume (t' ®(C1) s') =
(t' ®(C2) §') for all §',t' satisfying |s'| + |t'| < |s| + [t].

Ift ®(C1) sis by case (1) or (2a) then t ®(C2) s is immediate from the induction
hypothesis. If ¢t (1) s is by case (2b) then we still have to prove

(.t CTP (a1, sn) = (o tm) Co (51, sn).

This follows from Proposition 44, part (1). O

The smallest partial order on Ter(X) is (), the empty relation. By applying ®
on () we obtain a new partial order, on which ® can be applied again, and so on.
We define <, to be the limit of this process as follows.

Definition 49 Let <o= 0 and <;11= ®(<;) for i > 0. We define
<o = Uo <

In other words, t <,p, s if and only if ¢ <; s for some positive integer ¢. In order
to prove Theorem 38 we have to verify that <., defined in this way is indeed a
reduction order satisfying the given requirements.

Proposition 50 For all 0 < k <n we have <;xC<y,.

Proof: We prove <;C<+1 by induction on k. For k = 0 it is trivial; for & > 0 it
follows from the induction hypothesis and Proposition 48. O

Proposition 51 The relation <.y, is a partial order on Ter(X).

Proof: We have to prove irreflexivity and transitivity. First assume s <, s. Then
there is some positive integer ¢ with s <; s, contradicting irreflexivity of <;.

Next assume ¢t <y, $ and s <,p, u. Then there are positive integers 4, j with
t <; s and s <; u. Let k be the maximum of ¢ and j; from Proposition 50 we
conclude t <; s and s < u. From transitivity of <; we conclude ¢t < u, hence
t <rpo u. Hence <y, is transitive. O

Proposition 52 The partial order <p, on Ter(X) is closed under contexts.

Proof: Assume t <,p, s; we have to prove

h(ul, R TP T TP ,un) <rpo h(ul, ey Ui—1, 8, Ujg 1y - ,un).

33

Since t <rpo s there exists ¢ with ¢ <; s. It suffices to prove that
B(Uty e U1,y Uity e o ey Up) <1 B(ULy ooy Uity 8y Uit 1y e - vy Up)
according to case (2b) in the definition of ®. For j =1,...,n, j # i we have
Ui <ig1 b1, Uim1, 8, Wity - - -, Up)

according to case (1). Since t <;41 s according to Proposition 50 we have ¢t <;1
h(w1y .-y Wi 1,8, Wit1,---,Uy) according to case (1) in the definition of ®. It re-
mains to show

T(h)
(ul,...,ui,l,t,uﬂl,...,un) < <’LL1,...,’LLz',l,S,’LLi_’_l,...,un).

This follows from Proposition 44, part (2). O

Proposition 53 The partial order <,p, on Ter(X) is closed under substitutions.

Proof: Let o be any substitution. Assume t <, ; we have to prove t7 <pp, 7.
We do this by proving ¢t < s for t, s satisfying ¢ <y, s, for every k > 0. The proof
is given by induction on both the size of the terms and k, more precisely, as the
induction hypothesis we assume that t' <z s’ = t'7 < s’ for all &', satisfying
|s'] +|t'] < |s| +|t], and t' <p_1 " = t'7 <x_1 s" for all s',¢'.

Again write s = f(s1,...,8,). If t < s is by case (1) in the definition of ® then
either t = s; or t <, s; for some ¢ = 1,...,n. From the induction hypothesis we
conclude that either t7 = s7 or t7 <}, s7, hence t” <, s” by case (1).

If t <y, s is by case (2) in the definition of ® then ¢ = g(t1,...,¢,) and t; < s
for all i = 1,...,m. From the induction hypothesis we conclude that tJ < s” for
all i = 1,...,m. For case (2a) we may conclude t? < s° by case (2a). For case
(2b) we have m = n and

(try s tm) <29 (51,0, 50).

It remains to prove
(7, ot <i) (7, 50).

This follows from Proposition 44, part (3), using that strict monotonicity of o with
respect to <g—1 is part of the induction hypothesis. O

Proposition 54 The partial order <p, on Ter(X) is a simplification order.

Proof: By Propositions 51, 52 and 53, <p, is an order which is closed under con-

texts and substitutions. By case (1) in the definition of ® we have f(x1,...,2,) =1
z; for all operation symbols f and all i € {1,...,n}. Hence also f(Z1,...,%n) >rpo
x;. O

Proposition 55 The partial order <,p, on Ter(X) is a reduction order.

Proof: Due to Propositions 52 and 53 the only thing to prove is that <y, is
well-founded.

If ¥ is finite this is immediate from Propositions 26 and 54. Here we give a proof
independent of Kruskal’s Tree Theorem (as it was used in Proposition 26) that also
holds if ¥ is infinite. The key argument is similar to the minimal bad sequence
argument in the proof of Kruskal’s Tree Theorem.

34

Assume by contradiction that <,,, admits an infinite descending sequence. We
call a term well-founded if it does not occur in an infinite descending sequence. Hence
we assume there is some non-well-founded term. Among all non-well-founded terms
we choose a term to of minimal size. Since tg is non-well-founded there exists a
non-well-founded term ¢; satisfying to >,po t1; among all such terms we choose t;
of minimal size. This process is extended to the following inductive definition: for
every ¢ > 0 we choose t; to be a term of minimal size among all non-well-founded
terms satisfying ¢;_1 >rpo ;- In this way we obtain a particular infinite descending
sequence tg >rpo t1 >rpo t2 >rpo ---- Due to the definition of <,,, we can write
t; = fi(ui’l,. .. ,ui,n(i)) and tiv1 (D('<k(z)) t;, for all i € IN and suitable k(’t) > 0.
First observe that all u; ; are well-founded: since t;_1 >ypo u; ; for ¢ > 0, non-well-
foundedness of u; ; contradicts minimality in the definition of ;.

If t;11 ®(<k(s)) t: is by case (1) in the definition of & for some ¢ then there
exists j such that t;11 = u;; or t;q <I>(-<k(,-)) u;,5, contradicting the fact that ¢;44
is non-well-founded and wu; ; is well-founded. Hence all steps t;11 ®(<y(;)) t; are by
case (2) in the definition of ®. Hence f; > fit1 or f; = fiy1 for all ¢ > 0. Since
< is well-founded, there exists N € IN such that f; = f;41 for all ¢ > N. Hence
for i > N all steps t;y1 ®(<k(;)) t: are by case (2b) in the definition of @, i.e.,

(Wit1,15 - -, Wit1,n) -<;g)) (U1, --,uip) for all § > N, where f = fy and n is the
arity of f. By Proposition 44, part (4), we conclude

(Uig1,15 - Uig1,n) <) (Wi, i)

for all i > N, contradicting Proposition 44, part (5), where the set S is defined by
S=UZnUj1uiy)-

Now the proof of Theorem 38 is completed by the following proposition.

Proposition 56 Two terms s,t satisfy s >rpo t if and only if s = f(s1,...,8n)
and

(1) si =1t or 8; >=rpo t for some 1 <i <mn, or
(2)t=g(t1,...,tm), 8 >rpo ti for all 1 < i < m, and either
(a) f =g, or
(b) f =g and (51, 50) =78 (b1, tm).

Proof: First we prove the ‘if’-part. If we are in case (1) we have s; = t or s; >, t for
some 1 <4 < n and some k € IN. We conclude s >41 t by case (1) of the definition
of &, hence s >,p, t. If we are in case (2) we have s >4, t; for all 1 < i < m,
for some ki,...,kn. Let k be the maximum of all k;. In case (2a) we conclude
s >p41 t by case (2a) of the definition of ®, hence s >, t. In case (2b) we apply
Proposition 44, part (4), yielding some p such that

(81, 8n) =0 (b1, tm).

Taking ¢ to be the maximum of k and p we obtain s >,41 t by case (2b) of the
definition of ®, hence again s >y, t.

Next we prove the ‘only if’-part; we assume s >, t. Hence for some k we
have t <y s. Since <g=) we have k > 0 and t®(<;_1)s. We follow the cases as
distinguished in the definition of ®. In cases (1) and (2a) we are in the cases (1)
and (2a) of this proposition, respectively. In case (2b) we have

(try .o tm) <29 (51,0 80)

35

from which we conclude
(tr,. . tm) <I80) (s1,..., 8n)

by Proposition 44, part (4). Hence we are in case (2b) of the proposition. O

This finishes the proof of Theorem 38.

An alternative definition of recursive path order in which all recursion has been
eliminated was given in [41, 42]. However, that definition is not equivalent to ours,
and it does not directly imply an effective procedure for deciding whether s >,,, ¢
for two given terms s, t.

4.3 Extensions of recursive path order

Many variations and extensions of the basic version of recursive path order have
been described in the literature. For an overview we refer to [61]. In this subsection
we discuss for all ingredients whether they allow generalizations.

Quasi-orders

One can define a quasi-order =<,,, instead of a partial order <p,, by a character-
ization similar to the one given in Theorem 38. In the literature this is the most
common way of presenting recursive path order. For termination proofs then the
strict part of this quasi-order has to be used, i.e., for every rule [— r one has to prove
that r <,p, [and not I <,,, r. Justification of this variant is more complicated than
our version; it has been done in detail in [22]. Indeed it is stronger than our version.
For instance if f has multiset status, then f(a,b) and f(b,a) are equivalent, and
if f > ¢ > d then in this version one obtains f(f(a,b),c) >=rpo f(f(b,a),d), which
does not hold in our version. In this approach also for the precedence a quasi-order
may be chosen, allowing that for distinct but equivalent function symbols f, g clause
(2b) is applicable. Another approach to cope with distinct equivalent symbols is
to replace them by one single symbol, as is covered by simple preprocessing as we
will describe in Subsection 5.1. In the literature many extensions of the quasi-order
based recursive path order have been proposed like the decomposition order, see for
instance [40, 37]. On ground terms they all coincide for total precedences ([59]).

Generalized status

There is no reason to restrict to multiset and lexicographic status as presented in
Definition 37. Every way of lifting an order on elements to an order on sequences of
elements satisfying the five properties of Proposition 44 will suffice. For instance, if

(s1, 52, 83) <7 (t1,t2,t3) & [s1,82] <% [t1,t2] V ([s1,s2] = [t1,t2] A s3 < t3),
being a combination of lexicographic and multiset status, then
F(s(2),4,9) »rmo f(y,z,5(x)).

This result can neither be obtained by pure multiset status nor by pure lexicographic
status.
Semantic path order

Instead of a precedence on function symbols one can choose a precedence being any
given quasi-order < on terms, giving the semantic path order <,,, due to [38]. It
is characterized by

36

Zf(sl,...,sn),and

) 8i =t Or 8; >spo t for some 1 <4 < m, or
2)t=g(t1,...,tm), 8 >spo t; for all 1 <4 < m, and either
(a) s = t, or

(b) s~tand (s1,...,5n) =5t (t1, ..., tm).

where > is the reversed strict part of < and ~ is the equivalence part of <. In
general the semantic path order is not closed under contexts, and compatibility
with <,p, does not guarantee termination. However, if the quasi-order < satisfies
the extra requirement

toru = fl.t)= FCu,..),

then compatibility with <,p, implies termination, see [38]. This gives a way of
proving termination that can also be applied for terminating TRSs that are not
simply terminating. The same power of this method is covered by semantic labelling
as we shall see in Subsection 5.4.
Recursive path order can be considered as a special case of semantic path order
by defining
f(tla"'ytn) jg(ulr":um) = f<<gvf=ga

where < is the well-founded precedence on X.

Modulo equations

The concept of recursive path order turns out to be hardly applicable for proving
termination modulo equations. Only some partial results are available for modulo
commutativity (C) and modulo associativity and commutativity (AC). For opera-
tion symbols having multiset status the order of the arguments does not play an
essential role in the definition of recursive path order: it is easy to see that compati-
bility with <, implies termination modulo commutatitivity of the binary symbols
having multiset status. Much more complicated are results for termination modulo
AC. An important notion with respect to modulo AC is flattening: AC-operators
are considered as being varyadic operators having an arbitrary finite multiset of ar-
guments. By disallowing direct nesting of these operators, every term has a unique
flattened representation. However, some additional requirements have to be fullfilled
before termination modulo AC of a TRS can be concluded from rpo-termination of
its flattened version, see [7]. Other approaches for variations of recursive path order
suitable for proving termination modulo AC are given in [19, 5, 57].

4.4 Knuth-Bendix order

The order we describe here combines the semantical and the syntactical approaches
as we discussed them until now. It is a generalization of the original Knuth-Bendix
order as described in [43]. The idea of such a generalization goes back to [18].

Definition 57 A weakly monotone Y-algebra (A,¥4,<) is a X-algebra (A,X4)
provided with a partial order < on A such that every algebra operation is weakly
monotone in all arguments. More precisely, for every f € ¥ and all aq,...,a,,
bi,...,bp € A for which a; < b; for some i and a; = b; for all j # i we have
fa(ar,...,an) < fa(by,...,by), where < is the union of < and equality.

