Formal Design of Self-stabilizing Programs:
Theory and Examples

[.S.W.B. Prasetya, S.D. Swierstra*

Abstract

It is commonly realized that informal reasoning about distributed al-
gorithms in general and self-stabilizing systems in particular is very error-
prone. Formal method is considered as a promising solution, but is still
in an immature state for the fact that formal proofs of even simple algo-
rithms are tedious and difficult to follow. We believe that to make the
method more appealing one should not only pay attention to ’theoretical’
issues such as consistency and completeness, but also to the ’ergonomics’
of the method. In this spirit, this paper proposes a number of new opera-
tors to model self-stabilization and a formalization of a number of useful
design strategies. It is hoped that their use can improve the ease with
which algorithmic reasoning is formally applied. Some examples showing
how various laws are used will given in Part II.

*Universiteit Utrecht, Instituut Informatica, Postbus 80.089, 3508 TB Utrecht, Nederland.
Email: wishnu@cs.uu.nl, doaitse@cs.uu.nl

Part 1
Theory

1 Introduction

The concept of self-stabilization was first conceived by E.W. Dijkstra [9]. A
self-stabilizing program is a program that will reach and remain in a set of pre-
defined states —the so-called legal states— regardless of its initial state. For a
distributed system such a property is very desirable since it has the ability to,
given enough time, recover from any perturbation (be that a failure or an update
sent by the system’s environment) without any outside intervention. Since the
work of Dijkstra there have been many papers addressing the topic, for example
[13, 6, 5], and many self-stabilizing algorithms have been invented, for example
[4, 8, 14].

Reasoning about self-stabilization is often complicated. Most people are
aware of various design strategies, yet applying them formally can suddenly be
an entirely different experience. It was not until recently that people attempt
to deal with self-stabilization more formally. The first to formalize the idea are
Arora and Gouda [4]. However, reasoning is still carried out informally. A step
forward is made by Herman [12] by proposing a number composition laws of
stabilization. A truly formal treatment is later given by Lenfert and Swierstra
[15] using a programming logic called UNITY. They prove various calculational
properties of stabilization. This paper presents a further development of the lat-
ter work by adding new more versatile operators to express program behavior
and and by formalizing a number of useful design strategies. For example, we
add laws concerning a decomposition technique called layering —a useful tech-
nique in self-stabilization [12, 3]- and laws capturing round-wise stabilization

(which is comparable to loops in sequential programming). Several examples
demonstrating how the laws are exercised is given in Part II.

Our approach is based on UNITY, a programming language and logic by
Chandy and Misra [7]. UNITY is simple, but powerful enough to model dis-
tributed systems. In addition, all theorems mentioned in this paper have been
mechanically verified using a proof assistant called HOL!. The theorems are
available in the form of a library and can be re-used. The complete package
containing the theorems and their proof scripts is available at request. As for
UNITY itself, it has also been mechanically verified in HOL by Anderssen [2]
and Prasetya [19].

Sections overview: Section 2 provides some informal motivation. Section 3 ex-
plains the notation. Section 4 gives a brief review on UNITY and introduces an
extension used in this work. Section 5 discusses how the notion self-stabilization
is formalized and provides a set of laws to deal with it. Section 6 discusses how
progress and stabilization behave with respect to parallel composition. Section
7 discusses inductive decomposition. Finally, Some conclusions are provided in
Section 8.

2 Motivation

This paper presents a formalization of two important techniques in formal design
of self-stabilizing systems, namely parallel composition and inductive stabiliza-
tion.

2.1 Parallel Composition

Parallel composition has always been a though issue in distributed computing.
Especially progress properties are known to be destroyed by parallel composi-
tion. Given that, a practically interesting issue is to know under what condition
we can be sure that progress is preserved by the composition; or, even if it is
destroyed, in what way exactly a progress property is destroyed. These are the
issues that will be highlighted in this paper.

In general, the ability to decompose a global specification into specifications
of component programs is often referred to as compositionality. This would
enable us to design each component in isolation (thus supporting the so-called
modular design approach) and may reduce the amount of proof obligations. To
be able to do this kind of decomposition we need laws of the form:

(P sat specl) A (Q sat spec2)

P ® @ sat (specl @ spec?)
THOL is a software system, developed by M. Gordon, to interactively write (and check) a
proof. The system is based on a higher order logic. The soundness of the system is guaranteed

in the sense that no false theorem can be generated. The system is extensible and provides a
whole range of highly programmable proof-tools. For a description of HOL, see [10].

(2.1)

where P and @ are programs, ® is some kind of program composition, and specl
and spec? are specifications. The theorem describes how a property of P ® @
can be split to specifications of P and @. In particular, we are interested in the
case where ® is the parallel composition ([]).

To illustrate some of the problems encountered consider the following ex-
ample. Let F p — g mean that if p holds during an execution of P then
eventually ¢ will hold. So, ~ describes progress.

Let a,b, and ¢ be boolean variables. Suppose now F a > ¢ holds. The
property does not refer to b, so we may expect that if we put P in parallel with
(@ defined below then the progress will be preserved.

Q: do forever b := b

However, even though the expression pF a — ¢ does not refer to b, it may
happen that the progress actually depends on b, for example if P is the following
program:

P: do forever { if a then b := true ; if b then ¢ := true }

In this case, @ will destroy the progress a — ¢. Still, if we put P in parallel
with @' which only writes to b under the condition, say, C' (and does nothing to a
and ¢) we can still conclude that the composite program will have the property
aNC — ¢V —C. In fact, this is an instance of a very generic composition
property of progress observed by Singh [22].

The example suggests that recording the set of variables upon which a
progress property depends may enable us to draw useful compositionality re-
sults. The work of Udink, Herman, and Kok [23] is a full justification of this.
In this paper we will take a simpler approach. We observe that the only part of
a program that is ever influenced by its own actions is its write variables. Com-
positionality is achieved by: (1) restricting progress specification »F p — ¢
to only describe progress made on the write variables, and (2) adding a forth
parameter J which is a stable predicate in P and may describe assumed values
of read-only variables. So, a progress specification now looks like J - p — gq.
The progress described is not from p to g, but from J A p to ¢q. This way of
modelling progress turns out to be sufficient to get the general progress com-
position property predicted by Singh, and yet results in a formalism which is
more workable than the one proposed by Udink, Herman, and Kok.

Especially interesting results can be obtained for programs that are write-
disjoint —that is, programs that do not share any write variable. Let P and
@ be two write-disjoint programs. Suppose J oF p — ¢ holds. Since P and Q
are write-disjoint the only way P can influence () is by writing to @’s read-only
variables. J already assumed under what condition of read-only variables the
progress from p A J to ¢ can be made by (). Consequently, if P also respects
the assumption made on the read-only variables of (), that is, P respects the
stability of J, then the progress can be maintained in P[Q (parallel composition
of P and Q). This principle is called transparency principle. It can be expressed

as follows:
J is stable in P A (J oF p»— q)
J peb P g

Note that the law has the form of (2.1). A formal treatment of this kind of laws
will be given in Section 6.

Composition of write-disjoint programs occurs frequently in practice. Trivial
examples are program that share no variable or programs that only share read-
only variables. If we have a program P which writes to the read-only variables
of () whereas) does not write back to P then we have a construction that in
[3] is called layering. Layering is a useful technique. For example, to detect
termination we can built the detection program as a layer ’on top’ the actual
program.

if P and @ are write-disjoint (2.2)

2.2 Inductive Stabilization

A self-stabilizing system typically relies on some inductive stabilization strategy
to reach its goal. The strategy can be simple, or, as in quite many cases, it can
be complicated [1, 8, 14]. This strategy is important because it is the heart
of the system, and consequently also the center around which the correctness
proof of the system is built. Typically, well-founded induction on progress is
used to formally capture the inductiveness. But stabilization is a stronger prop-
erty than progress, so one may conjecture that a stronger, more specialized,
version of induction exists for stabilization. Such an induction will be more
effective to handle inductive stabilization. Lentfert and Swierstra propose such
an ’inductive stabilization theorem’ which they call round decomposition [15],
but the formulation is rather complicated, which is because they make their
theorem too special purpose. We propose a weaker, more general, formulation
of round decomposition. Because it is more general, it is also simpler and nicer.
The round decomposition theorem of Lentfert and Swierstra can still be derived
from our theorem [20].

3 Notation

Functions

The application of a function f to z is written as f.z. To improve readability,
the ’dot’ denoting the application of some functions is made ’disappear’ like in
the application of w in wP.

Sets

The set notation used is standard except perhaps the following. The restriction
of f € A— B with respect to a set S C A is written f]S and is a function of
type S— B with the following property:

Vx:2€S:(fS)x=fux) (3.1)

Set complement is denoted by a superscript ¢ like in S¢. The power set of a set
S is denoted by P(S). Set abstraction is written as {« : P.x : f.x} instead of
the usual {f.z|P.z}.

Predicates

A predicate over a set A is a function of type A — bool. For a predicate p over
A, pis said to hold everywhere, denoted by [p], iff (Vs:s € A : p.s) holds.

Predicates which are used to describe the states of a program are called
state-predicates. Throughout this paper we will assume a universe of all available
program variables, denoted with Var, and a universe of values, denoted by Val.
A program-state is a function of type Var — Val. In a state s, the value of a
variable z is given by s.z. A state-predicate is a predicate over program-states,
so it has the type (Var— Val)—bool.

For example (As. 0 < s.z) is a state-predicate describing those states in
which the value of z is greater than 0. It is a common practice that people
write expressions like:

"0<z”,”pAqg’,or 7 (Fi: Pi:zi=0)"

in program specifications —for example asin {0 < z} z := z+1 {1 < z}”— to
actually mean the corresponding state-predicates, which are, in the same order:

"(Xs.0< s.1)”, ”(As. p.s Ag.s)”, and ”(As. (Fi : P : s.(z.i) =0))”

Such overloading of symbols usually causes no confusion and since people
are already used to it we will also do it. However, sometimes overloading does
create confusion, so it helps if the reader is continuously aware of the fact that
overloading is being used. The table below shows the ’lifted’” meaning of the
boolean operators true, =, A, and V. Note that the dummy s ranges over program
states. Other operators such as false, =, V, and 3 can be derived from them.

