Binary Decision Diagrams by Shared Rewriting

Jaco van de Pol! Hans Zantema?®!
Jaco.van.de.Pol@cwi.nl hansz@cs.uu.nl

1: CWI, P.O.-box 94.079, 1090 GB, Amsterdam, The Netherlands

2: Department of Computer Science, Utrecht University,
P.O.-box 80.089, 3508 TB Utrecht, The Netherlands

Abstract

BDDs provide an established technique for propositional formula ma-
nipulation. In this paper we re-develope the basic BDD theory using
standard rewriting techniques. Since a BDD is a DAG instead of a tree
we need a notion of shared rewriting and develope appropriate theory.
A rewriting system is presented by which canonical ROBDDs can be ob-
tained. For this rewriting system a layerwise strategy is proposed having
the same time complexity as the traditional algorithm, and a lazy strategy
sometimes performing much better than the traditional algorithm.

1 Introduction

Equivalence checking and satisfiability testing of propositional formulas are ba-
sic but hard problems in many applications, including hardware verification [6]
and symbolic model checking [7]. Binary decision diagrams (BDDs) [4, 5, 9], are
an established technique for this kind of boolean formula manipulation. The
basic ingredient is representing a boolean formula by a unique canonical form,
the so called reduced ordered BDD (ROBDD). After canonical forms have been
established equivalence checking and satisfiability testing is trivial. Construct-
ing the canonical form however, can be very costly; it is even possible that the
size of the canonical form is exponential in the size of the original formula. A
main goal of the BDD approach is to keep constructing these canonical forms
tractable for as many boolean formulas as possible.

BDDs are recursively defined structures and they are manipulated by re-
peating small steps. It seems rather natural to view the BDD theory and the
manipulations on BDDs from a term rewriting point of view. In this paper, we
pursue this view on the following lines: First, a signature for BDDs is given.
Next we consider a finite axiomatization of logical equivalence on these trees.
Using the fairly standard rewriting techniques ([2]) of critical pair analysis and
recursive path ordering, we turn this into a complete, i.e. normalizing and con-
fluent, term rewriting system (TRS), for which the normal forms are exactly
the ROBDDs. In this way great part of BDD theory is obtained for free: the
existence of an ROBDD representation follows from the normalization property,

and unicity of the ROBDD representation follows from the confluence property.
The main theorem that propositional formulas are logically equivalent if and
only their ROBDD representations are syntactically equal, turns out to be a
corollary of soundness and completeness of the basic axiomatization.

A complication is that the relative efficiency of BDDs hinges on the max-
imally shared representation. In order to avoid the intricacies of maximally
shared graph rewriting, we present an elegant abstraction. Instead of introduc-
ing a rewrite relation on graphs, we introduce a shared rewrite step on terms.
In a shared rewrite step, all identical redexes have to be rewritten at once. We
prove that if a TRS is complete, then the shared version is so too. This enables
us to develop the main theory in standard term rewriting (without sharing).
The rewrite analysis can be lifted to shared rewriting for free. This lifting is
needed to study the algorithmic complexity in terms of rewrite steps.

The power of a rewriting approach to BDD theory goes beyond a
re-development of existing theory. In particular, we describe a TRS to be used
to compute the ROBDD for a propositional formula. Instead of correctness of
one single algorithm this implies that every reduction strategy represents a cor-
rect algorithm. In this respect we hope that the BDD-world can benefit from
the huge amount of research on rewriting strategies. Moreover, in the BDD-
world various extensions are emerging, both with respect to the data structure
as well as the algorithmics. (see e.g. [1]). Term rewriting can present a general
framework for desribing the variations.

After having established the basic theory, we present a TRS for applying
logical operations to ROBDDs and prove its correctness. This generalizes the
traditional algorithm, using Bryant’s function apply. Then a layerwise reduction
strategy for this TRS is given which mimics the usual apply-algorithm, and we
prove that it has the same time complexity. Finally, a lazy strategy is given, with
an example in which this performs much better than the traditional algorithm.

In Section 2 we present basic theory for decision trees and describe how
canonical forms are obtained by rewriting. In Section 3 we present our approach
to shared rewriting, independent of the particular application to BDDs. In
Section 4 ROBDDs are presented as shared representations of canonical forms
and a TRS is given and analyzed for various strategies to compute them. Finally
in Section 5 some conclusions are given.

2 Decision trees

We consider a set A of binary atoms, whose typical elements are denoted by
D, q,T,-... An instance s over A is defined to be a map from A to {true, false};
intuitively for an atom p and an instance s the value s(p) represents whether
the boolean atom p holds for the instance s or not.

A binary decision tree over A is a binary tree in which every internal node
is labeled by an atom and every leaf is labeled either true or false. In other
words, a decision tree over A is defined to be a ground term over the signature
having true and false as constants and elements of A as binary symbols.

Introducing the convention that in a decision tree the left branch of a node

p corresponds to p taking the value true and the right branch corresponds to
false, a boolean value ¢(T', s) can be assigned to every decision tree T and every
instance s, inductively defined as follows

¢(true,s) = true
¢(false,s) = false
¢(p(T,U),s) = ¢(T,s) if s(p) = true
o(p(T,U),s) = ¢(U,s) if s(p) = false.