A weakly monotone algebra (A, X 4, <) is said to have the subterm property if

falay, ... a,) > a;

for every f €%, a1,...,a, € A, i=1,...,n.

37

Proposition 58 Let ¥ be any signature. Let (A,34,<) be a weakly monotone X-
algebra, let < be a precedence on ¥ and let T be a status on X. Then there exists
exactly one order <yp, on Ter(X) satisfying

S kot & s= f(s1,-..,8,) and
(1) [s], > [t], for all o: X—A, or
(2) [s], > [t], for all a: X—=A, t = g(t1,...,tm), and either
(a) f =g, or
(b) =g and (s1,...,50) =ped) {t1, .+ tm).

Furthermore, the order <y, is closed under contexts and substitutions.

Proof: Similar to Subsection 4.2 we define <y, to be the least fixed point | $2,®¢(0)
of the operator ® on partial orders on Ter(X) defined by:

t®(C)s & s=f(s1,...,8,) and
(1) [s], > [tl, for all : X—A, or
(2) [s], > [tl, for all @ : X—A, t = g(t1,...,tm), and either
(a) g < f,or
(b) g=fand (t1,...,tm) C7U) (s1,...,8n).

This definition of ® is simpler than the version for recursive path order since there
is no recursion.

It is straightforward to check that ®(C) is transitive and irreflexive. Proving
uniqueness and closedness under contexts and substitutions, and the verification
that the order indeed satisfies the given property are all similar to the corresponding
proofs in Subsection 4.2. O

The order <p, as introduced in Propositon 58 is called the generalized Knuth-
Bendix order. The following proposition states that with some additional require-
ments it is well-founded, and hence can be applied for termination proofs.

Proposition 59 Let ¥ be any signature. Let (A,¥4,<) be a weakly monotone X-
algebra having the subterm property, let < be a precedence on ¥ and let T be a status
on X. If either X is finite or both < and < are well-founded then the corresponding
order <ppo 18 a reduction order.

Proof: The order <y, is closed under contexts and substitutions by Proposition
58, the only thing to prove is well-foundedness.

The subterm property immediately implies that <, is a simplification order;
if ¥ is finite then well-foundedness follows from Proposition 26.

In the remaining case we have that both < and < are well-founded. Then
it easily follows from the characterization of Proposition 58 that in any infinite
sequence that is descending with respect to <y, after a finite initial sequence only
clause (2b) is applied. For this case a minimal counterexample argument can be
given similar to the proof of Proposition 55. O

In Proposition 59 the subterm property is essential. For instance, if for a unary
function symbol f the operation f4 is the identity in some well-founded monotone
algebra, then the subterm property does not hold, and we have an infinite descending
sequence

¢ >kbo f(€) =rbo F(F(€)) =rbo F(F(f(€)) =rpo F(F(F(f(€))))---

for any constant c satisfying ¢ > f.

38

A special case of our order is obtained by choosing (A, <) to be the natural
numbers > N with the usual order, and

falks, ... kn) =w(f) + k1 +ka+ - +ky

for all f € X, and choosing 7 to be a lexicographic status. This special case
corresponds to the original Knuth-Bendix order. There for every f € T U X a
weight w(f) is defined, while w(z) = N for all z € X for some positive constant
N € N. Similar to the proof of Lemma 23 one easily verifies

Va : [s], > [t]l, © Var(t) Cx Var(s) A\W(s) > W(t),

where W (u) is defined to be the total weight of a term u, and Var(u) denotes the
multiset of variables in u. For the algebra to be well-defined we need the requirement
that w(c) > N for constants ¢; for the subterm property we need the requirement
that w(f) > 0 for unary symbols f. These are exactly the requirements as they
appear in the original Knuth-Bendix order. Note that these are quite restrictive,
for instance if a TRS contains a duplicating rule | — 7 then [>, r never holds.

Example 18 Termination of the TRS consisting of the two rules

9(g9(z)) = f(2), f(9(z)) = 9(f(2))

can not be proven by recursive path order. However, by Knuth-Bendix order this
is easy by choosing A to consist of the natural numbers, fa(z) = ga(z) = z + 1,
f > g. In the original terminology of weights, one has w(f) = w(g) = 1.

In the version of [20] it is allowed that w(f) = 0 for one unary symbol f if
f > g for all other symbols g; it is easily checked that for this version the subterm
property is also implied.

For using <ipo as a reduction order for mechanizing termination proofs, one
needs a procedure to find a suitable weakly monotone algebra and suitable >, 7
such that [>y, r for all rewrite rules [— r. For the restricted version described
above such a procedure has been given in [20].

5 Transformational methods

Until now we described some basic methods to prove termination of a given TRS.
For many terminating TRSs these methods still fail to prove termination. In the
literature many attempts have been made for strengthening these methods, mainly
by refining path orders. We prefer another approach: if basic orders like recursive
path order fail to prove termination of a TRS R, we will not try to find refinings of
the order, but we try to apply a non-termination preserving transformation ¥ on
R such that termination of ¥(R) can be proved by means of recursive path order.
Here non-termination preserving is defined as follows.

Definition 60 Let ¥ be a transformation giving for a TRS (¥,R) a new TRS
¥ (X,R) = (¥(X),¥(R)). Then ¥ is called non-termination preserving if termina-
tion of (X, R) follows from termination of ¥ (32, R).

By definition termination of R has been proved as soon as a non-termination
preserving transformation ¥ can be found for which termination of ¥(R) can be
proved, e.g. by recursive path order. In this way developing non-termination pre-
serving transformations on TRSs gives rise to a new class of transformational meth-
ods to prove termination of TRSs. These methods may freely be combined: if
termination of ¥(R) cannot be proved by basic methods, we can go on by trying to

39

find another transformation ¥’ for which termination of ¥'(¥(R)) is easily proved.
If this succeeds for non-termination preserving transformations ¥, ¥’, then indeed
we may conclude termination of R, and so on.

In this section we give an overview of non-termination preserving transforma-
tions.

5.1 Basic transformations

Consider the TRS consisting of the two rules

9(f(=)) — [f(h(=))
hz) = g(2)

Termination is easily proved by the polynomials f4 = X +1,94 =3X,ha = 3X +1.
Surprisingly, termination of this TRS can not be proved by recursive path order or
Knuth-Bendix order. Seeing what is going on this is quite strange: the second rule
is nothing else than a renaming of the symbol h to g, and applying this renaming
to the first rule gives g(f(z)) — f(g(x)) of which termination is easily proved by
recursive path order by choosing the precedence g > f. In this subsection we
generalize this idea of renaming to a non-termination preserving transformation.
The result can be considered as a syntactical version of Proposition 14.

In a renaming of symbols every occurrence of a symbol is replaced by another
symbol. We generalize this to recursive program schemes. In Section 5.5 we shall see
that they also play an important role in the dependency pair approach to proving
termination.

Definition 61 A recursive program scheme (RPS) is a TRS in which all left hand
sides of the rules have distinct root symbols, and all of these left hand sides are of
the shape f(x1,...,x,) where x1,...,z, are distinct variables.

Every RPS is confluent since it is orthogonal.

For a finite RPS consider the directed graph of which the nodes are the operation
symbols, and there is an edge from f to g if and only there is a rule [— 7 in the
RPS for which f occurs in [and g occurs in 7. It is not difficult to see that the
RPS is terminating if and only if this directed graph is acyclic. Hence termination
of finite RPSs is easy to establish. In particular, a finite RPS is terminating if and
only if it is rpo-terminating.

Definition 62 Let S be a terminating RPS. For a term t we write S(t) for the
unique normal form of t with respect to S. For a substitution o we write S(o) for
the substitution defined by %) = S(x%) for all variables x.

Before we state and prove our theorem, we give two lemmas.

Lemma 63 Let S be a terminating RPS, let t be a term and let o be a substitution.
Then
S(t7) = 8(t)5.

Proof: Clearly 7 —% S(t7) and t° =% S(t)” —% S(t)%(?). Since S is confluent
and S(t)7 is a normal form with respect to S, it remains to show that S(t)5(?) is a
normal form with respect to S too. Since S(t) is a normal form it does not contain
symbols occurring in left hand sides of S. Since z5(?) = §(z7) is a normal form it
does not contain symbols occurring in left hand sides of S for all variables z in S(t).
Hence S(t)5(?) does not contain symbols occurring in left hand sides of S, hence it
is a normal form with respect to S. O

40

Lemma 64 Let S be a terminating non-erasing RPS, let R be any TRS and let t,u
be terms satisfying S(t) =% S(u). Then

S(Clt) =3 S(Clu))
for every context C.
Proof: Applying induction on the structure of C' it suffices to prove that
S(f(th - 'ati7t7ti+17 R 7tn)) _)E S(f(tla s 7ti7u7ti+17 s 7tn))7

where we assume that S(t) =% S(u). Write v = f(z1,...,2,) for n arbitrary

distinct variables z1,...,7,. Define o and 7 by 27 = z7 = ¢; for all j # i, and

z{ =t and] = u. Since S is non-erasing, the variable z; occurs at least once in
S(v). Since 277 = §(2f) = S(t) =% S(u) = S@]) =2}, and 237 = S(29) =

J

S(t;) = S(z}) = xf(T) for all j # i, by applying Lemma 63 we obtain

S(f(t1, - tistytigt,-oytn)) =

1,...,ti,u,ti+1,...,tn)).

Theorem 65 Let R be any TRS. Let S be a terminating non-erasing RPS and let
Ri={l->reR|S(I =5},
Ry ={S(l) > S(r) |l =>re RAS() #S(r)}.
If both Ry and Ry are terminating TRSs, then R is terminating.

Proof: Let Rz = {l > r € R| S(l) # S(r)}. Then R is the disjoint union of Ry
and R3. Assume R admits an infinite reduction

ti >rts wrts >R ts >R - -.

For every step t; =g t;+1 we have t; = C[I?] and t;41 = C[r?] for some context C,
some substitution o, and some rule [— r in either R; or R3. If [— r is a rule in
R; then we have

S(t:) = S(C7]) = S(CISM)?]) = S(CIS(r)?]) = S(C[r?]) = S(tia)-

In the remaining case ! — r is a rule in R3. Then S(I) — S(r) is a rule in R,.
Applying Lemma 63 yields

S@7) = S5 g, S(r)5@) = S(r°).
Then applying Lemma 64 yields
S(t:) = S(ClI7]) =%, S(C[r’]) = S(tita)-
We conclude that S(t;) =%, S(tit1) for all 4, and S(t;) —)EZ S(tig1) if t; 2Ry tit1-
Since R; is terminating the original infinite R-reduction contains infinitely many

Rs-steps. Hence this latter case occurs infinitely often, yielding an infinite R»-
reduction, contradiction. O

41

Example 19 Let the TRS R consist of the two rules

9(f()) — f(h(x))
hz) = g(2)

We started this subsection by the remark that termination of R can neither be
proved by recursive path order nor by Knuth-Bendix order. However, by choosing
S to consist of the single rule h(z) — g(x), we obtain

Ry ={h(z) = g(2)},
Ry ={g(f(2)) = f(9(x))},

which are both proved to be terminating by means of recursive path order. By
Theorem 65 termination of R follows.

Example 20 Let the TRS R consist of the three rules

f) — g(=)
9(f(x)) — h(x)
g(h(z)) — f(z).

By recursive path order as we presented it, termination of R can not be proved. By
versions described in the literature based on precedences that are quasi-orders in-
stead of partial orders it easily can by choosing f and h to be equivalent, both being
greater than g. However, taking symbols to be equivalent is easily simulated using
Theorem 65 by choosing one representant in an equivalence class and by choosing S
to be the rewriting from the other equivalent symbols to this representant. In this
case where f and h are equivalent we may choose f as the representant, yielding
S to consist of the rule h(z) — f(z). In this example then R; is empty and R»
consists of the rules
fl@) — g(z)

9(f(z)) — f(z),

easily proved to be terminating by our basic version of recursive path order. By
Theorem 65 termination of R follows.

Theorem 65 yields a non-termination preserving transformation: for any TRS
R we may define ¥(R) = R in the notation of Theorem 65, for any non-erasing
RPS S for which the corresponding TRS R; is terminating.

One can wonder whether the requirements on S in Theorem 65 are really essen-
tial. Indeed they are. For the normal form S(¢) being well-defined for every term ¢
the TRS S needs to be confluent and weakly normalizing. If we choose R to consist
of the rule f(z) — f(f(z)) and S to consist of the rule f(f(z)) — x then S is
terminating and confluent, R; is empty and Ry = {f(z) — z} is terminating, but
R itself is not terminating. Hence the requirement of S being an RPS cannot be
weakened to S being confluent. Also non-erasingness is essential: if we choose R to
consist of the rule g(z) — f(g(z)) and S to consist of the rule f(z) — a then S is a
terminating RPS, R; is empty and R2 = {g(z) — a} is terminating, but R itself is
not terminating. Finally we remark that every RPS is orthogonal by definition, and
it is well-known that termination and weak normalization coincide for non-erasing
orthogonal TRSs.

