
Sequential program composition in UNITY

Tanja Vos and Doaitse Swierstra
Utrecht University, Department of Computer science

e-mail: {tanja, doaitse}@cs.uu.nl

February 28, 2000

1 Introduction

Large distributed applications are composed of basic blocks, by using composition operators. In an
ideal situation, one should be able to develop and verify each of these basic components by itself,
using compositionality theorems of the respective composition operators stating that properties
of a composite program can be proved by proving properties of its components.

Generally, two forms of distributed program composition can be distinguished: parallel com-
position and sequential composition. Parallel composition is standard in UNITY [CM89], and is
used when two distributed component-programs need to cooperate in one way or another. Compo-
sitionality theorems of parallel composition on general progress properties are extensively studied
in [CM89, Sin89a, Pra95]. Sequential composition of UNITY programs is not part of core UNITY
[CM89]. It can however be very useful when we want a program to work with the results of another
program. For example, for the Propogation of Information with Feedback (PIF) protocol [Seg83]:

elect a leader # let the leader be the starter of the PIF protocol

In [Mis90b], a brief and intuitive characterisation of sequential composition is given. In this
technical report, we shall formally define and model sequential program composition within the
HOL-UNITY embedding described in [Pra95, Vos00] In order to do so, we introduce a new type
of UNITY programs called UNITY+ programs which consist of sequentially composed UNITY
programs. The semantics of a UNITY+ programs is then defined in terms of a UNITY program
that models the desired behaviour of the sequential composition. Finally, safety and progress
operators are defined for these UNITY+ programs, and compositionality theorems are derived.
For those readers not familiar with UNITY and its embedding in HOL, Appendix A contains
a brief overview of it. For those readers that are familiar with UNITY, we have compiled an
extensive index that should enable the reader to start reading this technical report, looking up
desired definitions in a demand-driven way.

2 Semantics of sequential program composition

In [Mis90b], sequential composition of programs P # Q is defined intuitively in operational terms
as follows. Program P ’s execution is started. If a fixed-point state of P is reached, the execution
of Q is started from that state. In this technical report, we generalise this by parametrising # with
some state-predicate, and interpreting P #r Q as follows. Program P ’s execution is started. If a
predicate r holds in some state during the execution of P , the execution of Q is started from that
state. Consequently, if r is a fixed-point of P (i.e. P` FP.r), then our operational intuition of #
corresponds to that of [Mis90b].

In order to formalise the #r-operator, we have to find a way to enforce that:

• the execution of P is stopped when r holds

1

2 Semantics of sequential program composition 2

• the execution of Q is started in exactly that state where r started to hold in P

In [Mis90b], r is assumed to be a fixed-point of P , and, as a consequence, if r holds, then the
execution of P has effectively stopped. Moreover, in [Mis90b] it is implicitly assumed that the
execution of a UNITY program is started only when its initial condition is satisfied, and since
only those programs Q that have P ’s fixed-point as their initial condition are considered it is
ensured that once P stops, Q can start executing. In our case, however, it is not as simple as this.
First, we decided to generalise our # operator by parametrising it with some state-predicate which
is not necessarily P ’s fixed-point. Second, in our HOL-UNITY embedding, where a program’s
progress properties are proved independently from its initial condition [Pra95], we cannot use this
approach from [Mis90b] to ensure that Q is started in exactly that state where r started to hold
in P . Consequently, we have to deal with these two aspects explicitly when formally defining
the semantics of our #-operator. In order to explain the approach we have taken, we use the two
UNITY programs P and Q from below.

prog P prog Q
read {x} read {x}
write {x} write {y}
init x = 0 init true
assign if x ≥ 0 then x := x+ 1 assign y := x

Obviously, we need to define the semantics of P #r Q, such that:

• as soon as predicate r holds, all guards of P its actions are disabled and remain disabled
forever (i.e. we transform P such that r becomes a fixed-point of the transformation).
• when r is not yet satisfied during the execution of P , all guards of Q are disabled, and as

soon as r becomes true the guards of Q’s actions are enabled as far as this is allowed by Q
itself.

In order to achieve this, we introduce a fresh variable pc, the value of which indicates which
program (i.e. P or Q) is allowed to execute. We make sure that once r becomes true the value
of the pc is adjusted as to ensure that the execution of P is stopped and that of Q is started.
Subsequently, we transform P and Q by strengthening the guards of all their actions such that
these are only enabled when the value of the pc allows them. Moreover, we strengthen the guards
of all actions in the programs P with ¬r such that these actions immediately become disabled
when r becomes true (i.e. r becomes a fixed-point). Finally, we compose these transformations
using parallel composition. For programs P and Q, this results in the following semantics of P #rQ:

prog P #r Q
read {x}
write {x, y}
init (x = 0) ∧ (pc = 0)
assign if (x ≥ 0) ∧ (pc = 0) ∧ ¬r then x := x+ 1
8 if (pc = 0) ∧ r then pc := pc + 1
8 if (pc = 1) then y := x

This evidently gives the desired effect. If r becomes true, the guard of P ’s action is immediately
disabled since it contains (¬r). Eventually the pc will be incremented and become 1. As a result,
Q can start executing, and since the pc will never change again P has stopped.