Notation Meaning
true (As. true)
—-p (As. —p.s)
PAgQ (As. p.s A q.s)
(Vi: Pi:pi) | (As. (Vi: Pi:p.i.s))

A state-predicate p is said to be confined by a set of variables V if p is
everywhere false or everywhere true or it does not restrict the value of any
variable outside V. The reason for introducing the notion of confinement is
that because we do not use partial functions in our logic. ’p is confined by V'’ is
the same as saying p is a partial state-predicate over V. We will denote it with
p € Pred.V.

Definition 3.1 : CONFINEMENT

p€PredV = (Vs,t: (s|V =¢t]V) = (p.s =p.t))

For example, x+1 < y is confined by {z, y} but not by {z}. true and false are
confined by any set. Confinement is preserved by (standard) predicate operators
mentioned above. So, for example, if p, g € Pred.V then pAq € Pred.V. Roughly
one can say that if pis confined by V' then p does not care about variables outside
V. The reader may rightly observe that a predicate p is always confined by the
set of all its free variables, but note that this set is not necessarily the smallest
one confining p. For example, ¢ confines "0 = =V 0 # z”. Another useful
property is monotonicity:

Theorem 3.2 : CONFINEMENT MONOTONICITY

V CW = Pred.V C Pred. W

3.1 Binding Power

Figure 1 shows the relative binding power of the operators used in this paper.
They are listed top to bottom in decreasing order of binding power with those
listed in the same line bind equally strong.

”»

” w?’ , ” r?’ , ” ini” , ” a” , ” ro”
nen np
T

” 2 ”)
n”,”u

” ” ” ”
€”,7C

” 9
|

” ” ” ”
A,V

” :>”

other operators

n_n » #7)
-

Figure 1: Binding power of the operators.

4 A Brief Review on UNITY

The programming logic that we are going to use in reasoning about self-stabilizing
programs is based on UNITY. UNITY is simple, yet powerful enough to allow
reasoning about safety and progress properties of distributed programs. It views
a program as a collection of atomic actions running in parallel. Parallelism is
modelled by interleaving, and execution is infinite. So, an execution of a UNITY
program is modelled by an infinite sequence of states in which at each step an
action is selected and executed. There is no rule in the choice of action except

for this fairness rule: every action in a UNITY program must be executed in-
finitely often. For the fairness condition to make sense, it must be assumed that
actions always terminate. For applications requiring things like action sequenc-
ing and termination, they can be modelled in UNITY by respectively location
variables ala [16] and a predicate that continues to hold after sometime. Below
is the variant of UNITY syntax used in this paper.

(Unity Program) := prog (name of program)
read (set of variables)
write (set of variables)
init (predicate)
assign (actions)

actions is a list of action separated by [|. An action is either a single action
or a set of indexed actions.

(actions) == (action) | (action)[{actions)
(action) == (single action) | (i : i € V : (actions);)

A single action is either a simple assignment or a guarded assignment. A
simple assignment can simultaneously assign to several variables. Its meaning
is as usual. A guarded assignment may have multiple guards. If more than
one guard evaluate to true then one is selected non-deterministically?. Guarded
assignments are not allowed to abort or to hang forever if none of their guards
evaluate to true and instead they behave like skip.

Additionally, there are the following requirements regarding the well-formedness
of a UNITY program: (1) a program has at least one action; (2) actions in a
program should only write to the declared write variables and read from the
declared read variables; and (3) the set of write variables of a program is in-
cluded in the set of its read variables. These requirements are so natural that we
take them for granted. Yet it must be noted that their precise formulation (not
detailed in this paper) is non-trivial and is crucial in proving compositionality
laws presented in this paper. See for example [17]. Note that we do not forbid a
variable to be declared as a read (write) variable without the program actually
ever reading (writing) it.

As an example, Figure 2 displays a (self-stabilizing) UNITY program to
compute minimal distance between nodes in a network.

To access each component of a program we introduce the following notation:

PROGRAM COMPONENTS:

aP,rP,wP, and iniP denote respectively the set of all actions,
the set of read variables, the set of write variables, and the ini-
tial condition that belong to the program P. In addition, roP
denotes the set of read-only variables of P. roP =rP — wP.

2Tn original UNITY [7] it is required that if multiple guards evaluate to true, then the
corresponding assignments must all have the same effect. This requirement is dropped here.

prog MinDist
read {a,b:a,b€V :d.a.b}®
write {a,b:a,b €V :d.a.b}
init true
assign (Ja:a €V :da.a:=0)
[(Ja,b:a,beV A(a#b):dab:=min{d:V' € Eb:dalb +1})

Figure 2: MinDist in UNITY

%Another, more familiar, notation used to denote the above set of variables is: d :
array V of array V of Val

4.1 Parallel Composition

Since UNITY actions model parallel components, parallel composition of two
UNITY programs amounts to simply 'merging’ components of both programs.
In UNITY parallel composition is denoted by [. In [7] it is also called program
UNLON.

Definition 4.1 : PARALLEL COMPOSITION

r(P|[Q) = rPUrQ w(P|Q) = wPUwQ
ini(P|Q) = iniP AiniQ a(P]|Q) aPUaQ

4.2 Primitive Operators

The UNITY logic contains three primitive operators to describe program behav-
ior: unless, ensures, and —. unless describes safety; ensures describes progress
achieved through the act of one action; and — describes progress achieved
through coordination of several actions. A special case of unless, namely stabil-
ity, describes predicates that cannot be destroyed by a program. Progress and
stability are required to describe self-stabilization.

In the sequel, P, @, and R will range over UNITY programs; a,b, and ¢ over
actions; and p, q,r, s,JJ and K over state-predicates.

Definition 4.2 : UNLESS

pFpunlessqg = (Va:a€aP:{pA-q}a{pVgq})
where {p} a {¢q} denotes a Hoare triple specification with the usual meaning®.
Definition 4.3 : ENSURES

ppensuresq = (p-punlessq) A (Fa:a€aP:{pA—-q}a{q})

%It does not matter whether it means total or partial correctness since all actions in a
UNITY program are assumed to be terminating.

Intuitively, p»F punless ¢ means that once p holds during an execution
of P, it remains to hold at least until ¢ holds. ,F p ensures g encompasses
p unless ¢ and additionally there also exists an action that can, and because of
the fairness assumption of UNITY, will establish ¢q. Notice how the progress to
g is guaranteed by one action a. A more general notion of progress is obtained
by taking the least transitive and disjunctive closure of ensures. This is the
operator — (read: ’leads-to’). We will not give its formal definition as we will
later on introduce a more compositional variant of it.

Here are some examples of properties described using the UNITY primitive
operators:

— true = (Va,b:a,beV :d.a.b=4.a.b) (4.1)
wnoi= (Va,b:a,b €V :d.a.b=4.a.b) unless false (4.2)

The first property states that the value of all d.a.b’s in the program MinDist
will eventually be equal to the actual minimal distance from a to b. The second
property states that once such a situation is achieved it will remain so forever.
Note that together (4.1) and (4.2) implies that MinDist is self-stabilizing. A
predicate p satisfying p unless false is called stable predicate. Such a predicate
is useful to describe self-stabilizing systems and therefore a separate operator is
reserved for it:

Definition 4.4 : STABLE PREDICATE

pFOp = pF punless false

If both o Op and [iniP = p] hold then p is an invariant. A stable predicate
does not have to ever hold during an execution whereas an invariant holds
throughout any execution of P. The conjunction and disjunction of two stable
predicates are again stable, but weakening or strengthening a stable predicate
do not always yield a stable predicate.

Figure 3 displays a number of basic properties of unless, (¢, and ensures
taken from [7]. Theorems analogous to unless INTRODUCTION, POST-WEAKENING,
and SivpLE CONJUNCTION also exist for ensures. There also exist stronger CoN-

10

Theorem 4.5 : unless INTRODUCTION Theorem 4.8 : SIMPLE DISJUNCTION

[p = q p. (p unless g¢) A (r unless s)
" punless g ' (pVr) unless (qV s)
Theorem 4.6 : POST-WEAKENING Corollary 4.9 : O CONJUNCTION
p. (punless q) A [q= 7] P (Op) A (Og)
p unless r) O(pAq)
Theorem 4.7 : SIMPLE CONJUNCTION Corollary 4.10 : ¢ DISJUNCTION
: . LEnI;a\sj‘)q)un/l\ess(:r(ur\]/li’s)s . P: (Op) A (Og)
P e O(pVaq)

Theorem 4.11 : ensures PROGRESS SAFETY PROGRESS (PSP)

(p ensures q) A (7 unless s)
pArensures (AT)V s

Figure 3: Some basic laws for unless, ¢, and ensures

JUNCTION and DIsJUNCTION theorems for unless. See [7]. Corollaries 4.9 and 4.10
follow from Theorems 4.7 and 4.8.

Notational convention: if it is clear from the context which program P is
meant, it is often omitted from formulas. For example we write p unless ¢ to
mean RF p unless ¢q. For laws we write for example:

| R |
pP: (p unless) to abbreviate: p_ P UNIeSS g
r unless s p 7 unless s

4.3 Compositionality of Safety and Single-action Progress

Compositionality, as explained in Section 2, is a property (of a programming
logic) which enables us to split a specification of a composite program into the
specifications of its components. It is usually expressed as a law in the form of
(2.1). The usefulness of such a property has been motivated in Section 2.

The compositionality of safety properties follows a simple principle: the
safety of a program follows from the safety of its components. The composi-
tionality of ensures is also simple: to ensure some progress in a program, it
suffices to ensure it by a component program. The other components only need
to maintain the safety part of the ensured progress.

11

Theorem 4.12 : unless COMPOSITIONALITY
(pFpunless q) A (oF punlessq) = (pok p unless q)
Corollary 4.13 : O COMPOSITIONALITY

(s Op) A (oF Op) = (p1oh Op)

Follows from Theorem 4.12.

Theorem 4.14 : ensures COMPOSITIONALITY

(s pensures g) A (oF punless q)

plel™ P ensures ¢

4.4 General Progress

Unfortunately, compositionality does not directly extend from ensures to the
general progress operator —. The definition of — [7] is simple and elegant, ef-
fectively capturing our intuitive notion of progress. But it is too general that no
‘strong’ compositionality result can be expected. There is also another problem.
Under certain circumstances it can be argued that certain progress properties
can be preserved by parallel composition [22]. So, general progress is composi-
tional, only not as compositional as ensures . But — is discovered to carry too
few information to be compositional even under this 'weaker’ sense [20]. The
problem is that — as defined in [7] does not describe the set of variables upon
which the described progress depends on, and this turns out to be crucial for
deriving compositionality. For this reason we introduce a variant of .

