IDIEAs Based On The Normal Kernels Probability Density
Function

Peter A.N. Bosman Dirk Thierens
peterb@cs.uu.nl Dirk. Thierens@cs.uu.nl

Department of Computer Science, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

March 2000

Abstract

The IDEA framework is a general framework for iterated density estimation evolutionary
algorithms. These algorithms use probabilistic models to guide the search in stochastic opti-
mization. The estimation of densities for subsets of selected samples and the sampling from
the resulting distributions, is the combination of the evolutionary recombination and mutation
steps used in EAs. We investigate how the normal kernels probability density function can
be used as the distribution of the problem variables in order to perform optimization using
the IDEA framework. As a result, we present three probability density structure search algo-
rithms, as well as a general estimation and sampling algorithm, all of which use the normal
kernels distribution.

1 Introduction

Evolutionary approaches to optimization are stochastic and non—deterministic algorithms that
attempt to use certain aspects of the structure of the search space to guide the search. Such an
inductive search is mainly guided through statistics with at the basis a set of samples, often called
a population. These samples are solutions to the optimization problem at hand. The solutions in
the population are combined in order to perform induction and generate new solutions that will
hopefully be closer to the optimum in a certain sense. As this process is iterated, convergence is
intended to lead the algorithm to a final solution.

Genetic algorithms (GAs) [8, 12] and many variants thereof combine the material within a
subset of the solutions. Often this is done through exchanging values for variables after which
certain values are individually adapted. Another approach is to view a selection of the set of
samples as being representative of some probability distribution. By estimating this probability
distribution and sampling more solutions from it, a more global statistical type of inductive iterated
search is performed. Such algorithms have been proposed using different types of probability
distributions for discrete spaces [1, 2, 3, 10, 11, 13, 15, 17], as well as in a limited way for continuous
spaces [4, 7, 18, 19]. An overview of such algorithms that perform optimization by building and
using probabilistic models is given by Pelikan, Goldberg and Lobo [16].

The IDEA framework [4] allows the just mentioned iterated density estimation evolutionary
algorithms to be defined easily in both the case of discrete as well as continuous random variables.
Assuming that the continuous problem variables are normally distributed or can be approximated
well by using a histogram distribution, algorithms within the IDEA framework have been pro-
posed [4]. The main difference among the search algorithms in that framework, is the allowed
order of interaction k. For a large value of x, many variables are allowed to be processed together
instead of individually. Research has shown that processing groups of variables as a whole in or-
der to exploit problem structure, often called using linkage information in evolutionary algorithms
(EAs), is important for both GAs [9, 12] and IDEAs [5]. A search method has to find these subsets
of variables. Such a method generally takes up more time as increases, which poses a trade—off
between running time and possible optimization ability.

In this paper, we investigate the normal kernels distribution and define how this distribution
can be used within the IDEA framework. This means that we define how we can estimate the
probability density once some probability density structure (pds) is found by a search method and
how we can sample from that probability density. Moreover, we define the same class of search
methods as in previous work [4], but now for the use of the normal kernels distribution. Before
moving to derive these algorithms, we point out that we use the same notation and conventions
as in previous work [4] for writing about probability theory, variables and pseudo—code.

The remainder of this paper is organized as follows. In section 2 we shortly revisit the IDEA
framework and go over the most important aspects. Also, we point out the requirements on any
probability density function (pdf) in order to define certain probability structure search algo-
rithms as well as the density estimation and sampling algorithms. Subsequently, we derive these
algorithms in section 3. Notes on the running times and topics for further research are given in
section 4. Our conclusions regarding this work are stated in section 5. In addition, the derivation
of the required conditional pdf for the normal kernels distribution is given in appendix A.

2 The IDEA framework and pdf requirements

The IDEA framework is based on the rationale that in order to find a minimum of a cost function,
we can attempt to estimate the distribution of the points that all have a cost lower than or equal
to some threshold § and subsequently sample from this distribution to get more points that have a
cost lower than or equal to §. By finding the distribution for 8* = minz{C(Z)} for minimization
cost function C(-) and solution vectors Z that consist of | variables Zg, Z1, ..., Z;_1, a single
sample will give an optimal solution. This has been formalized in the Iterated Density Estimation
Evolutionary Algorithm (IDEA) framework:

IDEA (n, 7, m, sel(), rep(), ter (), sea(), est(), sam())
Initialize an empty set of samples P«
Add and evaluate n random samples fori+—0ton—1do
P + PUNEWRANDOMVECTOR(Z?)
ci] « C(Z9)
1«0
while —ter() do
{2091 i € N} « sel()
6; « c[Z(3)*] such that
View, (c[Z5)7] < [Z65)H)
(m,w) + sea()
{P(Zu:{Z;li € m(wi)})]i € Lyest()

Initialize the iteration counter
Iterate until termination

Select |7n]| samples

Set 0; to the worst selected cost

Search for a pds (7,w)
Estimate each pdf in Py, (Z)

Create an empty set of new samples
Sample m new samples from P ., (Z)

Replace a part of P with a part of O

O+ 10
fori+—0tom—1do
O + OUsam()

rep()

for each new Z! € P do
ci] + C(Z%)
t—t+1
tend <t

Evaluate the new samples in P

Update the generation counter
Denote the required iterations by teng

In the IDEA framework, we have that £ = {0,1,...,1-1}, N; = {0,1,..., |mn] -1}, 7 € [1,1],
sel() is the selection operator, rep() replaces a subset of P with a subset of O, ter() is the
termination condition, sea() is a pds search algorithm, est() estimates each pdf in Py ., (Z) and
sam/() generates a single sample from Pﬁ,w(Z).