Now, we have laid the foundations of how we will define the semantics of #r. Subsequently, we
have to determine how we handle sequences of sequential compositions:

P #r Q #s H

2 Semantics of sequential program composition 3

•+

UNITY+

•

UNITY

•semantics

Figure 1: Semantics of a UNITY+ program
J

A property following naturally from the intuitive interpretation of sequential composition, is that
of associativity. Consequently, we want to define the semantics of #r such that:

P #r Q #s H = (P #r Q) #s H = P #r (Q #s H)

From the discussion above, we can derive that the following program captures the intended mean-
ing of these sequences:

prog P #r Q #s H
read rP ∪ rQ ∪ rH
write wP ∪wQ ∪wH
init iniP ∧ iniQ ∧ iniH ∧ (pc = 0)
assign if (pc = 0) ∧ ¬r then P (☼)
8 if (pc = 0) ∧ r then pc := pc + 1
8 if (pc = 1) ∧ ¬s then Q
8 if (pc = 1) ∧ s then pc := pc + 1
8 if (pc = 2) then H

When defining the semantics of #r such that the latter is associative, we need to make sure that it
is defined in such a way that the semantics of (P #r Q) #s H as well as P #r (Q #s H) are equal to
the program presented above. Consequently, since we allow sequential composition of any (finite)
number of programs, a shallow embedding of # is inadequate to ensure that the right values of
pc are used when strengthening the guards. Therefore, we define the # operator using a deep
embedding1. Since, a sequence of sequential compositions consists of “simple” UNITY programs
(i.e. those of type Uprog (see page 10)), composed with the # operator, we define the abstract
syntax of UNITY+ programs by the following recursive data type:

Definition 2.1 Type definition UNITY plus

Uprog+ = Simple.Uprog
| Uprog+ #Expr Uprog+

J
Now we can define the semantics and other properties of sequential composition as recursive
functions over this data type. For example, the write variables of a UNITY+ program can be
obtained as follows (we overload the w destructor from Appendix A.2):

1In a deep embedding, the abstract syntax of the language is defined as a type in the HOL logic, and the
semantics is defined as recursive functions over this type.

2 Semantics of sequential program composition 4

Definition 2.2 Write variables of a UNITY+ program WRITE plus

w(Simple.P) = wP
w(P+ #r Q+) = wP+ ∪wQ+

J
Continuing with the semantics, suppose we need to define the semantics of P+ #r Q+, where P+

and Q+ can consist of arbitrary sequential compositions. The first value of the pc used in the
semantics of Q+ has to be the successor of the maximal pc used in the semantics of P+. Moreover,
only the guard of the last “simple” UNITY program in P+’s sequence has to be strengthened with
the negation of the state-predicate r. In order to achieve this we define a transformation function
tr that given an arbitrary Uprog+ program U+, and some start value n for the pc (i.e. if the pc
is n, then the first Simple UNITY program in the sequence U+ is allowed to execute) returns a
tuple like:

(U ∈ Expr→Uprog, m ∈ num)

such that given a state-predicate r, U.r will execute until r holds and when r holds the value of
the pc will be m. Note that, U.r denotes the semantics of U+#r. Inspecting the examples given
earlier, when U+ is a simple Uprog program P , this transformation shall return:

((λr. if pc = n ∧ ¬r then P 8 if (pc = n) ∧ r then pc := pc + 1), n+ 1)

Now, suppose that U+ is a composite Uprog+ program P+ #r Q+. If transforming P+ with n as
the start value of the pc results in (P , m), we can transform Q+ with m as the start value of the
pc since then we know that the first value of the pc used in the semantics of Q+ is the successor of
the maximal pc used in the semantics of P+. If this transformation results in (Q, k), then we can
ensure that only the guard of the last “simple” UNITY program in P+’s sequence is strengthened
with the negation of the state-predicate r, by defining the transformation of P+ #r Q+ with n as
the start value of the pc to result in:

((λq. (P.r 8Q.q)), k)

The formal definition of this transformation function is stated below. We use restricted union
superposition (Definition A.2113) to transform Simple UNITY+ programs.

Definition 2.3 tr DEF

tr.(Simple.P).pc.n = ((λr. RU S.(strengthen guards.(pc = n ∧ ¬r).P)
.(if (pc = n) ∧ r then pc := pc + 1)
.true)

, n+ 1)

tr.(P+ #r Q+).pc.n= let (P,m) = tr.P+.pc.n ∧ (Q, k) = tr.Q+.pc.m
in ((λq. P.r 8Q.q), k)

J
Now the semantics of a UNITY+ program is defined by the following function:

Definition 2.4 semantics

semantics.U+.pc.n.q = add to initial cond.(pc = n).(FST.(tr.U+.pc.n.q))
J

2 Semantics of sequential program composition 5

prog P #r Q #s H
read rP ∪ rQ ∪ rH
write wP ∪wQ ∪wH
init iniP ∧ iniQ ∧ iniH ∧ (pc = 0)
assign if (pc = 0) ∧ ¬r then P
8 if (pc = 0) ∧ r then pc := pc + 1
8 if (pc = 1) ∧ ¬s then Q
8 if (pc = 1) ∧ s then pc := pc + 1