In Section 2 it has been sketched how a progress operator can be extended
such that it composes nicely with respect to write-disjoint composition (2.2). To
refresh the reader’s memory let J oF p »— ¢ describe progress JAp +— q. If there
are changes made during the progress it will be made on the write variables,
so we can as well require that p and ¢ are confined by wP whereas whatever
assumed values of read-only variables should be captured in J. Since the values
of read-only variables do not change, obviously J has to be a stable predicate.
For soundness reason it is also required that all intermediate predicates from
which the progress p — ¢ is built must also be confined by wP. The new
progress operator is called reach, denoted by »3:

3The reader may notice that ~ resembles the subscripted — operator by Sanders [21].
There are two principle differences. Firstly, the ’subscript’ J, of > needs only to be stable
whereas Sanders requires it to be an invariant. In the context of program composition, this
makes more sense: the environment of a program may cause the program to spring from one
stability region to another, which is expressible using different stable J-parameters, but not
if J has to be an invariant. Secondly, Sanders does not require confinement by wP, which is
crucial to derive the compositionality laws presented later.

12

Definition 4.15 : REACH

For all P, J, the relation (A p,q. J »F p » q) is defined as the least —
satisfying:

1. Ensures lifting

p,q € Pred.(wP) A (OJ) A (sk J Apensures q)
p—4q

2. Transitivity

p—gqg,qg—r
p—r

3. Left disjunctivity
If we have p — ¢ for all p € W for some non-empty W, then

(@p:peW:p) =¢q

also holds.

One can eagily prove that — itself also satisfies the above three requirements.
Since — is the least relation satisfying the three properties above, statements
of the form (p — ¢q) = F(p,q) can be proven by showing that the relation F'
also satisfies the three properties above (replace — by F'). This is called —
Induction Principle (in analogy to '~ induction’ in [7]). Using the induction
one can, for example, easily show that J ,+ p » ¢ implies that p and ¢ are
both confined by wP and that J is stable in P.

The progress (expressed in terms of —) described by J b pr— gis F JA
p — q. However, J .- p — ¢ is not generally equal to p,q € Pred.(wP)A (.- O
J)A (s JAp — q). This is caused by the fact that — is not disjunctive in its J-
argument, something which also has a subtle consequence on —’s behavior with
respect parallel composition. An example later in Section 6 will demonstrate
this point.

As an example, consider a program buffer with w(buffer) = {out} and
ro(buffer) = {in}. The formula (VX :: (in = X) b true — (out = X))
states that the program buffer will eventually copy the value of in to out. How-
ever, true . (in = X) — (out = X) is not a valid expression because the
argument ”in = X” is not a predicate confined by w(buffer).

Figures 4 displays some basic properties of »— which are analogous to those
of —. The proofs are also analogous to those found in [7]. Figures 5 displays
the properties of > which have no analogous — properties. Note that just as
in [21] we also have the »— SusstiTuTION law for free. Note also that although
we can strengthen the J in J p p — ¢ with another stable predicate (Theorem
STABLE STRENGTHENING) but we cannot generally weaken J.

13

Corollary 4.16 : (=>,—) INTRODUCTION
Follows from ensures INTRODUCTION

,g €EPred.(wP) A [JAp=4q] A (OJ (analogous to Theorem 4.5) and
P J: e (wP) >)_[) p p=d () Definition 4.15 of ~—

Theorem 4.17 : — GENERAL DISJUNCTION

For all finite and non-empty sets W':
(Vi:i€ W :p.i— q.i)

(Fi:1eW:pi)— (Fi:i€W:q.i)

P, J:

Theorem 4.18 : PROGRESS SAFETY PROGRESS (PSP)

r,s € Pred.(wP) A (r AJunlesss)A (p— q)

P (pAr)— (@AT) Vs

Theorem 4.19 : COMPLETION
For all finite and non-empty sets W:

r €Pred.(WwP) A (Vi:i €W :qiANJunlessr) A (Vi:i €W :pir>qiVr)

P J:
J Vi:teW:pi)— Vi:ieW:qi)Vr

Figure 4: Properties of »— which are analogous to those of —

Theorem 4.20 : — STABLE SHIFT

r € Pred.(wP) A (OJ) A (JATFpPp—q)
JEpATr—q

P:

Theorem 4.21 : — STABLE STRENGTHENING

(OK) A (JEp—q)
JANKFp—q

P

Corollary 4.22 : — STABLE BACKGROUND

JFEpr—gq

P =7

Theorem 4.23 : — CONFINEMENT

p—4q

PJ: ————
I p,q € Pred.(wP)

Theorem 4.24 : — SUBSTITUTION

[JAp=4q] N [JAr= 4]
p,s € Pred.(wP) A (g —7)
P s

P J:

Figure 5: More properties of »—

14

Now how about the compositionality of 7 After-all, this was the reason
why we introduced it. Well, »— satisfies Singh kind of compositionality [22] and
additionally also some stronger persistence principle (2.2), but more elaboration
will be delayed until Section 6. First we would like to discuss how the notion of
self-stabilization can be formally expressed and what its laws are.

5 Stabilization

A self-stabilizing system is assumed to work in an unstable environment (often
called ’adversary’) which may produce transient errors or undergo a reconfigu-
ration ("sabotage’ by the adversary), each of which affects the consistency of the
variables upon which the self-stabilization depends. We do not have to model
an adversary explicitly by a process. Instead, we can insist that any sabotage
will bring the system to some ’failure’ state. A system which can stabilize
from initial condition J to some condition ¢ will be able to ’re-stabilize’ if its
adversary pushes it to some failure state in J. So, the initial condition of a
stabilizing system models the set of possible failure states to which the system
will fall after sabotages. To a great extend, this models the behavior of an ad-
versary. The above observation implies that stabilization in program P can be
treated in isolation (we can treat it as a property of P rather than a property
of Pladversary).

In the case the adversary can do anything, then we must assume the initial
condition true, which corresponds to the classical notion of self-stabilization. In
Linear Temporal Logic ”P self-stabilizes to q¢” can be expressed by P + <Og.
In UNITY this can be expressed by:

(3¢ :: (true ok true — ¢’ Aq) A (oF O(qd' Aq))) (5.1)

The existential quantification may seem strange at first, but notice that
in P F ©0Ogq the situation Og does not have to hold immediately after the first
time ¢ holds, but perhaps only after several iterations. The predicate ¢’ basically
encodes the end of such an iteration (after which ¢ will continue to hold).

A more general setup where the adversary is not totally uncooperative (or
if we only want to guarantee correctness under a less fatalistic assumption)
amounts to replacing the two true’s in (5.1) by parameters, say, J and p. This
is in fact is the definition of convergence, introduced by Arora and Gouda in [5].
Closely related concepts are the concepts of adaptiveness as in [11] and leads-
to-stabilization as in [15]. Convergence turns out to enjoy many interesting
properties. Its formal definition is below.

Definition 5.1 : CONVERGENCE

JeEp~g

g € Pred.(wP) A (3¢ :: (5F O(JAG AQ)A (T oFp— ¢ Ag))

So, convergence is not self-stabilization. It is more general. It is the ability

15

to stabilize to certain conditions from certain pre-conditions. Note also that
p ~ q does not imply that g is a stable predicate. It only states that eventually
g will hold forever.

Figure 6 displays a number of basic properties of convergence. Notice that
~» is, in contrast to —, not only V-junctive, but also A-junctive. This makes
~» calculationally attractive. The next section will present some useful compo-
sitionality properties of both operators.

6 Compositionality

Subsection 4.3 shows that safety (unless) and single action progress (ensures)
are highly compositional. Now we will look at the compositionality of general
progress and convergence. Note that it is crucial that progress (and the progress
part of convergence) is modelled by — instead of the traditional —. If the latter
is used, no interesting compositionality result can be derived.

A general compositionality property of progress is proposed by the Singh
[22]. Consider two programs, P and Q. If we execute P and @ in parallel, then
basically @) can destroy any progress p — ¢ in P by writing to a shared variable
of P and (). However, if we know that under condition r, () will always announce
any modification to the shared variables by establishing s, then starting from
p A r the program P[Q will either reach ¢ (through the actions of P), or @
writes to some shared variables and spoils the progress, but in this case we
know that s will hold. This is an instance of the Singh 'Law’. Before we give
the formulation of the law, we will introduce some definitions.

Definition 6.1 : !?
PQ = rPNwQ
Definition 6.2 : unlessy
oFpunlessy, ¢ = (Vs:: oFpA(Vv:v €V :v=sw) unless q)

Note the dummy s ranges over states (Var— Val). Alternatively, by omitting
some overloading the above is equal to:

oFpunlessy, ¢ = (Vs oFpA (M. (Yv:v €V :tw=s.0)) unless q)

So, P?!(Q) is the set of variables through which P reads updates made by Q.
If P and (Q communicate through channels, then P?!(Q) are the channels from
Q to P. ot punless, ¢ means that under condition p, every time () modifies
any variable in V, it will mark the event by establishing q. We are particularly

4When we first tried to replay Singh’s proof of the 'Law’ using Theorem Prover HOL, we
quickly discovered that the proof is flawed. While Singh 'Law’ predicts the kind of compo-
sitionality one naturally expects for progress properties, the law is simply underivable when
progress is modelled with . That is why we introduced »—. Using ~— we were able to replay
Singh’s proof and hence derived the Law.

16

Corollary 5.2 : (~,—) CONVERSION Follows from the definition of ~» and

~ Theorem 4.24.
pJ. 224

pP—=4q
Corollary 5.3 : ~ STABLE BACKGROUND

Follows from Corollaries 5.2 and
JEp~gq 4.22.

oJ

Corollary 5.4 : ~» CONFINEMENT

P:

Follows from Corollary 5.2 and
P, J: __pb>a Theorem 4.23.
’ p,q € Pred.(wP)

Corollary 5.5 : (ensures,~») INTRODUCTION

p,q € Pred.(wP) A (OJ) A (O(JAq)) A (pAJ ensures q)
p~q

P, J:

Corollary 5.6 : (=,~) INTRODUCTION

[pAJ =4q] AN p,q€Pred.(wP) A (OJ) A (O(JAD))

P, J:
p~q

Corollary 5.7 : ~ SUBSTITUTION

[JAp=4q] A [JAT=35] A p,s€Pred(WwP) A (g~~T)

P J:
P s

Theorem 5.8 : ACCUMULATION

pJ. 20 A (g~

p~>qgAT
Theorem 5.9 : ~» TRANSITIVITY
Follows from Theorem 5.8 and
P, J: (p ~ q) A (q ~ T) Corollaries 5.4 and 5.4.

proT
Theorem 5.10 : DISJUNCTION

(p~q) A (r~s)
pVr~»qVs

P, J:
Theorem 5.11 : ~» CONJUNCTION
For all non-empty and finite sets W:

(Vi:i€ W :pi~sq.i)
(Vi:i€W :pi)~ (Vi:i €W :q.i)

P J:

Theorem 5.12 : ~» STABLE SHIFT

p €PredwPA(DJ) A (JAP Fp~sq)

P
JEpADP ~q

Figure 6: Some basic properties of ~»

17

interested in the case of V' = P?!Q. For example, oF true unlessp,q ¢ states
that @) cannot disturb P without ’raising the flag’ ¢, and oF p unlessp,,q false
states that () cannot disturb P while p holds.