Note that in the IDEA, we have used the approximation notation Pﬁjw(Z) instead of the true
distribution PYt,(Z). An approximation is required because the determined distribution is based
upon samples and the underlying density model is an assumption on the true distribution. This
means that even though we might achieve Pﬁ}w(Z) = P (Z), in general this is not the case.

In previous work [4], it was pointed out that the functions est(), sea() and sam() are the most
distinguished parts in the framework. A pds is found by the sea() function. This pds defines the
conditional probabilities that are subsequently used to estimate the density. Next, the ordering
imposed by the pds can be used to sample from the conditional distributions thus found. To
ensure that no variables are conditioned on variables for which sampling has not been done yet,
the pds is constrained to be of a certain form. Given [random variables Zy, Z1, ..., Z;_1, by
scanning these variables from Z,,_, down to Z,,, such a conflict is not possible according to the
definition of the pds (m, w):

-1

P7r,w (Z) = H P(Zw, |Z7'I'(Ld,')(]5 Zﬂ(wi)la [EEE} Zﬂ(“"")lﬂ'(w)l—l) (1)
1=0

such that vie{o’l,___’l,1}<wi € {0, 1,...,1— 1} A Vke{o,l’,__,l,l},{i} (w,- ;é wk))

Vicg0,1, -1} (Vien(w:) (k € {wit1, wiya,- - wi1}))

The density estimation is done based on random variables Z;, i € {0,1,...,l — 1}. For each
problem variable, one such random variable is introduced. These variables are assumed to be
sampled from a certain distribution. This distribution is used in estimation and sampling in
the IDEA framework. In previous work [4], it was shown how the normal distribution and the
histogram distribution can be used to this end in the case of continuous random variables. Also,
in the case of discrete random variables, it was shown how a histogram distribution can directly
be used.

From equation 1, it follows that in order to use the IDEA framework for some pdf in general, we
require to have its conditional distribution of one random variable Z; being conditionally dependent
on n other variables Zj,, Zj,, ..., Zj,_,. To this end, we note that we have from probability theory
that if the pdf of some distribution can be written as f(-), the required conditional pdf equals:

f(yiayjoayjla"'ayjn—l) (2)
f(yjo7yj17 .- 'Jyjn—l)

In order to implement sea() methods that search for the pds (m,w), a search metric is re-
quired. In our previous work, the (differential) entropy measure based on the Kullback—Leibler
divergence was used to define three search procedures. Both the multivariate differential entropy
h(Y}y, Y}, ---,Y;,._,) and the conditional differential entropy h(Y;|Yjy,Y},,--.,Y;,_,) measures are
required. The fact that we require differential entropy is because we are using continuous random

variables. As we shall use this metric again in this paper, we state the required definitions:

f(yikl/joayjla .. 'ayjn—l) =

Yo, Yoo Y,20) = 3)
0o poo oo
_/ / / fjo,jl,...,jn_1(y07y17'"7ynfl)ln(fjo,jl,---,jn—l(yOJyla'"Jynfl))dyodyl ---dynfl
—oo J—o0 —o0

h(Yé|Y,-7.O7Y.-7‘17"'7Y7"n—1)= (4)
h(Y’Z-,Y'jO,Y}'“,,,7Y}"_1) - h(}/}o,}/}l,...,}/}n_l)

The search procedures that we present in this paper are the same as in our previous work [4].
The procedures search for a chain, a tree and an acyclic directed graph of dependencies. We define
these algorithms again, but this time we use the normal kernels distribution for the variables.

3 Continuous IDEAs using the normal kernels distribution

The normal kernels pdf is based on the normal distribution, which is a normalized Gaussian:

1 —(y—p)?
e 27 =g(y,p,0) (5)

In equation 5, we have that p = E[y] is the mean of the sample points and 0 = \/E[(y — u)?]
is the standard deviation of the sample points. The multivariate version of this density function
in d dimensions with ¥ = (yo,¥1,---,¥d—1), is defined by:

(2m)~#

Aem) 2 3 y-wTETy-p) > 6
et D)3 ° gm(y, 1, X) (6)

fly) =

In equation 6, we have that p = (po, 1, .-, a—1) = (E[yo], E[y1]; - - -, E[ya—1]) is the vector
of means and ¥ = E[(y — p)T (y — p)] is the nonsingular covariance matrix, which is symmetric.
Note that X(i,i) = 04 = 07 = E[(y; — :)?]. It is important to note this for the remainder of the
paper because it might be somewhat of a confusing notation as the diagonal of ¥ thus contains
the variances o? instead of the o; themselves.

The non—parametric normal kernels density model in d dimensions, places a d—dimensional
Gaussian kernel from equation 6 over every sample point y(*)% i € {0,1,..., N — 1}. The nor-
malized sum over these N Gaussian functions constitutes the normal kernels pdf. Each kernel
is identical in shape and therefore has the same ¥ matrix. This matrix has zero entries off the
diagonal. The entries on the diagonal are allowed to differ, which allows for different variances
in different dimensions. This can be useful as it is convenient to scale the variance for a certain
dimension with the range of the available samples. In order to avoid confusion with the definition
of o as being the standard deviation over the samples in the case of the univariate normal distribu-
tion, we write s for the fixed standard deviation used in the normal kernels pdf. Analogously, we
write & instead of 3. Formalizing the normal kernels pdf, we can write the the density function
underlying the univariate normal kernels distribution with fixed standard deviation s, defined on
N sample points y(5)? as follows:

W)=+ Z =~ Z 9(y, 3>, 5) (7)

The multivariate pdf for the normal kernels distribution in d dimensions with fixed standard
deviations s;, ¥ = (Yo, Y1,- - -, ya—1) and y(&i = (y§* 41 ,yfis)f) is defined by:

—(y y(s)’)2

(5)iy2

N—-1 _d d—1 (yJ v
1 (27T) P Z i=0 5
f(yO;yl;---;yd—l) N —a-1 € ’ Z 9m y: S)l) (8)
=0 H] =0 55
In the above equation, & is the diagonal matrix containing the s; parameters we just mentioned:
s 0 ... 0
0 s2 ... 0
S=|. . . . (9)
0 0 s2

One interesting property of the normal kernels distribution is that by increasing the standard
deviation values s;, we allow for less detail in the final density estimation. Furthermore, an
advantage over the use of the normal distribution pdf is that we have a better way of modelling
clusters. Using the same datasets, shown in figure 1, as in the work that presented the algorithms
using the normal distribution [4], the density function taken over the variables univariately is
plotted in figures 2 and 3. Note that the localized aspect of the kernel method becomes clear
immediately. Even though the samples were drawn from an uniform distribution, there are still

¥ T T - Bid 10 T T 5 T
+ + + o A
fey ++ 5% TR G tagh for Tt el o+ gﬂ?
L+ e PO A ++t+; Fe P +) T+ g ++++
LS + + o Ty
i + a7 +
PR +**ﬁx}+ T ol Tt et "o g et ﬁ? T
*oae # t o + + +¥ 4 T
P N T A e ﬁ*‘f* oEE i
PR Ja ot P T + g 4 4
e T e coa E T Ty 4 . AT
5r 4 AL P q 5 £ g .
T o Ty + 4 - G
AT e e R * A gt ﬁé*ﬁ e
AT N T + %i + 1
P L T ety F 4 N i3 3 +F]
hy at ot e o + 4 v B + Hy N i
+ ! + o+ Fah e + 4 Py ++ i
¢#++ LE o+ 4 - w00 et Tty e e d irt\tf
HE T e T el + o Py £ e
pul 0 BwEr+ F ot +#+++++ + sl of .« S ¥+
+ P e T . . ¢+++**¢ + i P sk i
o Y = T e ¥ + W Ay
by T A R g ﬁﬁ + topom R
AT o+ + TR R # RARE
+ + + + oot # e v oM
st + £+ H * o Tw e +F Fat 4
oo 4 s KA $* Ry B N % ¥
R + + £ £ + + o1
fey T RN N H e b [¥ 4 S é
P+ttt T Fote o+t ol T . * *
A Fogw o+ TR P + e et] + +
e T S sb o, v Te .]
[[R T o R "**@ﬁf J 1 S N
+ o+ g "+ +
Aot Tea R s . **ﬂ LR }*%@iﬁ’;#ﬁ + ﬁgff et +
B L Rt iy S Y
+ £ i Es + +
+ £ e - +
Caa e . 5 e Fage g g
e w1y e R ! R
10 Lyt L Gty A S S X 10 R L T
-10 -5 0 5 10 -10 -5 0 5 10
YO YO

Figure 1: A uniform and a clustered data set over Yy and Y; with DY = [-10, 10].

0.065 0.065
0.06 0.06
0.055
0.055
0.05
0.05
0.045
S 0045 g
0.04
0.04
0.035
0.035
0.03
003 0.025
0.025 : . . 0.02 : . .
-10 5 0 5 10 -10 5 0 5 10
Yo Y1

Figure 2: Fitting the univariate data from the uniform dataset with a normal kernels distribution
with s = 0.5.

peaks in the distribution. It is clear that this method is well suited for representing local features
of the distribution. Because of the local aspect, the kernels show a much better representation of
the clusters as can be seen in the joint probability distribution using Gaussian kernels, which is
depicted in figure 4. The joint distributions are not identical at all.

In order to define the search functions as well as general estimation and sampling algorithms in
the case of the normal kernels distribution, it follows from section 2 that we require the conditional
density function for one variable Y, conditioned on n other variables Y7, Y5, ...,Y,. In appendix A
it is shown that this required density function equals:

N-1
Folyr vz um) = Y viglyo, us>", 50) (10)
=0

0.075

0.07

0.065

0.055

f(Y0)

0.05

f(v1)

0.045

0.035

Figure 3: Fitting the univariate data from the clustered dataset with a normal kernels distribution
model with s = 0.5.

f(Y0,Y1) f(Y0,Y1)
2 TR
R i#&q’.’:"l,'"\\
0.0035 SN QAN 0.009 " X
00025 P s S N ”“) o.007 R AN i
JHTRRS Q0 N \\W%N 0.006 il ‘\\\\\\s‘\\\ 2 I T 700N
0.002 IR 7R TR “Q' 0.005 #ﬂ. AR VI LT
o 1 X PR N R : ARG AV OGN
0.0015 AT e AR A R 0004 [NNORESRRATIN \ 'q,%\\\\\\vm‘\\\\\\&.".'n
- y it LR gl N 0.002 |- RN TN s
0.0005 W 'll’,",',":';’f;”ll”l"l""Illlllfé‘{\{w\" 0001 L RN il DYRRRY
X NS N Y
o Uit I””’”’W 5 ‘Wg,,’b /2,:1:1‘”’,"""';‘:.‘ WY
J e 0y
10 2 10
10

-10

Figure 4: Fitting the joint data from the uniform (left) and clustered (right) datasets with a
normal kernels distribution with s¢ = s; = 1.0.