8 if (pc = 2) ∧ true then H

8 if (pc = 2) ∧ false then pc := pc + 1

Figure 2: The result of semantics.(P #r Q #s H).pc.0.false
J

where n is the start value of the pc, and q is a state-predicate indicating when the last simple
program in the composition is allowed to stop executing (i.e. its exit condition). If q is false, this
indicates that the actions of the last simple UNITY program in a sequential composition may
be enabled indefinitely and that the pc will not be incremented anymore. Note that using this
definition, the semantics of P #rQ#sH is slightly different from that presented on page 3 (at the ☼).
More specific, semantics.(P #r Q #s H).pc.0.false results in the UNITY program depicted in Figure
25. However, it is easily recognised that the semantics are the same, since true is the identity
element of ∧, and the last action will always be a skip action because false is never satisfied.
Proving that #r is associative is now straightforward, since (8) is associative:

Theorem 2.5 Associativity of # SEQ ASSOC

For arbitrary UNITY+ programs P+, Q+, and H+, and state-predicates r, s ∈ Expr:

semantics.((P+ #r Q+) #s H+) = semantics.(P+ #r (Q+ #s H+))
J

The formalisation of the semantics of #r is now almost completed. There is, however, a snag in
it somewhere. We still have to ensure that the variable pc, that is used to define the semantics
of the UNITY+ programs, is a fresh variable. That is, all actions of the sequentially composed
programs, and all predicates attached to the # must ignore this variable pc:

Definition 2.6 variables ignored by UNITY+ program IG BY Uplus DEF

V
+: (Simple.P) = V : P

V
+: (P+ #r Q+)= (V

+: P+) ∧ (V
+: Q+) ∧ (V c C r)

J
Consequently, the function semantics.U+.pc only defines the desired semantics for U+, when

{pc} +: U+.

We end this section by stating some properties of the semantics of #. The maximal value the pc
can reach in the program semantics.U+.pc.n.q is defined by:

Definition 2.7 max pc

max pc.U+.pc.n = SND.(tr.U+.pc.n)
J

3 Proving properties of program sequencing 6

From the definition of tr (2.34), it is straightforward to deduce:

Theorem 2.8 pc INCR thm

∀U+ pc n :: n < (max pc.U+.pc.n)

J
When the value of the pc is less that n, or greater than or equal to max pc.U+.pc.n, all actions
in the program semantics.U+.pc.n.q (for arbitrary q) are disabled. Consequently, these are fixed-
points of this program:

Theorem 2.9 FP when pc too small, FP when pc too big

∀U+ pc n q ::
U = semantics.U+.pc.n.q ∧ {pc} +: U+

(U` FP.(pc < n)) ∧ (U` FP.(pc ≥ (max pc.U+.pc.n)))

J
The value of the pc shall never decrease during the execution of semantics.U+.pc.n.q (for arbitrary
q), so:

Theorem 2.10 pc GE start value IS STABLEe

∀U+ pc n q ::
U = semantics.U+.pc.n.q ∧ {pc} +: U+

U`�(pc > n)

J
Finally, during the execution of semantics.U+.pc.n.q (for arbitrary q), the value of the pc will be
less than max pc.U+.pc.n until q holds and the pc is incremented such that it gets its maximum
value:

Theorem 2.11 pc LT max UNTIL pc is max AND pred

∀U+ pc n q ::
U = semantics.U+.pc.n.q ∧ {pc} +: U+ ∧ q C {pc}c

U` (pc < max pc.U+.pc.n) unless ((pc = max pc.U+.pc.n) ∧ q)

J

3 Proving properties of program sequencing

When working with UNITY+ programs, the semantics underlying the #r operator should be hidden,
and the user should be able to prove properties of sequentially composed programs by proving
properties of their component programs. In order to establish this, we first define safety and
progress operators for UNITY+ programs in terms of the standard safety and progress operators for
UNITY programs. Subsequently we derive theorems that state how safety and progress properties
of UNITY+ programs can be proved by reducing them to standard UNITY properties of the
component programs.

To express safety properties of UNITY+ programs, we introduce two operators unless+ and
� +. Since, the semantics of a UNITY+ program requires a state-predicate that indicates the

3 Proving properties of program sequencing 7

Theorem 3.3 UNLESS IMP Simple UNLESS plus

P` p unless q ∧ (∀pc : {pc}: (Simple.P) : p C pcc)

∀r : Simple.P` p unless+
r q

Theorem 3.4 UNLESS SEQ UNLESS

q C wP+ ∧ P+` p unless+
q r ∧ Q+` p unless+

s r

J P+#qQ+` p unless+
s r

Figure 3: Proving safety for UNITY+ programs
J

exit condition of the last simple UNITY program in the sequence of sequential compositions,
these operators have an additional parameter stating this condition. Intuitively, for a UNITY+

program U+: U+` p unless+
r q holds, if, for all numbers n and fresh variables pc, p unless q holds

in semantics.U+.pc.n.r. More formally this comes down to:

Definition 3.1 UNLESS plus DEF

U+` p unless+
r q

= ∀pc n U : {pc} +: U+ ∧ U = semantics.U+.pc.n.r : U` p unless q

Definition 3.2 STABLE plus DEF

U+` �+
r J

= ∀pc n U : {pc} +: U+ ∧ U = semantics.U+.pc.n.r : U`� J

J
Compositionality theorems of unless+ are stated in Figure 37. Similar properties hold for the �+

operator.

To express progress properties of UNITY+ programs, we introduce two operators
+�, and

+ .