The Singh Law is given below. The proof [18] is analogous to the (erroneous)
proof for the — version of the Law given in [22]. Some interesting corollaries of
the Law is also given below.

Theorem 6.3 : SINGH LAW

r,8 € Pred.w(P[Q) A p1 € Pred.(wP U (P?!Q))
(proF ©J) A (oFr A J unlesspng s) A (J Ap1 ok p2— q)
J pregE P1 Ap2 Ar>—>qV-pi V-orVvs

Corollary 6.4 : until COMPOSITIONALITY 1

(Q" OJ) A (Q"J/\p unlesspﬂq q)
(s JApunlessq) A (J pFp— q)
J piekp—q

Corollary 6.5 : until COMPOSITIONALITY 2

p € Pred(wP @] (P?'Q)) A (PﬂQl_ OJ)
(oF J Ap unlessprig q) A (J Ap pt true — q)
J prebp—q

Both Corollaries state sufficient conditions for a progress property to be
preserved by the parallel composition. They express the compositionality of a
more restricted progress property which in linear temporal logic is called *until’
((JAp unless) A(J F p — q) corresponds with ” J Ap until ¢” in linear temporal
logic). The corollaries derive easily and nicely from the Law. Let us share this
with the reader by presenting the proof of Corollary 6.5:

Proof:

J rigbp— g
< {— SussTITUTION }
(J el p— (PA Q) V Q) A g €Pred.(w(P]Q))
< {— PSP}
(J prgk 2= gV —p) A (piok J Apunlessq) A g € Pred.(w(P]Q))

g € Pred.(w(P]Q)) follows from ,F true — g and — ConriNEMENT. The
progress part follows directly from the assumptions by the application of the
Sinau Law by instantiating pi1, p2, q,r, s, J with p,true,q,p,q, j.

As for the unless part:

ple J A punless g
< { unless COMPOSITIONALITY }
(s J Apunlessq) A (o J A punless q)
< { unless POST-WEAKENING; Definition O }

18

wire

S(sender) s€q R(receiver)
ack

= buffer

Figure 7: A simple protocol.

(s O(JAP)) A (oF J Apunless q)

< { unless SIMPLE DisjuNcTION; Definition unless, }
(o O(JADP)) A (oF J Apunlessp.ig q)

< { — STABLE BACKGROUND }
(J Ap pk true — q) A (o J Ap unlesspyqg q)

[|

As an example, let us consider a simple protocol as displayed in Figure 7.
The task of the protocol is to establish the progress (S is the sender and R is
the receiver):

(VX :: J gyst (wire = X)) — (buffer = X))

for some invariant J. The sender tags each new message it puts on the wire by
some sequence number. The receiver acknowledges a message by returning its
sequence number to the sender. So, an acknowledged message can be identified
by seq = ack. The sender can be modelled by the following program:

S: if seq=ack then wire, seq := produce new message, seq™

Where n* produces a number, different from n. So, S can only put something
new on the wire if the current message on the wire is already acknowledged.
Consequently, for the system to make progress, any message sent must eventu-
ally be acknowledged. This can be expressed as follows:

J gpst true — (seq = ack)

It seems reasonable to assign the task above to the receiver. Let us see now how
this is formally justified using the Singh Law:

J st true — (seq = ack)
< { — DissunctioN (Theorem 4.17) }
(VX = J st (seq = X) — (seq = ack))
< { Corollary 6.5 }
(sF (J Aseq = X) unlessg,s (seq = ack)) A

(VX = (J A (seq = X) gt true — (seq = ack)))

19

Note that the resulting progress specification states that making ack equal
to seq is now R’s responsibility. One can also prove that the resulting unless
specification can be strengthened to g (seq # ack) unlessg.s false, which states
that S cannot send anything new as long as seq # ack.

The Singh Law describes how two arbitrary parallel programs can influence
each other’s progress. It is a very general law. In many cases however, we
know more about how the component programs interact through their shared
variables. That knowledge can be exploited to derive more constructive compo-
sitionality properties.

6.1 Write-Disjoint Composition

A much nicer compositionality rule can be obtained for parallel composition
of write-disjoint programs, that is, programs which share no common write
variable. “P and @) are write-disjoint programs” is written P + Q).

Definition 6.6 : WRITE-DISJOINT PROGRAMS

P+@Q = (WPNwQ =g9)

In a network of write-disjoint programs, each program can only write to its own
variables or to other program’s read-only variables. Consequently, if P and @
are write-disjoint and p € Pred.(wP) then () cannot destroy p:

(P+Q) N pe Pred.(wP)
oFOp

(6.1)

This is a crucial property in deriving the Transparency principle (2.2) we men-
tioned in Section 2.

We have defined »— in such a way that all intermediate pairs p' — ¢’ required
to construct J p+ p »— ¢ (via Transitivity or Left Disjunctivity) are confined
by wP. Consequently, by (6.1), if we have another program @ which is write-
disjoint with P and which also respects ¢ J then @) cannot destroy any of those
intermediate progress properties and hence p — ¢ is also constructible in P[Q.
So, — satisfies the Transparency principle.

Theorem 6.7 : > TRANSPARENCY

P-Q AN (oFOJ) A (JeEpr—4q)
J pebp— ¢

The theorem can be easily derived from the fact that »— is defined as the least
relation satisfying transitivity, disjunctivity, and ensures-lifting as described in
Definition 4.15 of —. So, it suffices to show that the relation (Ap,q. J pjot p —
q) in the conclusion (of above theorem) satisfies the same properties.

An analogous law also holds for convergence.

20

Theorem 6.8 : ~» TRANSPARENCY

P+Q A (oF0J) A (Jobp~q)
J prob-p~ g

The Transparency principle is fundamental for write-disjoint composition.
Some well known design techniques that we use in practice are corollaries of
this principle. A progress or convergence property is usually constructed, either
using transitivity, disjunction, or conjunction principles, from a number of sim-
pler progress/convergence properties. Using the principle we can delegate each
constituent property, if we so desire, to be realized by a write-disjoint component
of a program. This is formulated by the following theorem.

Theorem 6.9 : SPIRAL Law
(P+Q) N (sFO(JAS)) A (oF OJ)
(J sEpr—s) A (JAs gk true —)
J et p— sAT

The proof is nice to look at: Proof:

J plgEp— sAT

< { — TransiTivity and PSP }
(J pigEp = 8) A (J piob s —1) A (pgk O(J A s))

< { > STABLE SHIFT, STABLE BACKGROUND, and CONFINEMENT }
(J proE 2= 8) A (JAS ppottrue — r) A (prob O(J As))

< { — TRANSPARENCY; (O COMPOSITIONALITY; assumptions }
(Jpbpr—o8) A (JAsghtrue— 1) A (oF O(JAs))

< {(6.1) and = StABLE BACKGROUND }

(Jpbpr—8) AN (JAshtrue—7r) A (oF ©J) A s € Pred.(wP)
< { — CONFINEMENT }
(Jpbpr—8) A (JAsghtrue— 1) A (oF OJ)
[]

The Spiral law is used to implement a sequential division of tasks. For ex-
ample if we want to do a broadcast, we can think of a two-steps process: first,
construct a spanning tree, and then do the actual broadcast. Usually we have
separate programs for both tasks. The Spiral Law provides the required justifi-
cation for this kind of separation, where in this case P constructs the spanning
tree and @) performs the broadcast under the assumption that s describes the
existence of this spanning tree. Typically, the law is applied when P and @
form a layering. A layering, it has been mentioned in Section 2, is a parallel
composition of two write-disjoint programs in which the computation of one
program depends on the other (but not necessarily the other way around).

Now recall again the program MinDist (Figure 2) The program computes of
the minimal distance between any two vertices in a network. It is known that

21

the minimal distances from a vertex a and the minimal distances from a different
vertex b can be computed independently. This suggests a parallel division of
tasks. The following law fits well in this kind of decomposition. The law is
typically applied when P and @ form a fork (P and @ do not write to each
other, but they share read-only variables) or non-interfering (P and @ share no
variable) parallel composition.

Theorem 6.10 : CONJUNCTION BY |
For any non-empty and finite set W:

(Vi,j:i,j € WA (i #j): Pi+ Pj)
(Vi:ieW: p.b pi~ qui)

T e T NVi i €W ipi)~ (i €W qd)

6.2 A Note on —: Is It Really Different from the Old —
Operator?

When — is introduced in Subsection 4.4 it is remarked that — differs essentially
from an ordinary progress operator such as —. One may ask if J o p— g is
actually not the same as (o OJ) A p,q € Pred.(wP) A (sF JAp+— q). The
implication from left to right does indeed hold, but the one from right to left
does not. Consider the following program:

prog P
read {a,x}
write {z}
init true

assign ifa=0thenz:=1 [ifa=1thenz:=1

In the above program we have (b =0)Aa < 2+ (z =1). We assume the
reader knows the meaning of — as in [7]. We expect that the — version of this
property, namely (b =0) Aa < 2+ true — (z = 1), also holds. But it does not
hold. It cannot hold either, for we will then get an unsound logic. Consider the
program TikToe below:

prog TikToe
read {a,b}
write {a}
init true

assign ifa=0thena:=1 | ifa=1thena:=0 [ifb#0thena:=a+1

The programs P and TikToe are write-disjoint. Suppose (b=0)Aa < 2 5+
true — (z = 1) holds. The predicate (b = 0) Aa < 2 is also stable in Tiktoe. By
the TrRANSPARENCY principle we conclude that (b = 0) A a < 2 pprire true —
(z = 1) also holds. But this simply cannot be true. Consider the execution:

[fa=0thena:=1;ifa=0thenz:=1;ifa=1thena:=0;
ifa=1thenz:=1;ifb#0thena:=a+1]*

22

which is a fair execution of P|TikToe, but with this execution z will never be
equal to 1 if initially z Z1Aa < 2A (b=0).