L _,(8)iy2

o imym)

i=1 252
%j

where v; =

< (yj—y_g-s)k)z
N-1 i=1 T 3eZ
k=0 ’

In order to estimate the distribution using the normal kernels pdf, we only need to know
the s; parameters. This can be seen from the fact that there are no additional variables to be
computed in equation 10. The other variables that make up the density function are the domain
values from the selected samples. The only thing that thus remains is the specification of s;,
i € {0,1,...,1 —1}. In our kernel approach, every kernel has the same variance in a certain
dimension. Allowing different variances constitutes more of a mixture model. One approach is to
specify a certain variance on beforehand and to scale this variance with the range of sample values
in subsequent iterations. How to perform such a scaling or how to specify the initial value of the
variance has an important influence on the behaviour of the evolutionary optimization algorithm.
Therefore, we parameterize the determination of s; by using an auxiliary function ¢(-). A simple
example of such a function would be to compute the range for a variable Y; and then to set the
variance to a value based on that range, relative to the amount of kernels. This can be formally
written as follows:

LINEARSCALING(a, %)

1 2f range’ not yet determined this iteration then
11 min' « mingeqo,, . rnj-13 {¥ "}
1.2 max® A maxkg{o,l,...,Lrnj—l}{Yi(S)k}
1.3 range’ < max® — min’

2 return(a %T—)

In equations 8, 9 and 10, we referred to s; as the standard deviation of variable y;. In the search
algorithms however, we have to point out which variables exactly are subject to these equations.
To this end, we write §; for the actual standard deviation to use for variable i. Furthermore, we
introduce the following notation:

22

(55, VO ... 0

o 0 &, 0
6(.70:.717'--;.7n—1> = .
\ ; (11)
2
0 0 55,
(5i = (i)
Using equation 11, the multivariate normal distribution over problem variables Y}, Y}, ..., Y;, _;
. S)i 1-(S)i S)i . .

can now be written as gm((yjoayﬁ yen e 7yjn—1)7 (Y‘;E])17 Y;(l)’l, RS Y;("_):), 6(.707.717 s 7.771,71))'

Before specifying the estimation algorithm, we note that we assume in the pseudo—code that
5; (VYicfo,1,....1—1}) are global variables, for which we do not allocate additional memory in the
algorithms. Using these definitions, we can now specify algorithm REKENOEST to estimate the
density functions once the structure is known:

REKENOEST(¢(+))

1 fori+0Otol-1do
1.1 §; « (,0(7,)

2 fori+0tol—-1do

2]' P(Yu)i|Y7l'(w,')0,Y7T(w,')17'"7Y7T(w,')|,,(w1.)|_1) «
(S)g 2
(y,,(u.).—y)
m(w;)—1 m(w;)
—Z;=(0) 22; J —(ywi—Yu(;f)q)2
ZLTTLJ—I e m(wi)j 1 e 25‘%1'
=0 IR IRV
1 m(wp)—1 U @i); " Vn (g, Swi VIT
j=0 25

e)

In algorithm REKENOEST, the estimation of the density function uses function variables
Yw;- Function variable y,, is the actual variable, meaning that we can sample from the density
function once values for problem variables Y (u.)0» Yr(wi)1s--+» Yo (i) n(w;y DaVE been sampled. As
noted in appendix A, sampling from the conditional distribution in equation 10 can be done by
first computing the v,, ¢ € {0,1,...,|mn| — 1} and by then sampling from the one-dimensional
Gaussian g(yw“Yw(,) ;) with probability v,. We can now define algorithm REKENOSAM for
sampling from the condltlonal kernels distribution as follows:

REKENOSAM(p(+))
1 7+ new array of real with size |7n|
2 fori+1l—1downto0do
2.1 if |n(w;)| =0 then
2.1.1 k+ |RanpoM01() - [mn]]
212 Y, « SAMPLENORMALDISTRIBUTION(Y(S)k 5u:)
2.2 else then
221 fork<+ 0to|m™m|—1do
y(5)k 42

_ s lm@il-1 C(wid; ~Yn(o;);
2211 o[k e P
2.21.2 2f k> 0 then
2.2.1.2.1 k] « B[k] + o[k — 1]
2.2.2 ¢ + Ranxoom01() - o[|mn] — 1]
223 fork<«O0to|m™m|—1do
2.23.1 if ¢ < D[k] then

22311 Y, + SAMPLENORMALDISTRIBUTION(YJiS)k,5%.)
2.2.3.1.2 breakfor

Now, by using a fixed pds structure (7, w), we can immediately use the normal kernels distri-
bution in the IDEA framework. For instance, we can use algorithm UNIVARIATEDISTRIBUTION
that was introduced in previous work [4] in order to use a univariate distribution, which leads to
an approach in the line of the compact GA [11], the UMDA [14], PBIL [2] or PBIL¢ [18] and
other approaches in continuous spaces [7, 19], all of which use a univariate distribution. Note
that algorithm REKENOSAM has been defined so as to do less work if the univariate distribution
is used. In the case of that distribution, we namely have that Ycio1,.. |rnj—13(¥i = %) This
slight improvement in algorithm REKENOSAM causes it to run in O(l) time instead of O(ITn)
time in the special case of the univariate distribution. In order to derive the search algorithms for
non—fixed structures using the Kullback—Leibler divergence, we noted in section 2 that we require
to know the multivariate differential entropy for the pdf we wish to work with. In order to derive
this entropy measure, we first note that we have the following for the multivariate normal kernels
pdf:

In (f(y();yla s Yn— 1))