5.2 Dummy elimination

In this section we show how the task of proving termination can be simplified fully
automatically in case some symbol does not occur in any left hand side of a rule.

42

Such a symbol is called a dummy symbol, or shortly dummy. For instance, in the
rewrite system R consisting of the single rule

flg(2)) = flalg(x)))

the symbol a does not occur in a left hand side. Intuitively this means that this
dummy symbol does not play an essential role in further reductions of the term,
and further reductions can be localized as being either affecting the part above
the dummy symbol or affecting the part below the dummy symbol. This can be
formalized by decomposing the right hand sides into smaller terms in which the
dummy acts as a separator. In this case this means that the term f(h(g(x))) is
decomposed into two terms f(¢) and g(x), where ¢ is a fresh constant. The left
hand sides remain the same. The result is the transformed system E(R), in our
case consisting of the two rules

flg(®) = f(o)
flg(®)) — 9(=).

The main theorem states that this dummy elimination F is a non-termination-
preserving transformation, i.e., termination of R can be proved by proving termina-
tion of E(R). In our example this is valuable: R is not simply terminating. On the
other hand E(R) is simply terminating, which is trivially seen since every E(R)-step
strictly decreases the term size.

In order to give a precise definition for dummy elimination we need some auxil-
iary definitions. We fix a dummy symbol a, i.e., a symbol not occurring in the left
hand side of any rule in a fixed TRS R. Let n be the arity of a. For any term ¢ we
define inductively a term cap(t) and a set of terms dec(t):

cap(x) = z for all z € X,
cap(f(t1,..-,tx)) = f(cap(t1),...,cap(tx)) for all f with f#a
cap(a(ti,...,tn)) = o

dec(x) =0 for all z € X,
dec(f(t1,...,tx)) = U~ dec(t;) for all f with f #a
dec(a(ti,...,tn)) = Uizi(dec(t:) U{cap(t:)}).

This means that if a term ¢ is decomposed by considering the symbol a as a sepa-
rator, then the term cap(t) is the rootmost part of this decomposition, while dec(t)
is the set of all other parts in this decomposition. Now we define the dummy
elimination construction and state the main theorem.

Definition 66 Let a be a dummy symbol in a TRS R and let cap and dec be defined
as above. Then

E(R) = {l = u|u = cap(r) V u € dec(r) for a rulel — r € R}.

Theorem 67 Let a be a dummy symbol in a TRS R. If E(R) is terminating then
R is terminating too.

For a proof of this theorem we refer to [25] or [22], where a slightly more general
version has been treated. An alternative proof has been given in [51], where even
the restriction of the dummy not occurring in left hand sides has been weakened
slightly. A generalization of this result to rewriting modulo equations has been
given in [23].

Example 21 For proving termination of the TRS R consisting of the two rules

flg(x) = [fla(g(9(f(2))), 9(f(2))))
9(f(x)) — 9(9(a(f(2),9(9(x)))))

43

it suffices by Theorem 67 to prove termination of the TRS E(R) consisting of the
rules

flg(=)) = [f(o)
fg(=) — 9(9(f(2)))
flg(=)) — g(f(2))
9(f(2)) — g(g(e))
9(f(x)) — f(z)
9(f(x)) — g(9(=))

which is easily done by recursive path order, choosing the precedence f > g > o.

Exercise 10 Prove termination of the TRS R consisting of the single rule

flg(z,y)) = 9(f(h(g(z, £ (y)), F®))), 9(y, F(2)))-

We conclude this section by a variant of dummy elimination from [64] in which
also rules describing distributivity are allowed, that’s why this variant is called
distribution elimination. A rewrite rule is called a distribution rule for a if it can
be written as

Cla(z1,.-.,2,)] = a(Clz1],- .., Clzn])

for some non-trivial context C[] in which the symbol a does not occur. For example,

b(z, f(a(z,y)) = a(b(z, f()), b(z, f(y)))

is a distribution rule for a. Now E, is defined inductively as follows:

E,(x) = {z} for all z € X,
E.(f(t1,.--,te)) = {f(ur,...,ug) | Vi:u; € Eg(t;)} for all f with f #a
E,(a(t1,...,tp)) = " Eo(ts).

Let R be a TRS for which each rule is either a distribution rule for a or a rule
in which a does not occur in the left hand side. Then the TRS E,(R) is defined by

E,(R)={l - u|l—r is anon-distribution rule of R for a and u € E,(r)}.

As usual a term is defined to be linear if no variable occurs more than once, and a
TRS is defined to be right-linear if for every rule the right hand side is linear.

Theorem 68 Let R be a TRS for which each rule is either a distribution rule for
the symbol a or a rule in which the symbol a does not occur in the left hand side.
Then

(1) E,.(R) is totally terminating if and only if R is totally terminating;
(2) if E,(R) is right-linear, then

E,(R) is simply terminating if and only if R is simply terminating;
(3) if Eo(R) is terminating and right-linear then R is terminating.

For the proof we refer to [64]. There also examples are given showing that the
converse of (3) does not hold and showing that the requirement of right-linearity
is essential in both (2) and (3). It was conjectured that in absense of distribution
rules the restriction of right-linearity is not essential in (3); this conjecture was
proved in [51]. In [50] Theorem 68 has been used to prove undecidability of simple
termination of single rewrite rules.

44

5.3 Applying abstract commutation

In this section we describe a few ways of how to prove termination of a TRS R by
means of proving termination of some modified TRS S = ¥(R). This can be proved
to be valid if an auxiliary TRS T essentially describing the difference between R and
S, satisfies some commutation properties. The underlying framework is described
purely in terms of abstract reduction systems, that’s why we coin these methods
abstract commutation.

In the following R, S and T are arbitrary binary relations on a fixed set. In the
applications they will correspond to rewrite relations of TRSs. As usual we write
a dot symbol for relational composition, i.e., one has t(R - S)t' if and only if there
exists a t’ such that tRt" and #"'St'. We write Rt for the transitive closure of R
and R* for the reflexive transitive closure of R, and we write R~! for the inverse of
R. Further we write R C S if tRt' implies tSt'. Clearly,if RC Sthen R-T CS-T
and T - R CT-S. In the following lemma we collect some standard properties for
relations, which are easy to check.

Lemma 69 Let R, S, T be binary relations.
(o) IfR-SCS-R* then R*-SCS-R*.
(b)) If T* - R C ST -T* and S is terminating, then R is terminating.

The first abstract commutation theorem we present is the version from [68]; a
direct generalization of this theorem to rewriting modulo equation has been given
in [28].

Theorem 70 Let R, S, T be binary relations satisfying
1. S is terminating,
2. RC St-(T71)*,
3. T-'-RC Rt - (T YH*,

then R is terminating.

Before giving the proof of this theorem we provide some intuition. Suppose
that R is not terminating, so there is an infinite reduction R- R - R---. Using
condition 2, the leftmost R-step in this reduction can be replaced by S* - (T—1)*.
The created T~!-steps jump over R-steps by applying condition 3. Then the infinite
reduction starts with St - R, and the whole process can be applied on the leftmost
R-step in this reduction again. Repeating this construction forever yields an infinite
S-reduction, contradicting condition 1.

Proof: Using condition 3 we obtain:

T RCRY - (T"HY*CRY- (RUTH)*=R-(RUT™H)*.

Since also R- R C R- (RUT~1)*, we obtain (RUT~!)-RC R- (RUT~Y)*. From
Lemma 69, part (a), and condition 2 we conclude

(RUT™HY* RCR-(RuTH*Cst-T Y- (RUTH)*=8ST-(RUT™H*

Now termination of R follows from condition 1 and Lemma 69, part (b). O

In Theorem 70 condition 3 is the commutation criterion, and condition 2 relates
R and S. In the latter it is required that every R-step can be followed by zero or
more T-steps to obtain one or more S-steps.

Before describing applications in term rewriting we first present another abstract
commutation theorem, from [10], based on [9, 6]. Here the requirement in condition

45

2 on the order of S-steps and T-steps is weakened; the commutation criterion be-
tween R and T is replaced by a commutation criterion between S and T, and also
confluence and termination are needed for T'. As in [29], we write S/T for T*-S-T*.

Theorem 71 Let R,S,T be binary relations satisfying
1. SUT is terminating,
2 RC(S/(TUT-Y)*,
3. T71.SCT*-S-(SUTUT1)*,
4. T7L.TCT* (T,
then R is terminating.

Here condition 2 requires that every R-step can be simulated by any combination
of S-steps, T-steps and T~ !-steps with the only restriction that it contains at least
one S-step. Roughly speaking we can say that the theorem states that in an infinite
reduction of this shape all T~!-steps can be infinitely thrown forwardly by using
the other conditions. In the first approach into this direction ([6]) the condition
corresponding to condition 2 was R C T*-S-(T~!)*, being some stronger. Condition
4 is local confluence of T'; since T is terminating by condition 1 by Newman’s lemma,
this is equivalent to confluence of T'. Condition 3 is called local cooperation. Our
version of local cooperation (suggested by Vincent van Qostrom) is slightly weaker
than the original version T-1.S C (S/T)* - (T 1)* from [10], making the theorem
slightly stronger.

Another way of stating the same theorem without referring to R and the second
condition is to conclude that (S/(T U T~1))* is a well-founded order. In [9] this
order is called the transformation ordering; compatibility with this order then is
usually shown by proving T'(I) =g T(r) for all | — r in R, where T'(—) denotes
reducing to normal form with respect to 7.

In order to prove Theorem 71 we need the following lemma.

Lemma 72 Let S and T binary relations satisfying conditions 1, 3 and 4 from
Theorem 71. Then

(T H*.SCT*-S-(SUTUT hH)*.
Proof: We prove this lemma by proving
If tT*u and tSv for any u,v, then «T* - S - (SUT UT~1)*v holds

by well-founded induction on t over the well-founded order T'F. If ¢t = u then this
is trivial, hence we may assume that t7u. Then some ty exists satisfying tT'to and
toT*u. From condition 3 from Theorem 71 we conclude that there exists elements #;
and ty satisfying toT*t1, t1 St and t2(SUTUT1)*v. From conditions 1 and 4 from
Theorem 71 and Newman’s Lemma we conclude that T is confluent, hence t3 exists
satisfying uT*t3 and t;T*t3. Since tTt; we may apply the induction hypothesis
on t;. Since t;T*t3 and t, St this yields t37*-S - (SUT UT~1)*t,. Combined with
uT*t3 and to(SUT UT1)*v we obtain uT™* - S - (SUT UT~1)*v, which we had to
prove. In a diagram this proof reads:

46

t >A
T cond. 3 (SuTUuT Hy*
o ™ h S Hh
™| CrR |7 LH. (SUTUT-)*
M s R

O

Now we prove Theorem 71.
Proof: Since T is confluent we obtain (U T~1)* C T* - (T1)*. Applying this,
condition 2 and Lemma 72 yields

(SUTUTHY*-R (SUTUTYHY* - (S/(TuT-)+t
(TUT-H*.§-(SUTUT 1)
T - (T71)*-S-(SuTUT H*
T*-S-(SUTUT 1)
(SUuT)*-(SuTUT Y)*.

NN N

Now from condition 1 and Lemma 69, part (b), we conclude termination of R. This
concludes the proof of Theorem 71. O

We want to apply Theorems 70 and 71 for the case where R =— g for some
TRS R for which termination has to be proved, S =—g for some TRS S which is
some modification of R, and T =—7 for some TRS T chosen in such a way that
the requirements of the corresponding theorem hold. As usual the local confluence
criterion, condition 4 of Theorem 71, is verified by checking critical pairs. But also
condition 3 of Theorem 70 and condition 3 of Theorem 71 can be proved using
the same idea of critical pairs: a finite case analysis has to be done according to
all possiblities of overlap, and the non-overlapping case is obtained for free if some
extra conditions hold. To make this precise first we define the corresponding notion
of critical pairs.

Definition 73 A critical pair between two rewrite rulesl — r and l' — r' is a pair
of terms of one of the two following shapes:

o (r7,C7[r'"?]), where | = C[t] for some non-variable term t, and o is the most
general unifier of t and I,

o (C7[r?],r'?), wherel' = C[t] for some non-variable term t, and o is the most
general unifier of t and .

Here variables may be renamed in such a way that | and I' have no variables in
common.

For two TRSs R and S the full set of critical pairs between any rule of R and
any rule of S is denoted by CP(R,S).

Note that for any TRS R the set CP(R, R) consists of the pairs (r,r) for all

rules I — r in R and all pairs (s,t) and (¢,s) where (s,t) is a critical pair of R in
the usual definition.

47

Note that for finite TRSs R and S the set CP(R,S) is finite two, and is easily
computed by unifying left hand sides of R with subterms of left hand sides of S
and vice versa. The following theorem shows how condition 3 of Theorem 70 and
condition 3 of Theorem 71 can effectively be verified.