The property (b =0)Aa < 2~ (x = 1) can be concluded because we have
(b=0)A(a=0)ensures (x = 1) and (b =0) A (a = 1) ensures (z = 1) and we
can join them using the disjunctivity of —. So obviously the same disjunctive
property does not apply to the stable argument (the J) of the — operator, and
this is the trade-off we pay for getting the TRANSPARENCY principle.

7 Bounded Progress

Many self-stabilizing algorithms rely on step-by-step, inductive stabilization
strategies to achieve their goal. Consequently their formal reasoning relies heav-
ily on finding a well-founded relation to prove the progress part while preserving
stability. The difficulty is of course in finding the right well-founded relation,
which in many cases as in [1, 8, 14] is not easy. But this is something that even
the most elegant programming logic cannot help us. That is, this problem of
finding the right well-founded relation is something intrinsic in the chosen sta-
bilization strategy. Eventually, one will have to ’encode’ his inductive strategy
in a formal proof. There are various ways to do this encoding, but we believe
that effective capturing of the way we deploy our reasoning strategy in the form
of laws will greatly improve the effectiveness of our formal reasoning. So, in this
section we will give the formulation of an inductive stabilization strategy called
Round Decomposition. The name is due to Lentfert and Swierstra [15] but they
actually use the name to refer to a more specialized strategy than ours. For the
sake of completeness we will first give the formulation of general well-founded
induction on progress and convergence.

7.1 General Well-founded Induction on Progress and Con-
vergence

A well-founded relation over A is a relation <€ A x A such that it is not possible
to form an infinitely decreasing sequence. A well-founded relation satisfies the
well-founded induction principle (in fact, they are equivalent).

Theorem 7.1 : WELL-FOUNDED INDUCTION
For any well-founded relation <€ A — A —bool:

Vy:ye A:(Vz:z2<y: Xxz)=>Xy) = Vy:ye Ad: X.y)

Many well known structures are well-founded. Natural numbers ordered by
< and finite directed acyclic graphs (dags) ordered by the transitive closure of
the edge relation (proper ancestor relation) are examples thereof.

Suppose we have a function m that maps program states to A and we have
a well-founded relation < defined on A. Suppose that the program is such that
either it decreases the value of m with respect to <, or it reaches ¢. From

23

the well-foundness of < it follows that the program cannot decrease m forever
and hence ¢ must eventually hold. This principle is well known; we call it here
Bounded Progress principle and we call m the bound function. The principle
applies for progress by » and also for convergence.

Let < be a well founded relation over a non-empty set A and let m be some
metric function (also called bound function) that maps states of program P
to A.

Theorem 7.2 : > BOUNDED PROGRESS

q € Pred.wP
VM:MeA:pA(m=M)— (pA(m=<M))Vq)

P, J:
p—4q

Theorem 7.3 : ~» BOUNDED PROGRESS
(g~ NYM:MecA:pANm=M)~ (pA(m<M))Vyq)
p~q

P J:

Note: with some overloading omitted the expression
pA(m=M)~ (pA(m=<M))Vq
can be written as:

PAAs.ms=M)~ (pA(As.ms < M))Vq

7.2 Dividing Execution into Rounds

A progress property is constructed from smaller progress properties individually
made by the actions. Alternatively, we can impose that the progress go through
a finite sequence of rounds. Each round is associated with a certain obligation.
For this to work the original progress property has to be decomposable into
round-obligations. This scheme is particularly useful when the actions are yet
to be invented.

Actually, the idea is the same as in loop decomposition in sequential pro-
gramming, except that the rounds do not have to be totally ordered. Given a
loop specification we break it into an invariant and a loop-guard. A round is now
one iteration. At the end of the round the loop invariant must be re-established,
which becomes our round-wise obligation. Showing termination is the same as
showing that we have finitely many rounds. When the loop is finished, we know
that the loop-guard is false. This, together with whatever achieved during the
last round establishes the specification of the loop. The difference with a se-
quential system is that in a parallel system (some) rounds can be traversed in
parallel (because they are no longer totally ordered).

For a certain class of converging systems, stronger round-wise specifications
can be obtained. Suppose now we want to establish (Vn : n € A : g.n). Our

24

strategy is simple. We take A as our set of rounds, assuming we can find a
well-founded ordering < on A we impose that each round n is to converge to
g.n. Obviously, after passing round n, g.n continues to hold. Hence, after all
rounds are passed (Vn : n € A : ¢.n) holds. The nice thing is that when trying to
establish ¢.n in round n we actually know more. For all rounds m that precede
n in the ordering < the corresponding ¢.m must have been established and
continues to hold. Hence, the conjunction of them, namely (Vm : m < n : ¢.m),
also holds and can be exploited to establish g.n. If we have a parallel/distributed
system, ¢.n typically expresses what each process in the system must do for
round n. Consequently, (Vm : m < n : ¢.m) contains information of what
neighboring processes achieve so far.

The above principle is called round decomposition. It is formulated below.
Examples in Part II will show how the principle is used in practice.

Theorem 7.4 : ROUND DECOMPOSITION
For any finite and non-empty set A and any well-founded relation <€ A x A:

(OJ) A (VYn:ne€eA:JANm:m <n:qm)t true ~ g.n)

P:
JFtrue~ (Yn:n € A:qn)

The proof is simple and nice to see: Proof:
(Let P be a UNITY program) we derive:

JFtrue~ (Vn:n € A:q.n)

< {~» ConjuncriON }
(Vn:n€ A:JF true~ qn

< { WELL-FOUNDED INDUCTION }
(Vn:neA:(Vm:m<n:JFtrue~ gm) = (JF true~ q.n))

If n is a minimal element then:

(VYm:m <n:JFtrue~ gm) = (JF true~ g.n)

< { predicate calculus }
J F true ~ q.n

= { nis a minimal element, hence there is no m such that m < n }
JANm:m <n:qgm)k true ~ g.n

If n is not a minimal element then:

(Vm:m <n:JkF true~ gm) = (JF true~ q.n)
< {~» ConjuncriON }

(JFtrue~ (Ym:m <n:qm)) = (JF true~ g.n)
< { ~ TRANSITIVITY }

JE(NMm:m<n:qgm)~ qn
< {~> STABLE SHIFT }

25

(Vm:m <n:q.m) € Pred.(wP) A (OJ)
A
(JA(Ym:m <n:qm)k true~ g.n)
< { ~ CoONFINEMENT ; confinement is preserved by V }
(OJ) A (JA(Nm:m <n:qm)k true ~ q.n)

8 Conclusion

We have introduced an extension of UNITY which will enable us to formally
reason about self-stabilizing systems. The operators and the notational style
introduced are concise and carry enough detail to allow a nice set of compo-
sitionality laws. We seldom see a really formal proof of distributed programs,
and those that attempt, such as in [15], tend to end up with overly compli-
cated proofs. We believe that the situation can be improved if one can learn to
translate, in a natural way, novel but intuitive ideas to the formal level. Part IT
presents three examples of increasing complexity, demonstrating how informal
reasoning strategies can be effectively translated to formal proofs using various
laws introduced in this paper.

All displayed theorems and corollaries have also been mechanically verified
with a general purpose, extensible theorem prover HOL, which is based on
Higher Order Logic. All our mechanized theorems are available in the form
of libraries and therefore can be re-used to mechanically verify user programs.
For example, they have been used to mechanically verify the program MinDist
in Figure 2 as well as a hierarchical version thereof (many actual networks are
hierarchically organized, and therefore hierarchical self-stabilization makes an
interesting application).

Figure 8 displays the general structure of our mechanical verification work
with HOL. The core of this work is the UNITY module, which includes the stan-
dard UNITY, Sander’s extension [21], and the extension presented in this paper.
A simple language to construct actions has also been added. So far, the mod-
ule has been applied to verify a simple alternating bit protocol, a generalized
version of the program MinDist, and a hierarchical version thereof. Verifying
the alternating bit protocol was very simple. The verification of the generalized
version of MinDist is not, and also requires a lot of knowledge on general math-
ematics, such as lattice theory, graph theory, theory on well-founded relation,
and so on. HOL has to be extended with these theories before we can use them.
At the time we wrote our modules, only theories on sets are available in HOL.
The most work in the verification of MinDist is not in the application of the
programming logic but rather, in the application of theories such as lattice the-
ory, graph theory, and so on, which are not directly related to the programming
logic:

26

Basic Mathematics:
Relations, Sets, Well-founded Sets

Primitive Programming Concepts:
Predicates, Program Variables,
Transitive and Disjunctive Closures

Definition of UNITY

$ Theorems of (standard) UNITY

)

‘ simple UNITY syntax

Extended UNITY:
Theorems on reach
Theorems on convergence
Write—disjoint Composition
Other Compositionality Results

Sander’'s UNITY ‘

Lattice Theory Examples: _ _
Graph Theory Simple Alternating—bit Protocol
Theory on Minimal Minimal Distance Algorithm
Path-cost in a Graph Hierarchical Minimal Distance Algorithm

Figure 8: The structure of our mechanical verification work.

27

Work proof size
Core UNITY 70 KB
Extension with -, ~», and Sander’s extension | 140 KB
Other theory required by application domain 540 KB
General theory of MinDist-like stabilization 120 KB
Hierarchical MinDist-like algorithms 110 KB

This paper as well as above mentioned results are part of an on going re-
search at Utrecht University. Documented results include: Lentfert’s thesis on
hierarchical algorithms, Prasetya’s thesis [20] on formal design and mechanical
verification of distributed programs, and a recent work by Vos on extending
UNITY embedding multi-typed values, refinement theory, and mechanical ver-
ification of various distributed algorithms [24]. The papers are all available at
request. Prasetya’s thesis is also available at:

http://www.cs.uu.nl/docs/research/publication/Theses.html

28

Part II
Examples

In Part I a theory of self-stabilizing systems has been presented. In this Part
IT we will demonstrate how the theory is applied. The derivation of three self-
stabilizing algorithms will be shown. They are, in increasing complexity: leader
election in a ring shaped network, minimum computation in a tree shaped net-
work, and minimum distance computation in an arbitrarily connected network.
In addition, in the third example inter-process communication will be made
explicit. In general, addition of communication medium does not always pre-
serve stabilization properties and therefore complicates the proof. So we want
to show in what way the proof is influenced and in how far the proof can be
separated between the core proof of the algorithm and the proof regarding the
stabilization of the communication medium.