Again, intuitively for a UNITY+ program U+: the validity of J U+` p
+� q shall imply that,

during the execution of the semantics of U+, when p holds then eventually q holds. However,
we have to be more specific about what we mean here. Consider again the following sequential
composition:

U+ = P #r Q #s H

Suppose, we are at a specific point in the execution of the semantics of U+ where the pc is such

that it is P ’s turn to execute and p holds. Now, do we want J U+` p
+� q to be valid if, from this

specific point eventually q holds in P while actions of Q and H have not yet been executed? In
order to answer this question, we have to consider what we are aiming at. As previously indicated,
we want to derive theorems stating how progress properties of UNITY+ programs can be proved
by reducing them to standard UNITY properties of the component programs. More specific, for
the case of U+ above, these theorems shall state something like:

J P #rQ` p
+� s ∧ J H` s

+� r

J P #rQ#sH` p
+� r

3 Proving properties of program sequencing 8

Suppose we know that:

J H` (x = 10)
+� something beautiful

Let P , and Q be the following programs:

prog P prog Q
read ∅ read ∅
write {x} write {x}
init some initial condition init (x = 9)
assign x := 10 assign x := 10

Moreover, for the sake of the argument suppose that the answer to the previous question would
be yes, and we define:

J U+` p
+� q = ∀pc n U : {pc} +: U+ ∧ U = semantics.U+.pc.n.q : J U` p � q

Therefore, we are able to prove that:

J P #(x=9)Q
` some initial condition

+� (x = 10)

However, since the x will never be 9, the pc in the semantics of P #(x=9) Q will never be incre-
mented, and consequently, we cannot prove that

J P #(x=9)Q#(x=10)H
` some initial condition

+� something beautiful

since, H will never get a chance to execute. Thus, defining
+� in this way does not enable us to

prove the theorems we are aiming at, and the answer to the question posed above is no. From

this discussion we can derive that we only want J U+` p
+� q to be valid if, q eventually holds

during the execution of the last program in the #-sequence U+. This can be established by letting
q be the exit condition of the last program in the #-sequence U+, and requiring that the value
of the pc in the semantics of this sequence eventually reaches its maximum value. Consequently,
progress properties for UNITY+ programs are defined as follows:

Definition 3.5 REACH plus DEF

J U+` p
+� q

= ∀pc n m U : {pc} +: U+ ∧ U = semantics.U+.pc.n.q ∧m = max pc.U+.pc.n :
J U` (p ∧ (pc = n))� (pc = m)

Definition 3.6 CONV plus DEF

J P` p
+ q

= ∀pc n m U : {pc} +: U+ ∧ U = semantics.U+.pc.n.q ∧m = max pc.U+.pc.n :
J U` (p ∧ (pc = n)) (pc = m)

J

Compositionality theorems for
+�, are presented below. For

+ similar properties hold.

4 Concluding remarks 9

Theorem 3.7 REACH IMP Simple REACH plus

J P` p � q ∧ (∀pc : {pc}: (Simple.P) : J C pcc)

J Simple.P` p
+� q

Theorem 3.8 REACH SEQ REACH

q C wP+ ∧ J P+` p
+� q ∧ J Q+` q

+� s

J P+#qQ+` p
+� s

J

4 Concluding remarks

In this technical report we have presented a formalisation of sequential program composition in
UNITY. We have been brief and have not decribed any application of the developed theory in de-
tail. We think we have obtained a nice formalisation of the semantics of #. Once the transformation
function (tr) was defined, the definitions of the safety and progress operators followed naturally,
and the compositionality results were proved smoothly. Moreover, we find that the formalisation
illustrates the possibly unexpected complications that can appear when formally defining allegedly
simple concepts (like #) of which the definition and properties are intuitively clear.

References

[CM89] K.M. Chandy and J. Misra. Parallel Program Design. Addison-Wesley, Austin, Texas,
May 1989.

[Mis90a] J. Misra. More on strengthening the guard. Notes on UNITY, 19-90, 1990. http:

//www.cs.utexas.edu/users/psp/notesunity.html.

[Mis90b] J. Misra. Proving progress for program sequencing. Notes on UNITY, 16-90, 1990.
http://www.cs.utexas.edu/users/psp/notesunity.html.

[Pra95] W. Prasetya. Mechanically Supported Design of Self-stabilizing Algorithms. PhD thesis,
Utrecht University, Oct 1995.

[Seg83] A. Segall. Distributed network protocols. IEEE Transactions on Information Theory,
29:23–35, 1983.

[Sin89a] A.K. Singh. Leads-to and program union. Notes on UNITY, 06-89, 1989. http://www.
cs.utexas.edu/users/psp/notesunity.html.

[Sin89b] A.K. Singh. On strengthening the guard. Notes on UNITY, 07-89, 1989. http://www.

cs.utexas.edu/users/psp/notesunity.html.

[Vos00] T.E.J. Vos. UNITY in Diversity, a stratified approach to the verification of distributed
algorithms. PhD thesis, Utrecht University, Jan 2000.

A UNITY 10

Appendices

A UNITY

In this section we shall give an overview of the UNITY theory and Prasetya’s extensions. We shall
concentrate on those concepts that are needed in the rest of this report. For a more thorough
treatment the reader is referred to [CM89, Pra95, Vos00].