N-1 n—1 ¥ —¥;

(5)iy2
~In(N) —In ((27)%) —1n H s; | +1n o Tt T
i=0
n—1 N-1 T 1 (yJ—y(S)Z)2
=—In | N(2n)% Hsj +1n Ze S

=0 i=0

The term involving the logarithm over the sum cannot be evaluated further and will have to
be approximated numerically, giving additional overhead to the method of using the Kullback—
Leibler divergence in the IDEA framework. We find that the multivariate differential entropy over
n variables yg,y1,...,yn—1 that have a normel kernels distribution following equation 8, can be
written as follows:

=In

h(yo,y1, .-, Yn—1) = (12)

- /f(y)ln(f(y))dy
n—1 N-1 v—lm
Nent [T s) [1wds- [rom| e =2 |ay
3=0 i=0

1 n—1 N-1 n—1 (yj—ygfr")i)2

-0 — oz —
— 2 n 2 3 252
= iln N=(2m) I I s; | — /f(y)ln E e i dy

j=0 =0

In the remainder of the paper, we write fr(y) for the last integral over n variables in equation 12.
By using the information gathered so far, we are able to write out the algorithms for the chain
search, the tree search and the graph search. We denote these algorithms as REKENOCHAINSEA,
REKENOTREESEA and REKENOGRAPHSEA respectively. Assuming that function ¢(-) takes
constant time, the running time for algorithm REKENOGRAPHSEAEXACT is O(I® + ITn) which
is subsumed by the running time of the greedy graph search algorithm for the case when xk > 1.
For all of the search algorithms, we have that we do not need to recompute the s; parameters as
well as the ranges when performing the distribution estimate, as all of the required information
will already have been computed by the search algorithms.

2.1

5.1
5.2

5.3
5.4
5.5
5.6

EN

8.1
8.2
8.3

8.4
8.5

REKENOCHAINSEA (¢(+))
1 a <+ new array of integer with size [
2 fori+0tol—1do

3 e+ 0
4 w1 + ale]
5 fori+0tol—1do

6 m(w-
ale] + a[l — 1]
8 fori+Il—-2downto(do

9 return((w,w))

afi] « 4

minl! mingeo,,.. (rn) 1Y)

max®lil maxke{o,l,...,l_rnj71}{Ya([§])k}
range®ll « maxaldl — min°ld

Sq[i < p(ali])

hagi $n([rn)22752,0) = f1((yarn)
if ha[i] < hy,_, then

5.6.1 w1 « afi]

5.6.2 e+ 1

1) — @

e+ 0
w; + ale]
for g+ 0toido
8.3.1 hwi+1a[q] — %1n(|_7‘n]247r2531,+152[q]) — fI((yle s ya[q]))
8.3.2 ha[q]w“l — hwi+1a[q]
833 1if ha[q]wi+1 — th_l < hwiwi+1 — th_l then
8.3.3.1 w; + alq]
8332 e¢q
7r(w,-) — Wit
ale] « afi]

REKENOTREESEA(p(+))

1 a <+ new array of integer with size [
fori<0tol—1do
21 afi] «
3 b« new array of integer with size | — 1
4 e +RANDOMNUMBER(!)
5 w1 ¢ e
6
7
8

[\V]

7T(wl_1) « 0
min“'=! = mingefo,1,..,[rnj-1}{Yorn }
max¥!-! ¢ ma»xke{o,l,...,Lmj71}{Yw(zs_)1k}
9 range“'-! + max“!'-! — min*'-!
10 sy, < (p(wlfl)
11 he,_y + glo(lmn)?27s3,) = f1((Yer-1))
12 ale] « a[l — 1]
13 fori+Otol—2do
131 min?! « minke{oﬁlv_",hnj_1}{Ya(§])k}
13.2 max“m <~ maxkE{O,l,...,l_'rnJ—1}{Ya([§])k}
13.3 range®d « maxaldl — min®l
13.4 Sa[i] < cp(a[z])
13.5 hap) ¢ gln([mn]*27s2,) — f1(Yari)
13.6 b'lali]] « wi—1
137 hypapiap < 3In(lmn)?47°s5 i Sa) — F1((Ybeafi)s Yagi))
13.8 hafigpt[afi)) <= hot[afil)ali]
14 fori<+1l—2 downto0do
14.1 e+ arg maxj{ha[j] + hbt[a[j]] - ha[j]bt[a[j]]} (j € {0, 1,..., Z})
14.2 w; + ale]
14.3 71'((4)1') bt [w,]
144 ale] + ali]
145 for j«0toi—1do
14.5.1 hy,q5) 3ln(lmn]?47°s2 525) — f1((Yuwis Yal)
14.5.2 hgfjlw; ¢ hwsalj)
14.5.3 Tpest = hafj) + ht(alg)) = haljle* [als]
1454 I,4q + ha[j] + hw,- — ha[j]wi
14.5.5 tf Ipest < Inqq then
14.5.5.1 bt[a[j]] w;
15 return((m,w))

REKENOGRAPHSEA(k, ¢(+))
1 2f k=0then

1.1 (m,w) + UNIVARIATEDISTRIBUTION()
2 elseif k=1then

2.1 (m,w) + REKENOGRAPHSEAEXACT(p(-))
3 elsethen

3.1 (m,w) <+ REKENOGRAPHSEAGREEDY (p(-))
4 return((m,w))

10

REKENOGRAPHSEAEXACT(p(+))
1 define type edarc as
(stack of integer, stack of integer, stack of real)
vP + new array of vector of integer with size |
V < new vector of integer
A + new vector of edarce
fori+—0tol—1do