Alternatively, in propositional notation the last two lines can be written as
¢(p(T, U)a 3) = (S(p) A ¢(T1 3)) \ (‘!S(p) A ¢(U, 3))a

or equivalently as $(p(T,U),s) = (s(p) = &(T,3)) A (~s(p) = &(U, 5)).

The function ¢(7T, —) is the boolean function described by 7. Conversely,
it is not difficult to see that every boolean function on A can be described by
a decision tree. One way to do so is building a decision tree such that in every
path from the root to a leaf every p € A occurs exactly once, and plugging the
values true and false in the 2#4 leaves according to the 2#4 lines of the truth
table of the given boolean function.

For any decision tree T let #(T") be the size of T, being the number of
internal nodes, defined inductively by

#(true) = #(false) = 0, #(p(T,U)) = 1+ #4(T) + #(U).

Two decision trees 1" and U are called equivalent, denoted as T' ~ U, if they
represent the same boolean function, i.e., if

d(T,s) = ¢(U,s) for all s: A — {true,false}.

Decision equivalence can be described by an equational axiomatization as
follows. Let &£ consist of the equations

(1) plz,z) = =z

(2) ple(z,9),q9(z,w)) = q(p(z,2),p(y,w))
(3) p(p(z,y),2) p(z,2)
(4) (w,p(y, z)) = p(z,2)

1

for all p,q € A. Note that £ is finite if and only if A is finite. Here z,y,z,w
are variables from a set X of variable symbols for which decision trees have to
be substituted. More precisely, if 0 : X — D, and ¢ is a term built from atoms
from A and variables from X, then t° is defined inductively as follows

7 = o(x) forall z € X,
p(t,u)? = p(t?,u%) for all p € A.

Let =¢ be the congruence generated by &, i.e., =¢ is the smallest binary relation
on D satisfying

o 17 =¢ u? for every equation t = u in £ and every o : X — D, and

o =; is reflexive, symmetric and transitive, and

o if T = U then p(T,V) =¢ p(U,V) and p(V,T) =¢ p(V,U) for all p € A
and all V € D.

We prove that £ is a sound and complete axiomatization for decision equiv-
alence, i.e., the relations =¢ and ~ on decision trees coincide. This means
that two decision trees are equivalent if and only if this can be derived by only
applying the four types of equations in £. Soundness of £ (the ‘if’-part of the
statement) is evident; the hard point is completeness. A straightforward ele-
mentary proof is given in [11]; here we give a rewrite approach. This rewrite
approach does not lead to completeness only, it is also the basis of uniqueness
of the ROBDD representation.

The first step is to complete £: find a confluent and terminating rewrite
system DT such that =¢ and <—>"bT coincide. One problem in doing so is
orienting rule (2). If between two atoms p and g no preference is given, this
cannot be oriented without getting cyclic reductions. The way to solve this
is choosing a total order < on A, and orient the rewrite rules in such a way
that the left hand side is greater than the right hand side with respect to the
corresponding recursive path order. In this way all equations are oriented from
left to right, where equation (2) is only allowed for ¢ < p. This rewrite system
has non-converging critical pairs, in particular (p(q(x,v),), q(p(z, 2), p(y, 2))),
obtained from rewriting p(q(z,v), q(z, z)) by rule (1) and rule (2), respectively.
Orienting yields the new set of rewrite rules

p(a(=,y),z) = a(p(z, 2),p(y, 2))
for all p, ¢ satisfying p > ¢, and by symmetry also

p(z,q(y,2)) = q(p(z,y),p(z, 2))

for all p, q satisfying p > ¢. Surprisingly, the original rule (2) can be removed
now since

pla(z,y), q(z,w)) =" a(p(z, 2), p(y, w))
by only using rules (3), (4) and these new rules. We define the rewrite system
DT to consist of the rules

p(z,z) — =z for all p
p(p(z,y),2) — plz,2) for all p
p(z,p(y,2)) — p(z,2) for all p
pla(z,y),2) — q(p(z,2),p(y,2)) forp>gq

p(z,9(y,2)) — qlp(z,y),p(z,2)) forp>gq.

We have defined DT in such a way that indeed =¢ and <—>*DT coincide.
Moreover, DT is terminating since every left hand side is greater than the
corresponding right hand side with respect to recursive path order. Finally, it
can be checked that all critical pairs are convergent. This can be done by hand
or automatically, for the latter approach it has to be remarked that it suffices
to prove it for the case of # A = 3 since no rule contains more than two different
symbols. Since all critical pairs converge DT is locally confluent, and since DT
is terminating too we conclude that DT is confluent.

4

Definition 1 A decision tree is in canonical form with respect to the order
< on A if on every path from the root to a leaf the atoms occur in strictly
increasing order, and no subterm of the shape p(T1,Ts) exists for which Ty and
Ty are syntactically equal.

Clearly a decision tree is in canonical form if and only if it is in normal
form with respect to DT. Since DT is terminating and confluent we have the
following theorem.

Theorem 2 FEvery decision tree reduces by DT to a unique canonical form,
and Ty and Ty have the same canonical form if and only if Ty =¢ Ts.

Next we prove completeness of the equational axiomatization. First we need
a lemma.

Lemma 3 Let T,U be decision trees in canonical form satisfying T ~ U. Then
T=U.