A.1 Variables, values, states, expressions and actions

The state of a program is represented as a function from a universe Var of all program variables to
a universe Val of all values these variables may take. The set of all program states will be denoted
by State.

A state-expression is a function of type State→α, where α is an arbitrary type. The set of all
state-expressions will be denoted by Expr.

A state-predicate is a state-expression where type α is bool.
A state-expression f is confined by a set of variables V , denoted by f C V , if f does not restrict
the value of any variable outside V :

Definition A.1 State-expression Confinement CONF DEF

For all f ∈ (σ1→σ2)→α, and V ⊆ σ1,

f C V = (∀s, t :: (s�V = t�V)⇒ (f.s = f.t))
J

The confinement operator is monotonic in its second argument.

Theorem A.2 C Monotonicity CONF MONO

V ⊆W ∧ (f C V)⇒ (f C W)
J

The actions of a UNITY program can be multiple assignments or guarded multiple assignments.
The universe of actions will be denoted by ACTION.

A set of variables is V ignored-by an action A, denoted by V 8 A, if executing A’s executable
in any state does not change the values of these variables. Variables in V c may however be written
by A.

A.2 UNITY programs

A UNITY program consists of declarations of read variables, write variables, a specification of
their initial values, and a set of actions.

An execution of a UNITY program starts in a state satisfying the initial condition and is an
infinite and interleaved execution of its actions. In each step of the execution some action is
selected and executed atomically. The selection of actions is weakly fair, i.e. non-deterministic
selection constrained by the following fairness rule:

Each action is scheduled for execution infinitely often, and hence cannot be ignored
forever.

A UNITY program P is modelled by a quadruple (A, J, Vr, Vw) where A ⊆ ACTION is a set
consisting of P ’s actions, J ∈ Expr is a state-predicate describing the possible initial states of
P , and Vr, Vw ⊆ Var are sets containing P ’s read and write variables respectively. The set of
all possible quadruples (A, J, Vr, Vw) shall be denoted by Uprog. To access each component of

A.3 UNITY specification and proof logic 11

such an Uprog object, the destructors a, ini, r, and w are introduced. They satisfy the following
property:

Theorem A.3 Uprog Destructors

P ∈ Uprog = (P = (aP, iniP, rP,wP))
J

The operators on actions can now be lifted to the program level as follows:

Definition A.4 Variables Ignored-by Program dIG BY Pr

V : P = ∀a : a ∈ aP : V 8 a
J

Due to the absence of ordering in the execution of a UNITY program, parallel composition of
two programs can be modelled by simply merging the variables and actions of both programs. In
UNITY parallel composition is denoted by 8. In [CM89] the operator is also called program union.

Definition A.5 Parallel Composition dPAR

P 8Q = (aP ∪ aQ, iniP ∧ iniQ, rP ∪ rQ,wP ∪wQ)
J

Parallel composition is reflexive, commutative, associative, and has the identity element (∅, true, ∅, ∅).
We can strengthen the initial condition of a UNITY program using the folliwng function:

Definition A.6 Strengthen the initial condition add to initial cond

add to initial cond.I.P = (aP, iniP ∧ I, rP,wP)
J

A.3 UNITY specification and proof logic

UNITY logic is used to specify the correctness expectations or properties of a UNITY program.
UNITY specifications, and program properties are built from state-predicates and relations on
them. Traditionally, two kinds of program properties are distinguished:
• Safety properties stating that some undesirable behaviour does not occur;
• Progress properties stating that some desirable behaviour is eventually realised.

Consequently, the UNITY logic contains two basic relations on state-predicates corresponding to
these properties. For a UNITY program P and state-predicates p, q ∈ Expr, these are defined by:

Definition A.7 Unless (Safety Property) UNLESSe

P` p unless q = (∀a : a ∈ aP : {p ∧ ¬q} a {p ∨ q})

Definition A.8 Ensures (Progress Property) ENSURESe

P` p ensures q = (P` p unless q) ∧ (∃a : a ∈ aP : {p ∧ ¬q} a {q})
J

Safety properties are described by the unless relation (definition A.7). Intuitively, P` p unless q
implies that once p holds during an execution of P , it remains to hold at least until q holds. Note
that this interpretation gives no information whatsoever about what p unless q means if p never
holds during an execution.

A.3 UNITY specification and proof logic 12

Progress properties are described by the ensures relation. As can be seen from Definition A.8,

P` p ensures q encompasses p unless q. Furthermore, it ensures that there exists an action that can
– and, as a result of the weakly fair execution of UNITY programs, will – establish q.

A state-predicate p is a stable predicate in program P , if, once p holds during any execution
of P , it will remain to hold forever.

Definition A.9 Stable Predicate STABLEe

P`�p = P` p unless false
J

A state-predicate p is a fixed-point of program P , if, once predicate p holds during the execution
of P , the program can no longer make any progress. In other words, once p holds during the
execution of P , the program will subsequently behave as skip. If p is a fixed point of program P
we denote this by P` FP.p.