Theorem 74 Let T and A be TRSs of which T is left-linear and non-erasing. Let
C be a rewrite relation satisfying —7%. - —>"A' - 5C C; if A is left-linear then this
restriction on C' may be weakened to —>X - +5C C. Then <71 - +4C C if and

only if CP(T,A) C C.

The proof is not given here since it is similar to the proof of the well-known
critical pair lemma. It generalizes Theorem 2 from [10].

In the rest of this section we restate Theorems 70 and 71 specified for TRSs
using this result on critical pairs, and give a number of applications.

Theorem 75 Let R,S,T be TRSs satisfying
1. S is terminating,
2. RC—E - «z,
8. CP(T,R) C—} - 5.
4. T is left-linear and non-erasing,
5. R is left-linear,

then R is terminating.

Note that condition 2 is only about rewrite rules of R and not about rewrite
steps. Hence for finite TRSs conditions 2 to 5 can be verified by a finite analysis.
Proof: Condition 1 corresponds to condition 1 of Theorem 70. Since —& - «%
is closed under contexts and substitutions, from condition 2 we conclude — Rg—>§
- ¢4, corresponding to condition 2 of Theorem 70. Finally condition 3 of Theorem
70 holds by conditions 3, 4 and 5 and Theorem 74, choose A = R and C' =<7 - — 4.
Hence by Theorem 70 we may conclude termination of —g. O

Example 22 Let R consist of the single rule f(g(z)) — g(f(h(g(z)))). Clearly R
is not simply terminating. By choosing S to consist of the single rule f(g(z)) —
g(f(z)) and T to consist of the single rule h(g(x)) — z, then clearly the conditions 2
to 5 hold, note that CP(T, R) = §. Hence for proving termination of R by Theorem
75 it suffices to prove termination of S, which can be done by recursive path order.

This example could also be treated by dummy elimination, which does not hold
for the following example.

Example 23 Let R consist of the single rule f(h(g(z))) — g(f(h(f(9())))).
Clearly R is not simply terminating and does not contain dummy symbols. By
choosing S to consist of the single rule f(h(g(z))) — g¢(f(x)) and T to consist
of the single rule h(f(g(z))) — =, then clearly the conditions 2 to 5 hold, again
CP(T,R) = 0. Hence for proving termination of R by Theorem 75 it suffices to
prove termination of S, which can be done by counting h-symbols.

The intuition behind these two examples is that the problematic right hand
side, in these cases the right hand side of the single rule, contains a “dead part”: a
part that does not overlap with any left hand side. Such a dead part cannot play
an essential role in future reductions. In these examples S is obtained from R by

48

cutting away the dead part, and T is a rewrite system that executes this process of
cutting away the dead part.

Sometimes it is convenient not to remove the full dead part, but to replace it by
a term containing a fresh symbol. In this way this fresh symbol will occur in one
or more right hand sides of S, but not in left hand sides. Hence the fresh symbol
is a dummy in S, and we can apply dummy elimination to prove termination of S.
This way of introducing a dummy symbol is called dummy introduction in [68].

Example 24 Let R consist of the single rule f(g(f(z))) = g(f(f(g(g(f(f(2)))))))-
Here the two consecutive g symbols in the right hand side do not overlap with

the left hand side, hence act as a dead part. By choosing T to consist of the rule
9(g(x)) = h(x), for S we obtain the single rule f(g(f(2))) = g(f(f(h(f(f(2))))))-
Since CP(T,R) = 0 the condition 2 to 5 are all satisfied and it remains to show
termination of S. Due to Theorem 67 where h is the dummy symbol, it remains to
show termination of E(S), consisting of the two rules

Flg(f(2) = g(f(f(e))
flg(f(@) = [f(f(2)),

which is done by recursive path order choosing f > g > <.

Exercise 11 Prove termination of f(g(f(z))) — g(9(f(f(g9(x))))).
In the next example we do not have an empty set of critical pairs.

Example 25 As in Example 7 let R be the simplest terminating TRS that is not
simply terminating: the single rule f(f(z)) — f(g9(f(z))). Choose S to consist of
the single rule f(f(z)) — f(z) and T to consist of the single rule f(g(f(z))) — f(x).
Then clearly conditions 2, 4 and 5 of Theorem 75 hold. We obtain CP(T,R) =
{(f(f(x)), flg(f(g(f(2))))))}, note that this single critical pair is obtained in two
ways. Since f(f(z)) —r f(9(f(2))) and f(g(f(9(f(2))))) —=r f(g(f(2))), also

condition 3 holds. Since S is terminating, by Theorem 75 is terminating too.

Exercise 12 Prove termination of f(f(g(z))) = g(f(g(f(9(z))))). (Hint: choose
T :g(f(g(x))) = g(z).)

Often it occurs that the non-empty set of critical pairs does not satisfy the
required condition 3. One way to solve this is to extend the TRS T by some extra
rules forced by this condition. Note that if only non-erasing left-linear rules are
added, the other four conditions are not affected by adding these rules to 7'. Similar
to Knuth-Bendix completion after adding extra rules new critical pairs have to be
computed and the process goes on. This is one of the ingredients of termination by
completion as it is described in [10]. Just like we know in Knuth-Bendix completion
that some completions will never succeed since the corresponding word problem
is not solvable, here we know that some completions wil never succeed since the
system is not terminating. For instance, if R consists of the rule f(z) — f(g(z))
and we try to start with S consisting of the rule f(xz) — « and T consisting of the
rule f(g(z)) — z, we know for sure that we can never extend T in such a way that
condition 3 holds, since R is not terminating. In [68] an example of a successfull
completion of this kind is given. The same holds for the result in [28], there even
the systems R and S are extended during the completion process, and the final
system T has infinitely many rules. Here we only give a simple example illustrating
the idea.

Example 26 Let R consist of the two rules

flg(=)) — [f(h(g(2)))
hg(z)) —= f(2)

49

As a first attempt we choose T to consist of the single rule f(h(z)) — h(z), and for
S we obtain the two rules

flg(z)) = h(g(x))
hg(z)) — f(2),

of which termination is easily verified by recursive path order, choosing g > f > h.
However, we do not yet have condition 3:

CP(T,R) = {(h(g(@)), f(f(2))} =& - <7 -

It is possible to rewrite h(g(z)) —} f(z), but it is not yet possible to rewrite
f(f(z)) =% f(z). This is simply solved by adding the rule f(f(z)) — f(z) to T.
Now the old critical pair satisfies the requirement, and we have to go on for checking
whether there are new critical pairs. Indeed there are: the left hand side of this new
rule overlaps with the left hand side of the first rule of R, giving the new critical pair

(f(g(x)), F(f(M(g(x)))))- Since (f(g(z)) —=F f(h(9(2))) <7 f(f(h(9(x)))), indeed

now

CP(T,R) = {(h(g(x)), f(f (), (£ (9(=)), F(f (M(g(@))))} C=F - T,

and all conditions of Theorem 75 hold, proving termination of R.

Next we show that in Theorem 75 left-linearity for both R and T and non-
erasingness of T' are all essential.

If R = {f(z,2) > f(g(@),g@)}, T = {g() > o} and § = {f(z,2) >
f(z,9(z))}, then all conditions of Theorem 75 hold except for left-linearity of R,
while R is not terminating.

If R={f(a,b) = f(a,a),a > b}, T ={f(z,z) = z} and S = {f(a,b) = a,a —
b}, then all conditions of Theorem 75 hold except for left-linearity of T, while R is
not terminating.

IfR={a— fla)}, T ={f(z) — b} and S = {a — b}, then all conditions of
Theorem 75 hold except for non-erasingness of 7', while R is not terminating.

Until now all examples used Theorem 75, based upon the abstract commutation
theorem Theorem 70. The following theorem makes the abstract commutation
theorem Theorem 71 applicable to term rewriting, by which the requirement that R-
steps are simulated by first S-steps and then inverse T-steps, is essentially weakened.
Moreover, it does not restrict any more to left-linear TRSs.

Theorem 76 Let R,S,T be TRSs satisfying
1. SUT is terminating,
RC (=s /(=1 U+)",
CP(T,S) C—% - =g (s U= U+1)%,

T is locally confluent,

T is left-linear and non-erasing,

then R is terminating.

As in Theorem 75 for finite TRSs conditions 2 to 5 can be verified by a finite
analysis.
Proof: Condition 1 and 4 correspond to conditions 1 and 4 of Theorem 71, respec-
tively. Since (=g /(=1 U <1))" is closed under contexts and substitutions, from
condition 2 we conclude »gC (—s /(=1 U «71))T, corresponding to condition

50

2 of Theorem 71. Finally condition 3 of Theorem 71 holds by conditions 3 and 5
and Theorem 74, choose A = S and C =—% - =g (=g U =7 U <7)*. Hence by
Theorem 71 we may conclude termination of —-g. O

Theorem 76 is the core of [10]. The way it is applied there is to start with a
reduction order < for which [> r for many rules I — r of R, and some suitable
T compatible with <. The TRS S is obtained from R by replacing the remaining
incompatible rules | — r of R by T'(I) — T(r), where T'(—) denotes reducing to
normal form with respect to T. These new rules have to be compatible with <.
Similar as described above then completion is performed until conditions 3 and 4
hold. An attempt to automate this has been made in [60].

Example 27 Let R consist of the rule f(z,z) — f(c,g(x)). Since R is not left-
linear, Theorem 75 can not be applied. By choosing T to consist of the rule
f(c,9(xz)) — =z and choosing S to consist of the rule f(z,z) — =z, we obtain
CP(T,S) = B, and all conditions of Theorem 76 are easily verified. Hence R is
terminating.

5.4 Semantic labelling

The functional program computing the factorial can be described as a TRS as

follows:
fact(s(z)) — fact(p(s(z))) * s(x)
p(s(0)) - 0
p(s(s(z))) — s(p(s(2)))-

Termination of this program is not difficult to see: for each recursive call of fact the
value of the argument strictly decreases. However, if we forget about the semantics
of the terms representing numbers, then proving termination of the TRS is not
that easy any more. The left hand side of the first rule can be embedded in the
corresponding right hand side, hence the system is not simply terminating and
standard techniques like recursive path order fail.

In this section we describe how termination of this kind of systems is easily
proved by the technique of semantic labelling: given a TRS having some semantics,
we introduce a labelling of the operation symbols in the TRS depending on the
semantics of their arguments. We do this in such a way that termination of the
original TRS is equivalent to termination of the labelled TRS. The labelled TRS
has more operation symbols than the original TRS, and often more rules, sometimes
even infinitely many. The original TRS can be obtained from the labelled TRS by
removing all labels and removing multiple copies of rules. Although the labelled
TRS is greater in some sense than the original one, in many cases termination of the
labelled version is easier to prove than termination of the original one, for instance
by recursive path order. In the factorial system we can label every symbol ‘fact’
by the value of its argument. We obtain infinitely many distinct operation symbols
‘fact;’ instead of one symbol ‘fact’; the other operation symbols do not change.
The labelled TRS is obtained from the original one by replacing the first rule by
infinitely many rules

factiy1(s(2)) = facti(p(s(2))) * 5(=),

one for every natural number i. It is easy to prove termination of this infinite
labelled system by recursive path order, hence proving termination of the original
factorial system.

Globally we distinguish two ways of using this technique. In the first way we
choose a (quasi-)model which reflects the original semantics of the TRS, as we did

o1

for the factorial example. In the second way we choose an artificial (quasi-)model
reflecting syntactic properties that are recognized in the rewrite rules, making the
technique purely syntactical. In this way we obtain termination proofs of systems
like f(f(z)) — f(g(f(z))) and f(0,1,2) — f(x,z,z). This approach easily extends
to proving termination modulo equations.

Recent applications of semantic labelling outside the scope of pure term rewriting
are in process algebra ([27]) and in explicit substitution in A-calculus as described
by the system SUBST. The latter is presented here as Example 33. In [12] the idea
of labelling has been applied to prove preservation of strong normalization in calculi
for explicit substitution. In [51] a framework called self-labelling based on semantic
labelling has been developed and applied to modularity, dummy elimination and
currying. The key idea is that terms are labelled by itself.

The theory as presented here is given in more detail in [65]. In particular there
the treatments for models and quasi-models are given separately while here we
directly present the most general version. First we need some definitions.

Definition 77 A X-algebra (A,X4) is a model for a TRS (X, R) if [I], = [r], for
all rulesl - rin R and all o : X — A. Here [—]_ is defined as in Subsection 2.1.

A Y-algebra (A, X 4) equipped with a partial order < is a quasi-model for a TRS
(%,R) if [1], > [r],, for all rulesl — 7 in R and all o : X — A, and fa is weakly
monotone in all arguments for all f € X.

Fix a quasi-model (A, X4, <). Fix for every f € ¥ a corresponding non-empty
set Sy of labels, equipped with a well-founded partial order <. This gives rise to
the new signature

Y ={fs|f € £,s € S},

where the arity of fs is equal to the arity of f. An operation symbol f is called
labelled if Sy contains more than one element. For unlabelled f the set Sy containing
only one element can be left implicit, writing f instead of f.