Proof: We apply induction on #(7T) + #(U). If #(T) + #(U) = 0 then both
T and U are true or both T" and U are false and we are done.

Consider the case #(T") + #(U) > 0. In case either 7" or U is equal to true
or false, say T is equal to true, then U can be written as U = p(Uy, Us). Since
U is in canonical form both Uy and Uj are in canonical form and p does neither
occur in U7 nor in Us. Since U ~ true we obtain U; =~ true and U; ~ true;
from the induction hypothesis we conclude U; = true = U, contradicting the
assumption that U is in canonical form.

In the remaining case we have T' = p(T1,T5) and U = ¢q(U1,Usz). First
assume that p # ¢. Since < is a total order we have either p < ¢q or ¢ < p, by
symmetry we may assume p < ¢. Since T" and U are in canonical form p does
not in occur in any of the trees 717, 15 and U. From T ~ U we then conclude
Ty ~ U and T, ~ U. From the induction hypothesis we conclude T3 = U = T5,
contradicting the assumption that 7" is in canonical form.

In the remaining case we have T' = p(T1,T5) and U = p(Uy,Us). Since T
and U are in canonical form p does not in occur in any of the trees 77, 75,
U; and Uy. From T ~ U we then conclude 177 ~ U; and 15 ~ U,. From
the induction hypothesis we then conclude 77 = U; and T» = Us. Hence
T = p(Tl,TQ) = p(Ul, U2) =U. 0O

Theorem 4 For decision trees T,U we have T =¢ U if and only if T ~ U.

Proof: The ‘only if’-part is soundness which follows immediately from the fact
that all rules are sound. The ‘if’-part (completeness) follows from soundness,
Theorem 2 and Lemma 3. O

Combining Theorems 2 and 4 yields a straightforward way to decide whether
two decision trees are equivalent or not: reduce them to canonical form and look
whether they are syntactically equal. However, it can happen that the canonical
form has size exponential in the size of the original decision tree, even if you

may choose a suitable ordering < yourself. Hence worst case this procedure
for establishing equivalence is of exponential complexity. A straightforward
quadratic procedure for establishing equivalence is well-known; one version is
presented in [11].

We conclude this section by an example that indeed the size of a canonical
form can be exponential in the size of the original decision tree.

Example 5 Let n be any natural number. Let A consist of p1,ps,-..,Pn,
41,92, ---,qn, 7 and define inductively

To = Uy = false, T; = pi(qgi(true,false), T;—1), U; = qi(pi(true,false), U;_1),

fori=1,...,n,and V = r(T,,U,). Clearly V is a decision tree of size #V =
4n+1. In [12] it has been proved that for every order < on A the corresponding
canonical form of V has a size exceeding 2"/2, which is indeed exponential in
the size of V.

3 Sharing

A term can be seen as a tree. For measuring the space complexity, the size
of a term is usually defined as the number of nodes of this tree. For efficiency
reasons, most implementations apply the sharing technique. A subterm is stored
at a certain location in the memory of the machine, various occurrences of the
same subterm are replaced by a pointer to this single location. This shared
representation can be seen as a directed acyclic graph (DAG). It is allowed that
nodes have more than one parent, but no cycles are introduced by sharing a
term.

A natural size of the shared representation is the number of nodes in this
DAG. We will consider the mazimally shared representation of terms, in which
each subterm occurs exactly once. In the sequel, with shared, we always mean
maximally shared. First we formalize this notion of sharing for genral terms.

A signature ¥ is defined to be a set of symbols f each having an arity
ar(f) € N. We define a shared term over a signature ¥ to be a four-tuple
(X, zg, root, arg), where

e X is a non-empty set;

o 19 € X;

root : X — 3;

arg: X x N — X is a partial function for which arg(x,%) is defined if and
only if 1 < i < ar(root(z)).

Intuitively, =y represents the full term, X represents the set of all subterms,
root(z) represents the head symbol of the subterm z, and arg(z,7) represents
the ¢-th argument of the subterm x. This framework describes both finite and
infinite shared terms.

Up to the names of elements of X ordinary terms are transformed canon-
ically to shared terms by the function share. In order to give a definition we
need an injective function enum choosing a name enum(t) for every term ¢. We
define share inductively as follows

share(c) = ({c}, ¢, root, arg)

for every constant ¢, root(c) = ¢ and arg(c, ?) is undefined for every i. Assume
that for each i < n, share(t;) is inductively defined, and equals (X, z;, root;, arg;).
Define

n
share(f(t1,...,tp)) = (U X; U{zo}, zo, root, arg),
i=1
where

e z is defined to be enum(f(t1,...,tn)),
e root(zg) = f,

e root(z) = root;(z) if z € Xj,

o arg(zo,j) = x;,

e arg(z,j) = arg;(z,j) if z € X;,

for every i,j. Due to injectivity and root(enum(f(t1,...,t,))) = f and
arg(enum(f(t1,...,t,)),7) = enum(t;) we obtain that always zo & |J;—; X; and
root;(z) = rooty(z) and arg;(z,j) = argy(z,7) for z € X; N X}, by which root
and arg are well-defined.