To specify general progress properties in UNITY, the leads-to operator is used. It is denoted
by 7→, and defined as the smallest transitive and disjunctive closure of ensures . The precise
definition and properties of 7→ can be found in [CM89]. In this technical report, we shall use
Prasetya’s [Pra95] variant of 7→ to specify progress properties. Prasetya’s operator, called reach,
is denoted by �, and is defined (without overloading) as follows:

Definition A.10 Reach Operator REACHe

(λp, q. J P` p� q) is defined as the smallest relation R satisfying:

(i).
p C wP ∧ q C wP ∧ (P`�J) ∧ (P` J ∧ p ensures q)

R.p.q

(ii).
R.p.q ∧R.q.r

R.p.r

(iii).
(∀i : evalb.(W.i) : R.(pi).q)

R.(∀i : W.i : pi).q

where W characterises a non-empty set.
J

Intuitively, J P` p � q means that J is a stable predicate in P and that P can progress from
J ∧ p to q. Note that:
• p � q describes progress made through the writable part of program P (viz. p and q are

confined by the write variables of P). However, since a program can only make progress on
its write variables, this should not be a hindrance [Pra95].
• the predicate J can be used to specify the non-writable part of the program, e.g. assumptions

on the environment in which the program operates.
Some properties of the UNITY operators can be found in Figure 4.

In [Pra95], Prasetya also introduces an operator to specify the more restricted form of self-
stabilisation, called convergence, that allows a program to recover only from certain failures. The
convergence operator is denoted by and defined in terms of � as follows:

Definition A.18 Convergence CONe

J P` p q , q C wP ∧ (∃q′ :: (J P` p� q′ ∧ q) ∧ (P`�(J ∧ q′ ∧ q)))
J

A program P converges from p to q under the stability of J (i.e. J P ` p q), if, given that

P `� J , the program P started in p will eventually find itself in a situation where q holds and
will remain to hold. Intuitively, a program P for which this holds can recover from failures which

A.4 Restricted union superposition 13

Theorem A.11 unless Compositionality UNLESSe PAR i

(P` p unless q) ∧ (Q` p unless q) = (P8Q` p unless q)

Theorem A.12 dIG BY and CONF IMP STABLEe

(V : P) ∧ (p C V)

P`�p

Theorem A.13 � Introduction REACHe ENS LIFT,REACHe IMP LIFT

P, J :
p, q C wP ∧ (�J) ∧ ([J ∧ p⇒ q] ∨ (J ∧ p ensures q))

p� q

Theorem A.14 � Transitivity REACHe TRANS

P, J :
(p� q) ∧ (q� r)

p� r

Theorem A.15 REACHe PAR SKIPe IMP REACHe

J P1
` p� q ∧ P2

` FP.(¬q) ∧ P2
`�J

J P18P2
` p� q

Theorem A.16 REACHe WHILE r PAR SKIPe r IMP REACHe PAR

J P1
` p� q ∧ P2

` FP.r ∧ P2
`�J ∧ P1

` r unless q ∧ (p⇒ r) ∧ (r C w(P1 8 P2))

J P18P2
` p� q

Theorem A.17 REACHe and STABLEe r PAR SKIPe r IMP REACHe PAR

J P2
` p� q ∧ P1

` FP.r ∧ P2
`�r ∧ P1

`�J ∧ P1
`�r ∧ (p⇒ r) ∧ (r C w(P1 8 P2))

J P18P2
` p� q

Figure 4: Some properties of the UNITY operators.
J

preserve the validity of p and the stability of J . The necessity of the predicate q′ in the definition
of is explained in [Pra95].

Most properties of are analogous to those of �. Since, in this technical report, we do not
need these theorems directly, the reader is referred to [Pra95] for their exact characterisation.

A.4 Restricted union superposition

In [CM89], the restricted union superposition rule states that an action A may be added to an
underlying program provided that A does not assign to the underlying variables. Here we split
this into two parts:(1) defining the actual transformation of the program; (2) proving under which
conditions this transformation preserves the properties of the underlying program.
Let A be an action from the universe ACTION, and let iA be a state-predicate describing the
initial values of the superposed variables, then a program P can be refined by restricted union
superposition using the transformation formally defined by:

Definition A.21 Restricted union superposition RU superpose DEF

Let A ∈ ACTION, iA ∈ Expr, and P ∈ Uprog.

RU S.P.A.iA = P 8 ({A}, iA, (assign vars.A), (assign vars.A))
J

A.5 Strengthening guards 14

Let P ∈ Uprog, A ∈ ACTION, and p, q, J ∈ Expr.

Theorem A.19 preservation of unless and ensures RU Superpose PRESERVES UNLESS

RU Superpose PRESERVES ENSURES

p C wP ∧ q C wP ∧ wP 8 A

(P` p unless q ⇒ RU S.P.A.iA ` p unless q)
(P` p ensures q ⇒ RU S.P.A.iA ` p ensures q)

Theorem A.20 preservation of � and RU Superpose PRESERVES REACH

RU Superpose PRESERVES CON

J C wP ∧ wP 8 A

(J P` p � q ⇒ J RU S.P.A.iA ` p � q)
(J P` p q ⇒ J RU S.P.A.iA ` p q)

Figure 5: Restricted Union Superposition preserves properties
J

Theorem A.22 strengthen guard symmetry strengthen guards COMP

strengthen guards.(g1 ∧∗ g2).P = strengthen guards.g1.(strengthen guards.g2.P)

Theorem A.23 preservation of � strengthen Pr guards PRESERVES REACHe

g C wP ∧ (¬q ⇒ g)

J P` p � q ⇒ J strengthen guards.g.P` p � q

Theorem A.24 strengthen Pr guards with STABLE PRESERVES REACHe

g C wP ∧ P`�g
J P` p � q ⇒ J strengthen guards.g.P` (p ∧ g) � (q ∧ g)

Figure 6: Properties of strengthening program guards
J

Where the function assign vars, given an action A, returns the set of variables that are assigned by
this action. Theorems stating that properties are preserved under restricted union superposition
are listed in Figure 5. Note that instead of requiring that the superposed action A does not write
to the underlying variables, it is sufficient to require that the write variables of the underlying
program are ignored by the action A.