Fix for every f € ¥ a map 7y : A" — S; that is weakly monotone in all
arguments, where n is the arity of f. For unlabelled f this function ¢ can be
left implicit. This labelling of operation symbols extends to a labelling of terms by
defining lab : Ter(X) x AY — Ter(X) inductively by

lab(z,a) = =,
lab(f(t1,...,tn),) = fﬂf([tl]]aw’[tn]]a)(Iab(tl,a),...,Iab(tn,a))

forzeX,a: X = A, feXty,... .t € Ter(%).
For any TRS (3, R) let (X, R) consist of the rules

lab(l, @) — lab(r,)

forall a : ¥ - A and all rules | — r of R.
Let the TRS (X, Decr) consist of the rules

fo(x1,- o s2n) = fo(x1,- -, Tp)

for all f € ¥ and all s,s" € Sy satisfying s > s’. Here > denotes the strict part of
>.

If the partial order < on A is chosen to be the equality relation, then the defi-
nitions of quasi-model and model coincide. In that case we may choose the partial
order on Sy to be the equality relation too, for every f € ¥, by which all require-
ments on well-foundedness and weak monotonicity are trivially fulfilled and Decr is
empty.

52

Lemma 78 Let o : X — A and let 0 : X — Ter(X). Define o : X — Ter(X) by
G(z) = lab(o(z),a) and B : X—A by B(z) = [o(x)],. Then

lab(t?, @) = lab(t, 3)°.

Proof: By induction on the structure of ¢. If ¢ is a variable the lemma follows from
the definition of &. If t = f(t1,...,t,) we obtain

lab(t7, &) = lab(f(t],...,t7),a) = ffrf(l[t‘l’]]a,~~~7|[tz]]a)(lab(ti"a)’ ..., lab(t7, @)
and

Iab(tJ /B)E = Iab(f(tli M Jtn)’IB)E = fﬂf(l[t]]]ﬁ,,[tn]]ﬁ)(lab(tl’ﬁ)g, ttt Iab(t'HJ/B)E)'

The labels of f are equal due to lemma 6 and the arguments are equal due to the
induction hypothesis. Hence both terms are equal. O

Lemma 79 Let (A,X4,<) a quasi-model for (X,R). Let t,t' € Ter(X) satisfy
t >rt'. Then [t], > [t'], for allo: X — A.

Proof: If t =17 and ¢/ = 7 for some rule I = r of R and some 7: X — T(F,X)
the assertion follows from lemma 6 and the definition of quasi-model.
Let t =g t' and [t], > [t'],,; we still have to prove that

[FConts]y > [t)

for all f € ¥ and all @ : X — A. This follows from the definition of [—]_ and the
fact that f4 is weakly monotone in all coordinates. O

Lemma 80 Let (A,%4,<) a quasi-model for (3, R). Let t,t' € Ter(X) satisfy
t =g t'. Then for all a: X — A there is a term u over Y. such that

lab(t,a) —peer v —g lab(t',).

Proof: If t =" and t' = " for some rule] — r of R and some 7: X — Ter(X) we
obtain from lemma 78

lab(t,a) = lab(, 8)” —5 lab(r, 3)7 = lab(t,),

for 3 satisfying 3(x) = [r(x)],, hence the assertion holds.
Write = for the composition of = and —. Let t =g t' and lab(t,a) =
lab(t', @). We still have to prove that

lab(£(....t,...);a) = lab(f(...,t,...),q).

According to lemma 79 and the fact that 7y is weakly monotone in all coordinates,
we obtain 7y(...,[t],,...) > m(...,[t'],,-..). Hence

lab(f(...,t,...),a) = fwf(__.7[[t]]aw)(...,Iab(t,a),...)
~Decr fwf(...,[t']]a,...)(' .-, lab(t,), ...)
- fwf(...,[[t’]]a,...)(""lab(t,’a)"")
= lab(f(...,t,...),q).

Now we arrive at the main theorem of this section.

93

Theorem 81 Let (A,%4,<) a quasi-model for a TRS (X,R). Let R and Decr be
as above for any choice of Sy and my. Then (X, R) is terminating if and only if
(2, RU Decr) is terminating.

Proof: Assume R U Decr allows an infinite reduction. Since the order on S; is
well-founded for all f € ¥, the system Decr is terminating. So the infinite reduction
of R U Decr contains infinitely many R-steps. Then removing all labels yields an
infinite reduction of R.

On the other hand assume that R allows an infinite reduction. Then applying
lab for a fixed substitution on this infinite reduction yields an infinite reduction of
R U Decr according to lemma 80. O

An important special case of this theorem is where (4,% 4) a model for a TRS
(X, R). In that case we may choose the discrete order (i.e., z > y if and only if
z = y) on both A and S;. In this special case the requirements of weak monotonicity
are trivially fulfilled, the notions of model and quasi-model coincide, and the TRS
Decr is empty. So from Theorem 81 we conclude that (¥, R) is terminating if and
only if (¥, R) is terminating.

Theorem 81 easily extends to rewriting modulo equations. For the model case
this has been elaborated in detail in [65].

This section is concluded by a number of examples and exercises. We start with
three examples in which the (finite) model is based on syntactical observations. A
typical syntactical observation is that in a rule

o flg(--)) e = e F(RG)

the f’s can be forced to obtain distinct labels by choosing the images of g and h in
the model to be distinct.

Example 28 The simplest example R of a terminating TRS that is not simply

terminating is
f(f(@) = fl9(f (=)

Intuitively termination of this system is not difficult: at every step the number of
operation symbols f of which the argument is again a term with head symbol f
decreases. For formalizing this idea we may want to label an f-symbol by 2 if the
head symbol of its argument is f, and label it by 1 otherwise. This is obtained
by defining the model (A,X4) by A = {1,2}, and fa(z) = 2 and ga(z) = 1 for
z = 1,2; it is indeed a model since the interpretations of both the left hand side
and the right hand side are always equal to 2. To obtain the desired labels choose
S; = {1,2} and 7 is the identity; choose g to be unlabelled. Then R is

L(fi(z)) = filg(fi(z)))
f2(f2(@) = fi(g(f2(2)));

the first rule is obtained if a(z) = 1, the second if a(x) = 2. Since we have a model
we may choose discrete orders and obtain that Decr is empty. Termination of R
is easily proved by counting the number of f, symbols, or by recursive path order.
Using theorem 81 we conclude that the original system R is terminating too.

Example 29 Consider the TRS
f(0717$) % f($7$7m)

from [62]. This system is not simply terminating as we saw in Example 11. For
proving termination we want to use the observation that in the left hand side the

54

first and the second argument of f are distinct while in the right hand side they are
equal. This distinction is made by choosing Sy = {a,b} and 7s(z,y,2) =bifx =y
and 7¢(x,y,2) = a if ¢ #y. We still need any model in which 0 and 1 are indeed
distinct; a simple one is A = {0,1} with 04 =0, 14 = 1, and fa(z,y,2) = 0 for
x,y,z = 0,1. Now we obtain the labelled system f,(0,1,2) — fp(z,z,2) which is
easily proved to be terminating by any standard technique.

If the TRS is extended by the rules

flzy,2) =2, 052, 12

as in the example from [21] showing non-modularity of completeness, then no non-
trivial model exists any more. However, then we can extend A to a quasi-model by
adjoining 2 to A and defining 0 > 2 and 1 > 2, and 04 =0, 14 =1, 24 = 2, and
fa(z,y,2) =0 for ,y,2 =0,1,2. Choose Sy = {a,b} and 7s(z,y,2) =aif z =0
and y =1, and 7y (x,y,2) = b otherwise, then by choosing a > b the function 7y is
weakly monotone in all arguments. Now R consists of the rules

fa(oa]-am) - fb(l',iE,.’L’)

fa(z,y,2) — 2
fb(.'L',y,Z) - 2
0 - 2
1 — 2

and Decr consists of the rule f,(z,y,2) = fy(z,y,2). Termination of the extended

TRS now follows from termination of RU Decr as is easily proved by recursive path
order.

Exercise 13 Prove termination of f(0,1,z,y) — f(z,y,z,z).

Example 30 In the system

(zxy)x2z = zx(y*2)
(z+y)*x2 = (zx2)+ (y*2)
z*(y+ f(z) — g(@,2)*(y+a)

from [18] we can force that the symbols ‘*’ in the last rule get distinct labels by
choosing the model {1,2} and defining a4 = 1, fa(z) = 2,m(2,y) = 2 +4y =
y,zx4y =1 for all z,y =1,2. The labelled system is

(z*19) %1 2 = x*1 (y*12)
(Z %1 y) %2 2 = x*1 (y*22)
(Z *2y) %1 2 = x*1 (y*12)
(x %3 y) *9 2 = z* (y %2 2)
(x+y) *1 2 = (T *12)+ (y*12)
(x+y) *2 2 = (T *22)+ (y*22)
2 (y+ f(2) — 9(z,2) %1 (y+a)

and is proved terminating using recursive path order: give %; a lexicographic status,
choose x5 to be greater than all the other symbols and choose *; > +.

In the next example the model corresponds to the natural semantics of the
rewrite system.

Example 31 In the factorial system as presented in the beginning of this section
choose A =N, 04 =0, sa(z) =z+1, pa(0) =0, and pa(z) =z —1 for z > 0.
Further choose z x4y = z xy and fact,(x) = z!. Clearly (4, 4) is a model for the

95

system; by labelling fact with the naturals and choosing Wfact(x) = z we get the

labelled version

fact 1 (s(x)) — fact;(p(s(x))) * s(z)

p(s(0)) - 0

p(s(s(z))) — s(p(s(x)))
in which the first line stands for infinitely many rules, one for every ¢ € N. By
fact;,; > fact; > * > p > s this labelled system is proved to be terminating by
recursive path order.

Exercise 14 Prove termination of

£(0) - 0

fls(@)) = s(s(f(p(s(2)))))
p(s(0)) = 0

p(s(s(2))) — s(p(s(x)))

In the last three examples we use quasi-models instead of models.

Example 32 We prove that for every k,n > 0 the TRS

Flg(f(@))) = f*(g"(x))

is simply terminating. In Proposition 35 we already used this fact for k = 3,n = 2.
By Proposition 21 simple termination is equivalent to termination of the system
extended by the embedding rules f(z) — z,g(z) — z. By adding some non-empty
context to any reduction in this system, we see that every application of g(z) — =z is
either an application of f(g(z)) — f(z) or an application of g(g(z)) — g(z). Hence
simple termination of the original rule is equivalent to termination of the system

flg(f@) — fHg™(=))
fl) = =z
flg(z)) — f(=)
9(g(z)) — g(z).

For n = 0 the statement is simple; we assume n > 0. By choosing the quasi-model
A ={0,1} with 1 > 0, fa(n) = 1,g94(n) = 0 for n = 0,1, and labelling g with
mg(n) =n for n = 0,1, we have to prove termination of the labelled system

fu(f(2) = FHgi(x)
fa(f@) = g (91(2)))
fl@) = =
flgo(@)) — f(z)
flai(@) — f(z
do(go(z)) — go(w)
go(g91(z)) — gi(z)
g1(z) — go(z)

Termination of this system follows from compatibility with the recursive path order
for a precedence < satisfying g1 > go and g1 > f.

Example 33 Let o and - be binary symbols, A a unary symbol, and 1, ¢d and 1

56

constants. Consider the TRS

A@)oy = Mzo(l- (o))
(x-y)oz — (zo02)-(yoz)
(roy)or — zo(yos)
idox -z

loid - 1

1 oid - 1

lo(z-y) — =

tol-y) - v,

named oy in [14], which is essentially the same as the system SUBST in [32]. This
system describes the process of substitution in combinatory categorical logic. Here
‘A’ corresponds to currying, ‘o’ to composition, ‘¢d’ to the identity, ‘-’ to pairing and
‘1’ and “t’ to projections. The original termination proof of SUBST in [32] is very
complicated; the same holds for the proof by [14]. For both papers the termination
proof of this particular system is the main result. The result implies termination
of the process of explicit substitution in untyped A-calculus; an overview of this
approach to explicit substitution is given in [1]. In [64] the technique of distribution
elimination (see Theorem 68) was developed to prove simple termination of .
Define the TRS R to consist of the first three rules of oy and the embedding rules

ANz) =z, zoy— 2z, zoy—y, Ty, T Yy —Y.

Clearly simple termination of ¢ is equivalent to termination of R. Here we prove
termination of R by means of theorem 81. As the quasi-model we choose the natural
numbers (including 0) and

M(z)=z+1, zogqy=2+y, T-2y=maz(z,y), la=7Ta= 0.

One easily checks that this is indeed a quasi-model for R. Only the symbol o is
labelled; it is labelled by its own value. More precisely, we choose S, to be the
natural numbers and 7, (z,y) = = + y. Now the system R U Decr reads

Az) oy — AMaoj (1-(yor 1)) for valuesi > j and i > k
(®-y)osz = (xojz2) (yor 2) for values i > j and i > k
(ojy)oiz — zo;(yor2) for values i > j and i > k
A(z) -

To;y - for all values i

To;y -y for all values i

-y -

Ty -y

o5y - zojy for all values i > j.