Since in the first argument of share(f(¢1,...,%,)) the union is taken, multiple
occurrences of subterms are stored only once. The memory needed for storing
share(t) = (X, o, root, arg) is linear in the size of X, representing the number
of different subterms. So we define the shared size of a term:

#sn(t) = #{s | s is a subterm of ¢.}

The shared size of a term can be much smaller than the tree size as is
illustrated by the next example. This is exactly the reason that sharing is
applied.

Example 6 Define Ty = true and Uy = false. For binary symbols p1, p2, p3, - - -
define inductively T, = pn(Tn—1,Up—1) and U,, = pp(Up—1,T5—1). Considerinf
T, as a term its size #(7T,) is exponential in n. However, the only subterms of
T, are true, false, and T; and U; for ¢ < n, hence #,(T,) is linear in n.

The next theorem shows that by sharing no information is lost: by some
function unsh the original term can be reconstructed from the shared term.
Here unsh is defined inductively as follows:

unsh(X, zg, root, arg) = root(xo)(t1,...,t,)

where t; = unsh(X,arg(z, j),root,arg) for j = 1,...,ar(root(zg)). Note that
unsh is not well-defined for all tuples (X, zg, root, arg): if a cyclic behaviour is
involved then such a tuple represents an infinite term.

Theorem 7 Let t be any term. Then unsh(share(t)) is well-defined and equals
t.

Proof: The theorem follows from the slightly stronger assertion

Let share(t) = (X, zo,root,arg). Let X C X', root’ : X' —» X
and arg’ : X’ x N — X' satisfy root'(z) = root(z) and arg/(z,j) =
arg(z,j) for all z € X and all 5. Then unsh(X', zg,root’,arg’) is
well-defined and equals t.

[

which is straightforwardly proved by induction on the structure of ¢. O

Maximal sharing is essentially the same as what is called the fully collapsed
tree in [10]. In [8] it is shown that the maximally shared representation is
unique, and that the original term can be reconstructed from it.

In implementations some care has to be taken in order to keep terms max-
imally shared. In essence, when constructing a term, a hash table is used to
find out whether a node representing this term exists already. If so, this node is
reused; otherwise a new node is created. We also refer to the ATerm library [3],
which is a C-library offering a data type for terms, that are internally stored
maximally shared. The main operations are constructing and deconstructing
terms in constant time, and unreferenced terms are garbage collected automat-
ically. Furthermore, all BDD-packages can be seen as implementing the idea of
maximal sharing.

We now study the time complexity of a term #. In term rewriting this
is usually defined as the length of the maximal reduction sequence from % to
normal form. Note that all occurrences of the same redex have to be contracted
one by one. Because in the shared representation all distinct subterms occur
once, it is reasonable to count the contraction of these subterms only once.

Although it is possible to define the rewrite relation on DAGs, this is quite
complicated. Note that if a subterm is rewritten, then this should be noticed by
all referring nodes. Also note that if C[D[I?]] reduces to C[D[r?]], then D[r?]
may occur somewhere else in C[], so after contracting the redex, a number of
sharing steps are needed to remove the duplicated nodes from D).

These problems are partly solved in [1], where a data structure is invented for
representing BEDs (a generalization on BDDs). Extra indirections are inserted
from nodes to their reduced versions. This technique was already used in [8] on
an implementation of rewriting with maximal sharing, called Unlimp.

In order to avoid these complexities, we introduce the shared rewrite relation
on terms. In usual unshared rewriting a rewrite step consists of writing the
term as C[l?] for some context C, some substitution ¢ and some rewrite rule
[— r, and replace the term by C[r?]. In shared rewriting not only this single
occurrence of [is replaced by r?, but by sharing also every other occurrence of
[?. By this observation we define shared rewriting without explicitly referring
to the shared terms.

Definition 8 Between two terms t and t' there is a shared rewrite step t =g t'
with respect to a rewrite system R if t = C[l?,...,1°] and t' = C[r?,...,r7] for

one rewrite rule | — 1 in R, some substitution o and some multi-hole context
C having at least one hole for which 17 is not a subterm of C.

We will take the maximum number of =-steps from ¢ as the time complexity
of computing ¢.

Both in unshared rewrite steps — g and shared rewrite steps =g the sub-
script R is often omitted if no confusion is caused.

We now study some properties of the rewrite relation = g. The following
lemmas are straightforward from the definition.

Lemma 9 Ift=t' thent —* t'.
Lemma 10 Ift — t' then a term t" exists satisfying t' —* t" and t = t".

The next theorem shows how the basic rewriting properties are preserved
by sharing. In particular, if — is terminating and all critical pairs converge,
then termination and confluence of = can be concluded too.

Theorem 11 (1) If — is terminating then = is terminating too.

(2) A term is a normal form with respect to = if and only if it is a normal
form with respect to —.

(8) If = is weakly normalizing and — has unique normal forms, then = is
confluent.

(4) If — is confluent and terminating then = is confluent and terminating
too.

Proof: Part (1) follows directly from Lemma 9.

If ¢ is a normal form with respect to — then it is a normal form with respect
to = by Lemma 9. If ¢ is a normal form with respect to = then it is a normal
form with respect to — by Lemma 10. Hence we have proved part (2).

For part (3) assume s =* s; and s =* s9. Since = is weakly normalizing
there are normal forms n; and ny with respect to = satisfying s; =* n; for
i =1,2. By part (2) ny and nsy are normal forms with respect to —; by Lemma
9 we have s —* n; for 1 = 1,2. Since — has unique normal forms we conclude
n1 = no. Since s; =* n; for 1 = 1,2 we proved that = is confluent.