A.5 Strengthening guards

Another program transformation that preserves safety properties and, under some conditions,
progress properties of the underlying program is that of strengthening guards [Sin89b, Mis90a].
Below, we define the transformation for the case where all guards of the program are strengthened
with the same guard.

B Proofs of the #-compositionality theorems 15

Definition A.25 Strengthening program guards strengthen guards

strengthen guards.g.P = ({strengthen guard.g.A | A ∈ aP}, iniP,wP, rP)
J

Some properties of this transformation are listed in Figure 6 below.

B Proofs of the #-compositionality theorems

In this section we shall briefly discuss the verification of the compositionality theorems. Theorems
3.3 in Figure 37 can be proved using Restricted Union unless Preservation A.1914. Theorems
3.4 in Figure 37 can be proved using unless Compositionality A.1113. The verification of the
theorems 3.79 and 3.89 will be described in the sections below.

B.1 Proof of Theorem 3.79

Theorem 3.7 REACH IMP Simple REACH plus

J P` p � q ∧ (∀pc : {pc}: (Simple.P) : J C pcc)

J Simple.P` p
+� q

J
Assume the following:

A1: J P` p � q
A2: ∀pc : {pc}: (Simple.P) : J C pcc

we have to prove that: J Simple.P` p
+� q.

using Definition 3.58 this comes down to proving that:

∀pc n m U : {pc} +: (Simple.P)
∧ U = semantics.(Simple.P).pc.n.q
∧ m = max pc.(Simple.P).pc.n
⇒
J U` (p ∧ (pc = n))� (pc = m)

Assuming:

A3: {pc}: (Simple.P)
A4: U = semantics.(Simple.P).pc.n.q
A5: m = max pc.(Simple.P).pc.n

we have to prove that: J U` (p ∧ (pc = n))� (pc = m)

rewriting A4 with Definitions A.2113, 2.34 and 2.44 we can deduce:

A6: U = UP 8 Upc, such that
A7: UP = strengthen guards.(pc = n ∧ ¬q).(aP, iniP ∧ (pc = n),wP ∪ {pc}, rP ∪ {pc})
A8: Upc = (if (pc = n ∧ q) then pc := pc + 1, (pc = n), {pc}, {pc})
A9: m = (n+ 1)

B.1 Proof of Theorem 3.79 16

Now we have to prove that: J UP 8 Upc
` (p ∧ pc = n)� pc = (n+ 1)

⇐(� Transitivity (A.1413))

J UP 8 Upc
` (p ∧ pc = n)� (q ∧ pc = n)

∧
J UP 8 Upc

` (q ∧ pc = n)� pc = (n+ 1)

The second conjunct can be proved by � Introduction (A.1313), since Upc (from A8) ensures
the required progress.

The first conjunct is decomposed as follows:

⇐(Theorem A.1513)

J UP
` (p ∧ pc = n)� (q ∧ pc = n)

∧
Upc
` FP.(¬(q ∧ pc = n))

∧
Upc
`�J

Since the guard of the only action of program Upc (from A8) is (pc = n ∧ q), it is not hard to see
that ¬(q ∧ pc = n) is a fixed point of Upc

Using assumptions A2 and A3, we can infer that J does not depend on the variable pc (i.e.
J C {pc}c). Moreover, since Upc only writes to the variable pc it is straightforward to prove that
Upc ignores all other variables (i.e. {pc}c : Upc). Consequently, we can use Theorem A.1213 to
prove that J is stable in Upc.

Consequently, we are left with the proof obligation: J UP
` (p ∧ pc = n)� (q ∧ pc = n)

Using A.2214, we can rewrite assumption A7 into

UP = strengthen guards.(pc = n).U ′P , where

U ′P = strengthen guards.(¬q).(aP, iniP ∧ (pc = n),wP ∪ {pc}, rP ∪ {pc})

now we proceed as follows:

J UP
` (p ∧ pc = n)� (q ∧ pc = n)

⇐(Theorem Strengthen guards with stable predicate A.2414)

J U′P` p� q
∧
(pc = n) C wU ′P
∧
U′P`�(pc = n)

Because adding variables and initial conditions to a program trivially preserves its progress prop-
erties, Theorem strengthen guards preservation of � (A.2314) and assumption A1 can be used
to establish the first conjunct. Since {pc} ⊆ wU ′P , Theorem C Monotonicity A.210 proves the
second conjunct. Finally, Theorem A.1213 and assumption A3 proves the last conjunct.

B.2 Proof of Theorem 3.89 17

B.2 Proof of Theorem 3.89

Theorem 3.8 REACH SEQ REACH

q C wP+ ∧ J P+` p
+� q ∧ J Q+` q

+� s

J P+#qQ+` p
+� s

J
Assume the following:

A1: q C wP

A2: J P` p
+� q

A3: J Q` q
+� s

we have to prove that: J P #qQ` p
+� s.