5.1 mini «— minke{o,l,...,LrnJ—1}{Yi(S)k}

Ot W N

5.2 max' + maxkg{o,L...,LmJ—1}{Y;(S)k}
5.3 range’ ¢ max’ — min®
5.4 s; + go(z)
5.5 Viy «i
6 fori+O0tol—1do
6.1 forj+0tol—1do
6.1.1 2fi#j then
6.1.1.1 ¢« $In(|mn)?4r?s3s?) — f1((y;,vi))
6.1.1.2 ¢+« c— LIn(|rn)?27s?) + fr((v:))
6.1.1.3 S® + new stack of integer
6.1.1.4 S® «+ new stack of integer
6.1.1.5 5S¢« new stack of real
6.1.1.6 PUSH(S®,1)
6.1.1.7 PusH(S?,)
6.1.1.8 PUSH(S®,—c)
6.1.1.9 A|A| — (Ss,St,Sc)
7 v min(ss,st,sc)eA{TOP(Sc)}
fori+0to|A|—1do
8.1 (8°%,8% 5 «+ A;
8.2 ¢+ POP(S°)
83 c+c+1l—v
84 PUSH(S®,c)
9 B <+ GRAPHSEAOPTIMUMBRANCHING(V ,A,l)
10 fori<+ Oto|B|—1do
10.1 (S°%,S% 5°) « B;
10.2 s+ POP(S®)
10.3 t « popr(S?)
10.4 ’Up[t]‘vp[t]l — s
11 return(GRAPHSEATOPOLOGICALSORT(v?))

oo

In previous work [4], we already noted that by adding an arc (vg,v;) to the pds graph in the
greedy graph search algorithm, we only have to recompute the entropy for variable v;. In the
case of the normal distribution, the complete determinant of the matrix X for all of the involved
variables did not have to be recomputed. This is also the case for the normal kernels distribution.
However, in the case of using that pdf, the update rule is less involved. Using linear algebra, we
find the following:

. . . det6j7j7“‘7j”7
det(S(jo, j1,---,Jn)) = 6(_]'(0]<1 0_”1_7')—1(77,123)

= det(S{jo, j1, - --,jn—1>)§?n (13)

11

he,

CU s W N =

5.1
5.2
5.3
5.4
5.5
5.6
5.7

REKENOGRAPHSEAGREEDY (k, ¢(-))

a + new array of boolean in 2 dimensions with size [x [

vP,v® < 2 new arrays of vector of integer with size [
h™,d%,dy,c < 4 new arrays of real in 2 dimensions with size [x [

»¥'p o
0

%.dy < 3 new arrays of real with size [
fori+<—0tol—1do

mini $— minke{OJ""iL"'”J—1}{Y;'(S;kk}
max’ (_ maxkg{o;,...,LmJ_l}{yi() }
range’ « max’ — min"

s; + (i)

d3[i] «+ 8

dofi] + 0

heli] + %ln([TnJ227rd‘;[i]) — f1((%2))

6 fori+0Otol—1do

6.1 forj+<0tol—1do
6.1.1 <¢fi#jthen
6.1.1.1 a[i,j] « true
6.1.1.2 d?[i,j] — 5?5?
6.1.1.3 dp[i,j] + 52
6.1.1.4 h"[i,j] + 3In(|mn|?4x>d}[i, 51) — fr((vs,vi))
6.1.1.5 h"[i,j] « h"[i, j] — 3ln(lmn]?2ndpli, 5]) + fr((y:))
6.1.1.6 c[i,j] < h"[i, 7] — h°[j]
6.3 ali,i] + false
7T oy 12-1
8 while y>0do
8.1 (1)0,'1)1) < arg mln(z,]){c[laj] | a[ZJJ] A (/LJJ) € {07 1,.. ‘Jl - 1}2}
8.2 if clvg,v1] >0 then
8.2.1 breakwhile
8.3 ~ ¢+ v — GRAPHSEAARCADD(k, vg, v1, a, vP, v%)
8.4 d;[’l)l] <«— d?[’vo,’l}l]
8.5 dg[’l)l] <~ dg[UO;UI]
8.6 ho['l)l] <« hn[’l)(),'l)1]
87 fori+0tol—1do

8.7.1 if ali,v1] then
8711 d?[i,vl] «— d;’c[vl]sf
8.7.1.2 h"[i,v1] + 3ln(|7n|?(2m)lv" 240, vy])—
fI((y’Ul ’ va[vl]m va[v1]1 P 7va[v1]|vp[UI]|_1 ’ yi))
8.7.1.3 doli,v1] « do[vs]s?
8.7.1.4 h"[i,v1] + h"[i,v1] — 3In(|7n|?(2m) v U AR], vy])+
fI((va[m]o:va[vl]la s ;yvl’[vlhvp[,,l”_l > yz))
8.7.1.5 c[i,j] < h"[i,v1] — h°[v1]

9 return(GRAPHSEATOPOLOGICALSORT(vP))

4 Discussion

Optimization algorithms that build and use probabilistic models, such as the IDEAs, take up more
time in finding a probability density function and subsequently sampling from it, as the allowed
complexity of the pds goes up. As noted in previous work [4], it is therefore important to be
aware of the running times of the parts of an algorithm. We note that because of equation 12, we
have to numerically approximate an integral every time we compute the joint differential entropy.
We shall assume at this point that this takes constant time and shall therefore disregard it in the

presentation of the asymptotic running times of the algorithms in this paper:

12

| Algorithm | Complexity |

REKENOCHAINSEA() O(* +1rn)
REKENOTREESEA() O(? + ltn)
REKENOGRAPHSEA() | O3k + I2 + ITn)
REKENOEST() O(lrn)
REKENOSAM() O(lkTn)

The running time for algorithm REKENOEST was determined as the worst case with respect
to the fact that the ranges still have to be computed. This means that it hasn’t been done by a
search algorithm previously. Also, we assume that ¢(-) = LINEARSCALING(a, -). Otherwise, the
running time of algorithm REKENOEST would be O(1).