Part (4) is immediate from part (1) and part (3). O

Note that Theorem 11 holds for any two abstract reduction systems — and
= satisfying Lemmas 9 and 10 since the proof does not use anything else.

Example 12 (Due to Vincent van Oostrom) Not for all assertions in Theo-
rem 11 the converse holds. For instance, the rewrite system consisting of the
two rules f(0,1) — f(1,1) and 1 — 0 admits an infinite reduction f(0,1) —
f(1,1) = f(0,1) — - -+, but the shared rewrite relation = is terminating.

For preservation of confuence the combination of termination is essential,
as is shown by the rewrite system consisting of the two rules 0 — f(0,1) and
1 — f(0,1). This system is confluent since it is orthogonal, but = is not even
locally confluent since f(0,1) reduces to both f(0, f(0,1)) and f(f(0,1),1), not
having a common =-reduct.

Notions on reduction strategies like innermost and outermost rewriting carry
over to shared rewriting as follows. As usual a redex is defined to be a subterm
of the shape I where [— r is a rewrite rule and o is a substitution. A
deterministic (one step) reduction strategy is a function that maps every term
that is not in normal form to one of its redexes, for instance the leftmost
innermost strategy. A non-deterministic reduction strategy is a function that
maps every term that is not in normal form to a non-empty set of its redexes,
being the redexes that are allowed to be reduced. For instance, in the innermost
strategy the set of redexes is chosen for which no proper subterm is a redex itself.
This naturally extends to shared rewriting: choose a redex in the set of allowed
redexes, and reduce all occurrences of that redex. Note that it can happen that
some of these occurrences are not in the set of allowed redexes. For instance, for
the two rules f(z) — z, a — b the shared reduction step g(a, f(a)) = g(b, f(b))
is an outermost reduction, while only one of the two occurrences of the redex a
is outermost.

4 Reduced OBDDs

Normally a BDD (binary decision diagram) is defined to be a decision tree in
which sharing is allowed. An OBDD (ordered binary decision diagram) then
is a BDD in which on every path from the root to a leaf the atoms occur
only in strictly increasing order, with respect to some fixed total order on the
atoms. The main motivation for OBDDs is that there is a natural notion of
reduced OBDD (ROBDD) in such a way that it is a unique representation for
boolean functions that often can be found reasonably efficiently. Unicity has
many strong consequences. For instance, a boolean formula is satisfiable if and
only if its ROBDD is not equal to false, and it is a tautology if and only if its
ROBDD is equal to true. In our terminology it is very easy to define ROBDDs
and prove uniqueness of representation.

Definition 13 Let < be a total order on A. A ROBDD with respect to <
18 a decision tree t in canonical form with respect to <, in mazimally shared
representation.

Usually a ROBDD is defined to be an OBDD in which no node occurs
for which the left branch and the right branch point to the same node, and
no two nodes labelled by the same symbol occur for which both the two left
branches point to the same node and the two right branches point to the same
node. This definition coincides with our definition: the first condition due to
canonical form, the second due to maximal sharedness.

Theorem 14 Let < be a total order on A. Then every boolean function can
uniquely be represented by a ROBDD with respect to <.

Proof: Every boolean function can be represented by a decision tree. After
reducing to canonical form and sharing the desired ROBDD is found. Unicity
follows from Lemma 3 and unicity of maximal sharing. O

10

Next we describe how an arbitrary propositional formula can be transformed
to a ROBDD. Just like reducing arbitrary decision trees to canonical form we
do this by rewriting. Due to sharing the basic steps of rewriting will be =
instead of —.

One quite simple approach would be to give rewrite rules that first transform
the propositional formula to a decision tree and then apply DT until a canonical
form has been reached. Although this approach is simple and correct, we do
not follow it since it will be very inefficient. Instead we develop an approach by
which the standard BDD algorithms based on Bryant’s apply-function can be
mimicked. This apply-function computes the ROBDD for T'+ U for ROBDDs T
and U and binary propositional operations * in complexity O(#s,(T)*#sn(U))-

We assume that the propositional formula is constructed from boolean atoms
from a set A, the values true and false, the unary operation — and binary
operations V, A and xor, all with their usual meaning. Other operations like
implication and equivalence can either easily be added to the framework, or
alternatively they can be expressed in the other operations without affecting
efficiency considerations. The latter is the reason for including xor: generally
formulas including equivalence and/or xor can not be reprented in formulas of
the same complexity without them.

As a first step every occurrence of an atom p in the formula is replaced by
p(true, false), being the decision tree in canonical form representing the propo-
sitional formula p. In this way the formula is represented as a term over the
signature consisting of constants true and false, the unary symbol — and in which
all elements of A and the symbols V, A and xor are binary symbols. Next we
give a rewrite system BDD by which the propositional symbols are propagated
through the term and eventually removed, reaching the ROBDD as the normal
form. For the binary symbols from A we use prefix notation, for the symbols
V, A and xor we keep the infix notation as is usual in propositional formulas.