Major steps in the proof of the second and third examples are due to Lentfert
and Swierstra [15, 14]. We worked them out further to make the calculation
shorter and more natural.

For each example an implementation will be given but its proof will only be
shown up to a certain point (beyond which it becomes mostly mechanical and
contributes little to our understanding). No new algorithm is involved, which
is also not the concern of this paper. All examples satisfy specifications of the
form:

true pk true ~ ¢

where ¢ describes the goal to which the program P must stabilize. The two true’s
above mean that P is self-stabilizing regardless any transient sabotages by an
adversary. However, the specifications implicitly assume certain topologies of
distributed systems. In the first example it is a ring; in the second a tree; and
in the third an arbitrary connected network. It means that the stabilization is

29

Figure 9: A simple network.

guaranteed even if the adversary changes the topology, provided the resulting
topology still satisfies the assumed form.

A Note on Induction

Induction plays an especially important role in proving self-stabilization, but in
many cases its application can be tricky. Consider for example the following
program to compute minimal distance between nodes in a network:

prog MinDist
init true
assign (Ja:a €V :da.a:=0)
I (Ja;b:a,beVA(a#D):dab:=min{b:b € Eb:d.a.b +1})

The initial condition true indicates that the program is self-stabilizing. Most of
us will be ready to believe that this program does what it must do. It is a lucky
guess though, for its formal proof is far from trivial. Misled by intuition one
may conclude that, for example, the difference between each d.a.b and the actual
minimal distance between a and b gradually decreases and hence eventually d.a.b
will take the value of the actual minimal distance (notice that the argument is
actually an instance of inductive decomposition). It sounds plausible, but it
does not work. Consider the simple network in Figure 9.

The number printed outside a node i, ¢ € {a, b, ¢, d}, denotes the initial value
of d.a.i. The difference between d.a.a and the actual distance between a and a
will indeed decrease, but the same things cannot be said for d.a.d, for example.
It already contains the correct value, and if the assignment to d.a.d is executed
first, d.a.d will ’deviate further’ from the correct value rather than ’approaching’
it.

Many proofs of self-stabilizing systems [1, 8, 14] exhibit this kind of subtle
inductive decomposition. Handling induction informally will in this case greatly
raise the risk of making mistakes and impede the discovery of mathematical
properties of the problem which otherwise may lead to a better solution. So,
what we also want to show in the examples given later is how to apply inductive
decomposition of self-stabilization in a formal way, and straightforwardly.

Sections overview: Sections 9, 10, and 11 present the examples, one for each

30

o)
)

4 1
2 1
72))
N4 _/

Figure 10: A ring network.

section.

A note on notation: for the sake of readability confinement requirements
(that is, expressions of the form p € Pred.V —see Part I for the meaning of it)
will be omitted from formulas.

9 Leader Election

We have N processes numbered from 0 to N — 1 connected in a ring: process ¢
is connected to process it where * is defined as i™ = (i + 1) mod N. Node 0
is considered special. Figure 10 shows such a ring of six processes.

Each process i has a local variable z.i that contains a natural number less
than N. For example, the numbers printed above the circles in Figure 10 show
the values of the z.i’s of the corresponding processes. The problem is to make
all processes agree on a common value of the z.i’s. The selected number is then
the number of the 'leader’ process, which is why the problem is called ’leader
election’. The computation has to be self-stabilizing and non-deterministic.
The latter means, for example as in the case shown in Figure 10, that the
computation should not always choose 4 (the initial value of z.0) as the leader,
or 0 (the minimum value of the z.i’s).

In this problem the adversary has the power to change the values of the
z.1’s. For simplicity, the adversary is forbidden to change the topology of the
network.

To do this we extend the z.i’s to range over natural numbers and allow
them to have arbitrary initial values. The problem is generalized to computing
a common value of z.i’s. The identity of the leader can be obtained by applying
mod N to the resulting common natural number.

Let us define a predicate ok as follows.

ok = (Vi:i<N:2.i=umi")
The specification of the problem can be expressed as follows:

LSO: true ;- true ~ ok

31

Here is our strategy to solve the above. We let the value of .0 decrease to a
value which can no longer be ’affected’ by the value of other z.i’s —we choose
to rule that only those z.i’s whose value is lower than z.0 may affect z.0. This
value of .0 is then propagated along the ring to be copied to each z.i and hence
we now have a common value of the z.i’s. Formally this is just an instance of
the Bounded Progress principle with z.0 as the bound function.

Recall that the Bounded Progress principle states that if the program keep
decreasing the value of some bounded function along some well-founded order-
ing, then it cannot do so forever. Let us now apply the principle to reflect the
strategy. We calculate for LSO0:

true ~» ok
< { Definition of ~ }
(true — ok) A (©ok)
< { BoUNDED PROGRESS }
(VM :: (z.0=M) — (2.0 < M)Vok) A (Dok)

For the progress part of above specification we derive further:

(z.0=M) — (2.0 < M)V ok
< { — DISJUNCTION }

((2.0 = M)Aok — (2.0 < M)Vok) A ((.0 = M)A—-ok — (2.0 < M)Vok)
= { (=,—) INTRODUCTION }

(2.0 = M) A—ok — (2.0 < M) Vok
< { — SUBSTITUTION }

(2.0 = M) Aok — (2.0 < M)

The last specification above states that the value of .0 must decrease while
ok is not established. But if ok is not yet established then there must be some ¢
such that z.¢ # 2.0. A naive solution is to send the minimum value of the z.i’s to
2.0 but this results a deterministic program which always chooses the minimum
value of the z.i’s as the common value. So, we will have to try something else.
We let each process copy its z.i to x.i7. In this way the value of some z.i which
is smaller —not necessarily the smallest possible— than .0, if one exists, will
eventually reach process 0. Of course it is possible that values larger than z.0
reach process 0 first, but process 0 simply will ignore these values.

Let ts be defined as follows:

ts = N —max{n:(n < N)AMi:i<n:zi==z0):n} (9.1

Roughly, ts is the length of the tail segment of the ring whose elements are yet
to be made equal to z.0. Note that according to the just described strategy the
value of 2.0 either remains the same or decreases. If it does not decrease, it will
be copied to z.1, then to z.2, and so on. In doing so ts will be decreased. Note
that ts = 0 implies ok. This is, again, an instance of the Bounded Progress
principle with ts as the bound function. The above strategy can be translated
to the formal level. Continuing our calculation:

32

(.0 = M) A—ok — (2.0 < M)
< { BOUNDED PROGRESS }
(VK:K<N: (z.0=M)A-0kA (ts=K)
((z.0=M)A—-0kA(ts< K))V (2.0 < M))
< { ENSURES to » LIFTING }
VK:K<N: (z.0=M)A-0kA (ts=K)
ensures
((z.0=M)A—-okA (ts< K)) V(.0 < M))

So, to summarize, we come to the following refinement of LS0:

For all M € N and K < N:

LSl.a: Ook
LS1.b: (2.0 = M)A —-okA (ts = K)
ensures

(2.0 = M) A —ok A (ts < K)) V (2.0 < M)

LS1.a states that once the processes agree on a common value, they main-
tain this situation. LS1.b states that if a common value has not been found,
then either the length of the tail segment should become smaller, which can be
achieved by copying the value of z.i to z.i™, or z.0 should decrease.

Without proof we give a program that satisfies the above specification.

prog ring

read {i:i<N:z.i}

write {i:i< N:z.i}

init true

assign if 2. (N —1) < 2.0 then 2.0 := z.(N — 1)
I qé:i<N-=1:z.(i+1):=xz.)

Note that the common natural number will be computed non-deterministically:
there is no way of predicting which of the initial values of the z.i’s will be picked
as the common number.

10 Self-stabilizing Computation of Minimum

In this section an example of another sort of Bounded Progress, namely a prin-
ciple called Round Decomposition, will be used. Recall that the principle states
that a specification of the form:

true~ (Vn:n € A:q.n)

can be realized by dividing executions in rounds and requiring the system to
converge to g.n at each round n. The order in which the rounds are traversed

33

does not have to be linear, but it has to be acyclic, or in other words: the
ordering is well-founded.

We have a finite, non-empty set of vertices V' connected to form a tree with
root a. The connectivity between the vertices is represented by a function S
such that for any i € V, S.i is the set of all sons of i. If we define S°.a = {a}
and S"*t! = S o 5", we can define the ’transitive’ closure of S (denoted by S7)
as ST.a = U{i : 0 < i : S'.a} and the ’transitive and reflexive’ closure of S
(denoted by S*) as S*.a = St.a U S%.a. The function S* and ST describes the
set of, respectively, descendants and proper descendants of a given vertex. We
can regard ST as a relation by defining s St j =4 € ST.j. This relation ST is
well-founded, and obviously: S*.a =V.

Each process ¢ has an input x.¢ and the problem is to compute the minimum
of the x.i’s of all vertices in V, or in other words, of all descendants of a. Let
us however consider a more general problem. Instead of the standard minimum
operator we consider the least upper bound operator M (also called the ’cap’
operator) of some given complete semi-lattice ®>. The problem can be stated
as: compute MN{i : i € S*.a : z.i}. If we let the result to be stored in y.a, the
problem can be specified as follows:

M1: true ok true~ (y.a=N{i:i € S*.a:z.i})

In this context the adversary is assumed to have the power to change the
values of the input data in x.7’s. The adversary can also add or delete a process,
but only if the resulting topology remains a tree with root « then a correct
result can be guaranteed.

Let us first introduce some abbreviations which we will use later:

For alli € V:
ok = (yi=n{j:jeS*i:xj})
preOk’ = (Vj:j € ST.i:ok?)

ok® states that process i has a ’correct’ value of y.t and preOk’ states that
all processes that ’precede’ i, which here means being proper descendants of 4,
have correct values of their y’s. Using ok the specification M1 can be nicely
written as true ~ ok®. We will however consider a stronger specification M2 so
as to make M1 fits in the round decomposition ’design scheme’:

M2: true pF~s (Vi:i €V : ok

To establish ok our strategy is as follows. Suppose that somehow we can
establish ok? for all proper descendant j of 4, then we might try to establish

5An equivalent approach would be to use an idempotent, commutative, and associative
operator @ instead of a semi-lattice.