The competence of the algorithms presented in this paper should be tested on test functions.
Preliminary results have already shown however that the normal kernels distribution approach
leads to algorithms that give good results on certain problems but that they are very very sensi-
tive to parameter settings such as « in algorithm LINEARSCALING. However, the running times
for those algorithms are much larger if k > 1, than when using only the normal distribution,
especially if the population size increases. If we base the estimation on |7n| samples and generate
n — |7n| new samples every iteration, the running time for sampling in the case of using the
normal distribution, taking 7 as a constant, amounts to O(nlk). In the case of the normal kernels
distribution however, the running time amounts to O(n?lk).

This is one of the reasons why a normal mixture distribution might provide some very useful
properties. Sampling from a normal mixture distribution with M kernels will most likely take
O(Mnlk) time. If M is taken as a constant, we find the same running time as in the case of using
the normal distribution. Furthermore, the mixture model is not as global and cluster—insensitive as
is the normal distribution and neither perhaps over—sensitive to clusters as is the normal kernels
distribution. Therefore, further exploring the possibilities of using mixture models seems very
worthwhile.

We have used the Kullback-Leibler divergence as a metric to guide the search for a pds. Note
that using this metric as well as the normal kernels distribution is merely an instance of the IDEA
framework and that the derived algorithms should be seen independently from it. Furthermore,
using the Kullback-Leibler divergence is not very effective if there are no strong constraints on
the pds to be learned because the Kullback—Leibler divergence is merely a distance metric to the
full joint pds. This means that any search algorithm guided by this metric will simply search
for a model as close as possible to that distribution. A better means of exploiting problem
structure would be to explore the dependencies in the data and base conditionalities on statistical
tests. Combining this with the use of normal mixture models could very well lead to competent
evolutionary algorithms for continuous optimization problems.

5 Conclusions

We have presented mathematical tools that allow us to define iterated density estimation evolu-
tionary algorithms using the normal kernels distribution. The search metric we used for a set of
search algorithms is the differential entropy. The normal kernels distribution has some advantages
over the normal distribution. One of these is the fact that it allows us to estimate certain aspects
of a probability density in a better way. One of the main drawbacks is that this comes at the
expense of the running time of the resulting algorithms.

The presented algorithms yet have to be brought into practice. However, as the variety in
probability density functions applied to optimization by iterated density estimation evolution-
ary algorithms increases, more promising methods for problems with certain characteristics are
created.

13

References

(1]

2]

[16]

[17]

(18]

[19]

S. Baluja and R. Caruana. Removing the genetics from the standard genetic algorithm. In A. Prieditis
and S. Russell, editors, Proceedings of the twelfth International Conference on Machine Learning,
pages 38-46. Morgan Kauffman publishers, 1995.

S. Baluja and S. Davies. Using optimal dependency—-trees for combinatorial optimization: Learning
the structure of the search space. In D.H. Fisher, editor, Proceedings of the 1997 International
Conference on Machine Learning. Morgan Kauffman publishers, 1997.

J.S. De Bonet, C. Isbell, and P. Viola. Mimic: Finding optima by estimating probability densities.
Advances in Neural Information Processing, 9, 1996.

P.A.N. Bosman and D. Thierens. An algorithmic framework for density estimation based evolution-
ary algorithms. Utrecht University Technical Report UU-CS-1999-46. ftp://ftp.cs.uu.nl/pub/RUU/
CS/techreps/CS-1999/1999-46.ps.gz, 1999.

P.AN. Bosman and D. Thierens. Linkage information processing in distribution estimation algo-
rithms. In W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela, and R.E.
Smith, editors, Proceedings of the GECCO-1999 Genetic and Evolutionary Computation Conference,
pages 60-67. Morgan Kaufmann Publishers, 1999.

T.M. Cover and J.A. Thomas. Elements of Information Theory. John Wiley & Sons Inc., 1991.

M. Gallagher, M. Fream, and T. Downs. Real-valued evolutionary optimization using a flexible
probability density estimator. In W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar,
M. Jakiela, and R.E. Smith, editors, Proceedings of the GECCO-1999 Genetic and Evolutionary
Computation Conference, pages 840-846. Morgan Kaufmann Publishers, 1999.

D.E. Goldberg. Genetic Algorithms In Search, Optimization, And Machine Learning. Addison—
Wesley, Reading, 1989.

D.E. Goldberg, B. Korb, and K. Deb. Messy genetic algorithms: Motivation, analysis and first results.
Complex Systems, 10:385—-408, 1989.

G. Harik. Linkage learning via probabilistic modeling in the ecga. IlliGAL Technical Report 99010.
ftp://ftp-illigal.ge.uiuc.edu/pub/papers/IliGALs/99010.ps.Z, 1999.

G. Harik, F. Lobo, and D.E. Goldberg. The compact genetic algorithm. In Proceedings of the 1998
IEEE International Conference on Evolutionary Computation, pages 523-528. IEEE Press, 1998.

J.H. Holland. Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan
Press, 1975.