The rewrite system BDD is defined to consist of the rules

p(z,z) — = for all p
—'p(ﬂi, y) — p(_‘l', _'y) for all * P
p(z,y) xp(z,w) — p(r*2z,y*xw) for all x, p
p(z,y) *q(z,w) — p(z*q(z,w),y*q(z,w)) forall x,p<gq
q(z,y) xp(z,w) — ple(z,y) * 2,q(z,y) xw) forall*,p <gq
—-true — false trueNz — =z
—false — true T ANtrue — =z
trueVzx — true false Az — false
T Vtrue — true x Afalse — false
falseve — =z truexorxr — -
zVifalse —» =z T xor true — -
falsexorz — =«
xz xor false — =z

Here p ranges over A and * ranges over the symbols V, A and xor. The rules
of the shape p(z,z) — z are called idempotence rules, all other rules are called
essential rules.

11

We have defined BDD in such a way that terms are only rewritten to logically
equivalent terms. Hence if some term rewrites in some way by BDD to a
ROBDD, we may conclude that this reduced OBDD is the unique representation
for the original term.

The rewrite system BDD is terminating since every left hand side is greater
than the corresponding right hand side with respect to any recursive path order
for a precedence > satisfying xor > — and * > p for * € {—,V, A, xor} and p € A.
Hence reducing will lead to a normal form, and it is easily seen that ground
normal forms do not contain symbols —, V, A, xor.

The rewrite system BDD is not confluent, for instance if p > ¢ the term
p(g(false, true), g(false, true)) A p(false, true) reduces to the two distinct normal
forms p(false, g(false, true)) and g(false, p(false, true)). Moreover, we see that
BDD admits ground normal forms that are not in canonical form. However,
when starting with a propositional formula this can not happen due to the
following invariant:

Invariant:

For every subterm of the shape p(T,U) for p € A all symbols ¢ € A
occurring in T or U satisfy p < q.

In a propositional formula in which only every atom p is replaced by
p(true, false) this clearly holds since T = true and U = false for every sub-
term of the shape p(T,U). Further for all rules of BDD it is easily checked that
if the invariant holds for some term, after application of an BDD-rule it remains
to hold. Hence for normal forms of propositional formulas the invariant holds.
Due to the idempotence rules we now conclude that these normal forms are in
canonical form. We have proved the following theorem.

Theorem 15 Let ® be a propositional formula over A. Replace every atom
p € A occurring in ® by p(true,false) and reduce the resulting term to normal

form with respect to = ppp- Then the resulting normal form is the unique
ROBDD of ®.

In this way we have described the process of constructing the unique ROBDD
purely by rewriting. Instead of having a deterministic algorithm for this con-
struction as described in the literature [4, 9], we still have a lot of freedom in
choosing the strategy for reducing to normal form, but one strategy may be
much more efficient than another. We will show that the leftmost innermost
strategy, even when adapted to shared rewriting, may be extremely inefficient,
but we will also show that the standard algorithm from the literature can es-
sentially be mimicked by a layerwise reduction strategy having the same com-
plexity. Moreover, we introduce a lazy strategy that is essentially better for
some examples than the standard algorithm.

Example 16 As in Example 6 define Ty = true and Uy = false, and define
inductively Ty, = pp(Th—1,Un-1) and Uy, = pp(Up—1,Tn—1)-

Both T}, and U, are in canonical form, hence can be considered as ROBDDs.
Both are the ROBDDs of simple propositional formulas, in particular for odd

12

n the term T, is the ROBDD of xor}; p; and U, of —=(xor]-; p;), and for even
n the other way around. In fact they describe the parity functions yielding true
if and only if the number of i-s for which p; holds is even, or odd.

Surprisingly, for every n both for —(7},) and ~(U,) = ppp-reduction to
normal form by the leftmost-innermost strategy requires 2" — 1 —-steps, where
a —-step is defined to be an application of a rule —p(z,y) — p(—-z,—-y). We
prove this by induction on n. For n = 0 it trivially holds. For n > 0 the first
reduction step is

~(Tn) = ppp Pn(~(Tn-1), ~(Un-1))-

The leftmost-innermost reduction continues by reducing —(7},—1). During this
reduction no —-redex is shared in —(U,_1) since =(U,—_1) contains only one —-
symbol that is too high in the tree. Hence —(7},—1) is reduced to normal form
with 271 — 1 —-steps due to the induction hypothesis, without affecting the
right part =(U,,_1) of the term. After that another 2"~! —1 —-steps are required
to reduce —(Uy,_1), making the total of 2" — 1 —-steps. For =(U,,) the argument
is similar, concluding the proof.

Although the terms encountered in this reduction are very small in the
shared representation, we see that by this strategy every =-step consists of one
single —-step, of which exponentially many are required.

We say that a subterm V of a term T is an essential redex if V' = 1 for
some substitution ¢ and some essential rule [— r in BDD.

Proposition 17 Let T,U be ROBDDs.

o If =T :>*BDD V then every essential redex in V is of the shape —T" for
some subterm T' of T.

o IfTxU :yi?DD V for * =V or x = A then every essential redex in V is
of the shape T' x U’ for some subterm T" of T and some subterm U' of U.

o If T xor U :>%DD V' then every essential redex in V is of the shape

T' xor U' or =T" or =U' for some subterm T' of T and some subterm U’
of U.