By choosing the well-founded precedence
oj>o05 fori>j, o;>X 0;>-,0;,>1,0;>1 forallsd

termination is easily proved by the lexicographic path order. Now theorem 81 yields
termination of R, and hence simple termination of og.

Example 34 Let | and - be binary symbols and 0 a constant. Consider the TRS

z-0
0-z
z|0
0=z
x|z
(z-y) |z
z| (z-y)

A

These rules are the directed versions of some well-known equations that hold for
reductions in lambda calculus or orthogonal rewrite systems; see e.g. Prop. 12.2.2
in Barendregt [84]. We prove termination of R by means of theorem 81. As the
quasi-model we choose the strictly positive integers, and

0a=1, z-ay=z+y, z|lay=n=z.

One easily checks that this is indeed a quasi-model for R. Only the symbol | is

labelled; it is labelled by the sum of the values of its arguments: S| consists of the

strictly positive integers and 7|(x,y) = = +y. Now the system R U Decr reads
x|y li v for all values i > j

z-0

0-z

x |i 0

0 |1 Xz

x|z

(x-y)li2

z|i (z-y)

T
T
T
T for all values i
0
0

for all values %

Lidlildid

Ew i 2) - (y |k (2[5 7))

z |j .’L') |k Y,

where in the last two lines 4, j, k run over all possible values of
i=[z], + vl + [2]a

j = [['Z.]]a + |[z]]a7
k=lvla + 2.
always satisfying ¢ > j and ¢ > k. By choosing the well-founded precedence

|s >|; foralli>j, |i>->0 foralli

termination is immediate by any version of recursive path order.

5.5 The dependency pair method

In this section we discuss the dependency pair method developed by Arts and Giesl
([4, 3]). By this method termination of a wide variety of TRSs can be proved
automatically, including many TRSs that are not simply terminating. Roughly
speaking, a dependency pair is a pair of terms extracted from the rewrite rules that
describe how arguments of defined symbols can be rewritten, where defined symbols
are the symbols that occur as root symbols of left hand sides. One of their key results
states that termination of a TRS can be concluded if a particular quasi-order >
exists such that [> r for all rewrite rules I — r and s > ¢ for all dependency pairs
(s,t), while s > t is required for only some essential dependency pairs (s,t). The
basic way of finding such a quasi-order > is defining s > t < N(s) >, N(1),
where N denotes the normal form with respect to a suitable recursive scheme.
Typically, by N some of the arguments of some function symbols are ignored.

Here we present an outline of the approach; for more details and extensions of
the method and for proofs of the theorems we refer to [4, 3].

Definition 82 e For a TRS (X,R) a symbol f € X is called a defined symbol
if f is the root symbol of a left hand side of a rule of R. Symbols f € ¥ are
written in lower case letters, for every defined symbol f € ¥ a new capitalized
symbol F is added having the same arity as f.

58

o If f(s1,...,8n) = Clg(t1,-..,tm)] is a rule in R and g is a defined symbol of
R, then
<F(81: . .,Sn),G(tl, cee Jtm)>

is called a dependency pair of R.

o An infinite sequence ((s;,t;))i=1,2,3,... of dependency pairs of a TRS R is called
an infinite R-chain if subsititutions o; exist such that t]* —% sf_;_*il for every

1=1,2,3,....
This definition is motivated by the following theorem.

Theorem 83 A TRS (X, R) is terminating if and only if it does not admit an
infinite R-chain.

Example 35 As in Example 7 consider the TRS R consisting of the rule:

[(f (@) = flg(f(2)))-

Here f is the only defined symbol, hence the signature is extended by one unary
symbol F'. In the right hand side two copies of the defined symbol f occur, hence
there are two dependency pairs:

(F(f(z)),F(g(f(2))) and (F(f(z)),F(z))

Assume that ((s;,%;))i=1,2,3,.. is an infinite R-chain. Since no substitutions o, 7
exist satisfying F(g(f(z))” —% F(f(z))", we conclude that s; = F(f(z)) and
t; = F(x) foralli =1,2,3,.... Now from F(z)” —%} F(f(x))°*+* we conclude that
x% contains one more f-symbol then 27+ for every ¢ = 1,2,3, ..., contradiction.
Hence by Theorem 83 we have proved that R is terminating.

Finding the dependency pairs of a finite TRS is easily done automatically. The
search for infinite chains is much harder; since establishing termination is unde-
cidable this search for infinite chains is undecidable too by Theorem 83. The goal
now is to develope techniques for automatically proving the non-existence of infinite
chains for a wide variety of TRSs, and hence termination. A first step is to remove
dependency pairs that are not essential for the existence of infinite chains. Depen-
dency pairs can be seen as the nodes of a dependency graph, where an arc from
a dependency pair (s,t) to dendency pair (u,v) is drawn if substitutions o, 7 exist
satisfying ¢ =% «”. In Example 35 the dependency graph consists of two nodes
(F(f(x)), F(g(f(x))) and (F(f(z)), F(z)), and two arcs: one from (F(f(z)), F(z))
to (F(f(z)), F(g9(f(x))) and one from (F(f(z)), F(x)) to itself.

By definition any infinite chain gives rise to an infinite path in the dependency
graph. Since the dependency graph is finite, one can prove that an infinite chain
exists if and only an infinite chain exists only involving dependency pairs that are
on a cycle of the dependency graph. Hence for using Theorem 83 for proving termi-
nation all dependency pairs that are not on a cycle of the dependency graph may be
ignored. In Example 35 this means that the dependency pair {(F(f(z)), F(g(f(z)))
may be ignored.

However, for establishing the full dependency graph there is a serious problem:
for arbitrary dependency pairs (s,t) and {u,v) it is undecidable whether substitu-
tions o, T exist satisfying t* —% u”. Hence in general we can not compute the exact
dependency graph. The best we can do is to approximate the dependency graph by
an approximated dependency graph which is a supergraph of the dependency graph,
and for which the approximated dependency graph can be computed automatically.
This is done in the following way.

99

Definition 84 The function cap is defined inductively by

cap(z) = =
cap(f(t1,-.-,tn)) = ¥ if f is a defined symbol
cap(f(t1,...,tn)) = f(cap(t1),...,cap(ts)) if f is not a defined symbol;

here y is some fized variable. The function lin renames all variables of a term in
such a way that all variables, including multiple occurrences of the same variable,
are replaced by a fresh variable.

The approximated dependency graph of a TRS R is the graph of which the nodes
are the dependency pairs of R and there is an arc from (s,t) to (u,v) if and only if
substitutions o, 7 exist satisfying (lin(cap(t))” = u’.

Note that lin(t) is a linear term for every term ¢. For example, if f and g are de-
fined symbols and h is not a defined symbol then for ¢t = h(z, f(z,v), h(g(2), z, g(x)))
we have cap(t) = h(z,y, h(y,z,y)) and lin(cap(t)) = h(z1, 22, h(23, T4, 25))-

Note that establishing whether there is an arc from one dependency pairs to
another one is merely unification, hence establishing the approximated dependency
graph of a TRS is easily implemented.

On the other hand one can prove that if substitutions o, 7 exist satisfying t7 =7
u”, then indeed (lin(cap(t) and u unify. Hence indeed the approximated dependency
graph is a supergraph of the dependency graph. As a consequence we have that for
proving termination by Theorem 83 we may ignore all dependency pairs that are
not on a cycle of the approximated dependency graph. Establishing which nodes of
a graph are on a cycle can be done by standard algorithms, hence removing these
redundant dependency pairs can be done fully automatically.

Indeed if we apply this approach to Example 35, then the dependency pair
(F(f(x)), F(g9(f(x))) is omitted automatically.

In order to extend these observations to a method that can be used for automati-
cally proving termination of a TRS we still need a method for automatically proving
the non-existence of infinite R-chains. This is done by proving compatibility with
a suitable kind of quasi-ordering. First we need a definition.

Definition 85 A quasi-ordering < on terms is called a reduction quasi-ordering if
o < is well-founded;
e ift > s then t° > s% for all substitutions o;
o if t > s then t° > s7 for all substitutions o;
o ift> s then f(...,t,...) > f(...,s,...) forall f(...).

Here s <t & (s <tA-(t <s)), and > and > are the inverses of < and <,
respectively.

Theorem 86 Let (X, R) be a TRS and let < be a reduction quasi-ordering such
that

o [> for all rulesl — r in R, and

e s >t for all dependency pairs (s,t) on a cycle in the approzimated dependency
graph, and

e cvery cycle in the approximated dependency graph contains at least one de-
pendency pairs (s,t) satisfying s > t.

Then (X, R) is terminating.

60

Proof: (sketch)

Assume (X, R) is not terminating. Then by Theorem 83 it admits an infinite
R-chain ({s;,t;))i=1,2,3,...- Since ({si,t:), {Si+1,ti+1)) is an arc of the approximated
dependency graph for every i, we conclude that (s;, ;) is on a cycle in the approxi-
mated dependency graph for every ¢ > N for some N, while s; > t; occurs infinitely
often by the third condition of the theorem. By the definition of R-chain substitu-
tions o; exist such that ¢J —7% s7{1' for every i = 1,2,3,.... Using the first and
second condition of the theorem we obtain

ON ON ON+1 ON+1 ON+2 ON+2
SN 2tN 2 8ny1 2tny1 2 Snq2 2 tnys 200

while s7* > t7* occurs infinitely often, contradicting well-foundedness. O

In order to complete the method of proving termination by means of dependency
pairs we still have to describe a way of finding suitable reduction quasi-orderings.
This is a combination of recursive path order and recursive program schemes. Recall
from Definition 61 that a recursive program scheme (RPS) is a TRS in which all left
hand sides of the rules have distinct root symbols, and all of these left hand sides
are of the shape f(zi,...,%,) where x1,...,x, are distinct variables. Typically
here we will use RPSs in which the right hand sides are single variables or terms
of the shape g(z;,,...,2;). Every RPS is confluent since it is orthogonal. For a
terminating RPS S and a term ¢ we write S(t) for the unique normal form of ¢ with
respect to S. For any terminating RPS S and any recursive path order <,p, define

s<t & (S(s)=S()VS(s) <o S()).

It is not difficult to prove that < defined in this way is a reduction quasi-ordering.
The dependency pair method of proving termination of a given TRS now consists
of searching for a terminating RPS S and a recursive path order <, such that
the corresponding reduction quasi-ordering < satisfies the requirements of Theorem
86. Restricting to RPSs in which the right hand sides are single variables or linear
terms of the shape g(;,,...,;,), only finitely many choices are possible, yielding
a full decision procedure for applicability of this method. The intuition of S is that
particular arguments of particular operations, or the operations symbols themselves
are systematically removed before <y, is applied. We illustrate this for Example
35: the TRS R consisting of the rule

f(F@) = Fg(f(2)))-

From the two dependency pairs (F(f(z)), F(9(f(x))) and (F(f(z)), F(z)) the first
one is removed since it is not on a cycle one the approximated dependency graph.
Theorem 86 yield the requirements

f(f(@) > flg(f(2)))
F(f(z)) > F().

These are easily fulfilled by choosing S to consist of the single rule g(z) — =,
yielding

S(f(f(2) = f(f(=)) = S(f(9(f(2)))), and

S(F(f(x))) = F(f(@)) o F(x) = S(F(x))

for any <,p,, proving termination.
Before we give a more serious example we summarize the dependency pair
method:

I
n

e For a given TRS, establish all dependency pairs.

61

o Next, establish the approximated dependency graph and its cycles; remove all
dependency pairs that are not on a cycle.

e Search for a terminating RPS S and a recursive path order <., such that
the corresponding reduction quasi-ordering < satisfies the requirements of
Theorem 86.

If the search in the last step succeeds, then termination of the TRS has been proved.
In the last step <5, may be replaced by any order proving termination of a TRS; in
this sence the dependency pair approach fits in the framework of a transformational
method.

Example 36 Let R be the TRS from [4] consisting of the following four rules

m(z,0) — =«
m(s(z),s(y)) — m(z,y)
q(0,s(z)) — O
q(s(z),s(y)) — s(g(m(z,y),sy)))-
Interpreting s as successor, m(z,y) as ¢ —y and ¢(z,y) as x/y this system describes
division in the natural numbers. For instance one can derive

q(s*'(0),5°(0)) =% s7(0).

Termination of R is not trivial; in particular the self-embedding reduction

q(s(0),5(s(0))) —r s(g(m(0,5(0)), 5(s(0))))

shows that R is not simply terminating. We now show that the dependency pair
method successfully applies to R.
The defined symbols are m and ¢, and the dependency pairs are

(M (s(x), s(y)), M(z,y)),

(Q(s(x),5(y)), M(2,y)), and
(Q(s(2), 5(y)), Q(m(2,y),5(y)))-

The approximated dependency graph has these three dependency pairs as its nodes.
Since the function cap does not affect the symbols M and @ it is easily seen (and
automatically derived) that there are four arcs in the approximated dependency
graph:

e one from (Q(s(z), s(y)), Q(m(z,y), s(y))) to itself;

o one from (Q(s(z), s(y)), Q(m(z,y),s(y))) to (Q(s(z),s(y)), M(z,y));
o one from (Q(s(z), s(y)), M(z,y)) to (M(s(z),s(y)), M(z,y));

e one from (M (s(x), s(y)), M (z,y)) to itself.