H. Miihlenbein, T. Mahnig, and O. Rodriguez. Schemata, distributions and graphical models in
evolutionary optimization. Journal of Heuristics, 5:215-247, 1999.

H. Miihlenbein and G. Paaf. From recombination of genes to the estimation of distributions i. binary
parameters. In A.E. Eiben, T. Bick, M. Schoenauer, and H.-P. Schwefel, editors, Parallel Problem
Solving from Nature — PPSN V, pages 178-187. Springer, 1998.

M. Pelikan, D.E. Goldberg, and E. Canti-Paz. Boa: The bayesian optimization algorithm. In
W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela, and R.E. Smith, editors,
Proceedings of the GECCO-1999 Genetic and Evolutionary Computation Conference, pages 525—-532.
Morgan Kaufmann Publishers, 1999.

M. Pelikan, D.E. Goldberg, and F. Lobo. A survey of optimization by building and using proba-
bilistic models. IIiGAL Technical Report 99018. ftp://ftp-illigal.ge.uiuc.edu/pub/papers/IIliGALs/
99018.ps.Z, 1999.

M. Pelikan and H. Miihlenbein. The bivariate marginal distribution algorithm. In R. Roy, T. Fu-
ruhashi, K. Chawdry, and K. Pravir, editors, Advances in Soft Computing — Engineering Design and
Manufacturing. Springer—Verlag, 1999.

M. Sebag and A. Ducoulombier. Extending population—based incremental learning to continuous
search spaces. In A.E. Eiben, T. Back, M. Schoenauer, and H.-P. Schwefel, editors, Parallel Problem
Solving from Nature — PPSN V, pages 418-427. Springer, 1998.

I. Servet, L. Trave-Massuyes, and D. Stern. Telephone network traffic overloading diagnosis and evo-

lutionary computation technique. In J.K. Hao, E. Lutton, E. Ronald, M. Schoenauer, and D. Snyers,
editors, Proceedings of Artificial Evolution ’97, pages 137-144. Springer Verlag, LNCS 1363, 1997.

14

A Multivariate conditional normal kernels distribution
Using equations 2 and 8, we can write the required conditional pdf as follows:

f(y0|y1ay27 v Jyn) =

N-1 (2)~ I YA R I
™ 1= 25
NZ _7 =09j €
B O SR
N 1 (2m)~% T 2= 1T
N J" 1516
(S)iy2
_+_1 n o Wi-yym)
N1 @0 s~ D
B N im0 o T ©
N n wi=ui9h2
N-1 —2j= 1%
N Lo € >
o (- y(s)’)2
N-1 _
A=>,0e a
yi—y(5)y2
lEN_l 1 - ?O(J 2})
N A i—0 S0V 2T
1 N-—1 1 —(yo— y(s)l)2 n (yj—yg-s)i)2
— L n(M)-In(A) Z e % 7
N i—0 50\/27(
N—-1 (yo—y
_ l 1 —2(3—+1n(1v) In(A)—A;
N i—0 50\/27r
N-1 ~(wo=v$M")2 ~243 (=In(W)+1n(A)+1)
_ 1)y 1 == 3
N =0 S0V 2T
N-1 .
151 5
N i—0 S0V 21
If the expression that will result is to be of a closed form, so that we may write f(yo|y1,y2,.-.,Yn) =
Zﬁiﬁl 9(y, fib, s0), rewriting b; should lead us to fij:
S)i S)i
bi = —yo +2yoy5" — (y5”")” — 283(~In(N) + In(A) + Xy)
S)i S)i
= —(5 = 290y5”" + (457 + 253 (~In(IV) + In(4) + X))
_ (S)i
a; = =2y, 2
= ; A — (Yo + aiyo + Bi
def{ Bi = (y5™")? + 263 (~In(N) + In(4) + ;) } o+ et + 51
So that when we realize that (yo— 1§)? = yo —2/ibyo + (§)?, we find that if we have (25)? = 3;,
we may write:
/ (S)i
Bi = =Y
However, we do not have in general that (f—z) = [, as this would lead to the univariate

distribution. Given the uniform dataset in figure 1, figure 5 shows an example of a case in which

we do not have (25)? = 4.

15

0.075 T T T

T T
Conditional

Univariate -------

0.0625

0.05

Density

0.0375

0.025 1 1 1 1 1 1 1 1 1
-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure 5: The univariate distribution density estimate f(yo) and the conditional distribution den-

sity estimate f(yo|y1) with y; = —10 for the uniform dataset, using the normal kernels distribution
with 5o =51 = 1.0

Because the required conditional density function is not of a closed form, it perhaps seems
that it is no longer straightforward to sample from it. However, this is not entirely the case. This
becomes clear if we introduce the following definition:

1
efln(A)f)\i — Kefki (14)

Vv; =
We may now continue the derivation of the required conditional pdf as follows:

f(y0|y17y27 s ;yn)

—(yo—y(s)i 2
252 eln(N)—ln(A)—Ai

N-1
1 Z 1
= — e
N i—0 soV2m
1 —(yogy(s)i)2
e °0

Il
S

= Z Vig(yoyy(()s)iaﬁo)

As the last expression in the above derivation is a weighted sum of univariate Gaussian density
functions, we can quite easily sample from the conditional density function. Given values for
Y1,Y2,- - -,Yn, we can compute v;,i € {0,1,..., N—1}. We then select the univariate Gaussian pdf
9(yo, y(gs)i,so) with probability v;/ EkN:_Ol vi,. From the definition of v;, it follows that Eg:_ol vp =

1, so actually we may select the univariate Gaussian pdf g(yo, y(()s)i,so) with probability v;.

16