Proof: This proposition immediately follows from its unshared version: let T, U
be decision trees in canonical form and replace = gpp in all three assertions by
— gpp- This unshared version is proved by induction on the reduction length
of —gpp and considering the shape of the rules of BDD. O

The problem in the exponential leftmost innermost reduction above is that
during the reduction very often the same redex is reduced. The key idea now
is that in a layerwise reduction every essential redex is reduced at most once.

Definition 18 An essential redex 1° is called a p-redex for p € A if p is the
smallest symbol occurring in 1% with respect to <. An essential redex 1? is called
an oo-redex if no symbol p € A occurs in 17; define p < oo for all p € A.

A redex is called layerwise if either

13

e it is a redex with respect to an idempotence rule, or

e it is a p-redex for p € AU {oc}, and no g-redez ezists for ¢ < p exzists,
and if the root of the redex is — then no p-redex exists of which the root
18 Xor.

A = gpp-reduction is called layerwise if every step consists of the reduction
of all occurrences of a layerwise redex.

Note that every essential redex is a p-redex for some p € AU {o0}.

Clearly every term not in normal form contains a layerwise redex, hence
layerwise reduction always leads to the unique normal form. Just like innermost
and outermost reduction, layerwise reduction is a non-deterministic reduction
strategy. We will show that layerwise reduction leads to normal forms efficiently
for suitable terms, due to the following proposition.

Proposition 19 Let T,U be ROBDDs. In every layerwise = gpp-reduction
of 7T, TVU, TANU orT xor U every essential redex is reduced at most once.

Proof: Assume that an essential redex [is reduced twice:
cile]=* il = ---

As already remarked [? is a p-redex for some p € A U {oo}. Since the
reduction is layerwise every reduction step is either an idempotence step or a
reduction of a p-redex for this particular p. Due to Proposition 17 and the shape
of the rules the only kind of new p-redexes that can be created in this reduction
is a p-redex having — as its root, obtained by reducing a p-redex having xor
as its root. So this p-redex with root xor already occurs in C[I?]. Since the
reduction is layerwise the root of [? is not —=. We conclude that the p-redex
19 in C'[l°] is not created during this reduction, hence it already occurred in
the first term C[I?]. Since we apply shared rewriting this occurence of [was
already reduced in the first step, contradiction. O

Theorem 20 Let T be a ROBDD. Then every layerwise = gpp-reduction of
=T contains at most #s,(T) steps.

Let T,U be ROBDDs. Then every layerwise = gpp-reduction of T V U,
T AU or T xor U contains O(#s(T) * #s1(U)) steps.

Proof: If a layerwise reduction of =T contains an idempotence step V =
V', then this idempotence step was also possible on the the original term T,
contradicting the assumption that 7" is a ROBDD. Hence a layerwise reduction
of =T consists only of reductions of essential redexes, and by Proposition 17
the number of candidates is at most #,(T). By Proposition 19 each of these
possible essential redexes is reduced at most once, hence the total number of
steps is at most #s,(T).

Let V be either TV U, T AU or T xor U. Then a layerwise reduction of
V' consists of a combination of reductions of essential redexes and a number

14

of idempotence steps. By Proposition 17 the number of candidates for essen-
tial redexes is O(#sn(T) * #sn(U)), each of which is reduced at most once
by Proposition 19. Hence the total number of reductions of essential redexes
is O(#sn(T) * #s,(U)). Since in every reduction of an essential redex the
shared size #g, increases by at most one, and by every idempotence step #p
decreases by at least one, the total number of idempotence steps is at most
#sh(v) + O(#sh(T) * #sh(U)) = O(#sh(T) * #sh(U)) Hence the total number
of steps is O(#sn(T) * #sn(U)). O

Write apply(T') for layerwise reducing a term 7' to normal form; due to
Theorem 20 apply can be used as an alternative for apply as mentioned before,
with comparable efficiency. We now can define an algorithm reduce to find the
ROBDD for a propositional formula &:

reduce(true) = true
reduce(false) = false
reduce(p) = p(true,false)
reduce(® V&) = apply(reduce(®) V reduce(¥))
reduce(® A ¥) = apply(reduce(®) A reduce())
reduce(® xor ¥) = apply(reduce(®) xor reduce(¥))

Roughly speaking this function reduce mimics the usual algorithm as de-
scribed in the literature.

The procedure above can be viewed as a particular strategy on shared terms.
In terms containing more than one boolean connective, one of the innermost
connectives is pushed down completely, using layerwise reductions. In fact, this
is the up-all algorithm, invented by [1].

However, other strategies are also conceivable. For instance, we could device
a strategy which brings the smallest variable to the root very quickly. To this
end, we define head normal forms to be terms of the form false, true and p(T,U).
The lazy strategy forbids reductions inside T in subterms of the form T'xU, U xT
and =T, in case T is in head normal form.

Lemma 21 FEach (unshared) lazy reduction sequence from T, leads to a head
normal form in at most 24#(T) reductions.

Proof: Induction on 7. The cases false, true and p(7T,U) are trivial.

Let T = P x @, with % € {xor,A,V}: Let #(P) = m and #(Q) = n. By
induction hypothesis, P reduces to head normal form in at most 2m steps. So
the lazy strategy allows at most 2m reductions in the left hand side of P * Q.
Similarly, in the right hand side at most 2n steps are admitted.