Hence the dependency pair (Q(s(z),s(y)), M(x,y)) is not on a cycle in the approx-
imated dependency graph, and may be removed. The remaining two dependency
pairs are both on the cycle implied by the arc to itself; there are no other cy-
cles. Hence we have to search for a terminating RPS S and a recursive path order
~<rpo such that the corresponding reduction quasi-ordering < satisfies the following
requirements:

m(z,0) > =z
m(s(z),s(y)) > m(z,y)
q(0,s(z)) > 0
q(s(z),s(y)) > s(g(m(z,y),s(y)))
M(s(z),s(y)) > M(z,y)
Q(s(z),s(y)) > Qm(z,y),s(y))-

62

These requirements are fulfilled by choosing S to consist of the rule m(z,y) — =
and observing

r = =z
s(x) o
q(0,s(x)) >rpo 0
q(s(z),s(y)) >mo sla(z,5(y)))
M(s(z),5(y)) >rpo M(z,y)
Q(s(2),8(y)) =mo Qz,5(y))
for any precedence < satisfying s < ¢. Hence by Theorem 86 we have proved

termination of R.

5.6 Type introduction

The idea of type introduction is that the one-sorted TRS for which termination
has to be proven, is transformed into a many-sorted TRS having the same rules,
but for which termination is easier to prove. This fits in the framework of non-
termination preserving transformations; indeed our main theorem states that under
some conditions termination of the original one-sorted TRS follows from termination
of the many-sorted TRS.

First we recall some standard terminology. Let S be a finite set representing the
set of types or sorts. An S-sorted set X is defined to be a family of sets (X;)ses-
For S-sorted sets X and Y, an S-sorted map ¢ : X — Y is defined to be a family
of maps (¢, : X5 = Y;)ses.

By S* we denote the set of finite sequences of elements of S, including the empty
sequence. Let ¥ be a set of symbols, the operation symbols. For every operation
symbol an arity and a sort is given, described by functions

ar: Y —=S* and st: X —= 8.

Let X be an S-sorted set of symbols, the variables, where the sets X; are pairwise
disjoint. We define the S-sorted set Ter(X) of S-sorted terms inductively by

o X; C Ter(X), for s € S,

o f(t1,...,tn) € Ter(X)s for f € ¥ with ar(f) = (s1,...,5n) and st(f) = s,
and t; € Ter(X),, fori=1,...,n.

An S-sorted term rewriting system (TRS) is defined to be an S-sorted set of
rules: a rule [— r of sort s consists of two terms [and r of sort s for which [is
no variable and r contains no variables that do not occur in I. The corresponding
reduction relation is defined as expected. By many-sorted we mean S-sorted for
#S5 > 1, the case #S = 1 is called one-sorted and corresponds to the usual notion
of terms and term rewriting.

By removing all sort information every many-sorted term can be mapped to
a one-sorted term as follows. Let X' be the set of symbols obtained by adding a
prime (') to every symbol of X. For f € ¥ with ar(f) = (s1,...,8,) we define the
arity of f' € X' to be n. In this way X’ defines a one-sorted signature. Since there
is only one sort there is no need for an explicit notation for the sort. We choose
X' = sess to be the set of one-sorted variable symbols; recall that the sets X
are assumed to be pairwise disjoint.

Every term over X of any sort can be mapped to a term over ¥’ by adding prime
symbols to all operation symbols. This type elimination map

O:UsesTer(X)s — Ter(X)

is inductively defined by

63

e O(z) = x for every z € X, for every s € S;

e O(f(t1,---,tn)) = [(O(t1),...,0(ty)) for all f € ¥ and terms t1,...,¢, of
the right sort.

Ignoring prime symbols, the set |JscsTer(X)s can be considered as a subset of
Ter(X'), namely the set of well-typed terms.

The type elimination map © is defined on TRSs in an obvious way: for any
many-sorted TRS R the one-sorted TRS O(R) is defined to consist of the rules
O(l) —» O(r) for the rules I — r from R. One easily observes that for ¢1,t2 €
Ter(X)s:

t1 7rty & @(tl) —o(R) @(tz).

A property of binary relations is called persistent if for every many-sorted TRS
R the property holds for R if and only if it holds for ©(R).

The notion of persistence is closely related to the notion of modularity as it has
been studied extensively in e.g. [49, 63, 58]. A property of one-sorted TRSs is
called modular if for every pair of (one-sorted) TRSs R; and R, with disjoint sets
of operation symbols the property holds for both R; and R, if and only if it holds
for Ry ® Rs. Here R; & R> denotes the union of both TRSs; it is a one-sorted TRS
over the disjoint union of the sets of operation symbols. By choosing one sort for all
operations occurring in Ry and another sort for all operations occurring in Ra, it is
not difficult to see that for properties like confluence, weak confluence, termination
and weak normalization persistence implies modularity; for details we refer to [64].
In particular, the basic example from [62] showing that termination is not modular
straightforwardly leads to an example that termination is not a persistent property
as follows. Let S = {s1,s2}; the following variables and operation symbols are
defined:

e z is a variable of sort si;

e y, z are variables of sort sz;

e 0,1 are constants of sort si;

e fis an operation symbol of sort s; and arity (sy,s1,$1);
e g is an operation symbol of sort s2 and arity (s2, s2).

Let the S-sorted TRS R consist of the following rules:

f00,1,2) = f(z,2,2)
9(y,z) =y
9(y,2) = =

The S-sorted TRS R is terminating; for sort s; this was proved in Example 9 and
for sort sy this is trivial. On the other hand

f(9(0,1),9(0,1),9(0,1)) = £(0,9(0,1),9(0,1)) = £(0,1,9(0,1)) =

f(g(oa 1)79(07 1)79(07 1)) -
is an infinite reduction in ©(R). This implies that termination is not a persistent
property.

However, we can define a particular class of many-sorted TRSs such that termi-
nation is persistent for that class. Recall that a reduction rule is called collapsing if
its right hand side is a single variable, and duplicating if some variable occurs more
often in the right hand side than in the left hand side. In the above example the
first rule is duplicating and the second and the third rules are collapsing.

64

It has been shown by [58] that termination is modular for the class of one-sorted
TRSs without collapsing rules and also in the class of one-sorted TRSs without
duplicating rules. The following theorem generalizes this result:

Theorem 87 Termination is persistent for the class of many-sorted TRSs not con-
taining both collapsing and duplicating rules.

Any infinite reduction of R is trivially translated to an infinite reduction of ©(R).
As a consequence, termination of ©(R) implies termination of R. The difficult part
is the converse: assume termination of R and derive termination of ©(R). For a
proof we refer to [64].

Theorem 87 can be used as a tool for proving termination of TRS as follows.
Given a (one-sorted) TRS not containing both collapsing and duplicating rules, we
try to find a many-sorted TRS R in such a way that ©(R) coincides with the original
one-sorted TRS. Intuitively this means that we look for a typing of the TRS in such
a way that all rules are well-typed. This process is called type introduction, and
can be done straightforwardly as follows. First try to choose distinct incoming and
outcoming sorts for all symbols. Next the requirements that all left hand sides and
right hand sides are well-sorted terms, and every left hand side has the same sort
as the corresponding right hand side, force that many of these sorts are equal. If all
sorts are forced to coincide in this way, the method does not apply. On the other
hand, if some distinct sorts remain then we get a many-sorted TRS, and Theorem
87 states that for proving termination of the original one-sorted system it suffices
to prove termination of the many-sorted system. The latter can be much simpler
as will be illustrated now by some examples.

Example 37 As in Example 9 consider the rule

[0, L,2) = f(z,z,1).

Now termination can be proved by considering the typing in which 0, 1,z have sort
s1, and f has sort so and arity (s1, 1, 81). Then this many-sorted system is trivially
terminating since at most one reduction step can be done. From Theorem 87 we
conclude that also the original one-sorted system is terminating.

Example 38 Consider the TRS

s(z) +(y+w) = o+ (s(s(y)) +w)
s(@)+(y+(z+w) = z+(z+y+w)

from [34]. The termination proof can be given via the typing
T,Y,2:81, W:Sy, §:8 — 81, +:(51,82) = sa.

After adding one constant 0 of sort s; and one constant nill of sort s,, many-sorted
terms of sort ss then represent lists of natural numbers. It is easy to check that
after every rewrite step the length of such a list does not change, and the list itself
lexicographically decreases. Hence the many-sorted system is terminating; from
Theorem 87 we conclude that also the original one-sorted system is terminating.

From these examples we see that type introduction provides a far more powerful
tool for proving termination than the similar modularity result.

Theorem 87 plays an important role in the proof of undecidability of simple
termination for single rewrite rules in [50]. The same holds for later undecidability
results for single rewrite rules in [31].

We saw that termination is not persistent for many-sorted TRSs containing
both collapsing and duplicating rules. In [2] it has been shown that termination

65

is persistent for the class of TRSs in which all variables have the same sort. This
means that for TRSs containing both collapsing and duplicating rules termination
still can be concluded from termination of a many-sorted version in case all variables
in this many-sorted version have the same sort.

References

[1]

[2]

[7]

[8]

[10]

[11]

[12]

[13]

ABADI, M., CARDELLI, L., CURIEN, P.-L., AND LEVY, J.-J. Explicit sub-
stitutions. Journal of Functional Programming 1, 4 (1991), 375-416.

AoTo, T. A proof of the conjecture of Zantema on a persistent property of
term rewriting systems. Tech. Rep. IS-RR-98-0008F, School of Information
Science, Japan Advanced Institute of Science and Technology, 1998.

Arts, T., AND GIESL, J. Automatically proving termination where simplifi-
cation orderings fail. In Proceedings Theory and Practice of Software Develop-
ment (TAPSOFT97, CAAP/FASE) (1997), M. Bidoit and M. Dauchet, Eds.,
vol. 1214 of Lecture Notes in Computer Science, Springer Verlag, pp. 261-273.

Arts, T. H. J. J. Automatically Proving Termination and Innermost Nor-
malisation of Term Rewriting Systems. PhD thesis, Utrecht University, 1997.

BACHMAIR, L. Associative-commutative reduction orderings. Information
Processing Letters 43 (1992), 21-27.

BACHMAIR, L., AND DERSHOWITZ, N. Commutation, transformation and
termination. In Proceedings of the 8th International Conference on Automated
Deduction (CADES) (1986), J. Siekmann, Ed., vol. 230 of Lecture Notes in
Computer Science, Springer, pp. 5-20.

BAcCHMAIR, L., AND PLAISTED, D. Termination orderings for associative-
commutative rewrite systems. Journal of Symbolic Computation 1 (1985),
329-349.

BAETEN, J. C. M., AND WELLAND, W. P. Process Algebra, vol. 18 of

Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, 1990.

BELLEGARDE, F., AND LESCANNE, P. Transformation orderings. In Proceed-
ings of the 12th Colloguium on Trees in Algebra and Programming (CAAP)
(1987), vol. 249 of Lecture Notes in Computer Science, Springer, pp. 69-80.

BELLEGARDE, F., AND LESCANNE, P. Termination by completion. Applicable
Algebra in Engineering, Communication and Computing 1, 2 (1990), 79-96.

BEN-CHERIFA, A., AND LESCANNE, P. Termination of rewriting systems
by polynomial interpretations and its implementation. Science of Computing
Programming 9, 2 (1987), 137-159.

BrLoo, R., AND GEUVERS, H. Explicit substitution: on the edge of strong
normalization. Theoretical Computer Science 204 (1998). To appear.

CARON, A. C. Linear bounded automata and rewrite systems: influence of
initial configurations on decision properties. In Proceedings of the Collogquium
on Trees in Algebra and Programming (1991), vol. 493 of Lecture Notes in
Computer Science, Springer, pp. 74-89.

66

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

CURIEN, P.-L., HARDIN, T., AND Rfos, A. Strong normalization of substi-
tutions. In Proceedings Mathematical Foundations of Computer Science 1992
(1992), I. M. Havel and V. Koubek, Eds., vol. 629 of Lecture Notes in Computer
Science, Springer, pp. 209-217.

DAUCHET, M. Simulation of Turing machines by a regular rewrite rule. The-
oretical Computer Science 108, 2 (1992), 409-420. (Preliminary version ap-
peared in Proceedings of RTA89, Lecture Notes in Computer Science 355,
Springer, 1989.).

DERSHOWITZ, N. A note on simplification orderings. Information Processing
Letters 9, 5 (1979), 212-215.

DERSHOWITZ, N. Orderings for term rewriting systems. Theoretical Computer
Science 17, 3 (1982), 279-301.