34

ok’ using this knowledge. This is done repeatedly until ok® is established. This
sounds very much like round decomposition: V is the set of rounds, ordered
by S+, and ok’ is the goal of round i. The following calculation will make this
apparent:

true & true ~ (Vi :i € V : ok?)

< {57 is well founded; ROUND DECOMPOSITION }
(Vi:ieV:(Vj:je Sti:okd) o true ~> ok?)

= { definition of preOk }
(Vi:i €V :preOk? ot true ~ ok®)

Notice that the final specification reflects our strategy. Furthermore, we
observe that the task of establishing ok’ can be delegated to process i, which we
will call P.4. If we insist that for eachi € V, wP.4s = {y.i} then P = (Ji: s € V :
P.i) consists of programs that are pair-wise write-disjoint, which is nice because
we can now apply the TRANSPARENCY principle. We continue the calculation:

preOki pb true ~» ok!

< {P=(j:j€V:Pj);~ TRANSPARENCY; () COMPOSITIONALITY }
(oF OpreOk’) A (preOk’ . true ~» ok?)

< { ENSURES to > LIFTING; (O COMPOSITIONALITY }
(oF OpreOk’) A (p.F ©O(preOk? Aok?)) A (. preOk’ ensures ok®)

To summarize, we have refined M2 to the following specification:

Let P=(]j:j € V: Pj) such that (Vi:i €V : w(Pi) = {y.i}). For all
ieV:

M3.a: P OpreOki . .

M3.b: i O(pre'Okz A ok") .

M3.c: p.iF preOk’ ensures ok’

In particular, M3.c states that we have to establish ok’ from preOki. This
can be done by computing M{3' : i' € S*.i : z.i'} from N{j' : j' € S*.j : z.j'} of
all sons j of i. To do that we exploit the following equality (the proof of which
is left to the reader):

n{i' :i' € §*i: zi'}

(Mg :j'€S*Jorag'P) -~ (N{j':j' € S*jn:2.4'}) Naai

~ v

for all S(;Irls jr of i

preOk implies however that for all sons j of i, y.j =M{j': ' € S*.j : z.5'}, and
hence above can be replaced by:

N{i':i' € S* 2’y = (M{j:j€Si:yd}) N zi

35

and hence ok’ can be established by the assignment:
yi = (N{j:j€Si:yj}) M zi

Without further proof we give now a program that satisfies M3 (hence also M1):

P=(]i:i €V : Pi) where for all i € V, P.i is defined as follows:

prog P.

read {j:jeV:yjtu{zi,y.i}
write {y.i}

init true

assign y.i:=(N{j:j€Si:yj}) Nz

11 Computing Minimal Distances

Recall again the program MinDist displayed early in Part I of this paper. The
program computes the minimal distance between any two vertices a and b in
a network described by (V, E). V is the set of all vertices in the network and
the connectivity between vertices is described by E € V —P(V) such that E.i
describes the set of all neighbors of 4. The network is assumed to be connected.
The program (in UNITY notation) is redisplayed below:

prog MinDist
read {a,b:a,b€V :d.ab}
write {a,b:a,b €V :d.a.b}

init true
assign ([a:a €V :d.a.a:=0)
I (la,b:a,be VA(a#Db):dab:=min{d: b € Eb:d.ab +1})

The actual minimal distance between a and b is denoted by d.a.b. The function
0 is also characterized by the following property, which also tells us how to
compute d.a.b from the d.a.b’ of the neighbors b’ of b:

Theorem 11.1 : For all a,b € V with a # b:
daa=0 A dab=min{b : V' € Eb:dab +1}

The program MinDist is required to compute and maintain §. This specifi-
cation can be expressed as follows:

MDO : true y,put true~ (Va,b:a,b €V :d.a.b=4.a.b)

In this problem the adversary is assumed to have the power to change the
values of the input data in d.a.b’s, and later also the content of ’'communication
channels’ between processes. The adversary can also change the topology of the

36

network, but only if the resulting topology remains connected then a correct
result can be guaranteed.

Observe that upon reaching its fixpoint, the program MinDist will have the
value of d satisfying the equation in Theorem 11.1, and since the equation
characterizes §, then d is equal to §. The problem is however, how do we know
that this program will ever reach its fixpoint, especially since it can start in an
arbitrary state? To prove this we will have to construct and prove a scenario
we think the program obeys while converging to its fixpoint.

Another point is communication between components. In MinDist as well
as in the programs from the previous two examples, it is assumed that each
(parallel) component can directly access the variable of neighboring components.
In practice this is not always the case. Channels are usually used when direct
access is not possible. Let us now explicitly add channels to MinDist. For the
purpose of understanding the algorithm we gain little from this extra feature,
but we have another purpose here, namely to show just how far the addition
of channels (in general: communication sub-systems) influences our calculation
and our correctness concern®.

To keep it simple, we model channels with link registers. The mechanism
is simple, but captures the idea of asynchronous communication adequately.
Sending a message into a channel is modelled by writing to a link register. The
receiver is not obliged to immediately fetch the message and the sender is free
to send another message at any time. Consequently, it is possible that the
sender overwrites a message which has not been ’received’. This models loss of
messages. The program MinDist will look like:

prog MinDist

init true

assign (Ja:a €V :d.a.a:=0)

I (la,b:a,be VA(a#Db):dab:=min{d: b € Eb:r.abd +1})
[(Ja,b,b" : a, b, € VAbE EY : r.a.b.b:=d.a.b)

in which r.a.b.b’ is a link register between the process in b that maintains d.a.b
and the neighboring process b’ that maintains d.a.b’. The assignment r.a.b'.b :=
V' represents the action of b to send a value V' to the channel (link register)
r.a.b'.b connecting it to process b’. We will return to this later.

11.1 Decomposing the Specification

First of all, we observe from Theorem 11.1 that d.a can be computed without any
information about d.a’ for distinct a’. We can delegate this task to a component
program.

6MinDist does work correctly with channels, but in general inserting communication sub-
systems between processes does not always preserve correctness. In pathologic cases, channels
may initially contain ’bad’ values which keep circulating in the system and hence preventing
it from stabilizing.

37

Let MinDist = (Ja : @ € V : MinDist.a) where the MinDist.a’s are pair-wise
write-disjoint. Using the Transparency law we can delegate the computation of
d.a to MinDist.a:

true yioid true ~ (Va,b:a,b € V : d.a.b = d.a.b)

< {~ CONJUNCTION }
(Va:a €V :true ot true ~ (Vb :b € V : d.a.b = d.a.b))

< { MinDist = (Ja : a € V : MinDist.a); ~» TRANSPARENCY }
(Va : a € V : true i o true~ (Vb: b € V : d.a.b = d.a.b))

So, MDO can be refined by MD1:

Forallae V:
MD1 : true ot true~ (Vb: b €V :d.a.b = §.a.b)

We will now divide the execution of each MinDist.a into rounds (the rounds
are abstract, that is, we pretend as if they exist, but they do not have to
explicitly appear in the program text). Let us say that upon finishing a round
n the program MinDist.a establishes and maintains ¢g.n where:

gn = WVb:beV:8ab<n= (dab=4d.ab)) (11.1)

Notice that upon reaching a sufficiently ’large’ round n the program MinDist.a
will have achieved its goal as specified in MD1. Since the program maintains
each ¢.m, upon entering round n, (Vm : m < n : ¢.m) holds. The obligation of
round n can be expressed by:

(VYm:m <mn:qm)~qn

This sounds reasonable. Unfortunately (Vm : m < n : ¢.m) does not provide
enough information to establish g.n.

Suppose d.a.b = n + 1. To complete round n + 1 we must compute d.a.b
to be assigned to d.a.b. Theorem 11.1 suggests that we can compute this from
d.a.b’ of all neighbors b’ of b. Since we have passed round n before coming to
round n + 1 we know that d.a.b’ of any neighbor b’ such that §.a.b' = n has
been computed correctly and stored in d.a.b’. Unfortunately, nothing is known
about the value of the d.a.b' of other neighbors. Another problem is that the
link registers may initially contain garbage values which may circulate through
the system and prevent it from stabilizing. Obviously, there are more things
which have to be done before a round can be declared completed. Before we
write down the details, let us first see how far we can go without a complete
knowledge of the obligations of each round.

Let us assume the existence of a finite domain A of rounds, ordered by a
well founded ordering <. Later, we will have to come up with a concrete A and
<.

Before we continue, let us introduce some abbreviations. In the definition
below, d and r are (arrays of) program variables. The role of d should be clear

38

by now. r.a.b'.b is the link register between vertices b and b'. It is intended to
be a copy of d.a.b for vertex b'.

Definition 11.2 : Let A be a finite set of rounds ordered by a well-founded
relation <. Foralln € A, a,b€eV,and f e V> A:

oky . X = "X is an acceptable value for round n and vertex b”
dataOk™ = (Vb:b € V :oky.(d.a.b))

comOk™ = (Vb,b':be V AY € E.b:oky.(r.a.b'.b))

preOk™ = (Vm:m < n:dataOk™ A comOk™)

So, oky.(d.a.b) means the value d.a.b is acceptable for b at round n and
oky .(r.a.b’.b) means that the link register r.a.b'.b contains an acceptable value
for b at round n. The meaning of ’acceptable’ is left open for now, but in any
case it is sufficient if:

FinishCondition: (Vn :n € A : dataOk™) = (Vb: b€ V : d.a.b = d.a.b)

dataOk™ means that all d.a.b’s are acceptable for round n and comOk™ means
the value of all link registers are also acceptable for round n. Finally, preOk"
means that the value of all d.a.b’s and their copies are acceptable for all rounds
previous to round n.