Hence after at most 2(m+ n) steps, (P, Q) is reduced to one of: p(P, P,) x
q(Q1,Q2) or b* Q1 or P, b, where b € {false,true} and P; and @; are in head
normal form for 7 = 1,2. In most of the cases this reduces to head normal form
in the next step, for true xor ()1 and P; xor true it takes two steps to reach a
head normal form. So we use at most 2(m + n) + 2 = 2#(T') steps.

Case T' = —P is similar but easier. O

15

Example 22 Let ® be a formula of size m, whose ROBDD-representation is
exponentially large in m. Assume that variable p is smaller than all variables
occurring in formula ®. Consider the formula p A (® A —p), which is clearly
unsatisfiable. Note that the traditional algorithm using apply will as an inter-
mediate step always completely build the ROBDD for ®, which is known to be
exponential.

We now show that the lazy strategy has linear time complexity. Replace
each prositional variable g by g(true, false), transforming ® to ®’. Using the lazy
reduction strategy sketched above, we get a reduction of the following shape:

p(true,false) A (@' A —p(true, false))
—"+L p(true, false) A (g(®1, ®2) A p(—true, —false))
— p(true, false) A p(q(®1, Do) A —true, g(P1, Do) A —false)
— p(true A (q(®1, P2) A —true), false A (¢(P1, P2) A —false))
—k p(false, false)

— false

where n is the number of steps applied on @' until a head normal form g(®1,)
is reached. This shape is completely forced by the lazy strategy; within the
n + 1 and k steps some non-determinism is present, but always k£ < 6. Note
that reductions inside ®; and ®, are never permitted. By Lemma 21 we have
n < 2m, so the length of the reduction is linear in m.

Note that we only considered unshared rewriting. In shared rewriting how-
ever essentially the same lazy reduction is forced.

The lazy reduction is similar to the up-one algorithm in [1]. In [1] an example
is shown where up-one is relatively efficient, but there additional rewrite rules
are used, e.g. x xor z — false.

5 Conclusions
As achievements of this paper, we summarize:

e A re-development of the basic BDD theory using standard rewriting tech-
niques.

e A simple and elegant abstraction of maximally shared rewriting, and a
proof that the transition to shared rewriting preserves completeness (i.e.
termination and confluence).

e A TRS BDD to construct ROBDDs, generalizing the traditional apply-
algorithm.

e A layerwise strategy for BDD, with provably the same time complexity
as the traditional algorithm.

e A lazy strategy for BDD, with an example in which this performs much
better than the traditional algorithm.

16

Acknowledgement

We want to thank Vincent van Oostrom for his contribution to the theory

of sharing and for many fruitful discussions.

References

1]

[10]

[11]

ANDERSEN, H. R., AND HULGAARD, H. Boolean expression diagrams. In
Twelfth Annual IEEE Symposium on Logic in Computer Science (Warsaw,
Poland, 1997), IEEE Computer Society, pp. 88-98.

BAADER, F., AND NipkOw, T. Term Rewriting and All That. Cambridge
University Press, 1998.

BranD, M. v. D., JoNnG, H. D., KuiNnT, P., AND OLIVIER, P. Effi-
cient annotated terms. Software Practice en Ezperience ((accepted)). See
http://www.wins.uva.nl/~olivierp/aterm.html.

BryANT, R. E. Graph-based algorithms for boolean function manipula-
tion. IEEE Transactions on Computers C-35, 8 (1986), 677-691.

BryANT, R. E. Symbolic boolean manipulation with ordered binary-
decision diagrams. ACM Computing Surveys 24, 3 (1992), 293-318.

BurcH, J., CLARKE, E., LoNng, D., McMILLAN, K., AND DiLL, D.

Symbolic model checking for sequential circuit verification. IEEE Trans.
Computer Aided Design 13, 4 (1994), 401-424.

CLARKE, E., EMERSON, E., AND S1STLA, A. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM
Transactions on Programming Languages and Systems 8, 2 (1986), 244—
263.

KAHRS, S. Unlimp: Uniqueness as a leitmotiv for implementation. In Proc.
Programming Language Implementation and Logic Programming (1992),
vol. 631 of Lecture Notes in Computer Science, Springer, pp. 115-129.

MEeINEL, C., AND THEOBALD, T. Algorithms and Data Structures in
VLSI Design: OBDD — Foundations and Applications. Springer, 1998.

Prump, D. Term graph rewriting. In Handbook of Graph Grammars and
Computing by Graph Transformation, volume 2: Applications, Languages
(1999), H.-J. K. H. Ehrig, G. Engels and G. Rozenberg, Eds., World Sci-
entific, pp. 3-61.

ZANTEMA, H. Decision trees: Equivalence and propositional operations.
In Proceedings 10th Netherlands/Belgium Conference on Artificial Intelli-
gence (NAIC’98) (November 1998), H. L. Poutré and J. van den Herik,
Eds., pp. 157 — 166. Extended version appeared as report UU-CS-1998-14,
Utrecht University.

17

[12] ZANTEMA, H., AND BODLAENDER, H. L. Sizes of decision ta-
bles and decision trees. Tech. Rep. UU-CS-1999-31, Utrecht Uni-
versity, Department of Computer Science, 1999. Available via
http://www.cs.uu.nl/docs/research/publication/TechRep.html.

18