DERSHOWITZ, N. Termination of rewriting. Journal of Symbolic Computation
3, 1 and 2 (1987), 69-116.

DErRSHOWITZ, N., AND MITRA, S. Path orderings for termination of
associative-commutative rewriting. In Conditional Term Rewriting Systems,
proceedings third international workshop CTRS-92 (1993), M. Rusinowitch
and J. Rémy, Eds., vol. 656 of Lecture Notes in Computer Science, Springer,
pp- 168-174.

Dick, J., KaLMus, J., AND MARTIN, U. Automating the Knuth Bendix
ordering. Acta Informatica 28 (1990), 95-119.

DROSTEN, K. Termersetzungssysteme, vol. 210 of Informatik-Fachberichte.
Springer, 1989.

FERREIRA, M. C. F. Termination of Term Rewriting: Well-foundedness,
Totality and Transformations. PhD thesis, Utrecht University, 1995.

FERREIRA, M. C. F. Dummy elimination in equational rewriting. In Proceed-
ings of the Tth Conference on Rewriting Techniques and Applications (1996),
H. Ganzinger, Ed., vol. 1103 of Lecture Notes in Computer Science, Springer,
pp- 63-77.

FERREIRA, M. C. F., AND ZANTEMA, H. Syntactical analysis of total termi-
nation. In Proceedings of the 4th International Conference on Algebraic and
Logic Programming (1994), G. Levi and M. Rodriguez-Artalejo, Eds., vol. 850
of Lecture Notes in Computer Science, Springer, pp. 204—222.

FERREIRA, M. C. F., AND ZANTEMA, H. Dummy elimination: Making ter-
mination easier. In Fundamentals of Computation Theory, proceedings 10th
international conference FCT95 (1995), H. Reichel, Ed., vol. 965 of Lecture
Notes in Computer Science, Springer, pp. 243-252. Extended version appeared
as report UU-CS-1994-47, Utrecht University, October 1994.

FERREIRA, M. C. F., AND ZANTEMA, H. Total termination of term rewriting.
Applicable Algebra in Engineering, Communication and Computing 7, 2 (1996),
133-162. (Preliminary version appeared in Proceedings of RTA93, Lecture
Notes in Computer Science 690, Springer, 1993.).

FokkINk, W. J., AND ZANTEMA, H. Basic process algebra with iteration:
Completeness of its equational axioms. The Computer Journal 37, 4 (1994),
259-267.

67

[28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]
[39]

[40]

[41]

[42]

[43]

FokkINK, W. J.; AND ZANTEMA, H. Termination modulo equations by ab-
stract commutation with an application to iteration. Theoretical Computer
Science 177 (1997), 407-423.

GESER, A. Relative termination. PhD thesis, Universitat Passau, 1990.

GESER, A., MIDDELDORP, A.;, OHLEBUSCH, E., AND ZANTEMA, H. Relative
undecidability in term rewriting. In Proceedings of the Conference of the Fu-
ropean Association of Computer Science Logic (CSL96) (1997), D. van Dalen,
Ed., Lecture Notes in Computer Science, Springer Verlag.

GESER, A., MIDDELDORP, A., OHLEBUSCH, E., AND ZANTEMA, H. Rel-
ative undecidability in the termination hierarchy of single rewrite rules. In
Proceedings Theory and Practice of Software Development (TAPSOFT97,
CAAP/FASE) (1997), M. Bidoit and M. Dauchet, Eds., vol. 1214 of Lecture
Notes in Computer Science, Springer Verlag, pp. 237-248.

HARDIN, T., AND LAVILLE, A. Proof of termination of the rewriting system
SUBST on CCL. Theoretical Computer Science 46 (1986), 305-312.

HOFBAUER, D. Termination proofs by multiset path orderings imply primitive
recursive derivation lengths. Theoretical Computer Science 105, 1 (1992), 129
140.

HOFBAUER, D., AND LAUTEMANN, C. Termination proofs and the length
of derivations (preliminary version). In Proceedings of the 3rd Conference on
Rewriting Techniques and Applications (1989), N. Dershowitz, Ed., vol. 355 of
Lecture Notes in Computer Science, Springer, pp. 167-177.

HUET, G., AND LANKFORD, D. S. On the uniform halting problem for term
rewriting systems. Rapport Laboria 283, INRIA, 1978.

JoNES, J. Universal diophantine equation. Journal of Symbolic Logic 47
(1982), 549-571.

JOUANNAUD, J.-P.; LESCANNE, P., AND REINIG, F. Recursive decomposition
order. In IFIP Working Conference on Formal Description of Programming
Concepts II. North-Holland Publishing Company, 1982, pp. 331-348.

KAMIN, S., AND LEVY, J. J. Two generalizations of the recursive path order-
ing. University of Illinois, 1980.

KAPLAN, S. Simplifying conditional term rewriting systems: unification, termi-
nation and confluence. Journal of Symbolic Computation 4, 3 (1987), 295-334.

KAPUR, D., NARENDRAN, P., AND SIVAKUMAR, G. A path ordering for
proving termination of term rewriting systems. In Proceedings of the 10th
Colloguium on Trees in Algebra and Programming (CAAP) (1985), vol. 185 of
Lecture Notes in Computer Science, Springer, pp. 173—187.

Kropr, J. W. Term rewriting systems: a tutorial. Bulletin of the EATCS 32
(1987), 143-183.

Kropr, J. W. Term rewriting systems. In Handbook of Logic in Computer
Science, D. G. S. Abramski and T. Maibaum, Eds., vol. 1. Oxford University
Press, 1991.

KNuTH, D., AND BENDIX, P. Simple word problems in universal algebras. In
Computational Problems in Abstract Algebra, J. Leech, Ed. Pergamon Press,
1970, pp. 263-297.

68

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

KRruskAL, J. Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture.
Trans. American Mathematical Society 95 (1960), 210-225.

KURIHARA, M., AND OHUCHI, A. Modularity of simple termination of term
rewriting systems. Journal of IPS Japan 81, 5 (1990), 633—642.

LANKFORD, D. S. On proving term rewriting systems are noetherian. Tech.
Rep. MTP-3, Louisiana Technical University, Ruston, 1979.

LESCANNE, P. Termination of rewrite systems by elementary interpretations.
In Algebraic and Logic Programming (1992), H. Kirchner and G. Levi, Eds.,
vol. 632 of Lecture Notes in Computer Science, Springer, pp. 21 — 36.

LESCANNE, P. On termination of one rule rewrite systems. Theoretical Com-
puter Science 132 (1994), 395-401.

MIDDELDORP, A. Modular Properties of Term Rewriting Systems. PhD thesis,
Free University Amsterdam, 1990.

MIDDELDORP, A., AND GRAMLICH, B. Simple termination is difficult. Ap-
plicable Algebra in Engineering, Communication and Computing 6, 2 (1995),
115-128. (Preliminary version appeared in Proceedings of RTA93, Lecture
Notes in Computer Science 690, Springer, 1993.).

MIDDELDORP, A.; OHSAKI, H., AND ZANTEMA, H. Transforming termination
by self-labelling. In Proceedings of the 18th International Conference on Auto-
mated Deduction (CADE) (1996), M. McRobbie and J. Slaney, Eds., vol. 1104
of Lecture Notes in Computer Science, Springer Verlag, pp. 373-387.

MIDDELDORP, A., AND ZANTEMA, H. Simple termination revisited. In
Proceedings of the 12th International Conference on Automated Deduction
(CADE12) (1994), A. Bundy, Ed., vol. 814 of Lecture Notes in Computer Sci-
ence, Springer, pp. 451-465.

MIDDELDORP, A., AND ZANTEMA, H. Simple termination of rewrite systems.
Theoretical Computer Science 175 (1997), 127-158.

OHLEBUSCH, E. A note on simple termination of infinite term rewriting sys-
tems. Tech. Rep. 7, Universitéit Bielefeld, 1992.

PLAISTED, D. The undecidability of self-embedding for term rewriting systems.
Information Processing Letters 20 (1985), 61-64.

ROZENBERG, G., AND SALOMAA, A. Cornerstones of Undecidability. Prentice
Hall, 1994.

RuB1O, A., AND NIEUWENHUIS, R. A precedence-based total AC-compatible
order. In Proceedings of the 5th Conference on Rewriting Techniques and Ap-
plications (1993), C. Kirchner, Ed., vol. 690 of Lecture Notes in Computer
Science, Springer, pp. 374-388.

RusINOWITCH, M. On termination of the direct sum of term rewriting systems.
Information Processing Letters 26 (1987), 65-70.

STEINBACH, J. Extensions and comparison of simplification orderings. In
Proceedings of the 3rd Conference on Rewriting Techniques and Applications
(1989), N. Dershowitz, Ed., vol. 355 of Lecture Notes in Computer Science,
Springer, pp. 434-448.

69

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

STEINBACH, J. Automatic termination proofs with transformation orderings.
In Proceedings of the 6th Conference on Rewriting Techniques and Applications
(1995), J. Hsiang, Ed., vol. 914 of Lecture Notes in Computer Science, Springer,
pp. 11-25.

STEINBACH, J. Simplification orderings: History of results. Fundamenta In-
formaticae 24 (1995), 47-87.

TovyAaMA, Y. Counterexamples to termination for the direct sum of term
rewriting systems. Information Processing Letters 25 (1987), 141-143.

TovaMma, Y. On the Church-Rosser property for the direct sum of term rewrit-
ing systems. Journal of the ACM 34, 1 (1987), 128-143.

ZANTEMA, H. Termination of term rewriting: interpretation and type elimi-
nation. Journal of Symbolic Computation 17 (1994), 23-50.

ZANTEMA, H. Termination of term rewriting by semantic labelling. Funda-
menta Informaticae 24 (1995), 89-105.

ZANTEMA, H. Total termination of term rewriting is undecidable. Journal of
Symbolic Computation 20 (1995), 43—60.

ZANTEMA, H. Termination of context-sensitive rewriting. In Proceedings of the
8th International Conference on Rewriting Techniques and Applications (1997),
H. Comon, Ed., vol. 1232 of Lecture Notes in Computer Science, Springer,
pp- 172-186.

ZANTEMA, H., AND GESER, A. A complete characterization of termination
of 0719 — 170%. In Proceedings of the 6th Conference on Rewriting Techniques
and Applications (1995), J. Hsiang, Ed., vol. 914 of Lecture Notes in Computer
Science, Springer, pp. 41-55. Appeared as report UU-CS-1994-44, Utrecht
University.

ZANTEMA, H., AND GESER, A. Non-looping rewriting. Tech.
Rep. UU-CS-1996-03, Utrecht University, January 1996. Available via
http://www.cs.ruu.nl/docs/research/publication/TechList2.html.

70

Index

w-termination, 24 modulo equations, 6, 13, 37, 54
monomial, 7
abstract commutation, 45 monotone algebra, 3
Ackermann’s function, 25, 29
algebra, 3 non-termination preserving, 39
approximated dependency graph, 60
Axiom of Choice, 22 ordinal, 24
bisimulation, 13 persistent, 64
polynomial, 7
coefficient, 7 polynomial interpretation, 2, 7
collapsing, 64 polynomial termination, 7, 24
compatible, 3, 4, 22 precedence, 2, 26
completeness of equational axiomatiza- process algebra, 12
tions, 13
context-sensitive term rewriting, 6 quasi-model, 52
critical pair, 47 quasi-order, 36
currying, 52
cyclic, 25 recursive path order, 2, 27
recursive program scheme, 40, 61
dead part, 48 reduction order, 3
decomposition order, 36 reduction quasi-ordering, 60
defined symbol, 58 relative undecidability, 25
dependency graph, 59 rpo-terminating, 27
dependency pair, 58, 59
distribution elimination, 44, 57 self-embedding, 25
distribution rule, 44 self-labelling, 52
dummy elimination, 42, 52 semantic labelling, 51
dummy introduction, 49 semantic path order, 36
dummy Symbol, 43 semantical method, 2, 3
duplicating, 64 simple monotone algebra, 17
simple termination, 17, 18
elementary function, 12, 24 simplification order, 21
embedding rules, 17 simplifying, 21
explicit substitution, 57 size of a term, 20
size-non-increasing, 20
flattening, 37 status, 26, 36

syntactical method, 2, 25
generalized Knuth-Bendix order, 38

term evaluation, 4

hierarchy of termination, 17 termination by completion, 49
Hilbert’s tenth problem, 9 total termination, 21
transformation ordering, 46
infinite chain, 59 transformational method, 2, 39
interpretation, 3 type elimination, 63

type introduction, 63
Knuth-Bendix order, 37

undecidable, 2, 9, 25
labelled, 52

lexicographic combination, 14 weakly monotone algebra, 37
lexicographic path order, 27 well-founded, 2, 35

local cooperation, 46 well-founded monotone algebra, 3
looping, 25

Zermelo’s Theorem, 22
model, 52

modularity, 21, 52, 55, 64
modulo AC, 6, 13, 37

71