Using Definition 3.58 this comes down to proving that:

∀pc n m U : {pc} +: (P #q Q)
∧ U = semantics.(P #q Q).pc.n.s
∧ m = max pc.(P #q Q).pc.n
⇒
J U` (p ∧ (pc = n))� (pc = m)

Assuming:

A4: {pc} +: (P #q Q)
A5: U = semantics.(P #q Q).pc.n.s
A6: m = max pc.(P #q Q).pc.n

using Definitions 2.34 and 2.44 we can deduce that there exist UP , UQ, m, and k, for which:

A7: UP = semantics.P.pc.n.q
A8: k = max pc.P.pc.n
A9: UQ = semantics.Q.pc.m.s
A10: m = max pc.Q.pc.k

such that:

A11: U = UP 8 UQ

Now we have to prove that: J UP 8 UQ` (p ∧ pc = n)� pc = k

Using � Transitivity (A.1413) this proof obligation can be decomposed into two proof obliga-
tions stating the progress that is established by UP , and the progress that is established by UQ,
as follows:

⇐(� Transitivity (A.1413))

J UP 8 UQ` (p ∧ pc = n)� (q ∧ pc = m)
∧

B.2 Proof of Theorem 3.89 18

J UP 8 UQ` (q ∧ pc = m)� pc = k

These two conjunct are proved using Theorem A.1613 (take r = (pc < m)) and Theorem A.1713

(take r = (pc ≥ m)) respectively. Using Theorems 2.86, 2.106, 2.96, and 2.116, these proofs are
straightforward.

Index

 (convergence operator), 12
8 (ignored-by operator (actions)), 10
: (ignored-by operator (programs)), 11
8 (parallel composition operator), 11
C (confinement), 10
(sequential program composition), 1, 3
7→ (leadsto operator), 12
� (reach operator), 12
� (stability operator), 12
�+, 7
+ , 9
+:, 5
+�, 9

a (UNITY program destructor), 11
actions

atomic, 10
add to initial cond, 11

composition of
UNITY programs

parallel, 1, 11
compositionality results, 1
confinement, 10
convergence ()

definition, 12

ensures (progress operator)
definition, 11

execution of a UNITY program, 10
Expr (universe of state-expressions), 10
expression

state-, 10

fairness (UNITY), 10
fixed-point, 12
FP.p, 12
fresh variable, 5

guard strengthening
of programs, 14

ignored-by operator
actions (8), 10
programs (:), 11

ini (UNITY program destructor), 11

parallel composition (8)
definition, 11
modelling of, 11
properties, 11

predicate, 10, see state-predicate
program

union, see parallel composition
progress property, 11
7→ (leadsto operator), 12
� (reach operator), 12
+ , 9
+�, 9

ensures, 11

r (UNITY program destructor), 11
reach operator (�)

definition, 12
properties

compositionality, 13
refinement

of programs
strengthening guards, 14

restricted union superposition, 13
definition, 14
properties

preservation of , 14
preservation of ensures, 14
preservation of�, 14
preservation of unless, 14

RU S (restricted union superposition opera-
tor), 14

definition, 14
properties

preservation of , 14
preservation of ensures, 14
preservation of�, 14
preservation of unless, 14

safety property, 11
�, 12
�+, 7
unless+, 7
unless, 11

sequential program composition (#)
intuitive definition, 1
properties, 5, 7, 8
semantics, 4

SND (HOL constant (’a#’b)→’b), 5
stability operator (�), 12

definition, 12
stable predicate, 12, see also stability opera-

tor
State (state-space), 10
state

represented as function, 10

19

INDEX 20

state space, 10
state-function

confinement, 10
state-predicate, 10, see also state-function

stable, 12
strengthening guards, 14
strengthen guards (of a program), 15

definition, 15
properties

preservation of�, 14
symmetry, 14

superposition refinement
restricted union, 13

definition, 14
properties, 14

UNITY
fairness, 10
parallel composition (8), 11

definition, 11
modelling of, 11
properties, 11

program, 10
proof logic, 11
sequential program composition (#)

intuitive definition, 1
properties, 5, 7, 8
semantics, 4

specification, 11
specification logic, 11

UNITY program, 10
destructors

a, 11
ini, 11
r, 11
w, 11

execution of a, 10
fairness, 10

modelled as a quadruple, 10
parallel composition (8), 11

definition, 11
modelling of, 11
properties, 11

refinement
restricted union superposition, 13
strengthening guards, 14

sequential composition (#)
intuitive definition, 1
properties, 5, 7, 8
semantics, 4

union, see parallel composition
variables ignored by, 11

UNITY+ program, 3
abstract syntax, 3

properties, 5–8
semantics, 4
variables ignored by, 5
write variables of, 3

universe of
actions (ACTION), 10
program variables (Var), 10
state-expression (Expr), 10
UNITY programs (Uprog), 10

unless (safety operator)
definition, 11

unless+ (safety operator)
definition, 7
properties, 7

Uprog (universe of UNITY programs), 10

Val (value-space), 10
Var (universe of variables), 10
variable

ignored, 10

weak fairness, 10
w (UNITY program destructor), 11