Assuming Finish Condition we can refine MD1 to:

true yinow o true ~» (Vn : n € A : dataOk™) (11.2)

The Round Decomposition principle suggests that we can implement (11.2)
by converging to dataOk™ at each new round n, given that dataOk™ holds for
any previous round m. Unfortunately dataOk does not tell anything about the
state of the link registers. Without this knowledge we cannot tell anything
about the result of a local computation of a node since it is based on the values
of the link registers. So, what we do is strengthen (11.2) by requiring that the
values of the link registers should also be made acceptable at each new round.
This gives us the following specification:

true .ok true ~ (Vn:n € A : dataOk™ A comOk™) (11.3)

Let us now try to apply the Round Decomposition principle to refine (11.3)
further. We derive:

true F true ~ (Vn : n € A : dataOk™ A comOk™)
< { Definition of preOk; ROUND DECOMPOSITION }
(Vn:n € A: preOk™ +- true ~ dataOk™ A comOk™)
< { ACCUMULATION }

(Vn:ne A: (preOk™ F true ~» dataOk™) A
(preOk™ |- dataOk™ ~» comOk™))

39

< {~ STABLE SHIFT }

(Vn:ne€eA: (preOk™ F true ~ dataOk™) A
(preOk™ A dataOk™ F true ~» comOk™))

So, MD1 can be refined by MD2 and MD3 defined as follows:

For all n € A:

MD2.a : preOk™ oo true ~» dataOk™
MD2.b: preOk™ A dataOk™ .0 o true ~» comOk™

By unfolding the definition of dataOk and comOk and by applying the ~»
CoNJuNcTION law we can refine above specifications to the following. For all
ne€eA beV,and b € E.b:

preOk™ yipw o true ~» okj'.(d.a.b) (11.4)
preOk™ A dataOk™ b true ~» oky'.(r.a.b'.b) (11.5)

Let us insist that MinDist.a = (b : b € V' : MinDist.a.b) where the MinDist.a.b’s
are pair-wise write-disjoint. Using the TRANSPARENCY law we can delegate the
task of fulfilling (11.4) and (11.5) to MinDist.a.b. If we do this, we end up with
the following refinement of MD2:

Forallme A,beV,and b € E.b:

MD3.a: preOk™ ypnpist.a.sF true ~ oky'.(d.a.b)
MD3.b: preOk™ A dataOk™ yipiee.q.oF true ~> oky'.(r.a.b’.b)

Let us first continue with MD3.b since this is easier. By applying ensures to
~» LIFTING we can refine MD3.b to the following primitive level specifications:

MinDist.a b~ O (preOk" A dataOk”) (11.6)
MinDist.a 61~ O (preOk™ A dataOk™ A oky .(r.a.b'.b)) (11.7)
winpist.a s (PreOk™ A dataOk™) ensures oky.(r.a.b'.b) (11.8)

The progress specification (11.8) can be simplified using (11.6):

(preOk™ A dataOk™) ensures oky .(r.a.b'.b)

< { second argument of ensures can be weakened [7] }
(preOk™ A dataOk™) ensures (preOk™ A dataOk™ A ok .(r.a.b'.b)

< { definition of dataOk; weakening the second argument of ensures }
(preOk™ A dataOk™) ensures (preOk™ A dataOk™ A (r.a.b'.b = d.a.b))

< { ensures PSP law; (11.6) }

40

true ensures (r.a.b'.b = d.a.b)

Notice that the resulting ensures specification can be implemented by an
assignment r.a.b'.b := d.a.b.

Now let us continue with MD3.a. Just as what we did to MD3.b, we apply
ensures to ~ LIFTING to refine MD3.a to:

MinDist.a b~ O preOkn (11.9)
mose.ast O (preOk™ A oky'.(d.a.b)) (11.10)
winpist.a 5= PreOk™ ensures oky'.(d.a.b) (11.11)

The progress specification (11.11) requires the program to establish ok; .(d.a.b)
from preOk™. The latter implies that the link registers r.a.b’.b of all b’ € E.b
are all ok for any previous round m. We might be able to establish ok; .(d.a.b)
by applying some function 6§ to those link registers. Let us suppose that there
exists such a function. More specifically, assume:

There exists a function 6 satisfying:

RS: (Ym,b' :m<n A b € E.b:ok].(fb')) = oky.(6.f)

foralln € A and a,b €V and f.

Let us now see how we can use RS to simplify (11.11). The calculation is
similar to that of (11.8):

preOk™ ensures okj'.(d.a.b)
< { second argument of ensures can be weakened [7] }
preOk™ ensures (preOk™ A ok .(d.a.b))

< { definition of preOk; use RS and choose f + r.a.b; weakening second
argument of ensures }

preOk™ ensures (preOk™ A (d.a.b = 0 (r.a.b)))
< { ensures PSP law; (11.9) }
true ensures (d.a.b = 0% (r.a.b))

The last can be implemented by an assignment d.a.b := 6% (r.a.b).
So, to summarize, we can refine MD3.a and MD3.b to:

MD3.a.1 winpist. a5 O preOk™

MD3.a.2 winpist.a.ol O (preOk™ A okj'.(d.a.b))

MD3.a.3 winpise.a 51 true ensures (d.a.b = 6°.(r.a.b))
MD3.b.1 winpise.a.s= O (preOk™ A dataOk™)

MD3.b.2 winpise.a.ol O (preOk™ A dataOk™ A oky .(r.a.b'.b))
MD3.b.3 winpist. o ol true ensures (r.a.b’.b = d.a.b)

41

Without further proof we give a complete code for MinDist which satisfies
the above specification:

MinDist = (Ja,b : a,b € V : MinDist.a.b) where MinDist.a.b is defined as
follow:

prog MinDist.a.b

read {b:bVe€Eb:rabb}Uu{b:be EYV :r.ab.b}U{dab}
write {0/ :be€ E.b :r.ab .b}U{d.a.b}

init true

assign d.a.b:=6.(r.ab) | (V':b€ ED :rab.b:=d.a.b)

11.1.1 Round Solvable Problems

The program above is actually a solution for a class of problems, instead of just
the minimal distance problem. Note that in arguing about the correctness of
the program we only relied on the existence of a set of A of rounds, ordered by
a well-founded ordering <, and a function @ satisfying the property RS. So, as
long as we can find these (A4, <) and 6 for a given notion of acceptability (the
predicate ok) the program above is a solution of the problem. Problems that
can be solved this way are called Round Solvable [14].

As for the minimum distance problem, the following instantiation will satisfy
Finish Condition and RS. The proof of this can be found in, for example [14].
We have also mechanically verified this result. For A we choose the set of
natural numbers less than or equal to the diameter of the network (V, E). < is
instantiated to <, and ok and 6 are defined as:

Definition 11.3 :
For all a,b € V and n € A:

X =4éd.a.b if f.ab<n

n —
oky. X' = { n<X otherwise

Definition 11.4 :
For any f e V—+Nand a,b e V:

0” f _ 0 ifa=10
@ (mind' b € Eb: fb)+1 otherwise

References

[1] Y. Afek and G.M. Brown. Self-stabilization of the alternating-bit protocol.
In Proceeding of the IEEE 8th Symposium on Reliable Distributed Systems,
1989.

42

[2] Flemming Andersen. A Theorem Prover for UNITY in Higher Order Logic.
PhD thesis, Technical University of Denmark, 1992.

[3] A. Arora. A foundation for fault-tolerant computing. PhD thesis, Dept. of
Comp. Science, Univ. of Texas at Austin, 1992.

[4] A. Arora and M.G. Gouda. Distributed reset. In Proceedings of the 10th
Conference on Foundation of Software Technology and Theoretical Com-
puter Science, 1990. Also in Lecture Notes on Computer Science vol. 472.

[5] A. Arora and M.G. Gouda. Closure and convergence: A foundation for
fault-tolerant computing. In Proceedings of the 22nd International Confer-
ence on Fault-Tolerant Computing Systems, 1992.

[6] J.E. Burns and J. Pachl. Uniform self-stabilizing rings. ACM Trans. Pro-
gramming Language Systems, 11(2):330-344, 1989.

[7] K.M. Chandy and J. Misra. Parallel Program Design — A Foundation.
Addison-Wesley Publishing Company, Inc., 1988.

[8] N.S. Chen, H.P. Yu, and S.T. Huang. A self-stabilizing algorithm for con-
structing spanning trees. Information Processing Letters, 39(3):147-151,
1991.

[9] E.W. Dijkstra. Self-stabilizing systems in spite of distributed control. Com-
munication of the ACM, 17(11):643-644, 1974.

[10] Mike J.C. Gordon and Tom F. Melham. Introduction to HOL. Cambridge
University Press, 1993.

[11] M.G. Gouda and T. Herman. Addaptive programming. IEEE Trans. Soft-
ware Eng., 17(9), September 1991.

[12] Ted Herman. Adaptivity through Distributed Convergence. PhD thesis,
University of Texas at Austin, 1991.

[13] H.S.M. Kruijer. Self-stabilization (in spite of distributed control) in tree
structured systems. Information Processing Letters, 2(8):91-95, 1979.

[14] P.J.A. Lentfert. Distributed Hierarchical Algorithms. PhD thesis, Utrecht
University, April 1993.

[15] P.J.A. Lentfert and S.D. Swierstra. Towards the formal design of self-
stabilizing distributed algorithms. In P. Enjalbert, A. Finkel, and K.W.
Wagner, editors, STACS 93, Proceedings of the 10th Annual Symposium on
Theoretical Aspects of Computer Science, pages 440—-451. Springer-Verlag,
February 1993.

[16] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems—Specification. Springer-Verlag, 1992.

43

[17]

[18]
[19]
[20]
[21]
[22]

[23]

[24]

I.S.W.B. Prasetya. Formalization of variables access constraints to support
compositionality of liveness properties. In J.J. Joyce and C.J.H. Seger, edi-
tors, LNCS 780: Higher Order Logic Theorem Proving and Its Applications,
pages 324-337. Springer-Verlag, 1993.

1.S.W.B. Prasetya. Lifted Predicate Calculus in HOL. University of Utrecht,
1993. draft version.

I.SSW.B Prasetya. UU_UNITY: a Mechanical Proving Environment for
UNITY Logic. University of Utrecht, 1993. Draft. Available at request.

I1.S.W.B. Prasetya. Mechanically Supported Design of Self-stabilizing Algo-
rithms. PhD thesis, Dept. of Comp. Science, Utrecht University, 1995.

B.A. Sanders. Eliminating the substitution axiom from UNITY logic. For-
mal Aspects of Computing, 3(2):189-205, 1991.

A K. Singh. Leads-to and program union. Notes on UNITY, 06-89, 1989.

R. Udink, T. Herman, and J. Kok. Compositional local progress in unity. In
proceeding of IFIP Working Conference on Programming Concepts, Meth-
ods and Calculi,, 1994.

T. Vos. UNITY in Diversity: A Stratified Approach to the Verification
of Distributed Algorithms. PhD thesis, Informatica Instituut, Universiteit
Utrecht, 2000.

44

